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Matter-antimatter interactions are investigated using hydrogen-antihydrogen collisions as an example.
Cross sections for elastic scattering and for the antihydrogen loss (either through the rearrangement
reaction, resulting in formation of protonium and positronium accordingto H + H— pp + e*e™, or
via annihilation in flight) are calculated for the first time in a fully quantum mechanical approach.
Implications for experiments intending to trap and cool antihydrogen are discussed.

PACS numbers: 36.10.—k, 34.90.+q

How stable is antimatter in contact with matter? Inthis
L etter we consider the atom-antiatom interactions using the
collisional reaction between hydrogen and antihydrogen as
an example.

The Universe within our present observational horizon
is charge asymmetric, and therefore the atomic antimat-
ter is difficult to study experimentally. However, recent
advances in producing, trapping, and cooling antiprotons
and positrons open the possibility of antihydrogen for-
mation in the laboratory [1,2]. This may alow studies
of antimatter and tests of fundamental physical principles
such as charge-parity-time invariance and the weak equiva-
lence principle for antiparticles. Such experiments are
planned at CERN AD (Antiproton Decelerator) within the
ASACUSA, ATRAP, and ATHENA collaborations [1,2].

To study the matter-antimatter interactions in general,
to explore the existence of antistars, and in particular
to understand the mechanisms that allow trapping and
cooling of antihydrogen, knowledge of the rates for elastic
and inelastic atom-antiatom collisions is of paramount
importance. However, the previous treatments of the
praoblem have been very scarce [3—5]. The elastic cross
section is responsible for cooling and the inelastic one,
particularly the cross section for rearrangement resulting in
formation of protonium, is responsible for the loss of
antihydrogen (via annihilation during the cascade in
protonium).

In this paper we focus on the p-p annihilation during
H-H collisions at low (down to ultracold) temperatures. In
particular, we have calculated the rates for the collisional

rearrangement reaction
H+H—pp+ete,

@
which inevitably leads to the annihilation of antiparticles
from the bound states of protonium (Pn = pp) and/or
positronium (Ps = e¢*e ™) formed in the final channel.

The cross section for the rearrangement process in
Eg. (1) is
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where f represents the complete set of quantum numbers
specifying the final states of protonium and positronium.
The transition matrix element 7; is given by

Ty = (Vi IV, Wi ©)

The initial state wave function ‘Ifl(:r) represents the hy-
drogen and antihydrogen atoms oncoming with the initial
momentum k;, and is a scattering solution of the eigen-
value problem with respect to the complete Hamiltonian
H describing an interacting hydrogen-antihydrogen system
with the total initial energy E;. Separation of leptonic and
hadronic motions (in the spirit of the adiabatic approxima

tion) leads to a factorized form of ‘lf,(:r)

VR re) = $iRirer) xR, (4)

wherer, = r,., r; = Irpe, R = rpp, and ¢; isasolution
to the leptonic eigenvalue equation

APy = Vi R,
with the leptonic Hamiltonian given by
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The hadronic wave function yy, is a scattering solution
to the wave equation for the proton-antiproton motion in
the leptonic potential

<_2Li V%e + Vi(R)>)(ki(R) = € xx,(R), 7

where Vi(R) = V,"(R) — 1/R, w: is the reduced mass
of the two hadrons, and €; = k7/2u,;.

The final-state wave function Yy, (R, r., r;) is a free-
wave solution to the eigenval ue problem with respect to the
final-channel Hamiltonian H; describing the noninteract-
ing positronium-protonium pair having reduced mass u s
and moving with therelative (recoil) energy e, = k%/Z,uf.
This corresponds to a partitioning of the complete Hamil-
tonian A according to H = H; + V, where
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describes the interaction between protonium and positron-
ium. The final-state wave function can be expressed in a

product form,
Yi, (R, re,rz) = Pp(r,.rz)dnim(R), 9)

where the hadronic padixi m(R) = R~ Liing (R) YL m(Qr)

is a hydrogenic wave function describing the bound proto-
nium, and the leptonic pafltg(r., r;) is the wave function
describing a (freely) moving positronium in the stafe:

