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Matter-antimatter interactions are investigated using hydrogen-antihydrogen collisions as an example.
Cross sections for elastic scattering and for the antihydrogen loss (either through the rearrangement
reaction, resulting in formation of protonium and positronium according to H 1 H̄ ! pp̄ 1 e1e2, or
via annihilation in flight) are calculated for the first time in a fully quantum mechanical approach.
Implications for experiments intending to trap and cool antihydrogen are discussed.

PACS numbers: 36.10.–k, 34.90.+q
How stable is antimatter in contact with matter? In this
Letter we consider the atom-antiatom interactions using the
collisional reaction between hydrogen and antihydrogen as
an example.

The Universe within our present observational horizon
is charge asymmetric, and therefore the atomic antimat-
ter is difficult to study experimentally. However, recent
advances in producing, trapping, and cooling antiprotons
and positrons open the possibility of antihydrogen for-
mation in the laboratory [1,2]. This may allow studies
of antimatter and tests of fundamental physical principles
such as charge-parity-time invariance and the weak equiva-
lence principle for antiparticles. Such experiments are
planned at CERN AD (Antiproton Decelerator) within the
ASACUSA, ATRAP, and ATHENA collaborations [1,2].

To study the matter-antimatter interactions in general,
to explore the existence of antistars, and in particular
to understand the mechanisms that allow trapping and
cooling of antihydrogen, knowledge of the rates for elastic
and inelastic atom-antiatom collisions is of paramount
importance. However, the previous treatments of the
problem have been very scarce [3–5]. The elastic cross
section is responsible for cooling and the inelastic one,
particularly the cross section for rearrangement resulting in
formation of protonium, is responsible for the loss of
antihydrogen (via annihilation during the cascade in
protonium).

In this paper we focus on the p-p̄ annihilation during
H-H̄ collisions at low (down to ultracold) temperatures. In
particular, we have calculated the rates for the collisional
rearrangement reaction

H 1 H̄ ! pp̄ 1 e1e2, (1)

which inevitably leads to the annihilation of antiparticles
from the bound states of protonium (Pn � pp̄) and/or
positronium (Ps � e1e2) formed in the final channel.

The cross section for the rearrangement process in
Eq. (1) is

srearr �
�2p�4

k2i

X
f

d�Ef 2 Ei� jTfij
2, (2)
0031-9007�00�84(20)�4577(4)$15.00 ©
where f represents the complete set of quantum numbers
specifying the final states of protonium and positronium.
The transition matrix element Tfi is given by

Tfi � �Ykf jV̂f jC
�1�
ki

� . (3)

The initial state wave function C
�1�
ki

represents the hy-
drogen and antihydrogen atoms oncoming with the initial
momentum ki , and is a scattering solution of the eigen-
value problem with respect to the complete Hamiltonian
Ĥ describing an interacting hydrogen-antihydrogen system
with the total initial energy Ei . Separation of leptonic and
hadronic motions (in the spirit of the adiabatic approxima-
tion) leads to a factorized form of C

�1�
ki

,

C
�1�
ki

�R; re, rē� � ci�R; re, rē�xki �R� , (4)

where re � rpe, rē � rp̄ē, R � rpp̄ , and ci is a solution
to the leptonic eigenvalue equation

Ĥ
lep

ci � V
lep
i �R�ci (5)

with the leptonic Hamiltonian given by

Ĥ
lep

� 2
1
2

=2e 2
1
2

=2ē 2
1

rpe
1
1

rp̄e
1
1

rpē
2
1

rp̄ē

2
1

reē
. (6)

The hadronic wave function xki is a scattering solution
to the wave equation for the proton-antiproton motion in
the leptonic potentialµ

2
1
2mi

=2R 1 Vi�R�
∂
xki �R� � eixki �R� , (7)

where Vi�R� � V
lep
i �R� 2 1�R, mi is the reduced mass

of the two hadrons, and ei � k2i �2mi .
The final-state wave function Ykf �R, re, rē� is a free-

wave solution to the eigenvalue problem with respect to the
final-channel Hamiltonian Ĥf describing the noninteract-
ing positronium-protonium pair having reduced mass mf

and moving with the relative (recoil) energy ef � k2f�2mf .
This corresponds to a partitioning of the complete Hamil-
tonian Ĥ according to Ĥ � Ĥf 1 V̂f , where
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describes the interaction between protonium and positr
ium. The final-state wave function can be expressed i
product form,

