Chapter 11

Discussion of Vorton Results

In this chapter, the results obtained from the numerical simulations presented in Chapter 10
will be discussed against the background of the requirements we have posed in §7.2 on vortex
methods. In §11.2 we separately discuss the simulation of §10.6 (a single vorton ring in a
shear flow over a flat plate) and its relevance for research on coherent structures (CS). Finally,
in §11.3, conclusions are summarized regarding the applicability of the vorton method which
has been used in this thesis. Besides, suggestions are made for possible improvements of the
method.

While reading the discussion presented below, the reader has to bear in mind that we have
concentrated on two main questions:

e Is it possible to obtain an adequate ! representation of vortex structures by means of

vortons (in casu vorton rings representing vortex rings)?

e Can the deformation and interaction of vorton rings be regarded as an adequate repre-
sentation of physical vortex ring phenomena 2?

For convenience, we will refer to our vorton simulations by means of the numbers of the
sections in which they have been treated:

e §10.1 = single vorton ring

e §10.2 = single pseudo-elliptical vorton ring

§10.3 = two head-on colliding vorton rings

§10.4 = two obliquely interacting vorton rings

§10.5 = two knotted vorton rings

11.1 Satisfaction of Vortex Method Requirements

11.1.1 Divergence-free Vorticity Field
As discussed in §9.2, this requirement on vortex methods is fulfilled due to our derivation of
the vorton vorticity field. As a consequence we have been able to remove the inconsistency
between the N- and K-equation, as described in §9.3.

We have compared simulations for which the N-equation and the K-equation have been
applied with those for which the N+K-equation has been applied. From the simulations in
§10.2 (fig.10.8), §10.4 (fig.10.32), and §10.5, we conclude that application of the K-equations

1By "adequate” we mean a representation which at least shows qualitative characteristics similar to those
which have been found by experimental investigation.
2These phenomena have been mentioned in §9.1.
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150 CHAPTER 11. DISCUSSION OF VORTON RESULTS

gives unreliable results ®. From the simulations in §10.4 (fig.10.32 and fig.10.33) and the
results mentioned in §10.5, we conclude that the N+K-equation is to be preferred above the
N-equation, i.e. the equation originally proposed by Novikov [168].

11.1.2 Correct Modelling of Continuous Distributions of Vorticity

Regarding the representation of a vortex ring by means of a vorton ring, we observe that a core
can be attributed to the vorton ring, in which the distribution of vorticity agrees qualitatively
with the (scarce) experimental results on this issue (see fig.10.2). At first glance, this result
may seem surprising, since vortons are generally regarded as 3-D point-vortices with zero core
size 4,

The core prevents the vortons from approaching each other to arbitrarily close distances
(see §10.3, fig.10.16). This result weakens one of the arguments against the vorton method,
i.e. its failure when vortons approach to small distances.

The core size, however, depends on the distance between the vortons in a ring (see fig.10.3).
This means that the number of vortons is restricted by the quantitative characteristics (i.e.
its velocity, radius, circulation) of the ring that we want to simulate. In §10.4, we have seen
that this may lead to a rather small number of vortons in a ring and to a clash with the
requirements of numerical accuracy which we would like to impose. However, our simulations
have shown that even for such small numbers (N < 18), agreement with experimental results
remains acceptable (see fig.10.35). The fact that N has to be a specific integer, however, limits
the possibilities of imposing initial conditions. ‘

The fact that the core size of a vorton ring is proportional to the ring’s radius, means that
stretching of a vorton ring, or more generally a vorton tube, is accompanied by an increase
of the core size. Physically, this seems incorrect. This result has been recognized before by
others. A vorton division procedure has been proposed to avoid this phenomenon. However,
our implementation of vorton division has brought to light some serious drawbacks of this
procedure (see the discussion below in §11.1.5).

The discrete representation of continuous vortex configurations, as done in the vorton
method, may be criticized. From fig.10.1(b) and fig.10.2 in §10.1 we have found that the
distribution of vorticity for a vorton ring in azimuthal direction (i.e. along the torus) is not
homogeneous. However, no serious negative consequences seem to be related to this as long as
cores do not "touch” °.

Another important drawback of the discrete representation appears to be the possibility of
vortons losing their alignment once vorton tubes approach closely. In fig.10.32 we have seen
one example of this behaviour: closely approaching vortons tend to form ”dipoles” and leave
the main structure. In this regard, vortex-filament methods have to be preferred.

3We have to add that this result may depend on the time steps used. However, our time step adaption
scheme appeared perfectly reliable in all cases not involving the K-equation.

4Compare, however, a remark by Hou & Lowengrub [90]. They have stated that the ”singular Biot-Savart
kernel in the [3-D vortex-point method] has a natural cut-off”, i.e. if vortex elements have initially been separated
a distance h, they will never come closer than a distance proportional to A.

5The touching of cores can be defined as the situation in which the distance between two vortons becomes
equal to the sum of their core radiuses, defined according to fig.10.2.
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11.1.3 Correct Representation of Deformation and Interaction

Vortex Deformation

All simulations performed with application of the N+K-equation have shown correct represen-
tation of deformation (rotation and stretching) of vorticity as long as the vorton rings do not
approach closer than a certain distance ®. Especially the simulations presented in §10.5 have
shown that for the N- and K-equation correct deformation is not assured.

Core Deformation
We have also observed that the core deforms, which for the elementary case of §10.3 is in
accordance with our expectations, at least qualitatively (see fig.10.17 and fig.10.18).
However, from fig.10.17 and fig.10.18 in §10.3 we have found that the core deformation
in a vorton ring also depends on the azimuthal position in the vorton ring. For locations
between vortons, a rebounding movement of the core has been observed. This behaviour can
be regarded as an azimuthal disturbance of the ring, though our numerical simulations did
not show any signs of instability 7. We regard this behaviour as an undesired artefact of the
vorton representation. No clear indications exist that the vorton representation really fails at
the moment this behaviour sets in.

Stabaility

Regarding the stability of vorton rings (see §10.1.2), we have found rather good agreement with
numerical results by Knio & Ghoniem [108], but poor agreement with experimental results; see
fig.10.5. An explanation for this weak performance of the vorton method may be the lack of
resolution. For the values of the non-dimensional velocity V for which experimental data are
available, the number of vortons in the ring is only little more than twice the unstable wave
mode number.

Besides, our representation of the vortex ring by just a single "layer” of vortons may
be insufficient to adequately represent the internal core dynamics. Knio & Ghoniem have
shown that a multi-layer representation of the vortex ring (similar to that shown in fig.10.28)
leads to a better agreement with experimental results. An objection against a multi-layered
torus is related to the indefiniteness of the positions of the vortons and their initial strengths.
Winckelmans [283] has provided pictures which show the presence of unsteady behaviour within
the core, which may be due to leap-frogging of the circular vortex filaments which make up the
core of the torus. Though Winckelmans’s multi-layered ring seems to be stable, the advantages
of his representation (see fig.10.28) above a single-layer representation are not clear.

Our simulations of initially distorted head-on colliding vorton rings (see fig.10.23) suggest
that a likely explanation for the small-ring formation as found by Lim (see §10.3.2) can be
ascribed to the growth of an unstable wave mode on both rings and an ensuing reconnection
process. However, full quantitative comparison with Lim’s experiment have proved to be
impossible (see notez ). An interesting simulation for this configuration would be one of
randomly disturbed rings.

80ne would be tempted to restate this as: as long as cores do not touch. However, evidence for this statement
is lacking, since we have not found a indisputable definition of the core size of a vorton ring; see fig.10.3.

"For large numbers of vortons (i.e. large than those used in the simulations presented in Chapter 10), we
encountered an apparent instability of the vorton rings. This has been the case in our attempt to simulate Lim's
configuration of two head-on colliding vortex rings as described in §10.3.2.
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Reconnection

The simulation of §10.4, which has been performed with the aim of investigating the reconnec-
tion of two vortex rings as in the experiment by Izutsu & Oshima (IO), may have bewildered
the reader as reconnection is generally supposed to be possible only by viscous annihilation of
vorticity (see §C of the Interlude).

Nevertheless, the simulation presented in fig.10.32(c)(ii) shows rather good qualitative
agreement with the IO experiment. The development in time does not agree exactly, which
may be ascribed to differences in the initial configuration. This is shown, for instance, by the
difference in development of the angle of inclination # of the rings.

