Chapter 10

Numerical Simulations: Results

In this chapter we present the results of our numerical simulations for the six test cases men-
tioned in §9.1. Besides, relevant results from literature are presented for comparison and
evaluation. The description of the results is sometimes accompanied by concluding remarks,
though the main conclusions and general discussion of our results, and the vorton method in
general, are postponed to Chapter 11.

10.1 Single Vorton Ring

In this section we compare the properties and characteristics of a single vorton ring, as illus-
trated in fig.9.1. In §10.1.1 we treat the velocity and vorticity distribution inside the core of
the ring and its velocity of translation. In §10.1.2 the stability of vorton rings is discussed.

10.1.1 General Characteristics of the Vorton Ring

As mentioned in §9.1, the vorton ring is determined by four parameters: radius R, circulation
I, strength v of each vorton, and the number of vortons N. For given R and T', a relation
between v and N can be derived from relation (9.17).

In fig.10.1 a standard vorton ring (N = 12) has been visualized by means of isosurfaces of
the magnitude of diagnostic w given by (9.18). Fig.10.1(a) shows that the vorton ring has a
core. However, the contribution of each vorton remains detectable, which becomes clearer if
the value of | ® | is increased as shown by fig.10.1(b). Obviously, for larger number of vortons,
the isosurfaces will become smoother.

In fig.10.2 the distribution of velocity and vorticity is shown for the core of a standard
vorton ring along the lines indicated in fig.10.2(a). To avoid the singularity in both fields, the
contribution of the vorton on line A has been disregarded. Comparison with the only experi-
mental measurements known, from Maxworthy [149], shows reasonable qualitative agreement.
Curve fitting has shown that the distribution of fig.10.2(b) can be described by a curve of the
form sech?(r) with r the radial distance from the core center which is the curve that has been
proposed by Maxworthy.

The distances between the two peaks (maximum and minimum) in the velocity distribution
as given in fig.10.2(c), can be taken as a measure for the core size a. In fig.10.3 the ratio between
the non-dimensional core radius &, given by:

a

27R/N "’ (10.1)

a=

has been plotted as function of the number of vortons N and for the two lines across the
ring shown in fig.10.2(a). In both cases, & appears to converge towards a constant value. We
conclude that for the standard vorton ring

aoc-]%-asN—)oo. (10.2)
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(a)

(b)

Figure 10.1: Single standard vorton ring (N = 12): isosurfaces of | W | {see (9.18)) = (a) 1,000 1/s, (b) 10,000
1/s.
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Figure 10.2: Single standard vorton ring (variable V): distribution of velocity ard vorticity around the center
line. (a) situation sketch (the dots indicate vorton locations on the vorton ring); (b) distribution of | % | (given
by (9.18)) along (i) line A and (ii) line B; (c) distribution of velocity v, along (i) line A and (ii) line B. Number
of vortons N = 12 (—), 36 (- - =), 72 (- - - ). r = distance along lines A and B. The contribution of the

vorton on line A has been neglected. a is core radius.



10.1. SINGLE VORTON RING 97

0.9

0.8
0.7 °
0.6

0.5

0.4

0.3 : — : N
0 100 200 300 400

Figure 10.3: Single standard vorton ring: non-dimensional core radius @ (given by (10.1)) vs. number of vortons
N. Core size a determined according to velocity distribution (see fig.10.2(c)) along line A (O) and B (o) (see
fig.10.2(a)). The horizontal line & ~ 0.875 indicates the value derived from expression (4.3) for a Kelvin-ring.

However, the factor of proportionality appears to depend on the azimuthal location in the
ring. In fig.10.3 we have also indicated the value of @ which follows for large N from Kelvin’s
expression (4.3) for the Kelvin-ring (see §A.2 of the Interlude); it appears to be ~ 0.875 .

Fig.10.1 and figs. 10.2(b)(i) and (ii) show that the vorton ring has an azimuthally in-
homogeneous distribution of vorticity. A large value for N can render a more homogeneous
distribution in the ring. However, the value IV can not be chosen at random when the circu-
lation T, the radius R, and the velocity V of a ring are prescribed. This can be seen from the
expression for V which can be derived from (10.2) and the general expression for the velocity
of a vortex ring given in §A.2 of the Interlude:

r , 1

The factor A’ depends on the factor of proportionality in (10.2) and on the vorticity distribution
in the core, i.e. on N. Hence, the dependence of A’ on IV is ambiguous and complicated. In
the simulations presented in the next sections, the determination of NV has been done by taking
the (integer) value of N which gives a velocity closest to the prescribed one.

We could wonder whether a change in the number of vortons also means a change in
other properties of the vorton ring besides its core size. One indication may be gained from a
calculation of the energy spectrum. In fig.10.4 the energy spectrum of a vorton ring (R = 1,
I’ = 1) given by (9.11) is shown for two values of N.

1This value has also been found by Pedrizzetti [177].
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Figure 10.4: Single vorton ring (R = 1,T" = 1): energy spectra E(k) according to (9.11) for number of vortons
N =36 and N = 240. k is wavenumber.

We observe that the shape of the spectra is identical for both values of N; they are only
shifted along the vertical axis. Apparently, the number of vortons does not influence the
physical character of the vorton ring. However, with regard to the shape of the spectrum itself
it is hard to make any remarks. According to the analytical result presented in [121] for a
" coreless” vortex ring, the spectrum of a ring consists of two parts: a k? behaviour for small
k is due to the nonzero impulse of the ring; a 1/k behaviour for large k is that of an isolated
smooth vortex tube with ka < 1 where a is the core size. We could conclude from fig.10.4
that our vorton ring is not "coreless”. Unfortunately, we have no information on the exact
definition of this vortex ring and other (experimental) results have not been found.

10.1.2 Stability of the Vorton Ring

In §A.3 of the Interlude, the development of research on the stability of vortex structures
(especially vortex rings), stimulated by Kelvin’s vortex atom theory, has-been reviewed. The
work by Widnall and others on the stability of vortex rings has shown that even in the inviscid
case instability can set in 2.

Numerical investigation of the stability of vortex rings has been performed by Knio &
Ghoniem [108]. They used a vortex method which can be compared to the soft-vorton method
(see Appendix B).

We have simulated the same rings as those used by Knio & Ghoniem, i.e. radius R =1
and circulation I" = 2. The initial disturbance has been a sinusoidal radial disturbance, given
by:

AR sin (nf) ' (10.4)

2The influence of viscous effects on the stability behaviour of vortex rings might be negligible, as is reported
in e.g. [128).
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where AR is the amplitude of the disturbance, n is the wavenumber and & is the azimuthal
coordinate (see fig.c of the Interlude for an illustration). For AR the value 0.02 * R has been
chosen. The value of n has been varied and the value at which the amplitude of the disturbance
increased fastest, is called n*. In fig.10.5 the most unstable wavenumbers n* are plotted against
the non-dimensional velocity of the ring V', given by:

. _47R
VEV%T (10.5)

where V is the ring velocity, calculated directly from the displacement of the vorton ring. The
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Figure 10.5: Single vorton ring (R =1,T = 2): most unstable wave number n* vs. the non-dimensional ring
velocity V = V(4w R/T"). Results for (x) the vorton ring are compared to () numerical results from [108] , and
(o) experimental results from [278] . '

amount of data may seem small. Unfortunately, the range of values of V for which Knio &
Ghoniem provide data is in a region where, for I' = 2, the number of vortons in the vorton ring
is about twice the number of waves n. This means that the representation of the sinusoidal
disturbance is inaccurate with unknown effect on the instability behaviour of the vorton ring.

Nevertheless, we conclude that the stability behaviour of the vorton ring compares rea-
sonably well with the numerical results of Knio & Ghoniem. However, both our and Knio &
Ghoniem’s results do not compare very well with experimental data as given by Widnall &
Sullivan [278], also indicated in fig.10.5.

10.2 Behaviour of a Single Pseudo-Elliptical Vorton Ring

10.2.1 Introduction

The dynamics of a single vortex ring becomes much more interesting (and complicated) when
its shape is changed from circular to elliptical. From accounts of the smoke ring experiments
performed by Kelvin and Tait in the 1860s, it appears that they already recognized the peculiar
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behaviour of elliptical rings (see §3.2). However, only in recent years this behaviour has been
studied more deeply.

The behaviour of an elliptical ring is determined by its inclination to ”oscillate”, i.e. to
constantly interchange its long and short axis. This can be ascribed to the variations in
curvature, which induces unequal velocities along the circumference of the ring. The parts
of largest curvature will move forwards at a higher velocity than the other parts of the ring,
causing a bending of the ring perpendicularly to its plane. The parts staying behind will start
to move outwardly, causing the the change of axes, mentioned above. The oscillating behaviour
is clearly exposed in fig.10.6.

; @ ?
Figure 10.6: Oscillating behaviour of an elliptical vortex ring: (a) perspective view (sketch from [134]); (b)
side-view; (c) top-view. Development in time is from left to right.

