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of energy in excess of the accepted value. This accounts
for the additional energy term.

4. When a wave train travels down a tube, there is a
region of higher density (where the wave forms) fol-
lowed by a region of lower density. The density varia-
tion seems to be a basic feature of a traveling wave and
does not depend on the amplitude.

Two additional conclusions, hrst given by Schoch,
should be mentioned:

5. One may separate the relation between the energy
and the intensity into two parts. One is related to the
stored energy, while the other is related to the oscil-
latory energy.

6. As long as the total volume is held 6xed, the net
stored energy is zero. This does not mean that the
energy may not have a space distribution.

One would expect the eRect described in this paper to
be unimportant in liquids. Equation (4) is for an ideal
gas; however, corresponding forms exist in liquids. '
Combining the expression for water' with Eqs. (10a)
and (15a), one may see that Andrejew's terms are not
important. One might expect similar results for other
liquids. These calculations, however, have not been
made.

The author would like to thank Dr. Schoch for an
advance copy of his important paper, Miss A. Fogelgren
for assistance with the manuscript, and Miss D. Ruben-
feld for the illustrations. Finally, the author would like
to thank his wife for her encouragement.

'7 See,~for example, P. J. Westervelt, J. Acoust. Soc. Am. 22,
319 (19SO).
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The coeKcients of electrical and thermal conductivity have been computed for completely ionized gases
with a wide variety of mean ionic charges. The eftect of mutual electron encounters is considered as a problem
of diffusion in velocity space, taking into account a term which previously had been neglected. The appro-
priate integro-differential equations are then solved numerically. The resultant conductivities are very
close to the less extensive results obtained with the higher approximations on the Chapman-Cowling method,
provided the Debye shielding distance is used as the cutoft in summing the effects of two-body encounters.

I. INTRODUCTION

A PREVIOUS paper by Cohen, Spitzer, and
Routly, ' referred to hereafter as CSR, presented

a new approach to the problem of transport phenomena
in a completely ionized gas. In eRect, the inQuence of
mutual electron encounters on the velocity distribution
function for electrons was considered as a problem of
diRusion in velocity space. In particular, the electrical
conductivity of an electron-proton gas was computed
in this way. However, the results were not exact, since
one term in the dBusion equation was neglected. In
the present paper, a solution of the complete diRusion

equation is obtained, and the results are extended to
completely ionized gases with diRerent mean nuclear
charges. Computations are carried out for the thermal
as well as the electrical conductivity.

In the first section below the general principles are
explained and justi6ed. Subsequent sections outline the
derivation of the equations, the method of solution, and
the results obtained.

*This work has been supported in part by the U. S. Atomic
Energy Commision.

' Cohen, Spitzer, and Routly, Phys. Rev. 80, 230 (1930).
I

II. GENERAL PRINCIPLES

The velocity distribution function f„(v) for particles
of type r is determined by the familiar Boltzmann equa-
tion, basic in all studies of this sort,

~f ~f (~f l

+2'~- +ZF'- =Z. l

ag; ae„; ( at ),
where the notation in CSR has been followed. The
complexity of the problem arises entirely from the term

( ),f,c/ )t)„rhiwch gives the change in f„produced by
encounters of r particles with particles of type s.

To visualize the physical situation more accurately,
let us follow a single electron as it moves through the
gas. The random electrical fields encountered by the
electron will produce deRections and changes in ve-
locity. To some extent these helds can be described in
terms of separate two-body encounters; let b be the
impact parameter for such an encounter —the distance
of closest approach between the two particles in the
absence of any mutual force. The situation is char-
acterized by the values of the following four distances:
d, the mean distance from an electron to its nearest
neighbor; bo, the value of the collision parameter for
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TABI.E I. Values of the velocity distribution function D(x)
vrhen an electrical field is present.

x Z=i Z=2
ZD(x) /A

Z=4 Z =16

0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.44
0.48

.0.52
0.56
0.60
0.64
0.68
0.72
0.76
0.80
0.88
0.96
1.04
1.12
1.20
1.28
1.36
1.44
1.52
1.60
1.76
1.92
2.08
2.24
2.40
2.56
2.72
2.88
3.04
3.20

0.0008093
0.001300
0.001970
0.002847
0.003955
0.005317
0.006955
0.008886
0.01113
0.01370
0.01660
0.02347
0.03180
0,04165
0.05304
0.06601
0.08057
0.09672
0.1145
0.1338
0.1548
0.2015
0.2545
0,3137
0.3792
0.4508
0.5285
0.6123
0.7023
0.7983
0.9005
1.123
1.371
1'.645
1.945
2.273
2.630
3.017
3.435
3.887
4.375
5.465
6.728
8.190
9.880

11.83
14.06
16.62
19.53
22.74
26.00

0.0001340
0.0002262
0.0003630
0.0005582
0.0008262
0.001183
0.001645
0.002228
0.002952
0.003832
0.004884
0.007576
0.01116
0.01575
0.02146
0.02840
0.03666
0.04632
0.05746
0,07012
0.08440
0.1180
0.1586
0.2066
0.2620
0.3254
0.3968
0.4764
0.5646
0.6612
0.7668
1.005
1.281
1.596
1.952
2.352
2.796
3.290
3.836
4.440
5.096
6.604
8.406

