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Observation of Accelerating Airy Beams
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We report the first observation of Airy optical beams. This intriguing class of wave packets, initially
predicted by Berry and Balazs in 1979, has been realized in both one- and two-dimensional configura-
tions. As demonstrated in our experiments, these Airy beams can exhibit unusual features such as the
ability to remain diffraction-free over long distances while they tend to freely accelerate during

propagation.
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In 1979 Berry and Balazs made an important observa-
tion within the context of quantum mechanics: they theo-
retically demonstrated that the Schrodinger equation
describing a free particle can exhibit a nonspreading Airy
wave packet solution [1]. Perhaps the most remarkable
feature of this Airy packet is its ability to freely accelerate
even in the absence of any external potential. As first noted
in Ref. [1], in one dimension (1D), this Airy packet hap-
pens to be unique, e.g., it is the only nontrivial solution
(apart from a plane wave) that remains invariant with time
[1,2].

Over the years, nonspreading or nondiffracting wave
configurations have been systematically investigated in
higher dimensions (2D and 3D), particularly in the areas
of optics and atom physics [3—6]. What makes the analogy
between these two seemingly different disciplines possible
is the mathematical correspondence between the quantum
mechanical Schrodinger equation and the paraxial equa-
tion of diffraction [7]. In terms of experimental realization,
optics has thus far provided a fertile ground in which the
properties of such nonspreading localized waves can be
directly observed and studied in detail. Perhaps the best
known example of such a 2D diffraction-free optical wave
is the so-called Bessel beam first suggested and observed
by Durnin et al. [3]. This work sparked considerable
theoretical and experimental activity and paved the way
toward the discovery of other interesting nondiffracting
solutions [4,5]. We note that, even though at first sight,
the aforementioned propagation-invariant beams may ap-
pear dissimilar, they in fact share common characteristics.
First, they are all generated from an appropriate conical
superposition of plane waves [3-5]. Even more impor-
tantly, all these solutions are known to convey infinite
power, a direct outcome of their nondiffracting nature. Of
course, in practice, all these nonspreading beams are nor-
mally truncated by an aperture (because of lack of space
and power) and as a result they tend to diffract during
propagation [8]. Yet, if the geometrical size of the limiting
aperture greatly exceeds the spatial features of the ideal
propagation-invariant fields, the diffraction process is con-
siderably “‘slowed down” over the intended propagation
distance and hence for all practical purposes these beams
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are called “diffraction-free”” [9]. We emphasize that no
localized 1D propagation-invariant beam can be synthe-
sized through conical superposition.

In this Letter we report the first observation of 1D and
2D accelerating diffraction-free Airy beams [1,10]. These
beams, in contrast to the already known families of non-
diffracting fields, are also possible in 1D and do not result
from conical superposition. Our experiments demonstrate
that even though the Airy beams are exponentially trun-
cated (convey finite power) they still exhibit their key
characteristics [10]. More specifically, they resist diffrac-
tion while their main intensity maxima or lobes tend to
accelerate during propagation along parabolic trajectories.
This behavior persists over long distances in spite of the
fact that the center of gravity of these wave packets re-
mains constant (an outcome of Ehrenfest’s theorem) and
diffraction eventually takes over [1,7,10,11]. The observed
propagation dynamics are in good agreement with theory.

To examine the behavior of optical Airy wave packets,
we invoke the normalized paraxial equation of diffraction
(potential-free Schrodinger equation) [10]:
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i Y + 333 0, (1)
where ¢ is the electric field envelope, s = x/x, represents
a dimensionless transverse coordinate, x, is an arbitrary
transverse scale, £ = z/kxj is a normalized propagation
distance, and k = 27n/Ay. As first shown in Ref. [1],
Eq. (1) admits the following Airy nondispersive solution,

B(& 5) = Ails — (§/2)) exp(i(s§/2) — i(£3/12)). (2)

Clearly, at the origin ¢(0, s) = Ai(s). Equation (2)
clearly shows that the intensity profile of this wave remains
invariant during propagation while it experiences constant
acceleration. The term (£/2)%> in Eq. (2) describes this
ballistic trajectory. Figure 1(a) depicts the diffraction-free
propagation of such an accelerating Airy wave packet as a
function of distance £. An alternative interpretation of this
interesting result was given by Greenberger through the
principle of equivalence [12]. More specifically, he re-
marked that a stationary Airy wave packet associated
with a quantum mechanical particle in a constant gravita-
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FIG. 1 (color online).
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Propagation dynamics of (a) a diffraction-free Airy wave and (b) a finite-energy Airy packet when a = 0.05.