V(R) [a.u]

with internal energy’?s and momentunk , i.e., R [a.u]
1 ks FIG. 1. The hadronic wave functions superimposed on the lep-
Op(r,,r;) = Krir e . (r,;), (10)  tonic ground state potential. Solid line: the radial part of the
e m)32\ K2 nimAneess hadronic scattering wave functigiy(k;, R) for e; = 1071° a.u.;

. long-dashed line: the radial pa#ts (R) of the final Pn state;
where the vectorz' points to the center of mass of the dasghed line: ground-state inteeaéﬁggl gotenﬁaR); dotted line:
positronium. The indext of ®g(r,,r;) labels thetotal  (for comparison) the proton-antiproton attraction.
energy of the positronium, i.ef = e, + 8.

The transition matrix elemeri; defined in Eq. (3) can obtained by the numerical integration of Eq. (7). The ra-

now be rewritten with the aid of Egs. (4) and (9) as dial wave functionfy(k;, R) is presented in Fig. 1 together
. R with the hadronic wave function in the final channel (i.e.,
Tyi = (Pe(re,re)dnm(R) [Velhi(R; re, 1e) Yk, (R)) . the excited bound state of protonium).
(12) The leptonic wave functio®g(r,, r;) [see Egs. (9) and

) _ ] (10)] is obtained as the eigensolution to the leptonic part
To obtain a factorized form of';; we apply the partial-  of the final state Hamiltonian

wave expansion .
HP®p = Edp, (15)

1
Xk, (R) = — D Lk RYLo@g),  (12) whereF;? = A; — Ap,. To facilitate the calculation of
s ) , the transition matrix elements between thédkand PsPn
where f1,(e;, R)/R is the radial solution of Eq. (7) and channels, the eigenvalue problem (15) is also expressed
Y1y denotes a spherical harmonic. Using Eq. (12) angy prolate spheroidal coordinates and solved in the matrix
assuming low collisional energy leadingdavave scatter-  onresentation using an explicitly correlated basis. This
ing, one obtains leads to the discretization of the continuous spectrum of the
x moving positronium, resulting in” ? eigensolutions corre-

Tyi = 5L,05M,0f iino(R)te.i(R)folki,R)dR ~ (13)  sponding to a discretized set of eigenvalies The result-

) 0 ) _ing eigenfunctionsbg. represent the moving positronium
vyhlch clgarly demonstrgtes the role of the leptonic transizng are square-inteérable approximations to the analytic
tion matrix element defined as solutions given in Eq. (10). They are, however, expanded

t5.4(R) = (Ds(re,1s) |\7f|¢i(R; r..rs)). (14) in terms of the basis funct_ions and t_herefore transfor_med to
the same prolate-spheroidal coordinate system which has

The leptonic eigenvalue problem (5) is solved in prolatepeen used for the calculation of the leptonic wave function
spheroidal coordinates by means of the variational methog the initial channel, which greatly facilitates the calcula-
using an explicitly correlated basis set of Hylleraas func+jgn of 1£i(R).
tions. The potential;(R) governing the motion of the  The leptonic transition matrix elemen;(R) needs to
hadrons in the initial channel is presented in Fig. 1. Aspe calculated with respect to the leptonic final-state wave
seen in the figure, the leptonic ground state potential isunction® at the energy, satisfying the energy conser-
purely attractive; i.e., there are no potential wells/barriersjation during the collisionE = E; — £i'. It is extracted
which could temporarily trap the atom-antiatom systemgs the imaginary part of the expectation value of the opera-

preventing the hadrons from coming close to each othetor .G,V s with respect to the leptonic ground state in the
and, ultimately, annihilate. Beyor®l = 13 a.u. we calcu- jnitial channel

lated the potential as the asymptotic effective interaction ]
of the form limg_.. V;(R) = Cs/R® + Cg/R? following lte s (R = — Im(y; IV ;G (EW i), (16)
from perturbation theory. ™

