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In an effort to obtain a semiclassical model for the neutral =
meson, a Bohr-Sommerfeld type of system with the proton re-
placed by a positron is investigated in the limit of high velocities.
It is found that as a result of the relativistic increase in the
electromagnetic field between the two moving charges, a natural
minimum approach distance occurs equal to one-half of the clas-
sical “shell-electron’ radius. At this separation, a new set of
quantized states becomes possible which is found to be energeti-
cally unstable. The lowest state possesses an energy approximately
equal to the #° meson energy. The relativistic states are charac-
terized further by the greatly increased importance of perihelion

I. INTRODUCTION

HE discovery of an increasingly large number of
unstable nuclear particles has repeatedly led to
the hope that these entities may actually be complex
structures composed of only a few truly elementary
particles. In particular, it was suggested by Fermi and
Yang! that the #° meson might be explained as a pair of
heavy nucleons, for instance a proton-antiproton pair.
Even prior to the discovery of the #° meson, a somewhat
related hypothesis had been advanced by Wentzel,2 and
by Gamow and Teller® who proposed that nuclear forces
might be described by the exchange of electron-positron
pairs. Along the same lines, Marshak? subsequently
showed that many of the theoretical difficulties of an
electron-positron pair theory of nuclear forces might be
removed if one assumed the particles to be abnormally
heavy, with masses a few hundred times that of the
ordinary electron as proposed earlier by Yukawa. How-
ever, at that time Marshak concluded that the necessity
of introducing an arbitrary cutoff into the strongly
singular tensor potential remained as a serious difficulty
common to all neutral-meson theories.

It is the purpose of the present note to investigate a
simple electron-pair model for a #° meson in which the
required large mass of the electrons arises as a relativistic
effect. Although the model is semiclassical in character,
it has the virtue of leading to definite mass and lifetime
predictions as well as to a natural cutoff. Thus it may
point the way towards the eventual formulation of a
more complete description of nuclear particles and their
interactions.

II. OUTLINE OF MODEL

The system that will be investigated here is essen-
tially a straightforward extension of the Bohr-Som-

* Part of this work was carried out under a Westinghouse
Research Laboratory Fellowship at the Institut Henri Poincaré,
University of Paris, 1957-1958, and reported briefly in Bull. Am.
Phys. Soc. 4, 228 (1959) and 6, 80 (1961).

TE. Fermi and C. N. Yang, Phys. Rev. 76, 1739 (1949).

2 G. Wentzel, Helv. Phys. Acta 10, 107 (1936).

3 G. Gamow and E. Teller, Phys. Rev. 51, 289 (1937).

¢ R. E. Marshak, Phys. Rev. 57, 1101 (1940).

precession, which accounts for one-half of the total angular
momentum in the extreme relativistic case. When the effect of
precession on the intrinsic magnetic moment is taken into account,
the total energy of the system is found to be 263m,c?, in close agree-
ment with the observed 7% meson mass. The lifetime of the system
against annihilation into two gamma rays is calculated on the
basis of the close analogy to singlet positronium. Its value is found
to be 2.06X 10716 sec, in good agreement with the latest value of
the observed 7° meson lifetime. The implications for the structure
of other nuclear particles and their interactions are briefly
discussed. '

merfeld model to higher velocities, except that the
proton is replaced by a positron. It may therefore be
regarded as a semiclassical relativistic positronium
model in which the two charges revolve around a com-
mon center of mass at rest in the laboratory.

In order to simplify the problem, the effect of the
intrinsic magnetic moments will be treated separately,
and the discussion will be restricted to the equilibrium
case of circular orbits, analogous to the original treat-
ment of the hydrogen orbits by Bohr. By virtue of these
assumptions and the equality of rest masses, the diffi-
culties arising from the motion of the relativistic center
of mass with respect to the static center of gravity are
avoided. Since the system will be quantized in steady-
state orbits, radiation will be assumed absent as long as
the system is in its lowest allowed state as in the Bohr-
Sommerfeld model.

III. RELATIVISTIC INERTIAL FORCE

The centrifugal force acting on the two charges ¢; and
g each having a rest mass m, will have the familiar form

(1)

Here m* is the relativistic reduced mass given by
Y1emo* equal to v12(mo/2) for the special case of equal
rest masses,® yi2 is the Lorentz contraction factor
[1— (v12%/c®) T3, 712 is the distance between centers, and
w is the orbital frequency of rotation.

Two points must be remembered in applying Eq. (1)
in the limit of large velocities. The first is that if one
wishes to express F, in terms of the relative velocity of
the two particles v15 rather than in terms of the angular
velocity w, one must use the relativistic rather than the
Galilean law for the addition of velocities measured
relative to the center of mass. Accordingly, calling these

Fcz m*i’me.