However, our simulation results do not show convincing evidence for the presence of threads
(see e.g. fig.10.29) which have been observed in the IO experiment and also in the simulations
by Winckelmans [283] and by Kida et al. [103]. Fig.10.30 suggests that the formation of
threads is related to the ”tails” of vorticity which are formed downstream of the vortex rings.
These tails may be due to the initial Gaussian distribution of vorticity in the rings:
for equilibrated initial conditions, Gaussian distributions seem not appropriate and the tails
may be due to a reorientation of the cores towards an equilibrium shape. This would imply
that they are an artefact of the computational modelling 8,

If a dependency of the reconnection process on the Reynolds number really exists, as Ander-
son & Greengard have suggested (see §10.4.2), then one might wonder whether the interaction
of two vortex rings attains a Re-independent behaviour for large Re and whether our simulation
is a representation of this limit case. We suggest that the behaviour shown in fig.10.35 only
mimics physical vortex reconnection and is just a consequence of the computational model. A
clue to this last statement can be found in the results presented in fig.10.32 and mentioned at
the end of §10.4.2. The interaction of two vortex rings at the moment they ”touch” depends on
the arrangement of the vortons in the rings relative to the point of closest approach 9. A slight
disturbance in the symmetry of the configuration may seriously disturb the ”reconnection”.
Another clue can be found in the simulations discussed in §10.2 (fig.10.8), which have revealed
that vorton reconnection does not always occur when experiments suggest it should (e.g. in
case of axis ratio L/(2R,) = 7).

We see that three important questions arise:

1. Is the reconnection observed in our numerical simulations an adequate representation of
the physical process?

2. How can reconnection occur in an inviscid simulation?

3. Why does reconnection occur in case of two obliquely interacting vorton rings and not
in case of a pseudo-elliptical vorton ring?

Our answer to the first question has already become clear from the remarks above. How-
ever, it can only be answered conscientiously if an extensive comparison is made between the
numerical and the experimental results. Unfortunately, the latter are still scarce. Besides, the

8See the discussion on models in the Epilogue.

9Regarding the position of the vortons, we could wonder whether the ”dipole” seen in figs.10.32(i) is a
numerical artefact only. The ”dipole” does not seem to influence the reconnection of the rings. However, we
have seen that it does influence the subsequent behaviour of the reconnected vortex ring, i.e. the presence or
absence of splitting into two rings.



11.1. SATISFACTION OF VORTEX METHOD REQUIREMENTS 153

vorton method may not be able to allow complete simulation on all relevant scales and reveal
the exact mechanisms of this phenomenon *°.

Regarding the second question, we first of all have to remark that no real evidence exists
for the impossibility of inviscid reconnection '*. The rejection of inviscid reconnection by some
seems to be based 2 on Helmholtz’s First Theorem and its interpretation that vortex lines
cannot end inside any volume. As remarked in note 3 of Chapter 2, this result is only true for
vortex tubes.

Pedrizetti ([177] and [178]) has suggested that the vorton method implicitly introduces a
viscous effect during rapid stretching of the vortons. The ”viscosity” in this case is proportional
to the rate of stretching and the core size. As the vortons involved in reconnection are strongly
stretched, the ”viscosity” tends to large values and reconnection can happen. According to
Pedrizzetti this is "the mechanics which permits to jump over the moment of local intense
stretching as vortex reconnection, which, otherwise, could hardly be followed numerically”
[177].

In our opinion, this explanation is dubious. We think that the reconnection of two inclined
rings can be explained from the ”alignment” behaviour of vortons. To illustrate our inter-
pretation of the apparent reconnection of vorton rings, regard the configuration illustrated in
fig.11.1. The two pairs of vortons can be imagined to be each part of a vorton ring as in the
configuration of §10.4 (the rings are suggested by means of the dotted lines). When the "rings”
approach each other and get deformed, the angle between strength vectors of vortons 1 and
2 (indicated by the arrows) changes and their alignment is weakened. At the same time the
angle between vortons 1 and 3 changes and their alignment improves. At a certain moment
vorton 1 becomes stably aligned with vorton 3 and the "reconnection” has taken place '3.

The above consideration may also settle the question 3 mentioned above. In the case of the
pseudo-elliptical vorton ring, the angle between the vortons 1 and 2 does not reach a critical
value at which realignment of vorton 1 with vorton 3 is possible ™.

i: annihilation of vorticity due to viscosity is really an important ingredient of the recon-
nection process, we must seriously doubt the applicability of the vorton method to simulate
vortex reconnection. A remedy in this case may be the introduction of a viscous term to the
vorton equations as has been proposed by Winckelmans [283)] (see §10.4.2).

Several authors (e.g. Lim [129]) have pointed'at the appearance and importance of helical
vortex lines during vortex reconnection. Since vortex lines have not been visualized in our
simulations, we cannot tell whether helical vortex lines have been present. Possibly, this
twisting of vortex lines can only be simulated correctly if the vortex ring is represented by the
multi-layered torus used by Knio & Ghoniem and by Winckelmans (see above).

101y future numerical investigations of vortex reconnection, one should examine the behaviour of other diag-
nostics: besides the isosurfaces of vorticity, those of the rate of strain and enstrophy production may be used
for comparison with experimental data. The visualization of vortex lines may also be informative on the exact
mechanism of reconnection. However, it can also be misleading, as Robinson has remarked [196].

10ne surprising result in this regard is the suggestion by Melander & Hussain in [160] that reconnection
occurs on a convective timescale.

12g¢e e.g. the quotation from [103] given in §10.4.2.

130pe could call this a bifurcation, due to the resemblance with this mathematical concept.

14 A5 remarked in §10.2.2, another possible explanation may be related to the initial restriction (see fig.10.12),
though even in that case no reconnection has been found. Another explanation may be related to the fact that
in the vorton representation inertia is not included. The inertia of the approaching parts of the ring after the
switch of the axes may be responsible for the close approach which subsequently leads to reconnection.
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Figure 11.1: Elementary vorton configuration to demonstrate the possibility of "reconnection” (see text). The
dotted lines represent parts of vorton rings. Big arrows indicate time development.
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Alignment

The simulations in §10.5 of two knotted rings have made clear that the vorton rings correctly
represent the tendency of alignment. Shortly after the completion of the alignment, however,
the simulation breaks down. Since experimental data on this configuration are lacking, it
is impgssible to make any further remarks or to draw definite conclusions on the physical
correctness of the alignment and on the behaviour following alignment. For instance, we
would like to know whether reconnection may be expected in this case. We have implemented
several initial positions of the vortons in the rings, but in none of these cases reconnection
appeared to be (even dimly) present. Possibly, in real viscous flows the aligned anti-parallel
vortex tubes will annihilate each other. In case this is an essential part of this interaction, we
have to conclude that the application of the vorton method as presented in this thesis is not
warranted.

11.1.4 Conservation of Motion-invariants

In §9.3.1 and Appendix A it is made clear that our expressions used as diagnostics for the
simulations can be criticized. This has been a serious obstacle in drawing any conclusions
with regard to the question: do vorton simulations show conservation of the relevant motion-
invariants?

The simulations in §10.2 (fig.10.9 and fig.10.10) show that the (nonzero) motion-invariants
are rather well conserved as long as no severe vortex (core) deformation takes place. However,
fig.10.40 in §10.5 suggests that conservation is seriously violated the moment the cores ”touch”
and severe stretching and deformation takes place. However, fig.10.33 in §10.4 proofs that
reconnection does not necessarily mean a strong violation of conservation.

The time-development of interaction-energy E; and self-energy E, have opposite trends
(see fig.10.22 and fig.10.33), which suggests that E; + aF, (where o is some constant) may be
a correct representation of the total kinetic energy.

The simulation in §10.5 (fig.10.40(c)) shows that interaction-helicity H; is well conserved
up to the moment the aligned parts of the vorton rings approach each other closely. The
subsequent violation of conservation of H; may be attributed to the failure of the vorton
method to represent annihilation of vorticity, as discussed above.

11.1.5 No Negative Effects of Remeshing (Vorton Division)

As remarked in §11.1.2, vorton division may be essential, since it counteracts the growth of
cores of vorton rings during stretching. Besides, addition of vortons increases the resolution
in areas where this seems essential for correct simulation. However, as explained in §10.3.3, it
may engender undesired effects. Besides, the insertion of vortons leads to an abrupt change in
the core size and structure. This may be of serious consequence to the stability of the vortex
structure. Therefore, inclusion of vorton division should be implemented very carefully '®. At
least, we can conclude from fig.10.24 in §10.3 that division without updating (see §9.4) has to
be rejected. Division with updating improves conservation of interaction-energy.