The radial part of the hadronic wave functign, (R), whereéf(E) is the resolvent operator of the leptonic final-
i.e., folk;,R), at the initial collision energy; has been channel Hamiltonian
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G(E) = lim (AP — E — ie)"". (17)
e—0 ! 104 L. i
To handle correctly the singular nature of Eqg. (16) and =
the presence of degenerate continua describing the moving s,
positronium-protonium pair in various energetically possi- ° 108 | )
ble combinations of excited states, we apply the method 3
based on the use of complex coordinates [6]. The transi- $ Y&
tion matrix element, ;(R) can then be obtained from the @ o
dilated expression introduced in Eq. (16), g M RS
|t (R)P = @IV i)l 0 . . .
N NI T S 107° 10° 10° 10" 10°
_ 1 Im z (Wi |Vf|q’£,><q)g, |Vf|¢i ) (18) Collision energy ¢, [a.u.]
m J & - E FIG. 2. Cross sections for H collisions, elastic cross sec-

0 . tion obtained from the real part of the phase shift only (solid
whereZ; and (I)gj are the complex eigenvalues and aS'Iine), elastic cross section including correction for inelasticity

sociated eigenvectors obtained by solving the pair of adong-dashed line), rearrangement cross section (dotted line), and
joint matrix eigenvalue problems obtained by dilation of proton-antiproton annihilation in flight (dashed line).

Eq. (15). The summation in Eq. (18) includes all branches

of the dilated continuous spectrum, and therefore the trannelastic scattering dominated by the effective long range
sition probability contains contributions from all energeti- forces(oh” = 0.14/. /€ a.u).

protonium. We could also perform a summation over allyg|ation
final states of protonium, but our calculation shows that

the transition probabilities to states with # 24 are very ol (k) = 12 11— ikl (21)
small. ForN = 24 only one leptonic channel (with = 1) ki
is open. where S;; is the scattering matrix element related to the

In the evaluation of7; [Eq. (13)] we notice that for phase shifts, via
R < 1 a.u. the leptonic matrix elemeny ;(R) approaches )
0, while for largerR the protonium wave function vanishes Sii(ki) = exp[2i8o(ki)]. (22)
(see Fig. 1). At abouR = 1 a.u. the leptonic matrix ele-
ment changes only very little. Therefore, generdlly is
determined by the overlap of the initial and final hadronic
wave functions, the protonium state with= 24, and the

In the presence of inelastic scattering the phase 8hift
is a complex quantity, whose real part has been determined
by fitting the numerical radial solution%(k;, R) at larger
to the formN sin(k;R + Re(8y(k;)}). The imaginary part

Ik())wr—]ener%)ll protql?—gntlprotrc])_n scattering Wia:\./e f;mctﬁ@n of the phase shift has been extracted from the rearrange-
oth rapidly oscillating in this region (see Fig. 1). ment cross section,

Our results for the rearrangement cross section are pre-
sented in Fig. 2. For low energies®®" = 0.35/,/¢; a.u.,
confirming the energy dependence expected from Wigner
threshold law. ) ) )

In addition to the loss of antinydrogen caused by the/Ve have then corrected the elastic cross section using
rearrangement collisions, some losses will also occur vi#1€ results for the inelastic scattering cross section. The
proton-antiproton annihilation in flight, i.ewithout the ~ s-Wave elastic cross section with and without the correc-
formation of an intermediate protonium state according tdion for inelasticity is presented in Fig. 2. The effect of the

inelasticity is small, except for the dips in the cross sec-
H+H-oe" + ¢ + decay products (19) tion at energies where the real part of the phase shift goes
_ _ . through zero, which are smoothed out by the presence of
The cross section for this process is taken to be inelastic scattering. We note that, as expected from general
o Qay scattering theory, at low energies the elastic cross section
oPP = 2 APP | (0) I, (20)  becomes constant. Its limiting value has been obtained in
ki terms of the (complex) scattering length= o — i3,
where the constam”” has been calculated using the ex-
perimental width of the ground state of protonium from lim o®(k;) = 4mlal* = 4mw(a® + B7). (24)
Ref. [7], I'1; = 1130 eV. The resulting cross section is ’
presented in Fig. 2. It is fairly small as comparedt&™, The real parta of the scattering length, together with
and for low energies shows the behavior characteristic fothe effective rangesr, was obtained by fitting the real

oA — % (1 — |Sii|2) = % 1 - e741m60). (23)

i
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ment rate constant. With = 2¢; andv = (2E/m;)!/?
referring to the laboratory frame, the solution can be writ-
ten in terms of the fractional loss of antihnydroge) =
nH(¢)/nH(0) as