5 For the more general case of unequal rest masses, see the
mnemonic device of F. S. Crawford, Am. J. Phys. 26, 376 (1958)
and the earlier treatment of M. H. L. Pryce, Proc. Roy. Soc.
(London) A195, 62 (1948). For the case of continuously distributed
mass, see D. Bohm and J. P. Vigier, Phys. Rev. 109, 1882 (1958).

391



392 ERNEST J.

velocities v1¢=71cw and va¢=r20w, respectively, one has

v1¢+02¢
Ipp=—"T——" """
14+ (v1cv20)/¢*]

so that, calling vic+ve0=1,

=w(rlc+7’20)fr, (2)

7)12=712wfr=7)c 7y (3)
where in general

fr=[1+ (v1cv2c/®) . 4)
In the present case of v1¢=%v, this reduces to
fr=[1+ (vs/4c?) I

The correction factor f, multiplying the relative
velocity in the center-of-mass system v, is seen to vary
between the limits f,=1 for the nonrelativistic case of
v.&Kc and f,=% for v, ~2¢c. When rewritten in terms of
v12, Eq. (1) takes on the form

Fo=(m*v1*/r15) 1/ f2)?, ©)

which differs from the nonrelativistic or low-velocity
expression by a nearly constant factor of 4 when
V10 =V2c=C.

The second point to be remembered in the application
of Eq. (1) is that when one is dealing with high angular
velocities, the familiar precession of the perehelion
frame in Sommerfeld’s model will no longer be a small
effect. The magnitude of the angular velocity of pre-
cession is given by

Q=[(v12—1)/712]Jw. (6)

It is equal to the well-known Thomas precession ve-
locity,® whose value may be derived from purely kine-
matic considerations.”® Inspection of Eq. (6) shows that
as soon as yiz becomes large compared with unity,
instead of being negligibly small, @ approaches w in
magnitude.

The effect of this very large precession is to divide the
total angular momentum in the laboratory frame L,
into'a part due to orbital motion relative to the pre-
cessing reference frame K,, L,, and into a part that
represents angular motion of K, relative to the labora-
tory frame, Lg, or

L;=L,+La. (M

(4a)

The orbital angular momentum L, relative to K, is
given by
Lw=m*w7122, (8)

which, in terms of v12 becomes

Lo= fim*v1971. 9)

5 L. H. Thomas, Nature 117, 514 (1926) ; Phil. Mag. 3, 1 (1927).

7H. C. Corben and P. Stehle, Classical Mechanics (John Wiley
& Sons, Inc., New York, 1950), Sec. 102.

8 A. Sommerfeld, Atombau and Spekirallinien (Friedrich Vieweg
und Sohn, Braunschweig, 1950), 7th ed., Vol. I, Appendix 12.
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Using Eq. (6) for Q, Lg takes on the form

Y12—1 "
Lo= f,1 MU 19,
Y12

(10)

In terms of the total laboratory frame angular mo-
mentum L; one obtains

Lo=[7v12/ 2vie—1)]L,, (11)

Ln:[(’Ym—l)/(Z’Ym"‘l)]Ll- (12)

In the limit of y15>>1, the angular momentum is seen
to divide itself equally between L, and Lgo. The total
centrifugal force is therefore composed of a part due to
orbital motion within K, and a part due to precession
of K, in the laboratory. In terms of L,, Eq. (5) gives
for the former component

and

ch:Lw2/m*7123, (13)

.so that the total combined inertial force may be written

as

Lg? (y12—1)?
Fct=ch(1+"—)=ch(1+—‘)- (14)
L2 7122

In the limit of B12~~1, the second term of Eq. (14)
reduces to (yi2—1)/(y12+1) using the identity

1228182 = (v12+1) (y12— 1), (15)
so that the total inertial force becomes
2y L2
Fo= ( z ) - (16)
Yo +1/ m*rd

Equation (16) shows that the effect of precession is to
increase the usual centrifugal force calculated on the
basis of an angular velocity w and angular momentum
L, by a factor that approaches 2 as v;2>>1. When
written in terms of v19, using Eq. (9) to replace L,, one
therefore obtains for the centrifugal force at high
relativistic velocities the expression

2y m*v5?
12 ) 1 . (17)
12

Fct: 7—2(
Y12+1

Equation (17) reduces to the classical form (mv15%/712)
as v12 and f, both approach unity at low velocities. For
the present case of equal rest-masses and v15>>1, the
combined effects of the two correction factors and the
reduced mass m*=+12(m,/2) leads to

4

Foy=4v19mv12%/712. (18)

IV. ELECTROMAGNETIC FORCE

The inertial force as calculated above is the force that
would be measured by an observer at rest relative to the
proper frame of either of the two moving particles, for
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instance as indicated by a spring balance.® To obtain the
electromagnetic force that balances this inertial force,
one must therefore likewise calculate the interaction as
noted by an observer at rest relative to the proper frame
of either particle.