Q

It has been shown experimentally that the behaviour of elliptical rings depends on the ratio
of the lengths of the major and minor axis of the ellipse. When this ratio exceeds a certain
value the periodic oscillating behaviour of fig.10.6 is ”disturbed” due to vortex reconnection.

Kiya & Ishii [105] performed numerical simulations applying a soft-vorton method and did
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experiments on the behaviour of a so-called pseudo-elliptical vortex ring whose shape is shown
in fig.10.7. This ring is supposed to show similar behaviour as purely elliptical rings. They
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Figure 10.7: A pseudo-elliptical vorton ring. The dots indicate the vorton locations.

observed at least two different regimes in the behaviour of these rings, depending on the axis
ratio L/2R,:

1. for 2 < L/2R, < 4: oscillation as in fig.10.6 with a continuous interchange of the position
of the long and short axis;

2. for5 < L/2R, < 8: the ring’s axes interchange one time (as in the first half of fig.10.6)(b);
this is followed by splitting up into two rings.

As remarked above, the splitting behaviour may be attributed to the phenomenon of recon-
nection, introduced in the Interlude 3. When the long straight parts of the ring approach
each other under certain conditions, they are cut and reconnected as illustrated in fig.e of the
Interlude.

10.2.2 Vorton Simulations

For our numerical simulations, we have taken the vorton representation of Kiya & Ishii’s
pseudo-elliptical ring (see fig.10.7). For this ring circulation I' = 225 and R, = 1. By changing
the value of L we can change its axis ratio.

3We shall return to this topic in §10.4.
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The behaviour of this ring with N = 32 and L/2R, = 7 is shown in fig.10.8 in case of appli-
cation of all three vorton deformation equations, i.e. the N-, K-, and N+K-equations. In case
of the K-equation the simulation had to be stopped after a short time as the vorton strengths
of some vortons increased dramatically. Time step reduction did not show improvement in this
case. The other two cases (figs. 10.8 (a) and (c)) show qualitatively similar behaviour.

In fig.10.9 the development of the the x-component of linear momentum P according to
(9.5), interaction-energy FE; according to (9.10), and self-energy Ey according to (9.14) are
shown for the three cases of fig.10.8. The results for the K-equation show severe violation
of conservation of P and E,. We observe that qualitatively the N-equation and the N+K-
equation show no large differences, so that no preference for one of these can be expressed
based on these results. However, the results on the conservation of P and E; suggest that the
N+K-equation performs slightly better.

The influence of the number of vortons N on the diagnostics has been investigated in case
of the N+K-equation. In fig.10.10, the development of the same diagnostics as in fig.10.9
are shown for two values of N and an axis ratio of L/2R, = 7. We again observe that
the invariants are reasonably well conserved. For increasing N their deviations from perfect
conservation decreases. Furthermore, we note that the curves of interaction-energy E; and of
self-energy E, show opposite behaviour.

Regarding the two different regimes of behaviour mentioned above, for our pseudo-elliptical
ring (in case of the N+K-equation) we found that regime 1 occurs for L/2R, < 8. Regime 2
does not occur, though in some range of L/2R, the behaviour seems close to reconnection (as
can be observed in fig.10.8(c)). An increase of the numbers of vortons IV showed an inclination
towards regime 2 for the axis ratios found by Kiya & Ishii. However, above a certainvalue
of N the initially straight parts of the pseudo-elliptical rings became unstable and the ring
collapsed.

The disagreement between our numerical results and the results given by Kiya & Ishii
has been confirmed by a comparison of our numerical results with the results from a simple
experiment which we performed with smoke rings in the manner of Tait’s 1867 experiment
discussed in §3.2 *. In fig.10.11 we show both the isosurfaces of the magnitude of diagnostic
given by (9.18) for our pseudo-elliptical vorton ring (N = 8, N+K-equation) and photographs
of the experimentally observed smoke rings. In both cases the axis ratio L/2R, = 7.

One possible explanation for the disagreement between vorton simulation and experiment
is the presence of a slight restriction in the middle of the straight part of the smoke ring
caused by the way of generation. We have tried to simulate this restriction as indicated in
fig.10.12. For a slightly disturbed pseudo-elliptical vorton ring 5, reconnection indeed occurred
for L/2R, = 7. However, shortly after the splitting, the two rings linked to become one ring
again; see fig.10.12. Apparently, the cause for the inability of our vorton simulation to show

4For a full description of our experiment, we refer to [44].
5The exact nature of the restriction appeared to be irrelevant. Fig.10.12 shows a simulation in which a
sinusoidal disturbance on the straight parts of the ring has been imposed (see the sketch).

Figure 10.8: (see inserted sheets) Single pseudo-elliptical vorton ring (N = 32, L/2R. = 7): behaviour in case
of (a) N-equation, (b) K-equation, (c) N+K-equation. Three views of the ring are given at each time ¢.
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Figure 10.9: Single pseudo-elliptical vorton ring (L/2R. = 7,N = 32): (a) interaction-energy E; according
to (9.10), (b) self-energy Eq according to (9.14), (c) x-component of linear momentum P according to (9.5).
Vorton deformation according to (0) N-equation, (¢) K-equation, (+) N+K-equation. ¢ is time.
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Figure 10.10: Single pseudo-elliptical vorton ring (L/2R. = 7) consisting of N = (a) 32, (b) 192 vortons:
(+) x-component of linear momentum P according to (9.5), (¢) interaction-energy E; according to (9.10), ()
self-energy Eo according to (9.14). (The curves have been rescaled such that their maximum equals 1) tis
time.

reconnection has to be found elsewhere. This will be further discussed in Chapter 11.

Though the experiment mentioned above has been relatively simple, we have been able to
compare one quantitative result. For both the vorton rings and the smoke rings of low axis
ratio (L/2R, < 3.5) the product of the period of one oscillation 7 and the average ring velocity
V have been calculated . In fig.10.13 the results are compared. For the vorton simulations
both the N- and N+K-equation have been used. In both cases the number of vortons N has
been chosen such that the numerical results agreed best with the experimental results. This

61t can be shown that this quantity is independent of the circulation I'. This is a fortunate circumstance,
since I' is hard to measure. See [44] for details.



1T°0T on81g

980=71

98°0=1

L9°0=1

80 =1

620 =1

01°0=7




10.3. HEAD-ON COLLISION OF TWO COAXIAL VORTON RINGS 105

resulted in N = 10 in case of the N-equation and N = 8 in case of the N+K-equation. We
observe agreement between numerical and experimental results with regard to the trend of the
curves. The N-equation seems to perform somewhat better. However, the fact that vorton
rings can only vontain discrete values of IV strongly restricts the adaptation of the numerical
ring to the experimental ring.

10.3 Head-on Collision of Two Coaxial Vorton Rings

10.3.1 Introduction

As remarked in Chapter 2, in 1858 Helmholtz had already showed that if two coaxial and
identical vortex rings approach each other, their radii increase and their velocities decrease.
He had also remarked that this situation could be compared to a single ring approaching a
flat wall perpendicularly, in which case the ring collides with its own "mirror” image (compare
fig.7.1). The former case will be called ring/ring interaction and the latter ring/wall interaction.

The initial configuration of ring/ring interaction is shown in fig.10.14. Notice that this
configuration can only represent ring/wall interaction if the free-slip condition on the wall is
valid, i.e. if no condition is imposed on the tangential velocity at the (imaginary) wall.

In §A.2 of the Interlude we mentioned Dyson’s impressive analytical results of 1893 on this
configuration. After Dyson’s remarkable paper, it seems to have lasted more than 70 years
before interest in the interaction of vortex structures with planes, or other objects, revived.
Direct incentive for this revival can be found in the concern which arose in the early 1970s
over the hazard presented by trailing vortices as produced by large aircrafts [276], which could
interact with the ground and other aircrafts. One of the phenomena only then discovered
was the rebound effect: at close approach towards a wall the movement of the vortex showed
reversion, i.e. the vortex started to move away from the wall. Though initially the rebound
was explained by inviscid core deformation (see [128]), it soon became clear that the effect was
due to the influence of the boundary layer: when the distance between ring and wall is of the
order of the apparent thickness of the core, the boundary layer is disturbed and a secondary
ring is generated at the wall, which induces an upward motion on the approaching ring and
se.- < it from the wall (see e.g. [274]). After the rebound the first ring may again approach
the wall since the secondary ring becomes weaker, and the rebound may occur again.

More generally, the rebound effect made clear that interaction of vortex structures with
viscous boundaries (no-slip condition) are fundamentally different from inviscid boundary in-
teractions (free-slip condition) represented by mirrored structures.

