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Now, by Eq. (B—2)
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if we neglect the torsion, fle3/cjxi. Choosing

(B—13)
( V2V3) (1
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keeping first-order terms in p, the solution is just Eqs.
(20) with VA given by Eq. (22).

From Eqs. (B—11), we easily obtain

e3' ——e,—ei (Vi/~R, ),
/

eg = e2)

Eq. (B—13) reduces to

dvt. dV2 dV3
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dt dt

Ke have now defined all quantities except v~' in

(B—14) Eq. (B—9). Substituting, this becomes

1 eo
v L' ——v L'X os+ V—2V3e3+—(V.'—V;i-'), (B -17)
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(B—15) which has the solution (to order 2i)

(dV3/dt oeV2, t—o first order in 2).) Substituting Eq.
(B—15) into Eq. (B—12), we obtain coupled differential
equations for dV2/dt and dV3/dt By m. eans of the
adiabatic theorem in mechanics, we can show that,

1 e3
VL = 82V2V3 (V2 V3 ) . (B 18)
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Thus we have all the quantities in Eq. (B—6), which is
just Eq. (24).
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The Boltzmann equation for ionized gases of low density in an external magnetic field is used to obtain
approximate solutions in the nonstatic case. The Boltzmann and Maxwell equations are linearized by
assuming small deviations from a static solution. It is shown that in the limit of a strong magnetic fie]d

{g((1,as defined in the text), the motion transverse to the magnetic Geld is described by the conventipna]
hydrodynamic equations. The variation along field lines is described by a one-dimensional (i.e., one space
dimension and one velocity dimension) Boltzmann equation. Several applications are given, including an

analysis of the Kruskal-Schwarzschild gravitational instability of a plasma.

I. INTRODUCTION

~ 'N Part P we discussed on rather general grounds the
~ ~ behavior of an ionized gas of low density in a strong

magnetic field. The properties of the static state were

treated in detail. In the present paper we study further

the dynamic and thermodynamic behavior of the gas.
%e recall a few of the basic equations from Part I.

The dynamical properties were described by the

Boltzmann equation

itf e—+c Vf+ E+—CXB—V',f=0,
M C'

which applies to either electrons or ions on giving e its
proper sign and on assigning the appropriate subscripts
e or 2 The first .four moments of f were written as

*A development closely paralleling in many respects that given
here has been found by Chew, Goldberger, and Low. This treat-
ment is to be published separately.

(Present address: Brookhaven National Laboratory, Upton,
New York.

$ On leave from University of Wisconsin, Madison, Wisconsin.
' K. M. Watson, preceding paper (Phys. Rev. 102, 12 (1956)j.

Equations in Part I will be referred to here as Eq. (I-1), etc. Part
I itself vrill be referred to as I, for brevity. The notation is the same
as in I:E is the electric Geld, 8 the magnetic Geld, C the particle
velocity, etc. The unit vector e& is in the direction of 80, e2 in the
direction of the principal radius of curvature of the 80-lines. e3 is
AX@.

v=——)~cfd c,

p—=M) (c v)(c v)fdsc, — —
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where y and Q are the pressure and heat flow tensors.
Taking the first three moments of Eq. (1), we obtain
the familiar differential relations between the four
moments (2).

8$—+V (»23)=0
Bt

(3)

BV—+V VV=—
1 e

V p+—E+—ex&,
Me M C

Bp+—V Q+» Vp+pV v+9 Vv+(13 Vv)'j
Bt

e
Q e,e;Pe; p (BXei')+e; p (BXe,)j=0. (&)

~C ', i-&

e
VXS V y,

3fC Me

is used to give v. Again, to calculate p to first order in

2), the heat flow Q need be calculated only to order zero
if p is obtained from the term proportional to oi =eB/MC
in Eq. (5). It is thus clear that the smallness of 2)

implies that the higher moments of the f-function are
of limited importance for calculating the lower moments
by means of Eqs. (3), (4), and (5). There is, however, a
very important limitation on this argument. That is,

' We recall that the quantity V= (Larmor radius)X (dimensions
of system) '. The only assumption (of our four) of essential
importance is that g(&1. The others are made only as a matter of
convenience in simplifying the discussion at a later stage.