This procedure has the advantage that since the
charge being considered has no motion relative to this
observer, the magnetic field produced by the other
charge has no effect and the interaction reduces to a
purely electrostatic one. The electrostatic field due to
the moving charge ¢» will, however, be transformed
relativistically, giving for the field produced at the
position of the observer’s charge ¢; the value!®!!

(1—81) ( )
=
(1—B12? sinZey2)3 \ 7122

where Bi12=112/¢, and ¢y is the angle between ;; and
r19. This field is directed along the radius vector con-
necting ¢; and ¢, and leads to equal and oppositely
directed forces when calculated by an observer at rest
relative to gs.

For the special case of steady-state circular orbits, the
angle g1 is always 90° and Eq. (19) simplifies to

(19)

Fe1=712(91(12/7’122)- (20)
Equation (20) is seen to reduce to the ordinary static
Coulomb force in the limit of y19~~1. For velocities small
compared to those of light, Eq. (20) may be expanded in
powers of (v15/¢)? to give

q192 17)122 g192
Fog=—+43——
719 ¢ ri?

(21

Equation (21) containsin addition to the static Coulomb
interaction a velocity-dependent term of the form that
would ordinarily be obtained by an observer at rest in
the laboratory from a consideration of the magnetic
vector potential interaction arising from the motion of
the charges. Thus Eq. (20) is equivalent to using a
generalized velocity-dependent potential or Lorentz
force law at low velocities, but it is free from the diffi-
culties associated with the transformation of velocities
and forces when these are first calculated in the labora-
tory frame, especially when v19c.

V. FORCE EQUILIBRIUM CONDITION

In the steady-state circular orbits of interest here, the
inertial force is at all times exactly equal to the force of
attraction. Equating F,, from Eq. (17) with F¢ from

? For an excellent discussion of the problem of defining the force
in a relativistic system of charges, see H. Arzelies, La Dynamique
Reéativiste (Gauthiers-Villars, Paris, 1957), Chap. X, Part A, pp.
143-148.

10 Work cited in reference 9, p. 203.

11 For a particularly clear discussion, see also F. K. Richtmyer
and E. H. Kennard, I'niroduction to Modern Physics (McGraw-Hill
Book Company, Inc., 1942), Sec. 70, p. 150.
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Eq. (20) leads to the relation

Y12 ’)’12m0*7)12
W/ (712+1) —m(m ) (22)

For the case of f, approximately constant, i.e., either
B12=~1 or B15~0, this expression may be solved for v;; as
a function of 712 by making use of the identity in Eq.

(15) to give
Yie=1/[1—= (rmr/712) ],

(23)
where
Tmx= [2q192/ 2mo*c2. (24)

For the present case of y12>1, f,=1%, ¢1=¢2=¢, and
mo*= (mo/2), rm+ reduces to

7m=€2/4moc?=0.70X 10~ cm. (25)

Inspection of Eq. (23) shows that there exists a
minimum possible value for 71, in an equilibrium orbit
equal to 7.+ where y1s— . In the case of two equal
particles of mass 7, and charge e, Eq. (25) shows this
minimum equilibrium orbit to have a diameter equal to
one-quarter of the classical “shell-electron” diameter
do= (e&/moc?) =2.82X 1071 cm, independent of any as-
sumptions as to the size of the electron’s charge dis-
tribution.

This somewhat surprising result may be traced to the
fact that for large velocities, v1» cancels out of Eq. (22)
so that in solving for 71,5, the smallest possible value is
reached for v;3=c. In the nonrelativistic case, vz was
allowed to go to infinity, which results in 7;, — 0 in the
limit of high velocities. Thus, the existence of a mini-
mum equilibrium orbit of finite radius may be said to
follow necessarily from the existence of an upper limit to
the velocity of material particles, coupled with finite
values of their charge and rest mass.

It therefore appears that a straightforward applica-
tion of relativistic transformation laws leads auto-
matically to a natural ‘“cutoff” or limitation on the
approach distance of two charges in equilibrium under
the action of inertial and electromagnetic forces. This
result is in fact not limited to the case of Coulomb
forces, so long as the forces vary more rapidly with
distance than (1/733) and transform relativistically in
the same way as do electromagnetic forces. Thus, using
an arbitrary static law of force Fio=a.r~" in Eq. (22)
to replace (¢i1gs/712%), one obtains the result

Tm=(fr2@n/ 2mo*v1s%) M/ (n—D], (26)

which tends to a finite minimum value for all #>1 as
912 — ¢.'2 This result may also be expressed as saying

12 The existence of an absolute minimum approach distance be-
tween any two particles in force equilibrium arrived at here bears
a strlkmg resemblance to the occurrence of a similar limiting
length in Schwarzschild’s solution of Einstein’s general theory of
relativity for a point-particle. [See the discussion in E. T. Whit-
taker, Aether and FElectricity (Thomas Nelson and Sons Ltd.,
London, 1953), Vol. I, p. 175 ff.] Although the magnitudes of this
characteristic length differ greatly, the form of the line-element is
exactly that of vi2 in Eq. (23) above, suggesting a possible under-
lying connection which will be examined further elsewhere.
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that in a relativistic theory, the potential energy can
never exceed the “reduced-mass energy” of the par-
ticles mo*'c2, where