10.3.2 Recent Results from Literature

While results on ring/ring interaction are scarce, ring/wall interaction has been given more
attention. Chu et al. [40] have done experimental work on rings approaching both a solid sur-
face and a (slightly contaminated) free surface. For the circulation of the ring, they have found
that during the free-travelling stage I' is almost constant, while during the vortex stretching at
close approach of the surface I' strongly decreases. This violation of Kelvin’s Circulation The-

Figure 10.11: (see inserted sheet) Single pseudo-elliptical vorton ring (N = 8, L/2R. = 7): comparison between
numerical simulation (in case of N+K-equation) and experimentally produced smoke ring. The vorton ring is
represented by isosurfaces of | W | given by (9.18). Three views of the ring are given at each time ¢.
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orem indicates that viscosity becomes influential at that stage. Apparently the only numerical
simulation on this configuration has been performed by Kambe and co-workers. Their viscous
vortex model also showed a variation of circulation: first it is constant, then it decreases at
close approach. Energy appeared to decrease from the start [98].

The only recent experiment on head-on colliding vortex rings seems to have been performed
by Lim et al. [128]. They have compared the ring/ring interaction with the ring/wall interac-
tion. During the ring/ring interaction, the radius of each ring continues to increase, in good
agreement with Dyson’s equation (see fig.d of the Interlude). They have found no rebound
effect for the ring/ring interaction and concluded that the generation of secondary vorticity at
the wall is indeed the cause of rebound in the ring/wall case. For the ring/ring case, the ex-
periments also showed that an azimuthal instability can develop along the rings. A remarkable
consequence of this wave formation is the formation of smaller rings around the circumference
of the original rings. Once formed, these move outward radially ”

10.3.3 Vorton Simulations

We have simulated the head-on collision of two standard vorton rings with the number of
vortons per ring N = 36 and the vortons in both rings located opposite each other. Initially,
the rings are separated 4 times the initial radius R, i.e. d = 4R and R = 0.8 cm; see fig.10.14.
Only the N+K-equation has been applied, since all three vorton deformation equations showed
the same simulation results.

In fig.10.15 we compare the development of radius R of the approaching rings as a function
of their distance (i.e. the distance between opposite vortons), given by d. It shows good
qualitative agreement with Dyson’s analytical curve for the Kelvin-ring, given in fig.d of the
Interlude ®. The curve shows no rebound.

From fig.10.16 we derive that distance d between the rings, defined as the distance between
the opposite vortons in both rings, almost stops decreasing as radius R of each ring starts to
increase strongly. This moment will be called ¢* and it is about equal to 0.006. Comparison
with fig.10.15 shows that ¢* is also the moment R starts to increase severely.

Apparently, the rings have a core which hinders their approach beyond a (small) distance.
It should be mentioned that Dyson’s elaboration also predicts a lower limit for the distance d.

To find out what is happening to the core during collision, we show in fig.10.17 and fig.10.18
contour plots of | @ | (given by (9.18)). The first figure shows the deformation of the core in
plane A of fig.10.14, the other the same result in plane B. In both figures, we depict at ¢ =0
the same maximum value of | @ | in order to show the difference in the vorticity distribution
between the two locations. At subsequent times, the values of | @ | on the contour levels has
been adapted to the overall maximum of | # | in each plane.

"This phenomenon resembles the formation of rings in the so-called Crow instability of rectilinear trailing

vortices (see e.g. [276]).
8Quantitative comparison has not been attempted, since in that case one needs to know the core size a. As

we have shown in §10.1.2, a cannot be defined unambiguously.

Figure 10.12: (see inserted sheet) Single pseudo-elliptical vorton ring (N = 96, L/2R. = 7): behaviour in case
of the N+K-equation and a slight restriction (exaggeratedly illustrated by the sketch at bottom right). Tree
views of the ring are given at each time t.
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Figure 10.13: Single pseudo-elliptical vorton ring (I' = 225): comparison of 7V (7 is the duration of one complete
oscillation; V is the average ring velocity) vs. axis ratio L/2R.. Comparison between results from numerical
simulations ((0) N-equation (N = 10) and (+) N+K-equation (N = 8)) and from experiment (o) (error bars
have been provided).

Comparing the time development of the cores in figs. 10.17 and 10.18 with figs. 10.15
and 10.16, we observe that at t*, defined above, the cores become deformed and asymmetrical.
This is also illustrated by fig.10.19(a) in which the development in time of the non-dimensional
core radius @ (defined in 10.1) in plane B (see fig.10.14) has been illustrated. The core is
again derived from the velocity distribution around the centre line of the vorton ring (see
fig.10.19(b)), but as is evident in the figure, the radius at the front of the ring (i.e. where the
rings touch each other) finally becomes smaller, while the radius at the back starts to increase.

In fig.10.20 the development of circulation I' of each ring is presented as calculated from
integration along the two different curves A and B indicated in fig.10.14. Comparing with
figs. 10.15 and 10.16, we conclude that conservation of circulation starts to be violated at
t*. However, the direction of the deviation of I" depends on the curve used in the calculation.
As mentioned in §10.3.2, decrease of I' has also been found in experimental and numerical
experiments in literature, where it can be attributed to viscosity. For our simulation, this
explanation is not workable. Apparently, the calculation of I' by means of the curves A and B
is no longer allowed the moment the distance between the core centers has decreased beyond
a certain value.

As the developments of R, d, and I are now known, we can check Dyson’s results for the
rate of change of R, given in §A.2 of the Interlude. In fig.10.21 the relation between circulation
I" divided by distance d is plotted against the rate of change of radius R. We conclude that for
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Figure 10.14: Initial configuration of two head-on colliding vortex rings (ring/ring interaction). The dots indicate
vorton locations. Plane B (curve B) is plane A (curve A) rotated around the the z-axis, such that it intersects
the vorton ring at the location between vortons « and .

a certain period of time the linear relationship, as found by Dyson, exists. After ¢t* the rings
stop behaving as Kelvin-rings.

Regarding the conservation of the motion-invariants mentioned in §9.3.1, one may recognize
that due to the symmetry of the configuration, expression (9.5) for linear momentum, expres-
sion (9.8) for angular momentum, and expression (9.16) for helicity are always zero. This is
indeed confirmed by the simulation results, though some very small scattering around the zero
line is present. In fig.10.22 the development of interaction-energy E;, according to (9.10), and
of self-energy E,, according to (9.14), are shown. We observe that conservation of E; and E,
is almost immediately violated. Furthermore, both curves show opposite trends.

In the second simulation of this section, we have tried to reproduce the phenomenon of
the formation of smaller vortex rings on the circumference of the two initial rings, as observed
by Lim [128] and discussed in §10.3.2. As the simulation presented above did not lead to
sinusoidal disturbances by itself, we decided to introduce a slight axial sinusoidal disturbance
to the rings. The simulation was done with standard rings consisting of N = 72 vortons each.
The wave mode number was chosen n = 12 (compare (10.4)), and initial separation was 2R.
In fig.10.23 the simulation result is shown by means of the vorton locations. Initially, when
the rings are separated at relatively large distances, the imposed wave mode is stable and the
disturbance will be damped. However, when the rings approach each other, their velocities
decrease and the wave mode becomes unstable at the moment when the non-dimensional
velocity V reaches the critical value for this specific mode (compare with fig.10.5). In the next
phase, reconnection takes place and small rings are formed. Note, however, that these rings
seem to be still connected to each other by vortons lying in between them.
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Figure 10.15: Head-on collision of two standard vorton rings (IV = 36), initially separated d = 4R: radius R vs.
distance d.

Finally, we have investigated the effects of vorton division (see §9.4) on this configuration.
At least one reason to apply vorton division in this case can be obtained from the simultation
results presented above. In fig.10.18 we observe that the location of maximum vorticity, which
is supposed to be the location of the core centre, starts to revert at a certain time, even though
the vortons of both rings keep approaching each other as is shown by fig.10.16.

We have applied the vorton division procedure as described in §9.4. For A we have taken the
value given by Pedrizzetti [177] from his analysis of the conservation of ”vortex volume” to a
vorton. In §10.1.1 we found that the core size of a vorton ring (for a circular, undeformed core)
is proportional to the length of the vortex tube (see (10.2)). Supposing that the vortex volume
is proportional to a?Az (Az has been defined in fig.9.3), one can easily derive that A should
be 2%. Notice that this value implies that stretching of a vortex tube will cause a decrease of
its core size, whereas in the absence of division the core size grows during stretching.

We have applied vorton division to the case of two standard rings (N = 36) initially
separated 4 times their radius. In fig.10.24 we show the development of interaction-energy E;
(9.10) for three cases: no vorton division, division without updating of the vorton strengths
in order to conserve circulation, and division with updating (see §9.4). We observe that our
division procedure including updating is able to prevent the continuous decrease of the level
of F; as happens without division. Division without updating is seen to give unsatisfactory
results in this respect.