(The unit vectors and coordinate system which we

shall use are defined in Appendix A of Part I.') Here
the symbol (p Vv)~ represents the transpose of the
dyadic p. V'v. We emphasize once again that there will

be a duplicate set of Eqs. (1) to (5) for electrons and
ions. To these must be added Maxwell's equations
(I-3) and (I-4). Equations (3), (4), and (5) do not, of
course, determine the four moments (2) unless an
assumption is made which relates the heat Qow tensor

Q to the lower moments. Consequently, we must solve

Eq. (1) and thus determine Q if we desire only the first
few moments of the distribution. Actually, we shall
consider solutions to Eq. (I-11) instead, since we desire
the solution f which differs very little from the known
static distribution fo.

Before attempting to solve these equations, we recall
the four assumptions (A), (8), (C), and (D) which were
made in Sec. III of Part I concerning the properties of
the gas. In particular, we Inust use the conditions that
g&(1.' As an application of the way in which we shall
use these assumptions, we observe that to calculate v
from Eq. (4) to second order in reciprocal dimensions
of the system, (i.e., to second order in 2)) we need
calculate the pressure tensor to first order only in p if

p13 p12 p23 0y p22 p33 ~ (7)

These are just the relations deduced in Part I.' The
relations (7) are actually more general. Indeed, it is
evident that for nonstatic problems whose motions are
characterized by frequencies small compared to the
Larmor frequency the relations (7) will still be valid
to the extent that Eq. (6) is a good approximation.
This is a further consequence of our approximation
that q(&1.

~hen the divergence of the heat flux (V'. Q) vanishes,
Eq. (5) leads also to a set of laws for adiabatic com-
pression. To obtain these we consider Eqs. (7) to be
constraints on the compression. We then find

dp Bv
ei' 'el= pli dlvv+2el

dt itIISy

dp dp
e~ —e~=~3 —e3

dt dt
BV

P33 2 divv ei'

Chew, Goldberger, and I ow' have found integrals of
these equations.

The compression laws (8) take on a simple form if
we suppose the magnetic field lines to be straight enough
that ej, e~, and e3 may be treated as constants. The
result is

dPll

P22 dP33 (= —2pssl — + (
—p 3

di di &ass aas& aai

These relations were Qrst derived in collaboration with M. I..
Goldberger. See, for instance, the forthcoming paper by Chew,
Goldberger, and Low.

the moment Eqs. (4) and (5) are tensor equations ancl
the Larmor terms appear only in certain of their com-
ponents. The smallness of q does not simplify the
remaining components as eGectively. Indeed, to obtain
these we must solve the Soltzmann equation. In spite
of this limitation, the existence of a strong external
magnetic field is of great importance in permitting one
to deduce a quasi-Quid dynamics.

Before continuing, it is perhaps worth while to discuss
the significance of Eq. (5). This contains, for instance,
the appropriate law of adiabatic compression for our
problem. In the static case V Q=O (Part I), and to a
good approximation in general (the smallness of 2i), we
may write this equation as

e,'y (BXe,+e; p (BXe,)=0, (6)

for all (s,j). Recalling our definition of the 8s and
writing Eq. (6) out in detail, we obtain from it
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These represent simple generalizations of the usual
adiabatic law for scalar pressure. Indeed, on imposing
the condition that pii = pop

——pop, we obtain from
Eqs. (9) just the usual adiabatic law with y=5/3. The
form of Eqs. (9) results from the fact that heat ex-
change is not possible between longitudinal and trans-
verse degrees of freedom, i.e., parallel to and perpen-
dicular to S. The longitudinal compression has y=3,
since it is one dimensional. Transverse compression
has y=2, since it is two dimensional. The cross terms
in Eqs. (9) represent the effect of density changes only
on the pressure.

II. NONSTATIC PROBLEM

The static distribution function is

fp fp(r, c)——,
which to zero order in g has the form

fo(c ',ci',r), (10)

where c& is the component of the velocity along the
magnetic 6eld and c~ is the perpendicular component,
i.e.,

cy=c'e], cg =c —cy .2 —2 2

viXB= V y,
MC Mn

and v(') will be smaller and related to the departure
from equilibrium. We can further solve Eq. (15) for
vi (recalling that v has no component parallel to S)
to give

v, =e,X(V y)/M~. (16)

however, since the gas is presumably able to adjust
itself to maintain equilibrium conditions along Geld
lines. For instance, a component of V y or E along B
would give rise to large currents and matter fiow. We
shall later return to a justification for assumption (E).