=[2v12/ (y1a+1) Imo*/ f,2
VI. ANGULAR MOMENTUM QUANTIZATION

In order to study the characteristics of the extreme
relativistic system further, it is desirable to obtain ex-
pressions for the equilibrium values of the various
angular momenta in terms of the force constant. This
may be done conveniently by solving Eq. (16) for L,?
and setting F,; equal to Fe1 from Eq. (20), giving

w

27

Y12 t+1
m*r 121262
2v1s

Making use of the definition of L, giving by Eq. (8),
Eq. (27) reduces to

Y2 t+1 Y126
Loea= ) )
2v12 Brac
Utilizing the relations between L, Lg, and L; given

by Egs. (7)-(12), one obtains for the equilibrium
precessional angular momentum

(’le‘— 1) (’Y1262) f
(’Y 12+ 1) Bizc ’
2y1—1 Y12+1 Y1262
Lyeqy= ( ) )f,- (30)
Y12 2712 B12¢
Examining these expressions reveals a number of in-
teresting features. Turning first to Leeq), it is seen that
there exists a minimum value for equilibrium orbital
momenta since the quantity (yi2+1)/28:12 passes through
a minimum for y=>5/3, where (y12+1)/2812=5/3. Thus
one arrives at the conclusion that for the model under

discussion, there exists a natural lower limit to orbital
angular momenta given by

Lw(min) = 1.66(62/C)fr. (31)

If, for a given system, f, varies appreciably with By
in the neighborhood of this minimum, its location will be
shifted, but the existence of a minimum will not be
affected. For the case of two electrons, one obtains
from Eq. (3) inserted into Eq. (4a) a quadratic in f,
whose solution gives

112\ #] viet1
fr=%1+ 1——) = .
c 2v12
The minimum L, q) now occurs for ys=2 giving for
an electron pair the value

L yminy=1.3(e?/¢). (33)

It is interesting to note that this is close to the smallest
equilibrium angular momentum in Sommerfeld’s treat-

(28)

(29)

Q(eq) =

and

(32)
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ment of the hydrogen atom ¢?/¢ which is a quantity that
also occurs as a ‘“‘zero-point” angular momentum in all
relativistic wave equations.

Turning next to Eq. (29) for Loq), it is seen that the
precessional angular momentum vanishes in the limit
of y12 — 1, and reaches a limiting value 3 (y12/B12) (€2/¢) f+
when 712>>1 Finally, the combined laboratory angular
momentum L. [Eq. (30)] is seen to be very closely
approximated by the simple expression

Lyeqy= (v12/B12) (€*/C) f+, (34)

both in the limits of very high and very low values of
v1o. Again, just as for L, q), a minimum value exists for
Li(q), indicating that in addition to the familiar low-
velocity equilibrium states, there now exists a second
set of orbits near 71y~27,, that meet the Bohr-deBroglie
quantum condition Ljeq)=nk.

Inserting this value for L;eqy in Eq. (34) and solving
for B12% one obtains a quadratic equation in B10%

Brgt—Br*+ (af,/n)?=0, (35)

where a= (¢2/%¢)=1/137.03. The solutions of Eq. (35)
are given by

Bro? =33 1— Qaf./n)* ],

where the lower sign yields the familiar positronium
solutions, and the upper sign gives the new high-energy
states. For these low-velocity states, expanding the
second term in powers of (2af,/#)? and putting f,=1
gives to lowest order the familiar Bohr condition,

Biz=a/n,

and the kinetic energy

(36)

(37)

(38)

When mo* is set equal to (mo/2), Eq. (38) gives the
magnitude of the binding energy for the ordinary
positronium states.

The high energy solutions of Eq. (35) lead to the

condition
—1—(af./n}, (39)

to first order in o? By virtue of the definition of v,
= (1—12%)~* one obtains directly

%m0*312262= %_ (a2/n2)m0*c2.

vi=n/af, (40)
or, since f,=% for y12>>1,
yie=n(2/a)=n-274. (41)

The diameters of these orbits are obtained by solving
Eq (23) for 712
r1e="ms/(1=v12™), (42)

or approximately

2
Y12= (fr2 ‘ )(1+0‘_ﬂ)
2mo*c? n

The orbits therefore all lie close to the limiting separa-
tion 7.+ and approach 7.+ as a limit with increasing

(43)
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values of #. The ground state or outermost orbit in the
case of an electron pair is given by

e2

[7'12]11:1: (1—|—%C¥), (44)
4

’WL()62

which is essentially equal to 7., since the numerical value
of 1a is only 1/274.