However, the simulation of this configuration has also made clear an important drawback
of vorton division. As explained in §9.4, the added vortons are positioned at locations which
are linearly interpolated between the locations of the existing vortons (see fig.9.3(b)). In case
of rings this means a (slight) azimuthal disturbance on their shape. From our simulations we
found that after division had occured several times, an azimuthal disturbance started to grow
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Figure 10.16: Head-on collision of two standard vorton rings (N = 36) initially separated d = 4R: distance d
vs. time t.

on the rings and the configuration became unstable. The wave number of this unstable mode
appeared equal to the initial number of vortons, from which we conclude that the instability
was not due to physical effects.

10.4 Oblique Interaction of Two Vorton Rings
10.4.1 Introduction

In §A.1 of the Interlude the experimental observation of the reconnection and subsequent oscil-
lation of two obliquely inclined vortex rings by Wood [285] (1901) and by Northrup [166] (1911)
were presented. The configuration they studied is in essence the one sketched in fig.10.25.

This configuration is not only challenging for experimentalists and for testing numerical
codes, but is also of considerable interest as it is one of the most elementary configurations in
which interaction and reconnection of vortex tubes can be studied in isolation, i.e. without
other disturbing influences °. As already indicated in fig.e of the Interlude, this reconnection
is generally supposed to be a competition between vortex stretching and smoothing by viscous
stresses. The adjacent edges of the rings undergo severe strain and axial flow arises along the
cores. At the same time, severe core deformation takes place.

Obviously, this process is very complicated. Only numerical simulations have enabled fluid
dynamicists to get some more insight into several details of the actual phenomena, but in our
opinion a really complete picture of reconnection, and its understanding, is still lacking.

9 Another useful configuration in this respect may be the (pseudo-)elliptical vortex ring. However, in §10.2
we have seen that pseudo-elliptical vorton rings do not show the expected reconnection behaviour.



10.4. OBLIQUE INTERACTION OF TWO VORTON RINGS

111

0.9 |

0.7

0.6 |

0.5 L

1.9 18 1.7 -

8.4

8.1

b6 -15 -14

T

111

t =0.01

T

3.5

3.4
3.3}
3.2 b

3.1 F

FTINS IR

04 -0.3

8.3

8.2 |

t =0.02

'0-1 a T

Figure 10.17: Head-on collision of two standard vorton rings (N = 36) initially separated d = 4R: deformation
of the cores by means of contour lines of | W | in plane A (see fig.10.14). ¢ is time. Only the cross-section of the

left ring is shown.



112 CHAPTER 10. NUMERICAL SIMULATIONS: RESULTS

11

z

- —
-

’] -_ 3-6 :- 1” -----

' TN
3.5 - / ’ /:‘-.\\ vt
O.g !7/ / l,/,/ ,° _ \\\ v

I I I
0.8 £3§ x‘,'\ 3.4 [

lllll

LA B B

0.7 330 \\ \ % ’%\1_//"'/'::::

06| 3.2

L ‘\ .
! M BT SPE | 3.1 ~~~~~ —

.5 PRI PP NS - PRI BEURUPa |
19 18 1.7 16 15 = 04 -03 -0.2 -0. g

[ v % !
6.1 F TP~ N\ C T~
N RN AN g4~ ~_ \ N\
[ /" Y IREE . _ o MRS -
5.9{ AN \\‘\\;\,‘. 83:/ A \\ \,\:H‘,

¥ ' ; MR
& g2 I IREEE
s\ R T

f‘% AN R % / R
. :_\\\%\, P /,,/,/,/” 81 b’ S

[ % S~ - Sl i

- \ - ;1 [
56K, e’ [ ] .

S NIPRA L S : [

Figure 10.18: As fig.10.17, for plane B.



10.4. OBLIQUE INTERACTION OF TWO VORTON RINGS

05
i .
{ 0.5
r (a) 0.4 ﬁ- o : °
03 B )
1) S S
0  0.002 0004 0.006 0.008
1500 1500 =
! _ F
Ur ¢t = 0.004 / \ vy t=0.007 / \
1000 | f ~
- ~ | 1000 } / \
500 | |
: / /
o 1 500 | /
500 | / a g oa
! N 0F e__,‘__,{/
1000 | ! | /
[ SN
206 -05 -04 -03 -02 -01, 04 -03 02 -01 0 0.

(b)

113
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ment of non-dimensional core radius (d) @; and (o) & as derived from (b) the velocity distribution in plane B
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114 CHAPTER 10. NUMERICAL SIMULATIONS: RESULTS

6000 -
(a) s spo bt """ s (b)

5000 | f .
4000 | £

, 600 |
3000 | .

t* )
2000 | 400 .
1000 rl L ll\l . .- -.'
1 1 1 200 Leoe [, BN 1 N
0 0005 001 0015 002 0 0.005 001 0015 0.02 ¢

Figure 10.20: Head-on collision of two standard vorton rings (N = 36) initially separated d = 4R: circulation
T vs. time t: [ is calculated along (a) curve A and (b) curve B (see fig.10.14).

10.4.2 Recent Results from Literature

Only more than 60 years after Northrup, experimental work on the oblique interaction of
vortex rings was taken up again, both in water and air. The experiments by Fohl & Turner
and Oshima & Asaka (see [102] for references) have shown that the initial Reynolds number
(Re = I'/v) and the angle @ of the rings with the horizontal (see fig.10.26) determine the
interaction process. The latter authors have shown that three regimes of interaction can be
observed, depending on the value of Re; see fig.10.26. For Re = 230-300, the two rings reconnect
and merge into one elliptically shaped ring; after that this ring remains oscillating (stage A
in fig.10.26). For Re = 300-420, after the reconnection (stage A) the elliptical ring eventually
splits up again into two rings (stage B). For still higher values of Re, the two rings, formed
after splitting, reconnect again (stage C).

Recently, extensive experiments on this vortex ring interaction have been performed by
Schatzle [208] and Izutsu & Oshima [93] (see also [171]).

The experiment by Izutsu & Oshima (IO) will be discussed here in some detail, since their
results will be used to evaluate our vorton simulations. By means of hot wires they were able
to measure the velocity field on a grid containing the two interacting vortex rings in air. From
these measurements they calculated the vorticity field. In this way not only quantitative data
could be obtained, but also the possible errors of interpretation have been avoided which are
involved in the common method of visualizing vortex structures by means of tracer particles.
Namely, the spatial pattern of these passive scalars does not faithfully represent the vorticity
field, since a scalar only undergoes convection and does not undergo deformation. Therefore,
at the locations of high vortex stretching, a depletion of tracer particles will occur.

In the IO experiment, the full formation of both rings took about 7.2 ms after a loudspeaker
was switched on to produce the rings. At that time, the radius of the vortex rings were
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Figure 10.21:" Head-on collision of two standard vorton rings (N = 36) initially separated d = 4R: I'/d vs. rate
of change of ring radius, R. T is calculated along (a) curve A, (b) curve B (see fig.10.14).

R = 1.16 Ry where Ry = 0.8 cm is the radius of the orifices. However, from their contour plots
of vorticity, the radius appears to grow up to about 1.25R, after the initial moment. The
initial distance D between the rings’ centres was taken equal to 4Ry. The initial circulation is
given as [y = 813.2 cm?/s and the initial velocity V; of both rings as approximately 183 cm/s.

If we want to compare our numerical results with the experimental results presented by
IO, we have to be sure our initial configuration resembles the initial configuration in the
experiment as closely as possible. This means that we have to start the simulation with the
same positions and characteristics of the rings. One check point for this correspondance is the
angle of inclination @ of the rings during the early stage of the interaction. This angle is based
on the locations of the core centers in the z — y plane. IO mention § = 86.3° at ¢ = 10 ms and
9 =81.3° at t = 14.8 ms *C.

In fig.10.27 isosurfaces of vorticity magnitude are shown as derived by IO from their mea-
surements. We observe that for this configuration, the interaction does not evolve beyond stage
A as shown in fig.10.26. Besides, the arrows indicate the presence of a weak pair of parallel
vortex tubes, which have been called threads .

10T hese times are the times which have elapsed since the switching on of the loudspeaker in the experiment.

1171 this thesis we will not speculate on the mechanism of reconnection which is exposed by these experiments
or our numerical simulations. Comparison of our results with those by IO is only meant to investigate the
applicability of the vorton method to this configuration. Nevertheless, we will mention shortly 10’s conclusions
on the reconnection process, as they have expressed it in [171]. According to IO, the actual cut-and-connect
phenomenon does not take place at one location or moment, but ”the cutting points dissolve gradually”. The
tubes of the approaching rings ” consist of a number of vortex filaments ... Each filament individually cross-links
one by one and moves away quickly in the direction normal to the plane of the filament because of its strong
curvature”. They suggest that an essential part is the bridging process, i.e. the formation of "new vorticity
concentrations” which form the links of the two rings.
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10.22: Head-on collision of two standard vorton rings (N = 36) initially separated d = 4R: the devel-

opment (a) interaction-energy E; according to (9.10), (b) self-energy Eo according to (9.14). Both curves have
been scaled with their initial value. ¢ is time.