Ykf �R, re, rē� � FE�re, rē�f̃NLM�R� , (9)

where thehadronicpartf̃NLM�R� � R21ũNL�R�YLM�VR�
is a hydrogenic wave function describing the bound pro
nium, and the leptonic partFE�re, rē� is the wave function
describing a (freely) moving positronium in the statenlm
with internal energyEPsn and momentumkf , i.e.,

FE�re, rē� �
1

�2p�3�2

s
mfkf

h̄2
eikf rcmeē fnlm�reē� , (10)

where the vectorrcmeē points to the center of mass of th
positronium. The indexE of FE�re, rē� labels thetotal
energy of the positronium, i.e.,E � ef 1 EPsn .

The transition matrix elementTfi defined in Eq. (3) can
now be rewritten with the aid of Eqs. (4) and (9) as

Tfi � �FE�re, rē�f̃NLM�R� jV̂f jci�R; re, rē�xki �R�� .

(11)

To obtain a factorized form ofTfi we apply the partial-
wave expansion

xki �R� �
1
R

X
Li

fLi �ki ,R�YLi0�VR� , (12)

wherefLi �ei ,R��R is the radial solution of Eq. (7) and
YLM denotes a spherical harmonic. Using Eq. (12) a
assuming low collisional energy leading tos-wave scatter-
ing, one obtains

Tfi � dL,0dM,0

Z `

0
ũN0�R�tE,i�R�f0�ki ,R� dR (13)

which clearly demonstrates the role of the leptonic tran
tion matrix element defined as

tE,i�R� � �FE�re, rē� jV̂f jci�R; re, rē�� . (14)

The leptonic eigenvalue problem (5) is solved in prola
spheroidal coordinates by means of the variational meth
using an explicitly correlated basis set of Hylleraas fun
tions. The potentialVi�R� governing the motion of the
hadrons in the initial channel is presented in Fig. 1.
seen in the figure, the leptonic ground state potentia
purely attractive; i.e., there are no potential wells/barrie
which could temporarily trap the atom-antiatom syste
preventing the hadrons from coming close to each oth
and, ultimately, annihilate. BeyondR � 13 a.u. we calcu-
lated the potential as the asymptotic effective interact
of the form limR!` Vi�R� � C6�R6 1 C8�R8 following
from perturbation theory.

The radial part of the hadronic wave functionxki �R�,
i.e., f0�ki ,R�, at the initial collision energyei has been
4578
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FIG. 1. The hadronic wave functions superimposed on the l
tonic ground state potential. Solid line: the radial part of t
hadronic scattering wave functionf0�ki ,R� for ei � 10210 a.u.;
long-dashed line: the radial partũ24,0�R� of the final Pn state;
dashed line: ground-state interaction potentialVi�R�; dotted line:
(for comparison) the proton-antiproton attraction.

obtained by the numerical integration of Eq. (7). The r
dial wave functionf0�ki ,R� is presented in Fig. 1 togethe
with the hadronic wave function in the final channel (i.e
the excited bound state of protonium).

The leptonic wave functionFE�re, rē� [see Eqs. (9) and
(10)] is obtained as the eigensolution to the leptonic p
of the final state Hamiltonian

Ĥ
lep
f FE � EFE , (15)

whereĤ
lep
f � Ĥf 2 ĤPn. To facilitate the calculation of

the transition matrix elements between the H-H̄ and Ps-Pn
channels, the eigenvalue problem (15) is also expres
in prolate spheroidal coordinates and solved in the ma
representation using an explicitly correlated basis. T
leads to the discretization of the continuous spectrum of
moving positronium, resulting inL 2 eigensolutions corre-
sponding to a discretized set of eigenvaluesEj . The result-
ing eigenfunctionsFEj represent the moving positronium
and are square-integrable approximations to the anal
solutions given in Eq. (10). They are, however, expand
in terms of the basis functions and therefore transformed
the same prolate-spheroidal coordinate system which
been used for the calculation of the leptonic wave functi
in the initial channel, which greatly facilitates the calcul
tion of tE,i�R�.