Equation (4) is now solved by successive approxi-
mation. We note first that the largest part of the
electromagnetic interaction, assuming small E, is the
term in vXS. In the quasi-static case, this is approxi-
mately balanced by the pressure term. This suggests
that we separate v into two parts

v= vi+v&'),

where v& is defined by

This result shows that vi is of order I/4o, or of order iI;
That expression (10) is the form of the static distri- consequently the term V, .V„, „.Vv can be dr~pp~d
bution function was shown in Part I. as of order rP. Equation (4) now is

The nonstatic distribution function is

f=fp(c u)+f', —

where we define u to be the solution to

(12)
Bvi Bvoi e It' v&'&

-+-- =—
(

E+ XS [.
Bt Bt M & C

(17)

du e 1—=—E'+—uXSo,
dt M C

Again we notice that in the quasi-static case E+ (v(')/

(13) C)XS tends to be nearly zero, which suggests that we
separate v(') into

according to Eqs. (I-9) and (I-10). We remember that
u and f' are considered to be infinitesimal quantities.
Equation (I-11) for f' is

where

V(O =Vo+V(o)

vo=+CEXB/ 'B~CEXBo/Bo'.

5)f'= uVfo+c (V'u)—V,fo
—(e/MC) (cXB') V,fo, (14)'

where the operator S was defined in I to be B/Bt+c V

+ (e/MC) (cXBp) V,.
First of all, we solve Eq. (4) on the assumption that

iBV/Bti«fr v f,

Where a& =eBp/MC. This is valid if we may introduce
the assumption:

The last step follows from the assumed smallness of E
which allows us in first order to replace B by its static
value. We proceed to next order by defining

v&') =vp+V4+ v&4&,

where v3 and v& are equated to the time derivatives of
v2 and v&, respectively. The result is

1 MC' BE
v3= ——

e Bg' Bt

(E) Neither V y nor E has a component in the
direction of B. B eiX(V' y)v4XS=-

Mc at
(20)

(21)

This assumption is not arbitrary, since its self-consist-
ency can be checked once V y and E have actually been
calculated. If it should turn out not to be correct, the The order of magnitude of v4 is obtained by setting

appropriate modification can be made in the following Bv "X(V y)~va, e~X ~ p
developments by solving Eq. (4) for the component of ~Q
v parallel to S. This is a very plausible initial aesutz, Bt Mneme
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where 0 is a frequency characteristic of the motion of is the nonstatic drift velocity. We can thus express E'
the system. Then in terms of g by

v4 (fl/pp) et. (22)

Since v& is already of erst order in q, this quantity is of
second order and wi11 be dropped.

We have now the Quid velocity to the required
accuracy and from this may calculate the electric
current density. This is Lsee Eq. (1-3))

j=e(rt;v; e,v,—).
We shall neglect by assumptions (A) and (D) the
convection current which results from v2 since the
electric field drift is the same for electrons and ions,
and in the absence of charge separation no current
results. Consequently, taking n;=e, =e, we have

8E'= ———XBp.
C Bt

(34)

4pr K BE
3i+

C CBt

(36)

Substituting into Eq. (31) and integrating with respect
to time gives

B'= VX (&XB,).
This permits us to eliminate B from the remaining
Maxwell equations: 4n. 1 BE

VXB=—(j,+3,)+-
C C Bt

where
3=3t+3p, (24)

using Eq. (25). We remove the static part:

3i= es(vt' —vt )=C8tX (V'Pr)//8,

jp
——eI(v„—vp, )
—8SV3;
=L(s—1)/4 jprBE/Bt.

(25)
where

4m.

VXBo=—3i',
C

ji=3i +3

(37)

a BE'
. =VXB'——j'.

C R C

s= 1+4orpC'/Bp', (26) (39)
where p=m M; is the gas density. The charge density e

)see Eq. (I-3)$ is Eliminating E' and B' using Eqs. (34) and (35) we
(27) obtaine=e(e, n,), —

Here we mean by p& the sum of ion and electron pres- with jj.' the static and j' the perturbed part of j&. Then
sures and a is defined by Eq. (36) becomes

and is related, of course, to j by

V 3+Be/Bt=O (28)

K B $ 47)-

XBo=VX(VX ((XBo))——j'.
C' 8P C

(4O)

To solve Maxwell's equations, we erst of all separate
out the static part of

Taking the vector product with Bp, we obtain the
equation

l9

=VXE
C Bt

(29)

B'( 1 1
po =—BoXj'——BoX(VXD X ((XBo)j), (41)

Bt' C 4n-

usmg

Thus

1 BBo
Ko

C Bt

1a '
=vyK'.