The configuration treated here has also been used for the investigation and calibration of
several vortex methods and numerical methods. Besides, as remarked, numerical simulation
is still the only way to investigate the reconnection process in more detail. Some examples of
recent numerical research are presented:

Anderson & Greengard in [9] have applied a vortex-filament method (see §7.3.1) and
added a numerical scheme to simulate diffusion of vorticity. They found that the cores

~of the rings deformed but were not uniformly pressed against each other during the

interaction at infinite Reynolds number. This, they suggest, means that the process
depends on Re. They have also remarked that "perhaps the reconnection process is
too subtle to admit representation by a universally valid model” and pointed at the
impossibility of several Eulerian grid methods to represent the small scales that arise in
the region of reconnection.

Winckelmans [283] (also in [32]) applied both the vorton method and the soft-vorton
method (see Appendix B) to a configuration in which the two rings were initially in-
clined at an angle § = 75°. The cores consisted of a symmetrical pattern of vorton rings
centered around a central vorton ring; see fig.10.28. From his numerical results, Winckel-
mans concluded that the K-equation is preferable to the N-equation and N+K-equation.
However, he added that the vorton method is not applicable to this configuration and
cannot represent reconnection. The conservation of motion-invariants (linear momentum
P as given by (9.5) and interaction-energy E; as given by (9.10)) appeared to be severely
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Figure 10.23: Head-on collision of two vorton rings (I' = 10, R = 2, N = 72, initial distance d = 2R) with initial
axial sinusoidal disturbance of wave mode number n = 12. Dots indicate vorton locations. ¢ is time.
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violated at the moment of reconnection.

With regard to the soft-vorton method, he concluded that this vortex method may be
useful, though no complete reconnection occurred in his simulations. He found none of
the three vorton deformation equations to be preferable. The conservation of the motion-
invariants mentioned was again violated. From the simulation of the same configuration
by means of a soft-vorton method including a viscous diffusion term 12 Winckelmans
concluded that the ”physics of the problem” was well reproduced (he only investigated
the K-equation). Linear momentum was not conserved, though, as he remarked himself,
in unbounded viscous flows it should be. Winckelmans’s simulations also showed threads.

Kida et al. [103] performed extensive numerical studies of the reconnection of two viscous
vortex rings, using several initial values for 8, R, D, and also for viscosity v and core
radius a. The flow was simulated solving the Navier-Stokes equation by means of a
spectral method. The simulations showed the process of formation of so-called bridges
and threads, as introduced earlier by Hussain and co-workers in work on the reconnection
of two anti-parallel vortex tubes with a sinusoidal disturbance (see e.g. Melander &
Hussain in [160]). The reconnection showed three stages (see fig.10.29 and compare with
fig.e of the Interlude):

1. core deformation and stretching during collision of the closest parts of the rings

12This viscous vorton scheme will not be explained in this thesis. For details we refer to Winckelmans's thesis

[283].
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Figure 10.25: Initial configuration of the oblique interaction of two vortex rings.

(figures (a) and (b));

2. annihilation of vorticity due to diffusion and bridging, causing dramatic change
in topology due to cross-linking of vortex-lines; bridging, or cross-linking, is the
formation of connections between the two original rings, while unlinking is the
process of annihilation of the colliding anti-parallel parts of the original vortex rings
(figures (c) and (d));

3. threading, during which a remnant (unreconnected part) of the original vortex pair
is sustained by stretching of the newly formed bridges (figures (d) and (e); see also
the arrows in fig.10.27).

The authors also discussed the twisting of vortex-lines during reconnection. They argued
that reconnection cannot occur in inviscid flows since "both topology and circulation of
vortex lines do not change in time” [103, p.584].

For comparison with some of our numerical results, we show in fig.10.30 the contours
of the vorticity magnitude in one of the symmetry-planes of the configuration, i.e. the
z — y-plane of fig.10.25.

o Aref & Zawadzki (in [160]; see also [15]) used a vortex-in-cell method (see §7.3.2), with
which they could simulate a slightly viscous flow. Their simulations showed weak threads
during reconnection, but, unlike the results found by Kida et al. (see fig.10.30), these
soon disappeared completely.
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Figure 10.26: Three possible, consecutive, stages (A, B, C) in the development of the oblique interaction of
two vortex rings with initial configuration as in fig.10.25 (see text). The arrow indicates time development.
Compare fig.10.27. ~

10.4.3 Vorton Simulations

As mentioned, the numerical simulations presented in this section are compared with the
experiment by Izutsu & Oshima (IO) [93]. For the initial configuration of fig.10.25 we have
taken: R = 1.25R, = 1.0 ¢cm; D = 4Ry = 3.2 cm; ' = 820 cm?/s; and for the number of
vortons N = 15 (based on the initial ring velocity V' = 183 cm/s).

One has to realize that the initial positions of the vortons in the rings may be influential on
the results. Initially, we will study the two configurations shown in fig.10.31. We can indicate
these by the value of the ratio between the angle ¢ as indicated in fig.10.31(b) and 2 /N, the
initial angle between the vortons in the ring. ;

The simulations of both configurations have been performed for the N-, the K-, and the
N+K-equation. Therefore, we have six possible combinations to investigate. In fig.10.32, the
simulation results are shown by means of the vortons in the rings.

Above we mentioned the possibility to check the agreement between our numerical and
10’s experimental initial condition. In all six cases of our simulation, the angle of inclination
6 of 86.3° was reached at t = 18.5 ms (IO: 10 ms) and that of 81.3° at ¢t = 33.5 ms (IO:
14.8 ms). This means that a certain amount of time has to be subtracted from the timesteps
mentioned in fig.10.32 in order to get a proper comparison with the experimental results.
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Figure 10.27: Isosurfaces of the vorticity magnitude for oblique interaction of two vortex rings. ¢ is time. Arrow
indicates threads. Experimental results from Izutsu & Oshima [93].
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Figure 10.28: Initial configuration of a numerical simulation performed by Winckelmans. From [283].

However, we also have to conclude in our simulations the development of the configuration
is slower. One possible explanation can be found in a disagreement between IO’s and our
definition of the inclination angle 8 or of the ring velocity V. This result warns us that a
quantitative comparison will be without meaning. However, below it will become clear that
qualitative comparison makes sense.

From fig.10.32 we observe that the simulations of the configuration according to fig.10.31(a)
show the formation of a ”dipole” consisting of two anti-parallel vortons which eventually move
away in a direction opposite to the movement of the reconnected vorton rings 13, This dipole-
structure does not seem to have occurred in the IO experiment. At this moment, it is unclear
whether it has any relation with the threads mentioned above ™.

Though all simulations for case (i) in fig.10.32 do not agree with the IO experimental
results, we observe that the alignment of the vortons is better conserved in the case of the
N+K-equation than in case of the N-equation.

For the configuration of fig.10.31(b) we observe that the simulation of fig.10.32(b)(ii) (i.e.
the K-equation) blew up after a short time. If we compare the other simulations with the results
presented by IO as shown in fig.10.27, we observe that only the simulation of fig.10.32(c)(ii)

13For this reason, the ”dipoles” disappear out of the pictures in fig.10.32. In passing, we have to remark
that this dipole "blew up” (i.e. the strengths of both vortons grew indefinitely) when the vorton equations were
completely solved for all vortons, while in the simulation of fig.10.32 advantage was taken of the symmetry of the
configuration, i.e. only for one ring the equations were solved after which the new configuration was mirrored.
Apparently, the behaviour of these dipoles depends strongly on the accuracy of the numerical procedure.

14Takaki & Hussain (see [13]) have remarked that two curved vortex tubes or ring before and after reconnection
differ by a vortex ring.
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Figure 10.29: The reconnection process as proposed by Melander & Hussain in [160] (see text). Time develop-
ment is from top to bottom.

(i.e. the N+K-equation) gives good agreement.

Further evidence of the better performance of the N+K-equation as compared to the N-
equation is obtained from comparison of the development of some of the motion-invariants
introduced in §9.3.1; see fig.10.33. Again, we remark that interaction-energy E; and self-energy
Ey (not shown) show opposite time developments.

In the rest of this section, we will only present results related to the simulation presented in
fig.10.32(c)(ii), i.e. configuration with ¢/(27/N) = 0.5 and application of the N+K-equation.
In fig.10.34 isosurfaces of | @ | (given by (9.18)) are shown. Comparing these results with
those from the numerical simulation by Kida et al., shown in fig.10.30, we observe that our
simulations do not show the same core deformation as in their case (in which a ”tail” is formed
behind the core centres). Though fig.10.34(c) suggest the presence of a thread-like object, we
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Figure 10.30: Contours of the vorticity magnitude from the numerical simulations by Kida et al. [103]. Cross-
sections are in the z — y-plane (see fig.10.25). Time development is from left to right and from top to bottom.
The arrow indicates the threads.

could not find a clear indication for this, as Kida et al. (see fig.10.30) and IO (see fig.10.27)
did.