Some additional remarks have to be made. Division will become troublesome in case of
reconnection, due to the possibility of a sudden exchange of neighbours between the vortons.
The value of factor \ (see §9.4) has been derived under the assumption of a circular core
hence for strong core deformation, this value may have to be adapted. Furthermore, updating

15E g., in the interpolation of the locations of the added vortons (see fig.9.3) use could be made of spline
interpolation. For a radially growing vorton ring, as in §10.3, this will assure a conservation of its circularity.
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with regard to circulation I', as we have done (see §9.4), does not imply conservation of other
invariants.

The inability of our vorton method to represent annihilation (see above) also causes the
final breakdown of the situation illustrated by fig.10.36, i.e. one of the possible effects of vorton
division. If annihilation would take place in this situation, the simulations to which we have
applied vorton division might show correct development of the simulations of §10.4 and §10.5,
instead of breakdown.

11.1.6 Correct Boundary Conditions

As explained in §9.1, we have chosen for vorton configurations for which it is not necessary to
implement explicitly boundary conditions. Only in case of the simulation presented in §10.6
(simulation of a free-slip flat boundary by means of mirrorimaging), this requirement may be
important (see §11.2 below for further discussion).

11.1.7 Convergence .

In literature, the convergence requirement has been formulated for vortex-point methods by
the question !¢: do vortex configurations represented by vortex elements tend to represent
continuous vortex structures better and better for an increasing number of vortex elements?

With regard to the vorton method, this question seems irrelevant to us. In §10.1.1 we have
shown that increasing the number of vortons implies changing the characteristics of a vorton
ring and renders an investigation into convergence, as defined above, impossible 7.

The formulation of the convergence requirement as used in literature and stated above
can be replaced by an alternative one. Actually, for a vortex method like the vorton method,
we would like to have a proof of a property which has been given for the 2-D point-vortex
method. This property is related to the following question: do 2-D vortex points show the
same (qualitative) dynamics as patches of vorticity '® whose behaviour is obtained by directly
solving the Euler (Helmholtz) equation? This has been shown both analytically by Marchioro
& Pulvirenti [141] and numerically by Benzi et al. [23]. For the vorton method, such a proof
does not seem feasible in the same way since 3-D patches cannot exist on their own. Instead,

16Note that we give only an informally expressed version of this question here. An exact mathematical
formulation can be found in literature, e.g. {90].

"Despite this situation with regard to the vorton method, several authors have suggested that their proofs
of convergence apply to this point-vortex method. However, partly because of their mathematical nature, it is
hard to find out whether the results indeed apply to the (soft-)vorton method.

For the soft-vorton method (see Appendix B) convergence seems to have been investigated first by Cottet
[41], who proved that the appropriate error norm for the velocity and vorticity fields goes to zero as the number
of soft vortons increases and the core-size decreases subjected to the constraint that the cores overlap (i.e. the
core sizes have to be larger than the typical distances between the elements). Another proof of convergence for
this case has been given by Beale [21]. Winckelmans [283] has shown convergence for the soft-vorton method
by means of his numerical simulations, though it appeared to be slow.

Cottet [42] has also shown that his vortex method discussed in [41] converges even without smoothing,
thereby apparently providing a proof of convergence for the vorton method. However, the proof required two
mathematical tools whose applicability with regard to the vorton method are unclear. Hou in [10] has remarked
that the result found by Cottet does not mean that the vortex-point method can be applied without smoothing
or desingularization. According to Hou, for any given time T a condition exists for which the method is stable
and convergent. However, the number of particles is finite, so there will be a time beyond which particles are so
close that stability analysis breaks down. Beyond this time, some "regularization” (i.e. remeshing) is needed.

We have to conclude that a proof of convergence for the vorton method still seems to be absent. However,
carefully performed numerical simulations may give valuable clues with regard to this issue.

18Ry patches we mean compact distributions of vorticity.
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a close comparison between the dynamics of a vorton ring and a full numerical simulation of
a vortex ring will be necessary to serve the same purpose.

11.1.8 Computational Effort
In general, we can remark that computational times for our simulations have been satisfactory
(in the order of minutes). However, we must add that these simulations have only been done
for relatively small numbers of vortons. The relation between computational times and the
number of vortons N has been investigated for the simulations discussed in §10.4. We have-
found that times are proportional to about NZ.

Simulations of multi-layered rings like those performed by Winckelmans on the configura-
tion shown in fig.10.28 require a much larger effort '°. Kascic [101] has suggested the use of a
vector processor to simulate the dynamics of large numbers of vortons.

11.2 The Vorton Method and research on Coherent Structures

The results of the simulation on the single vorton ring in a shear flow above a flat plate,
as presented in §10.6, may be too elementary to allow any conclusions with regard to the
applicability of the vorton method to the study of CS in turbulent boundary layers (TBL).

First of all, as indicated in §10.6 experimental evidence for the existence and role of vortex
rings or related vortex structures in the TBL is scarce. Furthermore, we do not know whether
phenomena like vortex reconnection and annihilation of vorticity are (crucially) involved in the
behaviour of any such structures. If this would turn out to be the case, we have to realize that
our vorton simulations have shown the inadequacy of the vorton method on this point.

One may also object that the no-slip boundary condition at the surface of the wall and the
related generation of secondary vorticity may be crucial for the flow phenomena observed in
the wall region of the TBL as some authors have suggested (see §10.6.1).

All the same, our results may illustrate that even elementary and crude configurations can
contribute to an understanding of TBL flows 2°. At least, our simulation have shown that an
outer region parameter (in casu the outer layer velocity U) of the shear flow determines the
behaviour of the vorton ring and (consequently) the Reynolds stress pattern in the flow. This
suggests that outer layer parameters in the TBL (partly) determine its characteristics.

11.3 Final Remarks

We think that the simulations presented here have given some indication of the applicability
of our vorton method (i.e. applying the N+K-equation). We conclude that the vorton method
produces simulation results which agree fairly well with experimental and analytical results, at
least when vortex structures, like vortex rings, do not approach each other closer than a certain
distance. When vorton structures approach more closely (and e.g. viscous effects are likely
to become involved), we have to be very careful in judging the numerical results. Especially
the simulations in §10.3 and §10.5 have shown that vorton behaviour may start to become
chaotical . However, lack of experimental results prevents more decisive conclusions.

The vorton method may be extended to improve its performance. The use of soft-vortons,
of multi-layered vorton rings and the addition of viscous diffusion to the vorton equations
are possibilities. However, the first option shows important disadvantages and has nowhere
been shown to perform better than the ordinary vorton method (see also Appendix B). For

19Winckelmans did not provide details on his computational times; the numbers of vortons he typically used
were of the order  10% — 10%.
20For a discussion of the nature and use of modelling in turbulence, we refer to the Epilogue.
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the second extension, the correct implementation of such rings is still unclear and simulations
require a large computational effort. As for the third option, we only have the results by
Winckelmans [283]; the same kind of objections exist as for the second option. Besides,
a more careful incorporation of vorton division than that applied in our simulations is necessary
to increase the applicability of the vorton method.

The vorton method is a relatively cheap, quick, and simple to handle vortex method, able
to provide a first indication of the behaviour of vortex configurations **. However, for a really
caréful simulation of closely interacting vortex structures, the method may not be reliable
and the application of a viscous vorton method (like that of Winckelmans) may be more
appropriate. Besides, still other numerical (vortex) methods unrelated to the vorton method
may be better suited for certain simulations 2.

21We agree with Chorin’s remark: ”a good guess at the solution of the problem one wants to solve is better

than an unambiguous solution of the wrong problem” [37].
22Qne recent promising method is that by Verzicco and co-workers, who solve the Navier-Stokes equation by

means of a finite-difference scheme (see e.g. [273]).



Epilogue

In this final chapter, I will attempt to bring together the vortex-atom-part and the vorton-part
on a scientific-philosophical level. In the preceding chapters I have shown how both parts are
related on the scientific level, e.g. by showing how the theorems and equations first proposed
by Helmholtz and Kelvin can be applied for the derivation of the vorton
equations, Besides, in the Interlude I have indicated (though only in a superficial manner) how
certain aspects of vorticity theory show a continuous development from the days of the vortex
atom to the present.

On the scientific-philosophical level, the vortex atom and the vorton are not related in
such a direct sense, though at least I will quote some of the 19th century authors who have
been mentioned in the vortex-atom-part 23. The relation I would like to discuss is based on
a common and important concept involved in both the vortex-atom theory and the vorton
theory: the model.