C Bt

(30)

(31)

where

EoXBo
v2=C +-

Bo' Bt

E'XBo—=C-
Bt

(32)

(33)

It, is i'low convenient to work not with E', but, with
drift velocity resulting from E'. We do this by writing
the drift velocity as

using Eq. (26) for s and neglecting Bps/4pr relative to
eM;c'. We shall discuss in a moment the determination
of j' from the solution of the perturbed Boltzmann
equation (14). When this has been done, Zq. (41)
becomes a differential equation for the variable (. It is
evident that $ is a particularly useful variable to
describe both the motion and stability of a plasma. 4

We must emphasize that only motion perpendicular to
Bp is defined by the differential equation (41).To obtain

4Frieman, Kruskal, Bernstein, and Kulsrud, Revs. Modern
Phys. (to be published), have introduced a very similar variable
g as a hydrodynamic Lagrangian variable in connection with the
theory of stability of hydromagnetic iiuids. In our application, g
replaces E' as a variable through Eq (33) and repr. esents only s
part of the Quid motion. As we shall later see, for an extensive
class of problems an adiabatic pressure law holds and Eq. (41)
becomes identical with the corresponding equation in hydro-
magnetics.



BOLTZMANN EQUATION FOR STUDY OF IONIZED GASES

motion along the Geld lines, we must return to Eq. (4)
and relax our assumption (4) that V y and E have no
8& components. Since V y may be calculated from Kq.
(16) and E calculated from V E=4ore we may also
solve Eq. (4) for the component e& v. For a wide class
of problems this is not of importance.

To proceed with the discussion of Eq. (41), we must
evaluate j'. Since j' is the fluctuation of ji——CBXV yr/
8' from its static value, we have

where

8y Cj'=c—XLv.y.']+ B'XLV p"]
Bo B o

2C
I:Bo B']BoX(v pr'),

4

pr= pr +pr )

(42)

is separated into static and Quctuation parts. Using
Eqs. (35) and (41), we can now simplify Eq. (42) to

c)'g 1
po = —V'pr'+ t Bo VX((XBo)](v.pr )

BP B o

the acceleration is opposite to the "displacement" and
the system is "stable. " This is not quite an absolute
criterion for stability since the system may show
"overstability" (oscillations of increasing amplitude).
In this case it would be necessary to return to the
differential equation (43).

For any assumed $, the frequency 0 of the motion
may be estimated from Eq. (44) by setting r)'(/&I'=0'(.
On evaluating the integrals, one may solve for 0'.

The use of the virial in such problems as this is not
uncommon. ' In the hydrodynamic discussion of
Frieman et al. ,

' the right-hand side of Eq. (39) was
shown to be the negative of twice the "potential
energy" of the system. This observation by Frieman
et a/. permitted them to give a variational principle
for the motion of the system. '

To complete our discussion of Eq. (43), we must now
determine the pressure fiuctuation y~'. Thus we turn
finally to the discussion of the Boltzmann equation
(14). The drift velocity u is evaluated from Eq. (13)
assuming that the time derivative is negligible, as is
valid in the low g limit. Then

E'+ (1/C) u XBo——0,

(45)r) c/Bt= u.

1 determines u. But this is the defining equation for——B,x(vxI vx(gxBo)]). (43) ag/aI. Thus
4x

It remains only to calculate y&' from the Boltzmann
equation (14). Before doing this we evaluate the virial
of Eq. (43). A qualitative discussion of the motion is,
indeed, often possible from the virial. Tak.ing the scalar
product with g and integrating over space, we have
(after some partial integrations and discarding surface
integrals)

r)'g t 1
po( dr= — —LVX ((XBo)]'

at' & 4~

—jt' gXLVX (gXBo)]—(Vg): p, ' d.. (44)

r)$
Sf = ——'. Vfo+c'

I
V—.

I
V fo

at E al)

Since

e
cXLVX()XBo)]'V fo=GI —,c I. (46)

MC Eat )

(47)

With Eq. (32) for B', Eq. (14) becomes Lhere K) can be
written as S=r)/r)t+c —V+(e/MC)cXBo V,]

In obtaining the final form, we have assumed that (=0
on the bounding surface of the integration volume and
used the identity V.pro= (I/C)jtoXBo. I (V():pr' repre-
sents the double scalar product of the two dyadics. ]

The importance of the virial for our problem is as
follows: If the motion across magnetic Geld lines is slow
compared to thermal velocities, contours of constant
density will remain parallel to magnetic field lines. This
means that ( r)'g/r)t' will have the same sign every-
where along a field line. If

g r)'g/r)P)0,

the acceleration is essentially parallel to the "dis-
placement" and the system may be called "unstable. "
If

g cl'(/c)to(0,

we can evaluate y' in terms of g once f' is found from
Kq. (46). It is clear that p' will be a linear function of $
and its derivatives, which shows that Kq. (38) is an
eigenvalue equation for 0,' where

r)$/rlt=Q(. (48)

~ See, for instance, S. Chandrasekhar and E. Fermi, Astrophys.
J. 118, 116 (1933).

o If Eq. (39) could be replaced by an energy integral, a vari-
ational principle would be immediately available. We have not
succeeded in obtaining such an integral in the general case.