A final comparison of our numerical results and IO’s experimental results (see fig.10.27)
can be made by means of fig.10.35 with regard to the isosurfaces of vorticity magnitude. We
observe that the development in time differs, as we had already expected from the comparison
of the evolution of the inclination angle 4, discussed above. Furthermore, fig.10.35(c) shows
the absence of any thread-like structure in our simulated configuration. Finally, we have
to remark that whereas IO’s experiment seems to have ended in complete dissolution (due
to viscosity) of the last configuration shown in fig.10.27, in our simulation the configuration
shown in fig.10.35(f) continued to oscillate until it finally broke down into two unlinked vorton
rings.
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Figure 10.31: Two possbilities for the initial positions of the vortons in the configuration of fig.10.25 (seen from
the left; for the lower ring only vorton locations are drawn): (a) ¢/(27/N) = 0.0, (b) ¢/(27/N) = 0.5.

Figure 10.32: (see inserted sheets) Oblique interaction of two vorton rings (R = 1.0, T' = 820, N = 15).
Vorton deformation according to (a) N-equation; (b) K-equation; (c) N+K-equation. Configuration as in (i)
fig.10.31(a); (ii) fig.10.31(b). Dots indicate vorton locations, arrows indicate vorton strength vectors; the two
rings are colored by different grades of black. The pictures are shown from two different points of view (compare
fig.10.25): z = along the z-axis, z = along the z-axis. t = time.
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Figure 10.33: Comparison of the simulations shown in (o) fig.10.32(a)(ii) (N-equation) and (-) fig.10.32(c)(ii)
(N+K-equation). (a) z-component of linear momentum, P, according to (9.5) (scaled with initial value); (b)

y-component of angular momentum, J, according to (9.8); (c) interaction-energy E; according to (9.10) (scaled
with initial value). t is time.
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Figure 10.34: Oblique interaction of two vorton rings for the configuration of fig.10.32(c)(ii): contour plots of
| W |. Cross-sections in z — y-plane for upper ring only. (a) ¢ = 0.030s, (b) ¢t = 0.042s, (c) t = 0.050s. The
arrow indicates a possible thread.
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(continued on nezt pages) Oblique interaction of two vorton rings (configuration as in

fig.10.32(c)(ii)): isosurfaces of | W | (given by (9.18)). ¢ is time. Compare fig.10.27.

Figure 10.35:
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(d) t = 0.060.
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(f) t = 0.105.
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We have also investigated the susceptibility of the simulation results to the value of the
angle ¢ as defined in fig.10.31, i.e. to the locations of the vortons. For the N+K-equation the
simulations have been repeated for several values of ¢/(27N) between 0.0 (fig.10.31(a)) and
0.5 (fig.10.31(b)): 0.125, 0.25, and 0.375. In all cases the interaction of the two vorton rings
ended in chaotic vorton motions. However, when the distance between the rings’ centres D
was decreased to 2.5R, instead of 4R,, we found for all three values of ¢ and for the N+K-
equation that the behaviour appeared to be similar to that shown in fig.10.32(c)(ii) and chaotic
behaviour held off. Application of the N- and K-equation to this configuration did lead to the
appearance of chaotic behaviour, showing once again the superiority of the N+K-equation.

Finally, we discuss the consequences of the application of the ”division with updating”
procedure (see §9.4) to the case of fig.10.32(c)(ii). We have found that during the reconnection
of the two rings the condition for vorton division was not met with and consequently no increase
of the number of vortons was observed. However, division took place during the approach of
the straight parts of the connected vorton rings as shown in fig.10.35(e). The division in this
case appeared to have a negative influence on the development of the vorton configuration.
The vortons started to show chaotic behaviour and the simulation had to be terminated.

When the initial number of vortons N in each ring was increased from 15 to 16, the
condition for division was satisfied. However, during the reconnection vortons were added
such that a "tail” of vortons formed behind the forward-moving connected vorton rings. This
tail consisted of vorton "dipoles” as shown in fig.10.32(c)(i). Due to the small distance between
the vortons in these dipoles, the timestep in the simulation was seriously reduced and finally
chaotic behaviour appeared.

In both cases mentioned above, the problem can be attributed to the effect of division as
shown in fig.10.36. The number of vortons starts to increase quickly. Though initially the
vortons remain neatly aligned, at a certain moment instability behaviour sets in. This is most
probably due to the growing misalignment of the vortons caused by the crude interpolation
procedure, explained in §9.4.

10.5 Interaction of Two Knotted Vorton Rings

10.5.1 Introduction

The vortex configurations treated so far show symmetry in one or more planes. As a conse-
quence, several motion-invariants like total angular momentum and total helicity are zero and
remain perfectly conserved apart from slight fluctuations around zero due to numerical errors.
One of the simplest configurations in which asymmetry has essential consequences and which
has non-zero helicity, is that of two knotted vortex rings as shown in fig.10.37. Besides, this
configuration is one of the most elementary in which the alignment of vortex tubes can be
investigated (see §C of the Interlude).

10.5.2 Recent Results from Literature

The configuration of two knotted rings shown in fig.10.37 already appeared in Kelvin’s paper
»On vortex motion” [245] of 1869 (see Kelvin’s letter to Helmholtz in §3.2 and fig.4.1). However,
it got little attention for many decades, presumably due to the obvious lack of experimental
results. Only the advent of numerical methods renewed interest in this problem. Some recent
numerical results are listed below:

e Leonard & Chua [123] studied the configuration of fig.10.37 by means of a soft-vorton
method (see Appendix B), which included a ”core-spreading diffusion equation” for the
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Figure 10.36: Result of vorton division (with updating) on the behaviour of two obliquely interacting vorton
rings. Added vortons are indicated by open dots at the vorton locations. ”Mirrored” vortons are not shown.
The arrow indicates time development.

core size parameter and a viscous diffusion scheme. The cores of their rings consisted of
several vortex lines comparable to the vorton ring shown in fig.10.28. Their simulation
showed the formation of a ”anti-parallel double tube structure”. However, this structure
showed no reconnection or even annihilation of vorticity.

e Aref & Zawadzki [15] applied a vortex-in-cell method (already mentioned in §10.4.2).
They also observed the anti-parallel alignment of parts of the rings and claimed that
these aligned parts would annihilate eahc other due to diffusion, leaving a single ring-like
structure. However, this is not shown by their pictures; see fig.10.38.

e Winckelmans [283] applied a smoothed-vortex-filament method (see §7.3.1) and found the
same results as Leonard & Chua. He also applied a soft-vorton method (K-equation),
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Figure 10.37: Initial configuration of two knotted vortex rings.

with and without inclusion of a vorton division scheme and his ”procedure of relaxation of
vorticity divergence” (see note2 of Chapter 9). Alignment occurred but the subsequent
interaction of the aligned tubes remained unclear and exhibited considerable violation of
conservation of helicity. A simulation in which viscous diffusion had been included (see
§10.4.2) showed no differences, due to the small convective timescale.

An even more elementary configuration to study anti-parallel alignment is the interaction
of two initially orthogonally offset vortex tubes, as shown in fig.f of the Interlude. From direct
numerical simulations, Zabusky et al. [288] suggested that the influence of the ”double-layer”
formed by the tubes is only local and that the topology of vortex lines contributes to limiting
vortex stretching. They found that after alignment, reconnection occurred *5. Pedrizzetti [178]
simulated the interaction of two initially orthogonal vortex filaments by means of the vorton
method (N-equation) and found reconnection.

157abusky and co-workers (e.g. in [288]) have also suggested that their numerical results may explain turbu-
lence phenomena. They found a highly distorted vortex ring as debris after the process for which they suggested
a similarity to the Falco ring, a structure which has been claimed to play a certain role in turbulent boundary
layer flows (to be discussed in §10.6.1). The intense energy-dissipation clusters which have been found in homo-
geneous turbulence might be related to the regions where reconnection occurred. In these regions they observed
"bursting”, i.e. a sudden increase of local vorticity and dissipation.
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Figure 10.38: Numerical results of Aref & Zawadzki for the configuration of two knotted vortex rings as shown
in fig.10.37. Isosurfaces of vorticity magnitude. Time development from top to bottom, two views are shown.
From [15]. '

We have to conclude that the simulations mentioned above have not led to a conclusive
picture of the development of two linked rings. If reconnection really takes place, we could
wonder whether it is of the same kind as that of the obliquely interacting vortex rings discussed
in §10.4. Kida & Takaoka [102] and Boratav et al. [27] have suggested that this is not the
case, though an exact description of the difference appears to be still lacking.