Inserting the high energy values for v and f, into
Eqgs. (28), (29), and (30) shows that Ljeq=n#, and
Loeqy=Loey=n(#%/2). Thus, in the limit of y>>1,
there exist states in which the orbital angular momen-
tum within the precessing frame is quantized in half-
integral values of 7.

VII. LAGRANGIAN AND HAMILTONIAN
FORMULATION

In order to obtain the total energy of the relativistic
pair system, it is necessary to find the Hamiltonian
applicable to the extremely high-energy rotational
states. Since the kinetic and potential energies no longer
bear the simple relation to each other that exists in the
low-velocity limit, one cannot write down the total
energy of the system directly from a knowledge of the
momentum and kinetic energy. The situation is further
complicated by the fact that the derivative of the
relativistic kinetic energy with respect to velocity no
longer gives the momentum, so that it is not possible to
assume that the simple classical relations between
kinetic energy and centrifugal force continue to hold at
very high velocities.

Since the relativistic Lagrangian for a particle moving
in an electromagnetic field is known, it will be taken as
the starting point. For the present case of a purely static
potential, the Lagrangian reduces to

L=— (1_6122)%m062_E1)+C. (45)

Here E, is the potential energy, which will be so chosen
that for 71 — «, E, — 2mqc?, or

Ep= 2moc%— (62/712). (46)

This choice is effectively equivalent to assuming that
the work done in separating the two charges to very
large distances is equal to their total mass energy, or in
other words, that the inertial mass is entirely due to the
energy stored in the electrostatic fields. As to the
constant C, by setting it equal to moc? following
Sommerfeld,* the Lagrangian may be written in a
simple form, closely analogous to the nonrelativistic
case, or

L£L=F—E,, 47)
where
Y1

2—'1
F=[1—(1—p12) Jmoc?= ( )moﬁz- (48)

Y

13 See work cited in reference 9, Chap. VII; also H. Goldstein,
Classical Mechanics (Addison-Wesley Publishing Company, Read-
ing, Massachusetts, 1950), Chap. 6, Sec. 5.

4 Work cited in reference 8, Appendix 6, p. 667.
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The quantity F is often referred to as the Helmholtz
kinetic potential energy.'* It is always positive, never
exceeds moc?, and reduces to the nonrelativistic kinetic
energy T'=3mov12? in the limit of vic.

With these assumptions, one obtains (9L/9v:2)
= (0F/dv12) = P12, in analogy to the nonrelativistic case,
and the inertial force is given by

Fi=(d/d1)(85/dv12). (49)

For circular orbits, or constant absolute value of v;,,
Eq. (49) leads to the expression for the centrifugal force
(y127m0v12%/712) of Sec. IIT above when the reduced mass
equals mo and f,=1, or when the source of the field is
assumed to be infinitely heavy.

It is seen that the choice of the Lagrangian of Eq. (45)
is consistent with the usual expression for the centrifugal
force and the assumption that the rest masses of the
electron and positron are purely electromagnetic in
nature. The absolute value of the Hamiltonian is there-
fore fixed, by virtue of the definition

H=pj—L. (50)

Substituting v;s for ¢ and the expression Eq. (47) for £
leads to the result
H=7+E,, (51)

where 7= (y12—1)mqc?, the familiar expression for the
relativistic kinetic energy of a particle possessing a rest
mass ;.

It is interesting to note that in the extreme relativistic
case, there occur two different quantities, § and 7, both
of which reduce to the classical kinetic energy 7" in the
limit of low velocities. As long as y19~1, they differ only
inappreciably, but when v1,>>1 as in the present case,
the distinction becomes very significant, as can be seen
by writing down their relationship in the form

T="y125F. (52)

Whereas & is the “kinetic energy’” which gives the cor-
rect momentum and force expressions, 7 is the “kinetic
energy”’ which enters into the Hamiltonian or the total
energy. Thus, the correct force equilibrium condition for
a highly relativistic particle moving in a static Coulomb
potential may be written down simply by substituting
& for T in the classical expression for centrifugal force
F=2T/r15. To see that this gives the same results as
derived in Secs. III, IV, and V, one needs only to
equate F, with €2/r1,% giving

25 2(yiz—1)moc® €

— (53)
712 Y12 719>
Solving Eq. (53) for 71, one obtains
1
Y12= — (54)

1—(e&/ 2moc2712)’

which is precisely the result obtained earlier for the
special case f,=1 and m*=+sm,. In fact, comparing
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the left-hand sides of Egs. (53) and (22) for f,=1 and
mo*=m,, one sees that one must have

2712
( )7127”0'0122:2(712—1)m062=2T, (55)
Y21

which can readily be shown to be an identity by the use
of Eq. (15).