We wish to solve Eq. (46) to lowest order in r), which
will be to first order in reciprocal dimensions of the
system. Thus fo is assumed to have the form (13), with
density gradients in the X& direction )except for the
X& dependence determined by Eq. (I-33)].

Since 8~ depends upon r we must evaluate the gradient
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in Eq. (41) rather carefully. That is,

Vcr ——V(c.er) = (V82) c,

VQ, = —VcP = —2ciV(ci),

for instance. The gradient of fp is therefore

Bfo ( Bfo) cic2 Bfo BfoI+
Bxl 4 Bxi~ cl Rl BC1 BC2,

Bfo ( Bfo'I crc2 Bfo BfoI+
Bxs E Bxs) ci R2 Bcl Bcg .

(49)

(50)

Bf, Be, Bfo B-fo
=C]C383'

8$3 BS3 Bcq Bc~

Here the symbol (Bfp/Bxi) ci means differentiation
holding c~ constant, and RI, R2, etc. , were defined in
Part I. The derivatives of f' can be evaluated in the
same manner. It is convenient to first write

&'=f"+f"'+. , f"=A (C,2,CP,r)+crA2(C, 2,CP,r). (51)

The terms f'"+ will be seen to be of 0(2t) compared
to the A~ and A2, terms and will thus be neglected in
our final result. Inserting Eq. (51) into Eq. (46) and
evaluating space derivatives as in Eqs. (50), we obtain
Las in'Part I, D '= —(1/Bp)(BBp/Bxr)$

Bfll C C
2 —Bfll Bfll

+c Vf" +
cg D t9cy Bcg

Bf" Bf" cpc2 ci t' 1 1 )+2 — +—(C22—C22)
I

——
I

BcP Bc~2 Ri 2 &R2 Rsk

Recalling that f" is an L-type term, we set

(e/MC)c&&Bo V,f'"=G2
- Bfll

—2
Bcy

Bf ci cs ci ( 1 1 q+—(C2'- Co'

BC2.' Ri 2 &R2 Rp) .
Bfll' Bfll

—cs — —co
— . (54)

BX2 C] BX3 C$

Bfll Bf
II

C C
2 Bfll Bflt

+ci — — + — =Gi.
Bt Bxq cq D . Bc' Bc~~ '

(55)

We next substitute Eq. (51) for f" into this equation.
We obtain some terms which are even in c~ and some
which are odd. Since 6& is even in c&, we may equate to
zero the sum of all the odd terms. This leads to two
coupled equations for A & and A2.

BA2 (BAt) c~' BAr BAi
+I I+

Bt E Bxi ) ci D Bcp Bc2,
(56)

BAi (BA2) c~' 1 (BA2 BA2)
+cpI I + -A2+'i'I

Bt ( Bxi) cr D 2 L. Bcr Bc2. )
(B(

=GrI —,C~2, CP I. (57)
(Bt

To the required order, the solution to Eq. (14) is now
just

This equation may be solved easily for f"', since the
terms on the right-hand side are all P-type terms. ~ But
f"' is of O(1/&p), as is apparent from Eq. (54), so may
be neglected elsewhere in Eq. (52). On dropping these
terms, Eq. (52) reads

+n(f"'+ )=G(B(/Bt, c) (52). f' =A i (c,',c,')+c,A 2 (c,',ci'). (58)

To eGect an expansion in p, we shall classify the terms
in Eq. (52) as "L-type" and "P-type. " The P-type
terms are those which vanish on averaging over the
angles of c2 and cp (that is, averaging over the plane
perpendicular to Bp). The L-type are the remaining
terms. As an example, f" in Eq. (51) is an L-type term.
We may, for instance, write

G=Gr(B)/Bt, c2.'lcp)+G2(B)/Btlcllcplcs)l (53)

where Gi is L-type and G2 is P-type. From Eq. (46),
we obtain

The components of the fluctuating part of the pressure
tensor are calculated from

M
pii =M)~cl A rd cl p22 =p28 =

I Cz Aid Cl (59)
2 ~

with the oG-diagonal elements vanishing. This was
already predicted in Eq. (7). The only two components
of the heat Qow tensor are

Qi=M I cr'Asd'c QUA=2M CPci'Asd'c. (60)
J t

Gi= uVfp +2CPLer. —(V'u). eij
2

8$ BCy

B p

+C,2(e2 (Vu) es+es (Vu) 8sj . (53')
BQ

The term G2 may easily be obtained, also, but we shall
not need it.