The corresponding input intensities of these beams are shown in the insets.

tional field will be perceived as accelerating upwards by a
free-falling observer in whose frame of inertia gravita-
tional forces are absent. As also indicated in [1], this
accelerating behavior is by no means in conflict with
Ehrenfest’s theorem which describes the motion of the
center of gravity of a wave packet [1,7]. This is because
the Airy beam is not square integrable ( [ Ai2(x)dx — o)
and thus its center of mass cannot be defined [1,13].

The properties of finite-energy (power) Airy beams were
recently investigated theoretically within the context of
optics [10]. One possible way to realize such beams is to
introduce an exponential aperture function, i.e., let
¢(0, s) = Ai(s)exp(as) [10], where a is a positive pa-
rameter so as to ensure containment of the infinite Airy
tail. Typically, a << 1 so that the resulting wave packet
closely resembles the intended Airy function [see inset of
Fig. 1(b)]. By directly integrating Eq. (1) we find [10]:

b€ 5) = Ai(s — (£/2)* + iaé) explas — (aé?/2)
— i(&/12) + i(a*§/2) + i(s€/2)). 3

The Fourier transform ®g(k) of this finite norm wave
packet is proportional to ®,(k) « exp(—ak?)exp(ik®/3)
[10]. From this latter equation, one can readily deduce
that the angular Fourier spectrum of this truncated Airy
beam is Gaussian and involves a cubic phase (k%) resulting
from the Fourier transform of the Airy function itself. This
particular form of the spectrum has important implications
in terms of experimentally synthesizing this truncated
version of Airy packets. As a result, this wave can be
generated from a broad Gaussian beam through a Fourier
transformation provided that a cubic phase is imposed.

Figure 1(b), shows the propagation dynamics of a finite-
energy Airy wave packet when a = 0.05. As clearly seen,
for a << 1 the beam still displays all the interesting char-
acteristics of the ideal Airy packet. During propagation, it
remains quasi-invariant over several diffraction lengths
while again the intensity features tend to ‘““freely acceler-
ate’’. For this case, the beam behaves as if it was almost
ideal [see Fig. 1(a)] for an appreciable distance until dif-

fraction eventually takes over. We note that here, the term
‘““acceleration’” must be cautiously used since the center of
mass of a finite-energy Airy packet can be defined and in
fact remains invariant with distance [1,11]. Yet, as depicted
in Fig. 1(b), for small aperture factors the local intensity
features still move on a parabolic trajectory and thus
accelerate within the beam.

In order to study experimentally the propagation dynam-
ics of finite-energy Airy wave packets we exploit the fact
that the Fourier transform of the function Ai (s) exp(as) is a
Gaussian beam modulated with a cubic phase. An air-
cooled argon-ion continuous-wave laser operating at
488 nm emits a linearly polarized, high quality Gaussian
beam that is subsequently collimated to a width of 6.7 mm
(FWHM). This broad Gaussian beam is then reflected from
the front facet of a computer-controlled liquid crystal
spatial light modulator (SLM). This SLM is used to impose
the cubic-phase modulation (—207r.. + 2077 in 2 cm) that
is necessary to produce the Airy beam. In order to generate
the one-dimensional Airy wave packet, a converging cy-
lindrical lens with a focal length of f = 1.2 m is placed at
a distance f in front of the SLM phase array. After the
SLM, the Fourier transform of this phase-modulated
Gaussian beam is then obtained at a distance d = f =
1.2 m behind the lens. The Airy beam produced is then
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FIG. 2. Phase masks used to generate (a) 1D and (b) 2D-Airy
beams. The cubic phase is “wrapped” between [0, 277]. In the
gray scale pattern, black corresponds to 0 and white to 27
radians.

213901-2



PRL 99, 213901 (2007)

PHYSICAL REVIEW LETTERS

week ending
23 NOVEMBER 2007

imaged on a carefully aligned CCD camera through a 5 X
microscope objective. The propagation dynamics of these
beams are then recorded as a function of propagation dis-
tance by translating the imaging apparatus. Figures 2(a)
and 2(b) show the phase masks used to generate the 1D and
subsequently 2D Airy beams, respectively.