10.5.3 Numerical Results

For our simulation of the configuration shown in fig.10.37, we have used two standard vorton
rings (IV = 36 for each ring) and applied all three vorton equations. For the N+K-equation we
observed anti-parallel alignment as in the simulation of Aref & Zawadzki (see fig.10.38). For the
other two cases, irregular behaviour started almost immediately after t = 0 and alignment did
not occur. However, in case of the N+K-equation, the simulation also ended in a severe increase
of the strength and chaotic behaviour of some vortons. No reconnection-like phenomena could
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flow direction

Figure 10.42: A horseshoe vortex.

First of all, we have to remark that the existence, let alone the role, of HVs is still a point
of discussion. Though already proposed in the 1950s, experimental evidence of the existence of
the HV only began with the flow visualizations of Head & Bandyopadhyay [74] in 1981. They
showed that vertical cross-sections of elongated vortex structures made angles of 45° with the
wall.

Despite ongoing controversies, the existence of HVs in TBL is nowadays generally accepted
(see [68] for references; see also Smith & Lu in [107]). However, there is lack of knowledge
on their formation, growth, destruction, regeneration, and contribution to gross statistics. We
refer to e.g. [195] for further information. A survey of conceptual HV models can be found in
Robinson’s paper in [73].

Few experimens on controlled HVs have been published. Acarlar & Smith [2] studied the
behaviour of HVs shed from a hemisphere in a laminar boundary layer. They concluded that
between the legs of a HV low-momentum fluid is lifted up. Due to the interaction with higher-
speed outer flow, secondary vortices are generated in proximity of the primary HV. These
secondary vortices strongly interact with the original HV, generating chaotic structures which
suddenly eject away from the wall. ” These events appear very similar to the break-up stage of
the burst sequence observed in turbulent boundary layers” (compare fig.10.41).

Smith et al. in (73] found that a viscous-inviscid interaction of a HV with the flow near the
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be observed.

In order to get a better view of the alignment, we show in fig.10.39 the isosurface of | @ |,
given by (9.18). It shows the touching of the vortex tubes, though at this level of | @ | a hole
seems to exist in the middle of the alignment area. We also observe nonuniform thickening
and thinning of the tubes. Unfortunately, shortly after this time instance the simulation had
to be stopped due to exponential growth of vorton strengths.

Figure 10.39: Interaction of two knotted standard vorton rings (N = 36): isosurface of | % |. Time ¢ = 0.0031 s.

In fig.10.40 we have plotted the development of several diagnostics for the case of the N+K-
equations. We observe good conservation of all quantities up to time ¢ ~ 0.0032, the moment
the behaviour of the vortons starts to become chaotic. In this figure, also the influence of
vorton division with updating (see §9.4) is shown. Though application of division appears to
be able to extend the period of conservation of motion-invariants, it does not prevent severe
violation of this conservation. This indicates that in case of division the vorton behaviour
also gets irregular, though this is not immediately clear from the vorton visualizations (not
presented here). Most probably the cause can be attributed to the development illustrated in
fig.10.36.
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Figure 10.40: Interaction of two knotted standard vorton rings (N = 36): development of diagnostics. N+K-
equation. (a) z-component of linear momentum P according to (9.5), (b) interaction-energy E; according
to (9.10), (c) interaction-helicity H; according to (9.16); (all quantities are scaled with their initial values).
Simulations performed (+) without and (x) with vorton division with updating. ¢ is time.
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10.6 Single Vorton Ring in a Shear Flow above a Flat Plate

In this last section we discuss the simulation of the behaviour of a single vortex ring in the
neighbourhood of a flat plate in a shear flow. Since the 1970s, mainly due to publications
by Falco (see below), this configuration is regarded as a possibly useful model of a coherent
structure (CS) in a turbulent boundary layer (TBL) flow. It may provide some insight into
this still poorly understood turbulent phenomenon.

In §10.6.1 we will present two of the several vortical structures which have been proposed
as essential elements of TBL flows, i.e. the horseshoe vortex and the vortex ring. Besides,
attention is given to the possible relation between both structures. In §10.6.2 the results of our
vorton simulation will be discussed. This simulation has been especially set up to investigate
the influence of the so-called outer layer parameters of the shear flow on the development of
this CS model.

10.6.1 Structures in the Turbulent Boundary Layer
In §B of the Interlude, we have seen that vortical structures, generally referred to as coherent
structures, are considered to be essential elements of turbulent flows. In this thesis we will
restrict attention to one of the least understood turbulent flows with regard to its ”structures”,
i.e. the TBL flow 6.

If we limit our attention to coherent (vortical) structures in turbulent boundary layers, we
already encounter a huge amount of questions. From Robinson’s discussion of the objectives
of turbulence-structure research [195], the following problems can be derived:

what is the 3-D spatial character of each of the known structural features of the TBL?

e how are the various structural features related to each other in space and in time?
e what range of vortical structure topologies exists in the flow?
e what is the range of strengths (e.g. circulation) of vortex structures?

e to what extent do vortical structures play a role in determining the average production
and dissipation of turbulent kinetic energy and Reynolds shear stress }7?

e how do vortical structures form, evolve, regenerate, and die?
e what is role of the outer layer in determining details of near-wall turbulence production?

e what is the repeating sequence of events that is responsible for maintenance of turbulence,
including the role of all known structures?

These questions show that research on CS has set itself a difficult task. Several models
have been proposed to describe the mechanisms taking place in a TBL flow. An example is the
picture which has been presented by Hinze [89]; see fig.10.41. This figure especially shows the
"cyclic” process related to the phenomenon of "bursting”. Bursting (see e.g. [62]) is generally
used to refer to outward eruptions of near-wall fluid, resulting in a strong temporary increase
of transport of momentum (or: high values of Reynolds shear stress). However, definition and
usage of the term "bursting” has been confusing (see e.g. {196, Ch.12}). Numerical simulations
have shown that the production of turbulence by ”bursts” in the near-wall region is much more

16Gee e.g. [28], [195], and Robinson in [73] for a review of recent developments in this area.
17The Reynolds shear stress will be defined in §10.6.2.
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intermittent in space than in time. This indicates that regions of bursting move along with
the main (shear) flow.

Fig.10.41 shows how a spanwise vortex line, initially undisturbed, is deformed into a so-
called horseshoe vortex. Due to an instability in the velocity profile of the flow, a burst takes
place 18,

A much discussed aspect of bursting has been the parameters determining its frequency of
occurrence. Does it scale with the inner or outer layer parameters? The controversy is still
going on in literature (see e.g. Hussain [92] and Lumley et al. in [32]). We will return to this
issue in §10.6.2.

Below we will treat two vortex structures which have been introduced in literature and
which have been proposed as essential elements of the TBL: the horseshoe vortex, which we
have already introduced, and the vortex ring, which may be related to the former.

Horseshoe Vortices
The horseshoe vortex (HV) has a shape as shown in fig.10.42 1°.

|
Figure 10.41: A model of the behaviour of vortical structures in a turbulent boundary layer. From [89].

18We refer to Hinze’s description in [89] for fuller details.
19The term hairpin vortex has been introduced for a HV of larger slenderness; here, we will regard both as
having essentially the same structure.
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wall caused an eruption of surface fluid which resulted in secondary vortices, probably similar
to those observed by Acarlar & Smith. This suggests that the no-slip condition at the wall is
of essential importance in this process.

Rogers & Moin {198] found evidence of the existence of HVs in homogeneous turbulent
flows. Their results suggested that these structures do not necessarily require a wall for their
formation, and that they may also develop in the presence of only a mean shear flow. However,
they remarked, the shear must not be too large in order to allow the formation of HV. "The
similarity in vortex structure between the homogeneous shear flow and inhomogeneous channel
flow gives strong justification for the study of homogeneous ‘building-block’ flows as a stepping
stone to understanding more complex flows”.

Vortez Rings

The first to attribute importance to vortex rings in the TBL has been Falco (see [39] for
references). He found that the outline of the TBL has the shape of large-scale bulges. At
the upstream side of the bulges he visually identified coherent vortices, to which he coupled
the name of "typical eddy”. These Eddies, he concluded, contribute most to the production
of Reynolds shear stress in the outer region and their evolution can explain the existence of
streamwise vortices and horseshoe-like vortices in the TBL.

The typical eddies have been identified by Falco as a kind of vortex rings. To study their
influence in boundary layer flows, Chu & Falco [39] did experiments on the interaction of vortex
rings moving towards and away from a so-called Stokes’ layer generated by a moving wall. This
interaction led to many structural features of TBL like low-speed streaks, pockets, and HVs.
The authors concluded that their results show the essential importance of vortex rings in the
TBL.

With regard to the generation of typical eddies, Falco has proposed a ” pinch-off” mechanism
of vortex rings from Q-shaped HV-like vortex structures; see fig.10.43. This formation process

Figure 10.43: Pinch-off of a vortex ring from a Q2-shaped horseshoe vortex. Big arrow indicates time development.
From ([107].
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was investigated by Moin et al. [163] who performed a numerical simulation of parabolically-
shaped vortex filaments in a shear flow, modelling a HV. They applied a vortex-filament
method, and hence didn’t take into account vortex deformation. They indeed found pinch-off
of vortex rings for parabolic shear flow profiles while linear shear profiles appeared to impede
this phenomenon 2°.