Everyone familiar with any part of science will have some notion when reading this term.
Even restricting the discussion to models in physics, it appears difficult to formulate an unam-
biguous description of this term. I define a model as a representation of a physical concept
that is still unknown in details, but of which one has some image. The model is a simplification
of reality, but tries to catch the essential aspects of the real concept. This description rouses
questions with regard to the meaning of "reality”. Here, I will equate reality to experimental
observations.

Several kinds of models may be discerned *:

e analytical models

These models consist of (sets of) equations which are supposed to describe in mathe-
1atical terms the physical concept which has to be modelled. They do not necessarily
contain any viewpoints on the physical backgrounds of the concept.

Examples are Maxwell’s famous equations describing electrodynamical phenomena (see
$6.3) and Saffman’s model of reconnection (shortly mentioned in §C of the Interlude).
e physical models

A physical model is supposed to be a direct representation of some aspects of the physics
involved in the concept to be modelled.

Example of physical models are the vortex atom model as proposed by Kelvin and the
model of a coherent structure (CS) in a turbulent boundary layer as presented in §10.6.
Both examples will be fully discussed in this Epilogue.

e conceptual models

In the case of conceptual models one does not suppose that the ingredients used in the
model necessarily form a real physical representation of the concept to be modelled (in

23More often than is usual nowadays, these scientists occasionally discussed the philosophical backgrounds of
their own and others’ research.

24By physical concept I mean anything which physicists tend to model: objects, phenomena, processes, etc.

25Here, as everywhere else in this Epilogue, I will use my own terminology. This list is not exhaustive.
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contrast with physical models). The conceptual model and reality have to show similar
properties, but the model does not necessarily represent the physical background of the
concept.

" As an example of this type of models I mention the mechanical (or mechanistic) models
favoured by British scientists (e.g. Kelvin) in the second half of the 19th century (see
the introduction of Chapter 3 and of Chapter 5). They essentially amounted to the
representation of physical concepts by means of a "mechanism” involving springs, wheels,
gyroscopes, etc. The laws of (classical) mechanics determined then the behaviour of these
models 2°.

The aim of a model is to aid in the visualization (and possibly quantification) of physical
phenomena and in the understanding of the physical ” mechanisms” which determine the char-
acter of a physical concept. Some remarks on models can be found in one of the first essays on
the use of models, i.e. Rankine’s discussion [185] of his own conceptual model of matter, the
molecular vortices (see §3.1). According to Rankine a model (or "hypothesis” as he called it)

substitutes a supposed for a real phenomenon, ... the object being to deduce the
laws of the real phenomenon from those of the supposed one. If the supposed
phenomenon were more complex, or less completely known in its laws than the real
one, the hypothesis would be an incumbrance, and worse than useless. ...

A hypothesis is absolutely disproved by any facts that are inconsistent with it. ...
On the other hand, no hypothesis is capable of absolute proof by any amount of
agreement between its results and those of observation; such agreement can give at
best only a high degree of probability to the hypothesis. ...

The agreement should be mathematically exact, to that degree of precision which
the uncertainty of experimental data renders possible, and should be tested in par-
ticular cases by numerical calculation. The highest degree of probability is attained
when a hypothesis leads to the prediction of laws, phenomena, and numerical results
which are afterwards verified by experiment. [185, p.127)

Though Rankine regarded his own hypothesis of molecular vortices as respecting these rules,
he warned that hypotheses like these "never can attain the certainty of observed facts” [185,
p.132].

On the final fate of models we can read in Larmor’s address to the section of Mathematical
and Physical Science at the 1900 meeting of the British Association: ”When a physical model
of concealed dynamical processes has served this kind of purpose ..., when its content has been
explored and estimated, and has become familiar through the introduction of new terms and
ideas, then the ladder by which we have ascended may be kicked away, and the scheme of
relations which the model embodied can stand forth in severely abstract form” [117, p.626].

Naturally, a single phenomenon may be represented by several models or kinds of models.
This has been the situation in British science in the latter half of the 19th century. As Duhem
remarked in [51] (see §5.2), the British proposed one model for one group of laws and another

26 A nother example may be the model of turbulence proposed by Synge & Lin (see §B of the Interlude) in which
the interaction of vortices is supposed to provide characteristics similar to those of turbulent flows. However, it
is not clear whether they meant this as a conceptual or as a physical model.
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completely different model for another group, though both groups contained some common
laws 7.

For Kelvin, around the time of his 1884 Baltimore lecures, the use of models (usually of
conceptual nature) was of fundamental importance: "It seems to me that the test of ‘Do we
or not understand a particular subject in physics?’ is, ‘Can we make a mechanical model of
it?” [99, p.111] and: "I never satisfy myself until I can make a mechanical model of a thing.
If I can make a mechanical model I can understand it. As long as I cannot make a mechanical
model all the way through I cannot understand” [99, p.206]. However, he also stated that his
models by no means reflected reality. They were only imitations of reality and certainly not
unique.

To further explore Kelvin’s use of models and to illustrate the problems related to models,
let me now concentrate on his vortex atom model. It is important to notice that the vortex
atom theory actually involves two kinds of modelling.

Whereas for his mechanical models Kelvin did not claim a reflection of reality, with regard
to the relation between vortex atoms and matter, Kelvin suggested that the physical vortex
ring, as seen in Tait’s experiment, was a physical model of the atom. To confirm this opinion,
I refer to the account of Kelvin’s 1867 lecture "On Vortex Atoms” [243] (see §4.2), where we
read:

After noticing Helmholtz's admirable discovery of the law of vortex motion in a
perfect liquid ... the author [=Kelvin| said that this discovery inevitably suggests
the idea that Helmholtz’s rings are the only true atoms. (243, p.1]

This suggests that initially Kelvin indeed regarded the vortex atom as a physical representation
of the atom. However, I think that many of his contemporaries could only regard it as a
conceptual model, as is expressed by Larmor in the quotation given at the end of §6.3.

‘In order to demonstrate the correctness or usefulness of his (physical) model, Kelvin had
to show that it possessed the properties of "real” atoms. That is to say, the properties which
were known at that time. As he must have realized that this would be difficult to show
experimentally and unconvincing, he went for the analytical elaboration of another type of
model of the vortex ring itself. However, according to the definition given above this model
cannot be called an analytical model and I shall name it a computational model. For
Kelvin, initially the computational model of the vortex ring was the Kelvin-ring (see §A.2 of
the Interlude).

Regarding the story of the vortex atom, I conclude that for Kelvin and his contemporaries,
the vortex atom failed as a physical model, since it appeared to lack some of the fundamental
properties related to real atoms (stability, gravity, spectra; see §5.3). However, regarding the
development of the vortex atom from the present point of view, one can claim that the vortex
atom suffered from another weakness. Today, we know that the Kelvin-ring is only a crude
computational model of a vortex ring (see §A.2 of the Interlude). At that time, however, this

2"Dyhem stressed that it is better to have one unique theory since this provided the ”classification naturelles
des lois” and showed the order in nature. On the other hand, he argued that such a situation as in British
physics had to be allowed: ”Si 'on astreint a n’invoquer que des raisons de logique pure, on ne peut empécher
un physicien de représenter par plusieurs théories inconciliables soit des ensembles divers de lois, soit méme un
groupe unique de lois; on ne peut condamner l'incohérence dans le développement de la theorie physique” [51,
p.366].
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circumstance did not contribute to the fall of the vortex atom since this computational model
was generally regarded sufficient. If, for example, Kelvin would have applied the analytical
techniques of Widnall and co-workers (see §A.3 of the Interlude), he could have demonstrated
the inherent instability of the Kelvin-ring and would have been forced to revise his compu-
tational model. Kelvin’s eventual recognition of this weakness can be deduced from his 1889
remark on Hicks’s hollow vortex (see §6.3). However, by then the vortex atom had already
appeared unviable as a physical model.