It is therefore apparent that one might equally well
have picked as a starting point the Hamiltonian or
Lagrangian for a particle moving in an electromagnetic
field, rather than the force-equilibrium condition used
in Sec. V. However, this would have obscured the
kinematic aspects of the situation when the particles
have equal masses and the source of the field can no
longer be assumed at rest in the laboratory frame.
Ultimately, the basic reason for making a return to the
considerations of forces necessary may be traced to the
fact that whereas electromagnetic forces and energies
depend only on the relative positions and velocities,
centrifugal forces depend also on the distribution of
masses, or on the position of the center of mass relative
to the centers of the moving charges.

If one now identifies the Hamiltonian of Eq. (51)
with the total energy including that of the rest masses
following Sommerfeld,'* one obtains for the case of two
charges of rest mass m,

H=Er= (yi2— )moc*— (¢2/r12)+2moc™

This may be written in terms of the binding energy
W i9=Ep—2mc® as

W= (vize— D)moc®— (€}/112),

which is the starting point used by Sommerfeld in his
treatment of the hydrogen fine structure in the limit of
212&¢ and y;p~1. Thus one would not expect to find
any appreciable deviations from the usual fine-structure
for atomic levels, with the possible exception of s states,
where a finite minimum approach distance may lead to
slight upward shifts, as will be discussed in more detail
elsewhere.

(56)

(7

VIII. PROPERTIES OF THE HIGH-ENERGY
SOLUTION

With the connection between the: present treatment
and the more familiar Hamiltonian and Lagrangian
formulation established, it is now possible to investigate
the character of the high-energy equilibrium orbits in
more detail.

Neglecting for the moment the magnetic moment
interaction, the total energy of the system is given by
using the allowed values of v1s and 715 from Egs. (40)
and (44) in Eq. (56), resulting in

n mo*c?
Ep=(——1 )mei?———
f 2

afr

afr
1—}-—) +2moc?.  (58)
n

T

For the present case, mo*=34mo and f,=%, so that Eq.
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(58) reduces to

2n a
E;= (——— 1 )moc2— 4m062( 1+2—) +2mc?, (59)
n

(67

or, to the extent that a/2% may be neglected compared

to unity,
Er= (2n/a)moct— 3mqc?. (60)

For the ground state =1 and with (2/a)=274, one
therefore obtains a total energy

Er=2T1moc (61)

This is seen to be a very large positive energy, corre-
sponding to a “binding” energy W =269m>~137 Mev,
in contrast with the low-energy states, which have
W <0. Thus, these highly relativistic states are ener-
getically unstable,’® and conversely, they can only be
obtained when a large energy is added to the rest energy
of the electron pair.

Since the mass equivalent of this energy is of the
order of that observed for the 7° mesons, one is led to
the possibility that these unstable relativistic states may
represent this highly unstable nuclear particle. Not only
is the mass of the right order of magnitude, but also the
size is sufficiently small for these particles to form part
of the “core” of nucleons, whose radius is now known to
be of the order of 0.3—0.4X 107 cm.!® Furthermore,
there will be no net magnetic moment due to the orbital
motion of two equal and opposite charges, so that if the
intrinsic magnetic moments are opposed, the structure
as a whole will also show no resultant magnetic moment.
For spin magnetic moments opposed, the spins of
oppositely charged particles are parallel, so that when
the spins are oriented so as to oppose the sense of the
orbital motion, the system as a whole will have zero
angular momentum. The structure will therefore obey
Bose statistics, and decay preferentially into two vy rays
upon annihilation, again in agreement with the observed
characteristics of the 7% meson.

IX. MAGNETIC MOMENT CORRECTION TO
THE TOTAL ENERGY

The system considered so far has consisted of two
purely electrostatic charges possessing no intrinsic spins
or magnetic moments. If the system is to be composed
of an actual electron and positron, the effect of the
intrinsic magnetic moments on the total energy must be
investigated.

It will therefore be assumed that each charge carries
a spin of absolute value 37 and a corresponding magnetic

15 Classically, the possibility of unstable circular orbits may be
understood in terms of an effective force varying more rapidly than
the inverse square law. That such a modification arises here may
be seen by inserting Eq. (23) for v12 in Eq. (20) and expanding in
powers of (rm#/r12) to give Fe1=g192/r12+rm*q1ge/r1s+- - -.

16 See the recent review article of J. L. Gammel and R. M.
Thaler, in Progress in Elementary Particle and Cosmic-Ray Physics
(North-Holland Publishing Company, Amsterdam, 1960), Vol. V,
p- 99.
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moment y,=g,0 wheré g, is the gyromagnetic ratio as-
sociated with spin. Two types of effects will have to be
examined; namely, the spin-spin and the spin-orbit
contributions to the total energy of Eq. (56).

Before calculating the corrections to the potential
energy in the extreme relativistic case of interest here,
it will be necessary to examine the effect of the preces-
sion on the magnetic moments.