The leptonic transition matrix elementtE,i�R� needs to
be calculated with respect to the leptonic final-state wa
functionFE at the energyE, satisfying the energy conser
vation during the collision,E � Ei 2 EPnN . It is extracted
as the imaginary part of the expectation value of the ope
tor V̂fĜfV̂f with respect to the leptonic ground state in th
initial channel

jtE,i�R�j2 �
1
p

Im�cijV̂fĜf�E�V̂f jci� , (16)

whereĜf�E� is the resolvent operator of the leptonic fina
channel Hamiltonian
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Ĝf �E� � lim
e!0

�Ĥlepf 2 E 2 ie�21. (17)

To handle correctly the singular nature of Eq. (16) a
the presence of degenerate continua describing the mo
positronium-protonium pair in various energetically poss
ble combinations of excited states, we apply the meth
based on the use of complex coordinates [6]. The tran
tion matrix elementtE,i�R� can then be obtained from the
dilated expression introduced in Eq. (16),

jtE,i�R�j2 � j�FEjV̂f jci�j2

�
1
p

Im
X
j

�cu�

i jV̂
u

f jF
u
Ej

� �Fu�

Ej
jV̂

u

f jc
u
i �

Ej 2 E
, (18)

where Ej and F
u
Ej

are the complex eigenvalues and a
sociated eigenvectors obtained by solving the pair of a
joint matrix eigenvalue problems obtained by dilation o
Eq. (15). The summation in Eq. (18) includes all branch
of the dilated continuous spectrum, and therefore the tr
sition probability contains contributions from all energet
cally open leptonic final channels for a given final state
protonium. We could also perform a summation over
final states of protonium, but our calculation shows th
the transition probabilities to states withN fi 24 are very
small. ForN � 24 only one leptonic channel (withn � 1)
is open.

In the evaluation ofTfi [Eq. (13)] we notice that for
R , 1 a.u. the leptonic matrix elementtE,i�R� approaches
0, while for largerR the protonium wave function vanishe
(see Fig. 1). At aboutR � 1 a.u. the leptonic matrix ele-
ment changes only very little. Therefore, generallyTfi is
determined by the overlap of the initial and final hadron
wave functions, the protonium state withN � 24, and the
low-energy proton-antiproton scattering wave functionf0,
both rapidly oscillating in this region (see Fig. 1).

Our results for the rearrangement cross section are p
sented in Fig. 2. For low energiessrearr � 0.35�

p
ei a.u.,

confirming the energy dependence expected from Wigne’s
threshold law.

In addition to the loss of antihydrogen caused by t
rearrangement collisions, some losses will also occur
proton-antiproton annihilation in flight, i.e.,without the
formation of an intermediate protonium state according

H 1 H̄ ! e1 1 e2 1 decay products. (19)

The cross section for this process is taken to be

spp̄
a �

�2p�3

k2i
App̄jxki �0� j

2, (20)

where the constantApp̄ has been calculated using the ex
perimental width of the ground state of protonium from
Ref. [7], G1s � 1130 eV. The resulting cross section i
presented in Fig. 2. It is fairly small as compared tosrearr ,
and for low energies shows the behavior characteristic
d
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FIG. 2. Cross sections for H-H̄ collisions, elastic cross sec-
tion obtained from the real part of the phase shift only (soli
line), elastic cross section including correction for inelasticit
(long-dashed line), rearrangement cross section (dotted line), a
proton-antiproton annihilation in flight (dashed line).

inelastic scattering dominated by the effective long rang
forces�spp̄

a � 0.14�
p

ei a.u.�.
The elastic cross section has been calculated using

relation

sel�ki� �
p

k2i
j1 2 Sii�ki�j2, (21)

whereSii is the scattering matrix element related to th
phase shiftd0 via

Sii�ki� � exp�2id0�ki�� . (22)