The story of the vortex atom shows us other factors which may influence the viability of
any model :

e In general, one can say that in the case of the vortex atom there has been no rational
line of defense. The elaboration of the model (both with regard to its role as physical
and as computational model) lacked a real research program. Besides, no attempts were
made to refute fundamental criticism, such as that by Reynolds (see §5.1).

e The promoters of the vortex atom theory did not provide quantitative data, which meant
that comparison with experimental data was impossible. If more fundamental experi-
ments would have been done on the properties of vortex rings (e.g. on their velocity,
distribution of vorticity in the core), the computational part of the model would have
been discredited. If quantitative comparison with properties of matter (e.g. spectral
lines; see Julius’s contribution discussed in §5.3.4) would have been performed seriously,
the physical part of the model would have been discredited.

e Relatedly, the model was not predictive (see Rankine’s remarks quoted above). Therefore,
the model must have appeared useless and irrelevant and could not show any advantage
above other models.

e The nature of the model was purely hydrodynamical, while experiments eventually
showed that other aspects (e.g. electrical) were essential for an atom model. Therefore,
it is not surprising that the vortex atom did not survive the discovery of the electron and
of radioactivity 2°. Attempts to adapt the vortex atom model (e.g. by introducing hollow
cores; see §5.1), or to extend it (e.g. with electric charge; see §6.2) could not prevent its
fall. ‘

e The computational model was hard to elaborate due to lack of sufficient mathematical
techniques. Though this was fully recognized by the promoters of the theory and though
they introduced several new techniques, progress was slow and several important issues
could not be tackled properly.

However, the vortex atom model did not only fail as a result of internal inconsistencies.
It also suffered from the shift in the use of models which occurred at the end of the 19th
century in British physics (see §6.3). When the vortex atom had started to decline, Kelvin
complained that Maxwell’s use of analytical models had superseded his own use of physical
and conceptual models. Maxwell’s initial emphasis on analogy and heuristic models (e.g. his
molecular vortices; see §5.1) had changed towards an approach according to which physical
phenomena were framed into mathematical equations, i.e. the use of analytical models. To

28The order of these factors does not indicate their relative importance.
291 ikewise the vortex ether did not survive relativity.
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Kelvin Maxwell’s equations were examplary for the wrong approach. They were ” metaphysical”
and had been worked out in the mind without contemplation of physical reality. Today, we
can conclude that Maxwell’s analytical model has been much more successful than Kelvin’s
physical and conceptual models.

Taking into account the factors mentioned above, it may seem remarkable that the vortex
atom model could survive for almost 30 years. However, this can be attributed to several
favourable circumstances. First, competing theories of matter lacked the same or other fun-
damental and practical problems. Secondly, lack of experimental data on the properties of
matter prevented a definite judgement. Thirdly, the crucial role of electric charge in matter
became only fully realized after J.J. Thomson’s 1897 discovery of the electron. And last, but
not least, Kelvin’s fame must have played some role here.

In conclusion, one can say that many factors are involved in the development of a model.
Some are evident, others are not. Some can be analyzed rationally, for others this seems
impossible. I think that all factors mentioned above, both favourable and unfavourable to the
viability of models, can still be found today. Some evidence for this statement can be found
in the next and last part of this Epilogue.

In this last part, I will treat two analogies I have found between the vortex-atom-part and
the vorton-part with regard to the use of models:

e computational modelling:

Kelvin ring <> vortex ring ~  vorton ring <> vortex ring

e physical modelling:

vortex atom theory > matter ~—~  vortex models of a CS « turbulence

As mentioned above, one of the obstructing factors in the development of the vortex atom
model has been the lack of proper mathematical techniques. In modern fluid dynamics research
the use of numerical techniques has proven to be an important and fruitful new tool to elaborate
models. Vortex methods (see Chapter 7) form one part in this field of so-called computational
fluid dynamics. Despite the progress in computational capabilities provided by these methods,
one still needs a computational model of vortex structures, e.g. vortex rings, on which to
apply the numerical tools. In our investigation of the vorton method, the computational
model of the vortex ring has been the vorton ring as illustrated in fig.9.1. In Chapter 10 I
have investigated the correctness of this model by means of numerical simulations. From the
discussion in Chapter 11 the reader may have deduced that the usefulness of the vorton ring
as a computational model can be questioned *°. Moreover, as has been the case for the vortex
atom, a good comparison of numerical with experimental results may be impossible, not only
due to the scarcity of experiments but also due to the fact that viscosity may have an essential
influence on experimental rings.

The second analogy, related to physical modelling, can be found in the vorton simulation
treated in §10.6. There, I discussed the present trend in fluid mechanics to regard the role of
coherent structures in turbulent flows, in casu turbulent boundary layer flows. As discussed
in §10.6.1, some have suggested that these structures can be modelled as vortex rings. Notice
that this physical modelling is different from that in case of the vortex atom. The vortex

30For large numbers of vortons in the vorton ring, it even approaches the Kelvin-ring and we may expect the
same problems of modelling as in case of the vortex atom.
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ring, Kelvin supposed, could be completely identified with the atom. Today, the vortex ring is
regarded as an essential part of turbulent flows and is not identified with anything else; it is
just a vortex ring.

Turbulence modelling has a history showing important shifts in approach (see also §B of
the Interlude). After Kelvin’s and FitzGerald’s 1887 vortex ring model, at the beginning of
this century modelling of turbulence had become largely analytical. In the 1930s the statistical
approach began to dominate research in turbulence, which lacked the use of models. Only in the
1950s one realized again the importance of modelling and the concept of ” coherent structures”
was introduced. Nowadays, research on CS shows a large variety of (vortical) structures which
are proposed as explanation for physical phenomena in turbulent flows.

Besides these typically physical models, it should be mentioned that today several other
types of modelling are used in turbulence research. This can only be encouraged, as Duhem
already realized (see above). Lumley in {135] commented on the ability of turbulence models
(including statistical methods) to increase our understanding of turbulence: ”"However, I believe
it is foolhardy to expect them to. These models are simply embodyment of experience; they
are something constructed to behave like turbulence, in situations where it has been observed,
to be used as a design tool. A model cannot, except by accident, contain more than is put into
it.” .

Naturally, this last remark is relevant to any kind of model. Because electric charge had not
been put into the vortex atom model, it was unable to model the atom. In our present models
of turbulent flows, we should strive for models which can surpass, so to speak, limits. The
main problem will be how to set up such models and how to interpretate their results. Some
models may suggest "too much” but this is not important; the point lies in suggestion, not
demonstration 3!. Nevertheless, one has to be alert that models may become more important
than the phenomena themselves.

We can only hope that the models of CS will improve our understanding of turbulence as
a physical phenomenon. The central question in this respect has been formulated by Kline
& Robinson in [73] as: "how do we capture the essence of such a model in a simple enough
way so that it becomes useful in creating predictive models?” We must realize that even
negative results can help us and that the road towards complete understanding, if ever achieved,
certainly isn’t straight.

As in the case of the vortex atom, the most important problem here is the relatively small
amount of knowledge on the characteristics of CS and their role in the TBL from experiments.
We even have a lack of definition and problem formulation (as already remarked in §B of the
Interlude). As long as this situation lasts, models cannot be judged correctly.

Though of enormous help in advancing our knowledge on fluid flows, the present trend of
computational fluid mechanics brings along its own problems. For the specific case of vortex
methods, the computational modelling of vortices (as discussed above for the vorton method)
should be performed very carefully. In addition to this, other problems arise due to the large
amount of data provided by numerical simulations. The problem of selecting those data which
are useful for the purpose of understanding will only become more urgent. And, relatedly, we
have to face the problem also formulated by Kline & Robinson in [73]: "how do we combine the
results from numerical simulation data bases with experimental results to approach consensus
on a complete model of structure [in turbulence]?” Another problem related to computational
methods are the possible influences of numerical artefacts (e.g. numerical viscosity). These

31Compare the suggestion of the vortex atom to J.J. Thomson in his discovery of the electron (see §6.3).
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may disturb our view on the real physical value of models.

One may think differently about the fate of models, but surely the energy put into their
elaboration will not be lost, even if the picture they provide does not correspond to reality
or only slightly. Models can give impulses towards new developments and the mathematical
topics which they induce may well be worth treatment themselves. Though the vortex atom
model itself failed, it left behind a heritage: it meant an important stimulus to the research on
vortex motion and led to Tait’s contribution and foundation of the theory of knots (see §C of
the Interlude).

To conclude, I remark that a model must be used as a first step in investigating the physics
of a phenomenon. Afterwards, experimental and analytical results have to be invoked to lay
down a theory. At that time, Larmor’s "ladder” may be kicked away. Kelvin already realized
the relative value of models and eventually left the vortex atom for new models in which he
inserted new concepts arising in physics. Perhaps, one day, we have to recognize that our
present approach to the modelling of turbulence is unfruitful or should be improved. Then, we
must dare to shift towards new approaches.