Figure 3(a) depicts the intensity profile of a 1D expo-
nentially truncated Airy beam at the origin (z = 0). In our
experiment, x, = 53 um and a = 0.11. Figures 3(b) and
3(c) show the corresponding intensity profiles of this Airy
packet at z = 10, 20 cm, respectively. As expected, the
beam remains almost diffraction-free while its main lobe
tends to quadratically accelerate. Our measurements show
that the spatial FWHM width of the main lobe (containing
in this case more than 70% of the total beam energy)
remains almost invariant up to a distance of approximately
25 cm and retains its original value of =90 um. It is worth
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FIG. 3 (color online). Observed intensity cross sections of a
planar Airy beam at (a) 0 cm, (b) 10 cm, and (c) 20 cm.
Corresponding theoretical plots for these same distances (d)—
(f). (g) A Gaussian beam having the same intensity FWHM as
the first Airy lobe. (h) Corresponding diffraction profile after
25 cm of propagation.

noting that this occurs in free space and is by no means a
result of some optical nonlinearity [14]. Figures 3(d)—3(f)
depict the corresponding expected theoretical behavior of
this same Airy packet at these same distances—in good
agreement with experiment. Note that a Gaussian beam of
this size would have diffracted at least 67 times in this
same distance, Fig. 3(g) and 3(h). In addition, had the cubic
phase not been imposed on the initial broad wave front, the
resulting Gaussian beam would have expanded X24 in
25 cm. What was also clearly demonstrated in our experi-
ment was the transverse acceleration of the local intensity
maxima, Fig. 4. This parabolic trajectory is a result of
acceleration and is well described by the theoretical rela-
tion x; = A3z%/(167%x}), as long as the beam remains
quasi-diffraction-free and before diffraction effects take
over. The solid line in Fig. 4 corresponds to this latter
analytical expression. As these results indicate, after
30 cm of propagation the beam experiences a deflection
of 820 um—comparable to the total size of the packet (=
first 10 lobes of the Airy beam). Again, we emphasize that
the acceleration observed here refers to the local intensity
features of the packet. In all cases, the center of gravity (s)
of this wave remains invariant [1,11] since d(s)/d¢ =
(i/2) [(p5p — psp¥)ds is constant.

Similarly we have also considered 2D Airy beams sat-
isfying the paraxial equation of diffraction in two dimen-
sions. The case of an ideal 2D Airy packet was first
suggested by Besieris et al. [15]. In this case a 2D SLM
phase pattern [Fig. 2(b)] was imposed on the Gaussian
beam and was then Fourier transformed through a spherical
lens. By doing so we were able to produce finite-energy
Airy wave packets of the form ¢ = Ai(x/xy)Ai(y/yg) X
exp(x/w;) exp(y/w,). The evolution diffraction dynamics
of these latter 2D field configurations can be readily solved
by separation of variables using the result of Eq. (3) [10].
The intensity distribution of such a wave is shown in
Fig. 5(a), when w; = w,, corresponding to an x-y trunca-
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FIG. 4 (color online). Transverse acceleration of an Airy beam
when a = 0.11 as a function of distance. Circles mark experi-
mental results while the solid line represents the expected
theoretical deflection.

213901-3



PRL 99, 213901 (2007)

PHYSICAL REVIEW LETTERS

week ending
23 NOVEMBER 2007

Position [mm]

Position [mm]

FIG. 5 (color online). (a) A schematic of a 2D Airy packet.
Observed intensity distribution of a 2D Airy beam at (b) z =
0 cm, (c) z =10 cm, and (d) z = 20 cm. Corresponding theo-
retical results at these same distances (e)—(g).

tion factor of a = 0.11. In this case, approximately 50% of
the energy resides in the main intensity lobe at the corner.
In general, the flexibility in separately adjusting the x-y
parameters allows one to control the transverse accelera-
tion vector of this novel 2D nondiffracting beam. In our
experiments we considered beams with equal scales in x-y,
and thus the acceleration occurred along the 45° axis. For
the pattern generated, x, = 53 wm and the aperture factor
is @ = 0.11. As in the 1D case, our experimental results
indicate that this 2D beam propagates almost diffraction-
free up to a distance of 25 cm. The main lobe keeps its spot
size (90 um) up to a distance of ~25 cm and the beam

moves on a 2D parabolic trajectory with x; = y,;. The
diffraction dynamics of these 2D Airy beams are shown
in Figs. 5(b)-5(g).

We would like to point out that 1D Airy wave packets
can also be synthesized in the temporal domain using
dispersive elements [16]. This may lead to the first obser-
vation of dispersion-free Airy pulses in optical fibers, in
both the normal and anomalous dispersion regime [17].
The use of Airy nondiffracting beams for particle manipu-
lation [18] or in nonlinear media [14,19,20] may be another
fruitful direction.

In conclusion, we have reported the first observation of
Airy optical wave packets. As demonstrated in our experi-
ments, these Airy beams can exhibit unusual features such
as the ability to remain diffraction-free over long distances
while they tend to freely accelerate during propagation.
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