Here we do not have, in general, V Q=O as was true
for the static solution of I.

Before discussing some speciic examples, a few
general remarks are in order. First, having evaluated

'It is easily verified by substitution that f"' has the formf"'= (c2 —cp)F22+cpcoF22+crF2+crFr, where the F's are I.-type
terms. Equation (54) gives a set of algebraic equations for the

S
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Eqs. (56) and (57), we may substitute the resulting
pressure tensor p' into our differential equation (43)
to obtain the equation of motion of &

—or we may use
it in the virial integral (44). On the other hand, one
may evaluate the heat flow from Eqs. (60) and use the
differential equation (5) to obtain p'. This involves
solving the extra set of differential equations (5), but
has the advantage of giving greater accuracy in general,
since V Q, rather than Q, appears in (5).

The motion is evidently much simpler for situations
in which As=0. In this case all the odd moments of f'
vanish, including the heat flux Q. This is just the con-
dition that the compression law for y' be adiabatic.

For A, =O, Eq. (57) may be integrated to give ex-
plicitly

A i =Gi(g, cs')ci').

Equation (56) is then

BAg c~' BAg kg
Bsy cy D Bcy 8cg

=0,

(61)

(62)

which is a condition on the "displacement" g, when we
insert (61) into (62). We recall that Eq. (62) is exactly
the same as the equation satisfied by fs (see Part I),
which was interpreted as the condition for equilibrium
"along field lines. " The interpretation of Eq. (62) is
thus that for A2=0, the gas moves in such a manner
that equilibrium is instantaneously maintained along
magnetic field lines.

In this case, using Eqs. (59), we may easily evaluate
P:

8$
pl 1 $ ' +pll pll + ' (+ 2cl '

Bgg

8
pss'= pss'= —5 &pss' —pss' 2~ K

—ci
8$y

(63)

aA, /at=QA„A, =—Qr. (64)

Then Eqs. (56) and (57) become Lwith A. i and P
functions of cP, c', and rJ

c)Ai LC —ci j BAi

Bgg c$ D 'Bc/

(65)
r)P t

c'—cP) 1 r)I'
A i+cP + —I +cP

8gy cy D 2 Bcy

=Gr((,cps,cP).

These values are to be used in Eq. (43) to give a dif-
ferential equation linear in g

—or in the virial (44),
showing that the virial is quadratic in g. Equations (63)
are seen to be identical in form with Eqs. (8).

In general, when Eqs. (56) and (57) must be inte-
grated, it is convenient to change from c~',c~' to c~',c'
as variables. Then [8/r)cP 8/r)c~s j—is replaced by
8/Bcp Also let u. s set

8(/r)t=Q(, r)Ai/Bt=QAr,

This indicates that motion only in the 1st direction is
involved in the integration of these equations. The total
square velocity, c', enters only as a parameter, so these
are equations in two independent variables. Upon
integrating these, we may evaluate y' as a linear
functional of g. This, in turn, implies that Eq. (43) is a
linear homogeneous equation for g. We are thus dealing
with a system which is holonomic, all quantities ex-
pressible in terms of g.

When the motion is very slow, so 0 is small, the
0 F term is negligible on the right-hand side of the 6rst
of Eqs. (65). This is then equivalent to Eq. (62), which
has the obvious interpretation that for very slow motion

f i.e., for Q«t thermal velocityg&& t
"length" of

plasma] ') the system always moves so as to maintain
equilibrium "along field lines. "

We must finally say something about our neglect of
motion along field lines. When A2/0, we have

cy~A2d c)

since we have set $&=0. We may use er' to calculate
the current j&' and thus solve Maxwell's equations to
give Ei'. From this we may calculate $& and then
re-solve Eq. (65). In this way we can check the con-
sistency of our approximation (E).'

Before considering several applications of our theory,
we may summarize the method. In a manner analogous
to that of Chapman and Knskog, we solve the Boltz-
mann equations (56) and (57) along with the hydro-
dynamic equation (43). The variable ( plays the role
of the I agrangian variable in the conventional hydro-
magnetic equations for a highly conducting gas, such as

1 d(
E+——XB=0.