Appendix A

Vector Potentials and Motion-Invariants

From an elaboration of an divergence-free vector potential field, conclusions can be drawn
regarding its highest order term and its relation with the conservation of motion-invariants 1

It is assumed that the vorticity field w(x) decays fast enough:

wlL L.y T

— ~[=2 = 1

i [ac] as 7 =00 (A.1)
where w = | w |, L is a typical length scale, and U is a typical velocity scale. This condition

is certainly fulfilled if vorticity decays exponentially 2.
For a divergence-free A we have the Poisson equation:

VA= -w.
For the far field condition for the velocity field v

v—=0as x>0

we have the solution

Alz) = 1/ w(z')

Tar fy |-

where V' is the vorticity-containing volume. By expanding this integral in powers of rl(r =
| 2 |), we get:
A=Y A" +o0(r )
n=0

where

A 1L / w(z)[(r')" P, (& - &)
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where & = z/r and P, are Legendre functions.
The first three terms of this sum are given by:

AQ = —l—l/ w
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1 0 ,-1
w - = “ - )
AT = 47raxi(r)_/‘/: i
1 8 1
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!This disucssion is based on [264]; see also [205, §3.2].
2Compare this condition with that given in (9.4).
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The (far field) description of the vector potential A to the order 7~™~" is defined by the
nth moments of vorticity for n < m. These moments of vorticity are defined by:

3 3
/ w][z¥ with j; >0 and 3 ji=n. (A.2)
1

=1 i=1

All nth moments exist for any n < N — 3, where N is the order of the far vorticity field defined
in (A.1).

Using this condition (A.1), it can be shown that an nth coaxial moment of a divergence-free
vorticity field w along an axis parallel to any vector b should vanish [264, §1.2], i.e.:

1™ (2,b) ;/ (@ b)"w-b=0
v

fort >0,n=0,1,2,....

From this result, we can derive consistency conditions, which are linear combinations of
the nth moments of vorticity:

e For n = 0, we have the consistency condition:

QE/ w=0.
1%

This result expresses conservation of the total vorticity. It also shows that the highest
order term of the vector potential A disappears, i.e.

A9 =0

which means that the highest order term of A is r=2. Apparently, total vorticity is always
zero for a bounded flow on whose surface w - n = 0.

e For n = 1, we have the consistency condition:
/ x,-wj—f—/ z;w; =0 (4,7 =1,2,3:5 <1).
4 1%

From the required far-field behaviour of the fields » and w, it follows that the first
moment of vorticity (see (A.2)) is time invariant, i.e.

0
'&'/VZL'JD—O.

Using the above consistency condition, we then derive:
PE/mxszo (A.3)
14

where P, is the constant vector specified by the initial data. This result expresses
conservation of the total linear momentum.
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e For n = 2, we can derive from the consistency conditions:
J E/ 2w =J, (A4)
v

where J is the constant vector specified by the initial data. This result expresses con-
servation of the total angular momentum.

Combining this relation with the consistency conditions related to P, we find another
expression for motion-invariant J:

J=1/zx(mxw). (A.5)
3Jv
o No additional invariants for n > 3 have been found [264, §1.2].

Now we regard the vorton fields, presented in §8.2. The vector potential field (8.8) chosen
in §8.2 is of order r~! and thus violates the condition derived above. However, since this field is
not divergence-free, the above discussion isn’t necessarily applicable here. On the other hand,
for our vorton vector potential (8.8):

-1 Ra Yo

VA= —~ TR}

Hence, A may be divergence-free at an infinite number of points. At these points, the above
discussion is relevant and defence of the choice of our vorton vector potential (8.8) seems
untenable.

The condition on the order of a divergence-free vector potential s fulfilled for the Chefranov
vortex-dipoles (see e.g. [36]; see for a discussion [206]). The vortex dipoles can be regarded as
(infinitesimal) vortex rings. Chefranov has claimed that the equations for their dynamics have
a Hamiltonian structure and that his method satisfies conservation of linear motion-invariants.
However, no numerical simulations seem to have been performed applying this dipole method.

However, these dipoles may not be suitable for numerical simulations as done in Chapter
10, due to their self-velocity ®. Synge & Lin [225] (see §B of the Interlude) have investigated
the interaction of dipoles in their search for a model of turbulence, but concluded it had
"undesirable features” and did not lead to correct correlation functions.

3Possibly this self-velocity can be eliminated by the addition of swirl, as has been proposed by Moffatt in
[162] in the context of his alternative ”vorton” model (see e.g. [158]). According to Moffatt, the original vorton
is not a useful concept, as it is no solution of the Euler equation (private communication). The vorton should
be a "structure of compact support” that propagates with self-induced velocity and without change of structure
and can be regarded as a generalization of the vortex ring. Turbulence, he suggested in [135], could perhaps be
regarded as a “sea of interacting vortons”. Unfortunately, this theory has not been elaborated yet.



Appendix B
The Soft-Vorton Method

One of the aspects of the vorton method which has been criticized is the singular behaviour
of its velocity and vorticity fields. Therefore, Kuwabara [114] has proposed to replace the
delta-functions in the original vorton vorticity field (8.5) by smooth functions *:

W, (2,1) = ) Valt) G (@ —1ra(t) (B.1)

where a choice has to be made for the so-called smoothing function ¢, for which we require:
C(x) > d(x) as 0 = 0. (B.2)

This function contains a parameter o, which can be regarded as a ”core radius” of the smoothed
vortons.

As remarked in §7.3.3, Kuwabara's soft-vorton method is an example of the Smoothed
Vortex-Point Methods. A more general treatment of its theory has been provided by Winckel-
mans {283}, who applied this vortex method in several numerical simulations. The simulations
by Winckelmans [283] for the configuration of §10.4, have showed similar results for the original
vorton method and the soft-vorton method, both with regard to conservation of diagnostics
and to reconnection behaviour.

We shortly repeat two drawbacks of the soft-vorton method, which have already been
mentioned in the introduction of Chapter 8. First, the field (B.1) is not divergence-free, like
the original vorton vorticity field (8.5). Secondly, several smoothing functions ¢, can be applied
under the imposed requirements, presumably leading to different simulation results.

The first drawback can easily be suppressed as in the case of the vorton method by deriving
a divergence-free vorticity field from an appropriate vector potential A, 2.
We start from (compare with (8.8)):

A (z,8) =) ¢.(Rat) Yalt) -

This time, the function ¢, remains undetermined and is a function of ¢. In the manner shown
in §8.2, we derive a velocity field:

va(m7 t) = ZV¢U X 7(!

= D (V(Ra) X Ya)90 (Ra) (B.3)

[»3
1 v, X R,
o > —RS__QU(RG) C.

! A similar vortex method has been proposed by Mosher [165].
*The o will indicate a soft-vorton function or field.
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where ¢ is the function defined by (8.9). And from this velocity field we derive the vorticity
field:

wo(@1) = 3 (Yalo(Ra) + V(¥a - Vo)) (B-4)
= Eg{vagm&)—v{“—é—f%(&n} (B.5)

- L _ (Ya Rs)R, Yo Ra
- AT ;{[‘Ya R2 ]CU'( Ot) [ R3 g (RG)}'

In these derivations, use has been made of the following relations between the functions é.(p) =
0¢s (), 3o (p) = 9o (), and (o (p) = 0°Co () (Where p = 2/0):

"'Vz(z’cr(p) = Ea(p)
B (p) = —P*¢.(p).

If we impose the condition that the function C satisfies the following normalization (conver-
gence) condition:

M/ {(p)pds =1,
0 é
we find:
glp) =1 as p—o0. (B.6)
Consequently the field (B.3) converges towards the vorton velocity field (8.10) for o — 0.

From the soft-vorton fields derived above, the soft-vorton displacement and deformation

equations can be derived.
The displacement equation is easily obtained from the velocity field (B.3):

ro = V(T t) (B.7)
= - Z (v¢a(Raﬁ) X 7a)ga(Raﬂ) (BS)

; Ra
- Ly xR, ®9)

For the derivation of the deformation equation of a soft vorton o we can make use of the
splitting of fields mentioned in §8.3 (see also Appendix C): v, = v% + &, and w, = w3 + 1.

We then have to elaborate (in case of the ordinary representation of the Helmholtz equation):
D(w® +w? o - a
DOWe £ 90) — ((wg +82)) 0 (w5 +65) (B.10)

atez=7r,.
We will not show this elaboration here and refer to [283] for further details.



Appendix C

Derivation of the Vorton Equations

From the soft-vorton displacement equation (B.9) presented in Appendix B, we can easily
derive the vorton displacement equation by taking ¢ — 0 and applying (B.6). The terms § = «
disappear in a natural manner since for these g, = 0. This means that ”self-displacement” of
a vorton is omitted 1. The full equation is given by (8.15) in §8.3.