From the discussion of the energy relations in Sec.
VII it is apparent that the kinetic energy associated
with the precession is approximately 12102, or 274mc?
in the ground state z=1. The additional centrifugal
force due to precession above and beyond that arising
from the orbital motion within the precessing frame is
therefore equivalent to increasing the inertial mass by a
factor v1s. The effective magnetic moment, which is
inversely proportional to the mass of the particle must,
therefore, be expected to decrease by the same factor
v12. Orie therefore obtains an effective magnetic moment

(62)

where up is the Bohr-magneton and y12=(2/a) for the
ground state n=1.

The general expression for the spin-spin interaction
energy is

Eso=—[3(01 u) (02 u) —‘._01' 0517 ,0(r12),

where #=r15/| 12| and J, o= g2/715%
Inserting for g, the value obtained from the effective
magnetic moment of Eq. (62), or

w(aiam)

one obtains, for the case of relativistic circular orbits
and spin directions parallel, the value

.Ey,qz (a/2)2,u32/1'123= —4’}'}’LQC2,

using 712=21(e%/moc?) from Eq. (44).

Similarly, for the spin-orbit interaction, the energy
due to a particle of magnetic moment u,= g,0 moving
relative to a charge e with orbital angular momentum 1
associated with a magnetic moment u;=g.l is

Eu,z=[0"1]fa,l(1’12), (66)

where Jo1=g.8:/712°. Again, due to the relativistic
precession, one has

= (sarame)

Using /=7, for the present case of circular orbits and
both spins opposed to the direction of the orbital
motion, the spin-orbit energy becomes

E; = % (a/ 2)2 (MBz/ 715%). (68)

Since each of the two particles carries a magnetic mo-
ment as well as a charge, the total spin-orbit interaction
is twice this value, giving a combined magnetic po-

Meff= eﬁ/2712moc= %OlliB,

(63)

(64)

(65)

(67)
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tential correction of
Epm™=E, ,+2E, ;=2(c/2)*(us/715"). (69)

Inserting the value of 715 for the ground state of the
relativistic electron-positron system from Eq. (44),
neglecting the small correction term involving (a/2),
and making use of the fact that e2/moc2=7#/[ (1/a)mqc],
one obtains for the combined magnetic potential energy
the value

Ep™ = —4myc2—2- 2moc®= — 8mc2.

(70)

Applying this correction to the total energy Er of Eq.
(61) gives for the relativistic electron-pair system the
energy

Ep=271moc®— 8moc®= 263mc2.

(71)

This figure is to be compared with the most recent ex-
perimental value for the total mass energy of the =°
meson, 135.0040.05 Mev or 264.2mc2.

X. LIFETIME OF RELATIVISTIC PAIR SYSTEM

In order to see whether the highly relativistic pair
system could actually be identified with the observed
70 meson, it is necessary to obtain an estimate of the
system’s lifetime against annihilation.

Since the detailed wave functions for the highly
relativistic states are not known, this estimate cannot
at present be obtained by the same direct calculation as
the positronium lifetime. One possible way to circum-
vent this difficulty is to make use of the known theo-
retical lifetime of the low-velocity positronium states,
and to arrive at the lifetime of the relativistic state on
the basis of the close kinematic and dynamic analogy
existing between the two systems.

From the cross section for annihilation together with
the relative velocity in the center-of-mass system and
the volume density of electrons, the mean lifetime of the
positronium system may readily be obtained.'® The
result for the system with total angular momentum
zero, i.e., singlet positronium, may be written in the

form
o= (1/a*) (2a0/c)= (1/a%) (Ro/c). (72)

Here, 2a0=R, is the classical radius of the positronium
system, « is the fine-structure constant, and ¢ is the
velocity of light, giving for 7, the value 1.25X 107 sec.

This expression is seen to contain only geometric
quantities aside from the dimensionless constant . Now
the only difference between the low-velocity and high-
velocity systems lies in their scale or size. Both are
quantized so that the appropriate deBroglie wavelength
fits their respective orbital circumferences in the
precessing perihelion frames. Therefore, if the two

17 Walter H. Barkas and A. H. Rosenfeld, Table of mass-values
in Proceedings of the 1960 Annual International Conference on High-
Energy Physics at Rochester (Interscience Publishers, Inc., New
York, 1960).

18 See the review articles of M. Deutsch [ Progr. Nuclear Phys. 3,
131 (1953)7; and S. DeBenedetti and H. C. Corben [Ann. Rev.
Nuclear Sci. 4, 191 (1954)7].
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perihelion frames are equally valid reference frames as
assumed in the above derivation, then one would expect
the lifetime of the high-energy state to be simply given
by replacing Ro with the smaller radius Ry of the
relativistic system.