In the presence of inelastic scattering the phase shiftd0
is a complex quantity, whose real part has been determin
by fitting the numerical radial solutionsf0�ki ,R� at largeR
to the formN sin���kiR 1 Re	d0�ki�
���. The imaginary part
of the phase shift has been extracted from the rearran
ment cross section,

srearr �
p

k2i
�1 2 jSiij

2� �
p

k2i
�1 2 e24 Imd0� . (23)

We have then corrected the elastic cross section us
the results for the inelastic scattering cross section. T
s-wave elastic cross section with and without the corre
tion for inelasticity is presented in Fig. 2. The effect of th
inelasticity is small, except for the dips in the cross se
tion at energies where the real part of the phase shift go
through zero, which are smoothed out by the presence
inelastic scattering. We note that, as expected from gene
scattering theory, at low energies the elastic cross sect
becomes constant. Its limiting value has been obtained
terms of the (complex) scattering lengtha � a 2 ib,

lim
ki!0

sel�ki� � 4pjaj2 � 4p�a2 1 b2� . (24)

The real parta of the scattering lengtha, together with
the effective rangereff, was obtained by fitting the real
4579
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FIG. 3. Cooling of antihydrogen atoms due to elastic co
sions with ultracold hydrogen as a function of the loss of a
tihydrogen atoms. Initial collision energy of the antihydrog
E0 � 10 K (solid line),E0 � 5 K (dashed line), andE0 � 1 K
(dotted line).

part of the phase shift in the energy region1027 # ´i #

10210 a.u. to the low-energy expansion [8]

ki cotd0�ki� � 2
1
a

1
1
2

reffk
2
i 1 . . . . (25)

This procedure gavea � 8.1 a.u. andreff � 7.1 a.u. The
imaginary part of the scattering length has been obtai
from its relation to the inelastic cross section in the lo
energy limit

b �
ki

4p
srearr (26)

which givesb � 1.2 a.u. With these values ofa and
b the elastic cross section is found to tend to a c
stant valuesel � 840 a.u. By comparing the elastic an
the rearrangement cross sections (cf. Fig. 2), we see
the latter exceeds the former at energies smaller than2 3

1027 a.u. This means, for instance, that sympathetic co
ing of antihydrogen via collisions with cold hydrogen w
become ineffective below this threshold energy (whic
converted to the rest frame of hydrogen and divided
the Boltzmann’s constantk, corresponds to 0.1 K).

The cooling efficiency can be found by solving the ra
equations describing the losses of the kinetic energy
the density of antihydrogen atoms through repeated ela
rearrangement collisions with hydrogen atoms,

dE
dt

� 2nHysel
E
2
;

dnH̄

dt
� 2srearrynHnH̄,

(27)

wherenH is the density of hydrogen,nH̄ the density of
antihydrogen, andsrearry � 4p h̄b�mi is the rearrange-
4580
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ment rate constant. WithE � 2ei andy � �2E�mp̄�1�2
referring to the laboratory frame, the solution can be wr
ten in terms of the fractional loss of antihydrogenl�t� �
nH̄�t��nH̄�0� as

E�l� � E0

(
1 2

sel
p

E0mi

16p h̄b
ln l

)22

. (28)

By using the values ofsel andsrearr obtained above, we
have (in Fig. 3) plotted the decrease of collisional ener
as a function of the loss of antihydrogen for initial energie
E0 � 1, 5, and10 K. We see that, largely independent o
the initial energy, the antihydrogen is cooled down to 0.1–
0.2 K while losing 90% of the atoms. Surprisingly, startin
with nH � nH̄ � 107 cm23 and energy,10 K, it takes a
whole 17 min for the mixture of equal amounts of H an
H̄ to lose half of all atoms.

In conclusion, the coexistence of hydrogen and antih
drogen is quite viable for energies larger than�0.1 K,
while below this threshold the annihilation takes over. B
cause of the logarithmic dependence on the density lo
and the unfavorable ratiosel�srearr , the sympathetic cool-
ing below this threshold energy occurs only at the expen
of a high loss of antihydrogen atoms. Encouragingly, th
rearrangement cross sections inH̄-H are smaller than in
p̄-H collisions [9]. The vacuum requirements for storin
antihydrogen might therefore be less severe than for b
antiprotons.
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