In first instance, one would be inclined to derive the vorton deformation equation in the
same manner as we did for the vorton displacement equation, i.e. from the soft-vorton defor-
mation equation. However, we will take a more direct route and apply the vorton fields directly
to the Helmholtz equation. However, because of the delta-functions involved, we have to resort
to a technique (mentioned in §8.3) by which the Helmholtz equation will be integrated about
the sphere B, of radius € and centre =,. It is assumed that ¢ is so small that no other vortons
are inside the sphere. We call this a weak formulation 2.

For convenience, we split the fields into two parts as described in §8.3. Thus, we have to

calculate: D(w® + ")
[P [ ) o ). (©1)

@

The lefthand side of (C.1) can be rewritten as:

/ D(w“+ﬁ:")_/ Dw“—i/ w®
B. Dt “Js. Dt dtl)s,

The last integral is not equal to 4,, as one might expect. Since w* =V x v, we get:

w® = / V x (VO(R.) X ¥a)
5 .

Ba
= ! / nXx(nxvy,)
- 4me? 8Ba Yo
1
= g [, {n-v)n—(n-niy.)
1 1
= - V(R, - 4meé?
471'63 /Ba ( 7a)+ 47[‘62 TE ‘YQ
= é‘/r Sy +
yror-Ublie Claae £

1The exclusion of the term 3 = « can be compared to the so-called cut-off of the kernel of the rule of
Biot-Savart (2.3) (see §7.1). A cut-off corresponds, physically, to a finite core size. This suggests that the
shortest distance between vortons can be regarded as a core size, a result which has become evident in §10.1
and especially in §10.3.

?In our derivation, it is implicitly assumed that the sphere B, only contains vorton «. Consequently, we
require Rapg > € for all B # . On the other hand, the value of € is assumed « 1. This means that in case of
very close approach of vortons the equations will not be reliable. Fortunately, the simulation presented in §10.3
suggests that close approach will not occur.
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where n = R, /R, and 9B, is the surface of sphere B,. Note that this result is independent

of €.
Comparing this result with expression (8.11), we derive the equality 3:

#'(R))oa = —%a (C.2)

Ba

for any a # a(x). Apparently, the second (nonlocal) part of the vorton vorticity field reduces
the total amount of vorticity inside sphere B, with a factor of one third.

Next, we will investigate the four parts of the righthand side of (C.1) separately. Use will
be made of the following relation: ‘

(@ x Vo(x))) ob=a x (¢"(z) o b) (C.3)
for any @ # a(z) and b # b(zx).

1. [ ((v*)") o w™ represents the "self-deformation” of vorton «.

Like self-displacement, this part is omitted. This could be justified, as we did in the
derivation of the vorton displacement equation above, by the fact that the all components
of matrix ((v2)’) equal zero for & = r,.

2. [ ((8%)") ow* represents the deformation of the vorticity field w* generated by vorton a
itself, due to the velocity field #* generated by all other vortons at the location of vorton

a.
Rewriting this integral as
(™) [ we,
we get, by applying (C.3):
~ 3 9o % (¢ (Rug) 0 27a)

B#a
3. [ ((#°)")otd" represents the deformation of the vorticity field " generated by all vortons

except o, due to the velocity field v* generated by vorton « at the location of vorton a.

Applying both (C.2) and (C.3), and rewriting this integral as
()e [ &°

we get:
=Y 7ax[(¢"(Rug) o (~375)] -

B#a

3Here ¢ is the function defined in (8.9) and definitions (8.12) and (8.13) have been applied.
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4. [ ((™)') o @™ represents the deformation of the vorticity field w® due to the velocity
field * at the location of vorton a.

Both fields #° and w® are continuous at location r,. Therefore, by the mean value
theorem, integration leads to an expression of order €3, where ¢ is the radius of sphere
B.. Hence, it can be disregarded since ek 1.

Taking together all the contributing parts, we get the vorton deformation equation:
" 1 1
= Z {_’Yﬁ X (¢ (Raﬁ) O‘Ya) + 57& X (¢ (Raﬂ) O‘Yﬁ)}
B#Fa

or, in full:

1 Y X‘Yoe Ra Xy Yo Roz 1 (’YO(XRQ Y5 ch
Z{ ﬁ ( s g)s( 5) ‘ ;)5( 8 ﬁ)}. (C.4)
a3 af

Ct

In the same way, starting from the transposed Helmholtz equation (8.3) and making use of
a rule similar to (C.3), i.e

(@ x Vo(=))) ob=¢"(z)o(bxa),

we derive:

= S (Rap) © (9 X ¥a) = 5% X (6" (Rag) 0 ¥p)) (C3)
B#a

or, in full:

1 Y3 XYa Rﬂﬁ [‘Raﬂ ) (75 X‘ra)]

1 ('ra XRaﬁ)(7ﬁ ) Raﬁ)
e Z =3 R, R, 2 R, b (©9)




Symbols

bDIQ

R

=" =
S\/

S

by by by by by b b

RS
=

-

R R
w

N
~—r

MB B B < g

1 | e | | T T 1

e

I | | [ V| Y I T A

vortex ring core radius (fig.2.3)
non-dimensionalized vortex ring core radius (10.1)
vector potential (8.8)

volume of radius e around vorton location r, (8.16)
total kinetic energy (9.9)

energy spectrum (9.11)

interaction energy (9.10)

interaction energy spectrum (9.13)
self-energy (9.14)

self-energy spectrum (9.12)

total helicity (9.15)

interaction helicity (9.16)

total angular momentum (9.6)
wave-number

outward normal unit vector

number of vortons in a vorton ring
total linear momentum (9.2)
location vector of a vorton labelled o
vortex ring radius (fig.2.3)

z—-r,

Ty — T3

Reynolds number (§A.3 of Interlude)
time

shear flow velocity profile (10.8)
outer shear flow velocity (10.8)
velocity

vortex ring velocity (fig.2.3)
non-dimensionalized vortex ring velocity (10.5)
vorticity (1.1)

diagnostic vorticity (9.18)

spatial location

components of &

material location

components of X

labels of vortons

strength vector of a vorton labelled a
circulation (4.2)

shear flow height (10.8)

1/(4rz) (8.9)

)

angular velocity (2.1
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v = gpatial nabla operator (1.1)
% = spatial derivative
D /Dt = material derivative (1.3)
6(...) = Dirac delta function

= scalar product
X = vector product
(v') : deformation matrix (8.2)
(v')* : transposed of matrix (v')
Iy : volume integral
Loy : surface integral

$o : contour integral
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Samenvatting van Over Wervelatomen en Vortonen

Dit proefschrift bestaat uit twee delen. In het eerste wordt de ontwikkeling van een 19e-
eeuws atoommodel, het wervelatoom (vorter atom), behandeld. In het tweede deel wordt
de recent geintroduceerde vortonmethode besproken en de numerieke simulaties die hiermee
zijn uitgevoerd om haar te testen. In een zgn. Interlude worden enige ontwikkelingen in de
stromingsleer geschetst uit de tussenliggende tijd die belangrijk zijn voor het begrijpen van
onderdelen van het tweede deel.

De ontwikkeling van het wervelatoom kan alleen begrepen worden als men enig zicht heeft
op de ontwikkelingen op het gebied van materietheorieén en van het begrip vorticiteit binnen de
stromingsleer. Op het moment dat het wervelatoom in 1867 door Kelvin werd geintroduceerd
bestond vorticiteit en de bijbehorende theorie nog pas enkele decennia. Hoewel geleerden als
Cauchy en Stokes rond 1845 al enige bijdragen hadden geleverd, legde pas in 1858 Helmholtz
de basis van de vorticiteitstheorie. Aan hem danken we enige belangrijke definities, theo-
rema’s, vergelijkingen en fysische inzichten. Op het gebied van materietheorieén moeten we
het klassieke atoom van Democritus noemen. Het atoom als hard, onveranderlijk bolletje was
ook in de 19e eeuw nog populair, met name dankzij de opkomst van de kinetische-gastheorie.

De ontwikkeling van Kelvins ideeén op het gebied van de zgn. ether, de hydrodynamica en
het electro-magnetisme, samen met de invioed van Faraday, Rankine (het molecular vortez)
en Stokes, zijn belangrijk voor een goed begrip van de introductie van het wervelatoom door
Kelvin. Daarnaast moet als directe aanleiding Taits experiment met rookringen genoemd wor-
den. De elastische wervelringen, zo meende Kelvin, konden veel beter de diverse eigenschappen
van materie beschrijven dan het Luctrius atoom: onverwoestbaarheid, zwaartekracht en inertie,
spectra.