C' dt

Of particular i'nterest is the conclusion that when
conditions for adiabatic compression obtain, the
Boltzmann equation may be solved explicitly, the
solution being given by Eq. (61).

III. APPLICATIONS

In this section we consider applications of the theory
of the preceding sections to hydromagnetic waves,

' Actually, this rather cumbersome method of investigating the
e&-motion is unnecessary. It will be shown in a subsequent publi-
cation that the e&-motion may easily be included in the general
discussion and that its neglect is justifiable for a well-defined class
of problems. A second point to be discussed in this subsequent
publications concerns our tacit assumption that. B'/Bo is of order
q. This was assumed, because the B'-term in G was of the P-type
and thus was included in Gs. Consequently, f"' contains B'/Bs,
as is clear from Eq. (54). We discarded this term as being of order
ri, because it contained Bs-'. For small P, we have Lchange in
magnetic field energy jX t total magnetic field energy j-'= (B'/Bo)s—P, justifying our neglect of this term. In the general case a minor
modification of our formulas is needed.
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electron plasma oscillations, and the Kruskal-Schwarzs-
child' problem of gravitational instability.

—ge2 acts in the direction from plasma to vacuum. "
We shall first discuss the motion using the differential
equation (43) and then using the virial (44).

We suppose the variable ( of Sec. II to have the formExample A. Hydromagnetic Waves

We suppose the plasma to be uniform and Bp to be
constant. We then look for a transverse solution of the with
form

(75)acts I

(76)k ei ——0, a ei ——0, da/dt=Qa.
(66)(=aeis'*" a ei ——0) 1 )

We wish to determine the dispersion relation between
Q and the vector k.

The gravitational force causes a current

so

(67)V (=0.
Then Gi ——0 in Eq. (53), so y&'=0, as does V pso. We
may then substitute Eq. (66) into Eq. (43) to obtain (77)1,=es(pC/B)f,

c)'g

Bt2

Qs = —(Bo'/47rpo) &is.

802 to fiow in the plasma interior. "The infinitesimal change
ki (. in j„ that is j, , is easily calculated just as was j in

4xpp Eq. (42). B' is given by Eq. (37). We have also As ——0,
A & =G&. Thus p' can be evaluated. We may verify from

Taking r)sg/r)P=Q'g, we obtain the usual dispersion

the right-hand side of Eq. (43) need be kept when

(68) p((1, so

s 81 c)pq, ll—Qo'(= — E'—
M, Mep Beg

(70)

Example B. Electron Plasma Oscillations

We take Bo=0,

g= e, ae'"" da/dt= iQoa—., (69)

and the vector ei to be constant. Then Eq. (4) is (for
electrons)

p,a'g/at'= —(B,'/4~) e,x (vx [vx ((xei)jj. (78)

The electric field E' is
QBp)E'= —(Q/C) )XBp———

~
~a Xeie'"'. (79)

)
For the same reason that p' will turn out to be small in
our final solution, the charge density e[ts,' n, ') —will

also turn out to be small (this is easily calculated from
our Ai, and Ai;), so

v E'=0,

in the plasma interior. This implies that
tron

kga3= k3ag.

Using Eqs. (76) and (80) in Eq. (78), we obtain
71p., ii'= —iskipo, iip.

To calculate p, »', we shall use the first of Eqs. (9),
assuming the compression to be adiabatic (our dis-
cussion of the Boltzmann equation requires modifica

'

for Bp ——0). Then

From Eq. (3), we have
Qsa = —(Bp'/4z-pp) [ass+ kss]a. (81)

e,'= —iknp$. (72)

(73)

Substituting Eqs. (71) and (73) into Eq. (70), we
obtain the Hohm-Gross" dispersion relation

The charge density is e= —et4'. Using V E'=r)E'/
Bx~=4m~, we obtain

E =4prlo8$8i.

To obtain a second relation between these quantities,
we must satisfy the proper boundary conditions at the
plasma surface. The displacement "tilts" the plasma
surface, whereas the current j, remains horizontal.
Thus j, will have a component fIowing across the plasma
boundary causing surface charge density to develop at
the rate'3

4ir'isps po, ii
Qo'= —+3k is

3f, Mn0
(74)

Example C. Gravitational Instability'

We consider a plasma with an in6nite plane bounding
surface, which is the plane xs ——0. Bp is a constant and
the plasma density is uniform except at the boundary,
which is supposed to be sharp. A constant acceleration

9 M. Kruskal and M. Schwarzschild, Proc. Roy. Soc. {London)
A223, 348 (1934).

+ D. Bohin and E. Gross, Phys. Rev. 75, 1852 (1949).

c= —j -8

where 8 is the normal to the plasma boundary. The
component of il in the es-direction is (c)/c)xs)[g e,$, so

(82)
'7

68 =XC6g = —ZIt'382Jg.