Aside from this change, the only other factor that
must be considered is that the relative velocity in the
center-of-mass system, v,, will now be given by v,= vy, f,
from Eq. (3). Since in the relativistic system, v15=c, one
has v,=2c¢ rather than ¢ when this correction is neg-
lected. Inserting these values into Eq. (72) therefore
leads to the following expression for the mean lifetime of
the relativistic system

7¢'= (1/a%) (Ry'/ 20). (73)

Substituting Ry'= (r12/2)=2%e2/4mc® from Eq. (25)
gives the value 7o’=2.06X10"1¢ sec, close to the latest
experimental value of the 70 lifetime, 7= (2.00.4)
X 10716 gec.?

The agreement of the value for the lifetime given by
Eq. (73) based on the analogy to the positronium
system, may be taken as further support of the hypothe-
sis that the #° particle can be regarded as an electron-
positron pair in a highly relativistic quantum state.

The analogy to positronium appears to be quite deep
since both the 7° meson® and the singlet positronium
system!® decay with the emission of two gamma rays
polarized at right angles to each other. Both systems
therefore have pseudoscalar parity, in addition to being
characterized by a total angular momentum equal to
zero.2

Thus the relativistic electron-pair model developed
above is seen to account for all the known properties of
the #° meson, including its total energy, decay charac-
teristics, magnetic moment, size, spin, and parity.

XI. SUMMARY AND CONCLUSION

The above considerations appear to indicate that the
relativistic two-body system may be treated in terms of
a semiclassical Bohr-Sommerfeld model extended to
high velocities and distances of the order of 107 cm.

This result is somewhat surprising since on the basis
of quantum electrodynamics, one would have expected
that large numbers of electron pairs should be created in

¥ R. G. Glasser, N. Seeman, and B. Stiller, Bull. Am. Phys. Soc.
6, 39 (1961).

20 R. Plano, A. Prodell, N. Samios, M. Schwartz, and J. Stein-
berger, Phys. Rev. Letters 3, 525 (1959).

21 By analogy to positronium, a second type of #° meson should
exist in which the spins are oriented anti-parallel, thereby result-
ing in a total angular momentum #%. Its mass may be calculated
by adding the repulsive spin-spin interaction energy 4mqc? (Eq. 63)
to Ep=271mc? for Eq. (61), giving Er=275mc?, the spin-orbit
contribution being zero. In a radiative decay process, this m°
particle would give rise to 3 gamma rays. Some evidence for the
existence of such a m1° particle decaying in this manner has in fact
been reported by R. P. Ely and D. H. Frisch [Phys. Rev. Letters
3, 565 (1959)7]. Unfortunately, the evidence is not conclusive, nor
is there any indication of the mass of such a particle. Further
experiments, including mass-determinations, would therefore be
of great value.
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such a highly relativistic system, leading to a complete
breakdown of the classical laws of interaction. Why this
does not happen is not clear, but the surprising agree-
ment of the simple classical model with the observed
characteristics of the #° meson suggests that a more
detailed investigation of this basic question would be
desirable.

The model leads to the occurrence of a natural mini-
mum distance of approach or “cutoff,” independent of
any assumptions as to the physical size of the particles
involved. This limit to the approach of two relativistic
particles in turn leads to the possibility of a new set of
quantized states. These states are characterized by very
high total energies and a strong precession that accounts
for half of the system’s total angular momentum.?

Because the sizes of these new orbits and the strength
of the interaction correspond to those typical of nuclear
systems, the suggestion arises that electrons and posi-
trons in relativistic states form the basic structural
elements of all nuclear particles.?s%

Since the model of the #° meson involves only
electromagnetic forces, one may hope that with the
further understanding of the more complex particles,? it
will be possible to arrive at an electromagnetic descrip-
tion of nuclear forces.
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2 A possible relation to the occurrence of spin angular mo-
mentum quantized in half-integral units of % in Dirac’s relativistic
wave-equation is apparent.

2 This is supported by the existence of striking mass regularities
involving integral and half-integral multiples of (1/a)mo noted by
a number of investigators: Y. Nambu, Progr. Theoret. Phys.
(Kyoto) 7, 595 (1952); H. Frohlich, Nuclear Phys. 7, 148 (1958);
L. S. Levitt, Current Sci. (India) 27, 131 (1958); K. M. Guggen-
heimer, Nuovo cimento 11, 287 (1959).

2¢ The related suggestion that the large mass of nucleons might
be interpreted as arising from the relativistic motion of light-
weight “‘subparticles” or “specks” was developed by W. F. G.
Swann [Phys. Rev. 109, 998 (1958)7. The author is indebted to
Dr. Swann for bringing this work to his attention shortly before
submission of the present paper.

25 The extension of the present approach to include the charged
« and u mesons has been outlined elsewhere [Bull. Am. Phys. Soc.
6, 257 (1961)], as well as the possibility that excited rotational
states of these structures may account for the high-enérgy scatter-
ing resonances [Bull. Am. Phys. Soc. 5, 238 (1960)]. More detailed
accounts are in preparation.