Kelvins model werd echter over het algemeen koel ontvangen, zeker op het Continent, waar
men vooral filosofische bezwaren tegen Kelvins manier van modelvorming had. In Groot-
Britannié probeerden enkele aanhangers langs analytische weg aan te tonen dat het werve-
latoom inderdaad belangijke voordelen bood, maar slaagden hierin nauwelijks. Daarbij wer-
den zij vooral gehinderd door gebrek aan wiskundige technieken. Intussen groeide het aantal
pogingen aan te tonen dat het model niet bruikbaar was en dat de beweringen van aanhangers
obscuur waren. Ook aanpassingen van Kelvins oorspronkelijke atoom leverden niets op.

Pogingen om het wervelatoommodel toe te passen in ethermodellen liepen ook op niets uit
en Kelvin verloor het geloof in zijn eigen schepping. Zo kwam hij onder andere tot het inzicht
dat wervelringen niet altijd stabiel hoefden te zijn. De ontdekking van het electron en het
inzicht dat electrische lading fundamenteel voor een atoommodel was, gaf Kelvins model de
genadeslag. Daarnaast was Kelvins manier van modelvorming uit de mode geraakt.

De wervelatoomtheorie, hoe onvruchtbaar verder ook voor de atoomtheorie, heeft een be-
langrijke stimulans betekend voor het onderzoek naar vorticiteit en wervelstructuren. Zo zijn
inmiddels vele, meer geraffineerde, wervelringexperimenten uitgevoerd, de analytische uitwerk-
ing is verder ontwikkeld en met name m.b.t. de stabiliteit van wervelringen werden opmerkelijke
resultaten gevonden (Kelvins model van de wervelring bleek niet stabiel). Ook werd vorticiteit
een vertrouwd begrip in het onderzoek naar turbulente stromingen, waar een van de belan-
grijkste ontwikkelingen de ontdekking van coherente (wervel)structuren is. Daarnaast hebben
in de moderne stromingsleer begrippen als heliciteit en wervelreconnectie zich een belangrijke
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plaats verworven i de zgn. topological fluid mechanics.

Een andere belangrijke moderne ontwikkeling is de opkomst van het gebruik van de com-
puter: ”computational fluid mechanics”. Daarbinnen valt de opkomst van de zgn. wervel-
methoden (vortez methods): het numeriek simuleren van wervelstructuren d.m.v. modellering
met ”wervelelementen” (bijv. vortez-filaments en vortez-points). We moeten echter wel enige
eisen opleggen aan deze methoden: een divergentievrij vorticiteitsveld, correcte modellering
van de vorticiteitsdistributie, correcte modellering van de deformatie en interactie van wervel-
structuren, behoud van bewegingsinvarianten, geen negatieve gevolgen van remeshing, correcte
oplegging van randvoorwaarden, convergentie, en aanvaardbare rekeninspanningen. Eén van
de recente wervelmethoden is de vortonmethode, het onderwerp van het tweede deel van dit
proefschrift.

Het wervelelement toegepast in de vortonmethode, is de vorton Dit kunnen we opvatten als
een driedimensionale puntwervel. De deformatie van deze vortons volgt uit de zgn. Helmholtz
vergelijking. De deformatie- en de verplaatsingsvergelijking voor de vortonen worden ver-
volgens numeriek opgelost. Er is echter over de afleiding van de deformatievergelijking dis-
cussie ontstaan in de literatuur. Uitgaande van twee in principe gelijkwaardige vormen van de
Helmholtzvergelijking kwamen Novikov en Kuwabara tot twee niet-gelijkwaardige vortonde-
formatievergelijkingen. In dit proefschrift stellen wij een nieuwe afleiding van de vergelijking
voor, die deze inconsistentie opheft en aantoont dat Novikovs noch Kuwabara’s vergelijking
aantrekkelijk is. Eén van de doelen van onze numerieke simulaties is geweest om de superior-
iteit van onze vergelijking aan te tonen; wij menen dat dit is gelukt; Kuwabara’s vergehjkmg
blijkt in elk geval onbruikbaar. Een ander doel van de simulaties is geweest het vergelij-
ken van het gedrag van diverse wervelstructuren met dat van hun vorton-equivalenten. Wij
hebben ons beperkt tot onderzoek naar het gedrag en de interactie van vortonringen, het
vorton-equivalent van de wervelring. We waren uiteraard afhankelijk van de beschikbaarheid
van experimentele, numerieke en analytische resultaten van anderen en van de mogelijkheden
m.b.t. randvoorwaarden (alleen een free-slip-voorwaarde is mogelijk). Verder hebben we de
volgende wervelfenomenen willen simuleren: werveldeformatie, wervelkerndeformatie, wervel-
reconnectie, en alignment van wervelbuizen. De configuraties die we hebben gesimuleerd zijn:
een enkele vortonring (onderzoek naar kern en stabiliteit); een enkele pseudo-elliptische vorton-
ring (deformatie en reconnectie): de botsing van twee coaxiale vortonringen (kerndeformatie en
stabiliteit); de interactie van twee aanvankelijk parallel bewegende vortonringen (reconnectie);
de interactie van twee ”geknoopte” vortonringen (alignment); en een enkele vortonring in een
afschuifstroming boven een vlakke plaat (een mogelijk eenvoudig model voor het gedrag van
coherente structuren in een turbulente grenslaag).

Ook is de zgn. vorton-division-techniek onderzocht: het toevoegen van vortonen op plaatsen
waar de afstand tussen naburige vortonen groter wordt dan een bepaalde waarde. De simulaties
hebben laten zien dat in elk geval toevoegen zonder updating van de vortonen niet aanvaardbaar
is. Met updating kan enige verbetering optreden, maar division met lineaire interpolatie blijkt
geen remedie tegen ontsporende simulaties.

De simulaties hebben in elk geval laten zien dat aan de vortonring een kern(diameter)
kan worden toegekend. De verdeling van de vorticiteit is echter niet homogeen verdeeld over
de ring. Het aantal vortonen in de ring bepaalt de kerndiameter (en snelheid), zodat nu-
merieke nauwkeurigheid niet met het aantal vortonen verbeterd kan worden (dit zou wellicht
wel kunnen door een adnere modellering van de wervelring). Het feit dat de kerndiameter
groeit bij wervelstrekking lijkt fysisch gezien onacceptabel. De discrete representatie van con-
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tinue wervelstructuren is enerzijds de oorzaak van de mogelijkheid reconnectie te simuleren (bij
dichte nadering van vortonen treedt een ”bifurcatie” op naar een nieuwe stabiele situatie; de
vraag is hoe "fysisch” dit is), aan de andere kant leidt het tot chaotisch gedrag van de vortonen
bij dichte nadering. Alignment wordt goed gerepresenteerd, maar ook hier lopen de simulaties
mis bij dichte nadering van de vortonen; in experimenten treedt waarschijnlijk annihilatie van
vorticiteit op.

De toepassing van de vortonmethode bij het onderzoek naar coherente structuren in een
grenslaag wordt gehinderd door de mogelijk belangrijke invlioed van de no-slip-conditie aan de
wand. Toch laat onze eenvoudige simulatie interessant gedrag van de vortonring zien en een
grote piek in een grootheid die verband houd met de Reynolds shear stress. Dit duidt op het
optreden van een zgn. burst; het optreden daarvan wordt in elk geval bepaald door de grootte
van de snelheid buiten de grenslaag.

We kunnen concluderen dat de vortonmethode relatief eenvoudig is, weinig rekeninspanning
vergt, en in bepaalde situaties goede simulatieresultaten oplevert. Wij moeten echter niet tveel
van de methode verwachten, enerzijds vanwege de discrete representatie, anderzijds vanwege
het ontbreken van visceus gedrag.

In de Epilogue worden tenslotte beide delen van het proefschrift weer bij elkaar gebracht
opeen wetenschapsfilosofisch niveau. Zowel Kelvin bij de ontwikkeling van zijn wervelatoomthe-
orie als huidige onderzoekers die simulaties uitvoeren met vortez methods als ue vortonmethode,
stuiten op de beperkingen of onvolkomenheden van hun zgn. computational model. Samen met
andere factoren was dit de oorzaak van de beperkte bloei van Kelvins atoomtheorie. Wat be-
treft onze simulatie van de vortonring in een shear flow boven een plaat: hierbij hebben we
niet alleen te maken met een wellicht inadequaat computational model, maar we moeten ons
ook afvragen of deze modellering van turbulente grenslaagstromingen zinvol en niet misleidend
is.
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