-2

el -
T VEki L (2g)

E(A) = Ep{l T6mip
By using the values of! and ™" obtained above, we
have (in Fig. 3) plotted the decrease of collisional energy
as a function of the loss of antihydrogen for initial energies
Eo = 1,5, and10 K. We see that, largely independent of
the initial energy, the antihydrogen is cooled down to-0.1
Surviving fraction of antinydrogen A 0.2 Kwhile IO_Slng 90% of the atoms. SUrpriSineg, Starting
with 1 = n™ = 107 cm™3 and energy<10 K, it takes a

FIG. 3. Cooling of antihydrogen atoms due to elastic colli- ; ;
sions with ultracold hydrogen as a function of the loss of an-V_VhOIe 17 min for the mixture of equal amounts of H and

tihydrogen atoms. Initial collision energy of the antihydrogenH to lose half of all atoms. _
Ey = 10 K (solid line), E, = 5 K (dashed line), an&, = 1 K In conclusion, the coexistence of hydrogen and antihy-

(dotted line). drogen is quite viable for energies larger tha.1 K,
while below this threshold the annihilation takes over. Be-
part of the phase shift in the energy regith 7 = ¢; =  cause of the logarithmic dependence on the density loss

Final energy E/k [K]

10710 a.u. to the low-energy expansion [8] and the unfavorable ratio®!' /o™, the sympathetic cool-
ing below this threshold energy occurs only at the expense
k; cotSo(k;) = 1 + 1 Veffkiz + (25) of a high loss of antihydro_gen atoms. Encouragingl_y, the
a 2 rearrangement cross sectionsHaH are smaller than in

This procedure gave = 8.1 a.u. andre;; = 7.1 a.u. The  p-H collisions [9]. The vacuum requirements for storing
imaginary part of the scattering length has been obtaine@ntihydrogen might therefore be less severe than for bare
from its relation to the inelastic cross section in the low-antiprotons.

energy limit This work has been supported by the Swedish Natural
Science Research Council, by the U.S. Department of

B8 = ki orear (26) Energy, Qfﬁce of Basic_ Energy Sciences, and by the_Na—

4 tional Science Foundation through a grant for the Institute

which gives 8 = 1.2 a.u. With these values of and for Theoretical Atomic and Molecular Physics (ITAMP)
B the elastic cross section is found to tend to a conat Harvard University and Smithsonian Astrophysical
stant values®! = 840 a.u. By comparing the elastic and Observatory.
the rearrangement cross sections (cf. Fig. 2), we see that
the latter exceeds the former at energies smaller 2han
1077 a.u. This means, for instance, that sympathetic cool-
ing of ant.ihydrog_en via coIIisigns with cold hydrogen Wi|| [1] J. Eades and F.J. Hartmann, Rev. Mod. PHgk. 373
become ineffective below this threshold energy (which, (1999).
converted to the rest frame of hydrogen and divided by 5] m.H. Holzscheiter and M. Charlton, Rep. Prog. Ph§2,
the Boltzmanis constank, corresponds to 0.1 K). 1 (1999).

The cooling efficiency can be found by solving the rate [3] D.L. Morgan and V.W. Hughes, Phys. Rev. &) 1389
equations describing the losses of the kinetic energy and  (1970).
the density of antihydrogen atoms through repeated elastic[4] W. Kotos et al., Phys. Rev. All, 1792 (1975).

rearrangement collisions with hydrogen atoms, [5] E. Armour, J. Carr, and V. Zeman, J. Phys.3&, L679
) (1998).
dE i o E dnt! cearr . H_A [6] P. Froelichet al., Phys. Rev. Lett71, 2871 (1993).
o rve L o o v, [7] C.J. Batty, Nucl. PhysA601, 425 (1996).

27) [8] L.D. Landau and E.M. Lifshitz,Quantum Mechanics
_ (Pergamon Press, Oxford, 1965), Chap. 17.
wheren' is the density of hydrogem" the density of  [9] G. Gabrielseet al., Phys. Rev. Lett65, 1317 (1990), and
antihydrogen, and™*"v = 47 hB/u; is the rearrange- references therein.

4580