Evidence for the existence of vortex rings in the TBL is still lacking. For instance, Robinson
[196] did not observe vortex rings or anything likewise during his diagnosis of numerical data
provided by a DNS-study of a TBL. Elementary experimental studies on vortex rings near
walls are still scarce. Experiments of rings in shear flows seem to be limited to that by Chu &
Falco mentioned above. Walker et al. [274] studied the impact of a vortex ring in quiescent
flow on a no-slip wall. He found the generation of secondary vorticity at the wall 21 which was
ejected after some time to form a secondary vortex ring. This caused wavelike instabilities on
the primary vortex ring and the flow field degenerated into smaller and smaller 3-D motions.
In the end, the authors found that "the end result is an apparently chaotic flow which appears
to be turbulent” and remarked a similarity with bursting in the TBL. However, they also
suggested that vortex configurations in the TBL are more complicated than simple vortex
rings and that the formation of secondary vorticity may be essential to understand TBL flows.

As remarked above, Falco has suggested that typical eddies may be related to horseshoe-
like vortices in the TBL. However, it seems that the issue of a possible relation between typical
eddies and HVs has gained only little attention from others. According to Adrian in [107]
a HV can be decomposed into a vortex ring plus a mean shear plus two streamwise vortices
as illustrated in fig.10.43 . The vortex rings and/or HV dominate in the outer layer and
streamwise vortices dominate the wall layer. The same picture has been sketched by
Klebanoff et al. [108], who did very extensive experiments on the transition to turbulence in
a boundary layer, induced by roughness elements. They regarded the TBL as consisting of
two regions: in the inner region the turbulence is generated by a complex interaction of HVs
and other vortical structures induced by the obstacles; in the outer region the HV generate
turbulent vortex rings. The latter may be responsable for the bulges the authors observed
at the edge of the boundary. However, they found no convincing evidence for the existence
of Q-shaped HVs as suggested by Falco, but they didn’t exclude them either. The authors
concluded that the eddies in the outer region do not (directly) contribute to the transition
to turbulence in the TBL, whereas the HVs are intrinsic to this process and to developing
turbulence.

10.6.2 Vorton Simulations

Though we have to conclude that the existence and the role of vortex rings in the TBL is
still uncertain, we try to make a contribution to the understanding of this role by considering
the elementary configuration sketched in fig.10.44: a single standard vorton ring in a shear
flow above an infinitely extended flat plate. We realize that we will not be able to simulate
phenomena related to the no-slip condition at the wall (e.g. generation of secondary vorticity).
Therefore, it is better to investigate a situation like the one presented here in which these
phenomena are supposed to be absent or of minor importance.

20Morrison et al. [164], however, concluded that the pinching-off as found in simulations by Moin et al. [163]
can only be a relatively rare phenomenon.
21 A similar study by Lim [127] showed the same resuls.
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free-slip wall

Figure 10.44: Initial configuration for the single vorton ring in a shear flow above a flat plate.

The ring is initially at an angle of 45° with the x — 2-plane and its center is located at
y = H. Its velocity is directed away from the plate. The flat plate is simulated by means of
a mirrored vortex ring (compare fig.7.1). In our simulations we will take the z — 2-plane as
(infinitely extended) boundary plane. The parameters of the mirrored vorton o’ of a vorton «

are given by:
(ra’)m = (Tcx)x ) (ra’)y = *(Ta)y ) (ra’)z = (Ta)z (10.6)

and

('7&’):: = —('70)2 s (’Ya’)y = ('701)3/ ’ (701’)2 = _(’Ya)z (107)

where the index z, y, and z indicate the components of the vectors. These relations provide a
free-slip condition, since the tangential velocity at the plate will generally not be zero.

The shear flow is represented by a one-dimensional velocity profile v, = (u(y),0,0). The
results by Moin et al. [163] (see §10.6.1) suggest that a linear shear flow is not consistent with
the formation of vortex rings in shear flows. Therefore, we have chosen the following profile 22:

3
u(y) = U tanh Ty (10.8)
In this profile the quantity d can be interpreted as the height of the boundary layer and U as
the outer layer velocity since, due to the factor 3, the velocity u(d) = 0.995U. ¥kor

§ we take the value 1.

22The profile does not need to have an inflection point, as has been shown by Kim in [53]. The profile used
here has already been proposed by Novikov [170].
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The simplest manner to include a shear flow into the vorton equations is to take into
account only the advection of the vortons by the local shear velocity v,. However, we have to
realize that the shear flow will also cause vortex deformation of the vortex ring and that the
shear flow profile in its turn will be changed due to the velocity field induced by the vortex
ring.

For a consideration of the importance of inclusion of these two phenomena in a simulation,
we refer to an estimation by Aref & Flinchem [12] of the effect of the shear flow on a vortex
filament. Their theoretical consideration led to the conclusion that only taking into account
advection is a valid approximation to order a/A where a is a measure for the core of the
filament and A is a measure of the shear profile height (comparable to our parameter 4 in
(10.8)). However, they remark that the estimation becomes invalid when transverse oscillations
of the filament introduce other length scales. This means that the approximation may become
invalid in time.

To fulfil the condition given by Aref & Flinchem mentioned above, we have to require:

R,
— <1 (10.9)

where R, the core size of the vortex ring. As shown in §10.1.1, for a vorton ring R, may
be taken proportional to the distance between the vortons in the ring. Consequently, the
number of vortons has to be as large as possible in order to be sure that taking into account
only advection is sufficient for reliable simulations. Since we use a relatively small numbers of
vortons in our simulation, we have added the effect of vortex deformation due to the shear flow
(as has been proposed by Novikov [169]). This means that, in the N+K-equation, (¥,), has
been extended with (%,),0u/8y|y=(r.), and (¥,), has been extended with (¥,).0u/dy|,=r.),-
The change of the shear flow profile due to the vortex ring will not be included, i.e. the function
u(y) remains unaltered.

Fig.10.45 shows the development of the configuration of fig.10.44 for a standard vorton ring
in case of the N+K-equation. We observe four stages:

1. the ring moves away from the plate, at the same time deforming into a non-circular
(somewhat elliptical) shape and rotating along its horizontal axis;

2. due to its rotation the ring moves into the direction of the plate;

3. having approached the plate closely, part of the deformed ring is pinched-off as a smaller
ring-like vortex structure, which starts to move away from the plate;

4. the part which has remained near the plate starts behaving chaotically and the simulation
has to be stopped.

Our purpose is to investigate the possible existence of burst-like phenomena in this sim-
ulation and the possible influence of the outer parameter U. To this end, we consider as a

Figure 10.45: (see inserted sheets) Development of the configuration of fig.10.44 for a standard vorton ring
(N = 18). Two views of the same simulation are given: (a) view along the z-axis, (b) view along the z-axis. ¢
is time.
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diagnostic the quantity given by uv, where u and v are the z- and y-component of the velocity
field v, respectively. This velocity field consists of the vorton field given by (8.10) and the shear
flow field v, mentioned above. The quantity uv will be called the Reynolds shear stress 2* and
it indicates transport of momentum. Since bursts are supposed to transport momentum in the
positive y-direction, we only regard the components given by u > 0,v > 0 and u < 0,v > 0.
They have been calculated at the points of a grid of height ¢ and extending sufficiently far into
the z- and z-direction. Of all grid points, the maximum value of the Reynolds shear stress is
calculated 2. In fig.10.46 these values are plotted against time for the case U = 100.
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Figure 10.46: Configuration of fig.10.44 for a standard vorton ring (N = 18): maximum values of Reynolds
shear stress wv (v >0, (—) u > 0 or (- - -) u < 0) vs. time ¢. U = 100 {see (10.8)).

We observe an intense increase of both components of the Reynolds shear stress occurs
at about the same moment, which will be indicated by t'. In table 10.1 we have plotted the
dependence of time t' up to bursting on the characteristic velocity U of the shear flow (see
(10.8)). We conclude that the outer flow parameter U constitutes a characteristic of this model
of the TBL. However, it may be clear that it would be rather premature to conclude that the
burst frequency in a TBL is determined by the outer flow.

231n turbulence, the Reynolds shear stress is usually defined as the correlation between velocity fluctuations,

ie ool
ie. u'v.
24The contributions to the Reynolds shear stress from the vortons near the wall which start to behave irreg-

ularly at the end of the simulation shown in fig.10.45 have not been included.
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U t’
90 | 0.094
95 | 0.090
100 | 0.086
105 | 0.081
110 | 0.071
115 | 0.069

Table 10.1: Configuration of fig.10.44 for a standard vorton ring (N = 18): shear flow velocity U vs. time to
burst ' (see fig.10.46) .