"A semi-infinite plasma of uniform density is incompatible with
a uniform B0 in a gravitational 6eld. We may suppose the density
to be uniform for a depth greater than other distances encountered,
however, as did Kruskal and Schwarzschild (reference 9).

"This is calculated by setting gds= (e/3E, C)v, XB and j,=pe;v,
for ions. The electrons contribute to j~ only in the order 3E,/N;."This method of solving the boundary conditions at the plasma
surface was suggested to us by Dr. C. Longmire.
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If E'(0) is the electric field in vacuum, we have the
boundary conditions at x2=0:

Es'(0) 4s. Es'(0)
~2 =—e„ES'=

K K K

(83)

Here K is the "dielectric constant" of Eq. (26). Since K

is assumed to be a large number, we neglect Es'(0) in
Eq. (83). We may now eliminate e, between Eqs. (82)

'

and (83) and express Es' in terms of a using Eq. (79).
This, combined with V E'=0 and Eq. (81) leads to

ct'g t 1—[VX (~XBs)]'—j ' &

BP ~ 4n

To make the right-hand side of Eq. (88) as large as
possible, we must take VX ()XBo) 0. This is true for
our solution (84) and (83). Also pr' is small when

P((1, so Eq. (88) reduces to

and
(84)

t

pod dr= I gpsV [po]dr~ gpsspodZ, (89)
aP

—Zk2= k k3. (85)

gc
j,' es M;f V—(grto)—],

&0

and that Eqs. (43) and (44) are modified to read

8'( 1 (ji'XBo)
p. = —V p.'+ [Bs VX(gX~o)]

Bt2 g 2 C

(86)

1
BoX{V'X [VX () XBo)]) tesgV'(gpo), (87)

4x

This is the Kruskal-Schwarzschild instability rate.
To solve the same problem with the virial (44), we

note that

po0' dZ—bs = g$s'ppdZ.
k

(90)

Because of the uniformity of the plasma, we have

02= gk,

which is equivalent to Eq. (84).

(91)

where de.=dx2dZ, dZ is an element of area on the surface
of the plasma, and the contribution to J'dxs comes from
the discontinuity at the boundary. To evaluate the
left-hand side, we have t$st toast e '*'. Thus, Eq.
(89) becomes
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Theillloelectric Powers in Palladium-Silver and Palladium-Rhodimin Alloys
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Thermoelectric powers have been measured in the temperature range 77'K to 273'K in the alloys of
palladium with silver. The absolute thermoelectric power is found to be highly sensitive to the presence of
unoccupied d-band states, and a marked variation with composition is also found in alloys with more than
90% of either element. This latter behavior is ascribed to a departure of the Fermi surface from an accu-
rately spherical form as the s-electron concentration increases above 0.9 per atom in the silver-rich alloys,
and to a contribution to conduction from d-band holes in the palladium-rich alloys. The values of thermo-
electric power obtained for the pure metals by extrapolation from the results for alloys where these effects are
absent are in good agreement with estimates made on the basis of simple theoretical models. Results of
measurements on some palladium-rich palladium-rhodium alloys are also presented and discussed brieQy.

INTRODUCTION

'I'N the metallic state palladium has about 0.6 un-
~ - occupied states per atom in the band derived from
the 4d levels of the free atoms. ' In its alloys with silver,
which form a continuous series of solid solutions, these

*Much of the work described in this paper forms part of a
thesis to be submitted by one of the authors (J.C.T.) to the Uni-
versity of London for the Ph.D. degree. Part of it has been carried
out in the U.S.A. with support from the 0%ce of Naval Research.

)On leave of absence at Carnegie Institute of Technology,
Pittsburgh, Pennsylvania.' E. P. %ohlfarth, Proc. Leeds Phil. Lit. Soc., Sci, Sect. 5, 89
(1948).

empty states or d-band holes are gradually filled, pure
silver having a fuB d-band and one electron per atom
in the 5s-band. The magnetic properties of the aBoys
give a clear indication of the general character of the
change in electronic structure produced in traversing
the system, and the most recent susceptibility measure-
ments' suggest that d-band holes are present only when
the silver content is less than about 60%.' The present

2Hoare, Matthews, and Walling, Proc. Roy. Soc. (London)
4216, 502 (1955).

3 Concentrations are expressed in atomic percentages through-
out.