10.54
13.05
16.00
19.40
23.3
27.7
32.7
38.5

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

0 ~ ~

0.002163
0.003373
0.005044
0.007280
0.01018
0.01386
0.01842
0.02398
0.03063
0.03849
0.04764
0.07028
0.09924
0.1352
0,1789
0.2309
0.2917
0.3618
0.4416
0.5324
0.6336:.
0.8704
1.156
1.494
1.889
2,344
2.864
3.455
4.120
4.868
5.700
7.660

10.06
12.96
16.46
20.64
25.60
31.4
38.2
46.0
54.6

~ ~ ~

~ ~ ~

~ 0 ~

~ ~ ~

~ ~ ~

~ ~ ~

0.001645
0.002432
0.003477
0.004833
0.006560
0.008721
0.01139
0.01463
0.01853
0.02317
0.02866
0.04249
0.06082
0.08443
0.1142
0.1511
0.1958
0.2494
0.3127
0.3868
0.4722
0.6819

.0.9499
1.287
1.702
2.204
2.804
3.510
4.331
5.281
6.366
8.996

12.34
16.54
21.74
28.10
35.80
45.0
56.0
68.8
83.9

0.0001000
0.0001464
0.0002074
0.0002856
0.0003842
0.0005062
0.0006554
0.0008352
0.001050
0.001303
0.001600
0.002343
0.003318
0.004570
0.006147
0.008100
0.01049
0.01336
0.01680
0.02085
0.02560
0.03748
0.05308
0.07312
0.09834
0.1296
0.1678
0.2138
0.2687
0,3336
0.4096
0.5997
0.8493
1.170
1.574
2.074
2.684
3.421
4.300
5.338
6.554
9.595

13.59
18.72
25.18
33.18
42.95
54.74
68.80
85.41

104.9

which an electron is deQected 90' in an encounter with
a stationary positive ion; h, the Debye shielding dis-
tance; and X, the mean free path for a net deQection of
90'. It is readily verified that for virtually all situations
of interest,

bp«d«h«X. (2)

It is clear that encounters for which b«d can be
described adequately in terms of successive two-body
encounters, since usually an encounter with one par-
ticle will be effectively over before another particle
approaches to a distance less than d. These successive
encounters may be divided into two classes. Those with
b~&bp produce large deQections, and will be termed
"close" encounters. Those with bp&b&d produce rela-
tively small deQections, and will be called "distant"
encounters. As shown in CSR and elsewhere, the cumu-
lative e6ect of many distant encounters outweighs the
effect of the less frequent close encounters, in the special
case of inverse-square forces between the particles.

Encounters for which d ~& b&h cannot be regarded as
independent, since several such encounters will be
taking place at the same time. More correctly, the de-
Qection of a particular electron caused by such "en-

counters" must be attributed to statistical Quctuations
of the electron density in a sphere of radius b. As
shown in CSR, however, the mean square change of
electron velocity produced by such Quctuations is
correctly given if the formulas derived for successive
two-body encounters are applied for b&d.

Particles passing at a distance large compared to h

produce a negligible eGect. From the standpoint of the
Debye shielding theory, the effective field of a charge
in a plasma varies as e ""/r, where h is given by

h'=
4 std(1+Z)

(3)

If one considers rather the statistical Quctuations in
electron density, Pines and Bohm' have shown that
collective phenomena in a plasma reduce markedly the
statistical Quctuations in electron density with wave-
lengths large compared to h, thus justifying the neglect
of encounters such that b& h. There is some interaction
between a single electron and the organized oscilla-
tions of the plasma —see Eq. (59a) of Pines and Bohm.
However, comparison of their Eqs. (59a) and (59b)
shows that for thermal electrons, with mean kinetic
energies of the order kT, the rate of energy loss due to
this process is less by a factor 1/In(h/bs) than the energy
loss due to random encounters such that b&h. The
generation of plasma oscillations by a single thermal
electron may therefore be neglected, together with a
number of other terms of the same order. ' Hence, we
may neglect all interactions between electrons for which
the distance of closest approach exceeds h.

Since A is much greater than h, it is evident that
many small deQections will be experienced by a particle
traversing its mean free path. It is also clear that these
deQections are essentially independent of each other.
Inasmuch as collective phenomena (oscillations) have
been neglected, the random electrical 6elds encountered
by an electron in one region will be completely inde-
pendent from the fields in a similar region separated
by a distance appreciably greater than h. Hence, the
successive changes in velocity represent a Markoff
process, and the change of the velocity distribution
function may be found from the Fokker-Planck equa-
tion. 4 This equation neglects the close encounters; the
relative error introduced is again of the order 1/1n(h/bs).

IIL DER1VATION OF EQUATIONS

Equations (10), (23), and (24) of CSR give the basic
equations of the problem on the following assumptions:
(a) the Fokker-Planck equation may be used to give
itf,/itt; (b) a steady state is established; (c) the velocity

2 D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).
~ The various terms of relative magnitude I/ln(d/bo) have been

called "nondominant" by Chandrasekhar, and are usually neg-
lected in the computation of diffusion coefBcients —see S. Chan-
drasekhar, Principles of Stellar Dynamics (University of Chicago
Press, Chicago, 1939).' See S. Chandrasekhar, Revs. Modern Phys. 15, 1 (1943).
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distribution function may be expressed as the sum of a
Maxwellian function f&" plus a small term f"' whose
square may be neglected. The values of the diffusion
coeKcients have now been recomputed, using a straight-
forward and conceptually very simple method. A new
integro-differential equation has then been obtained for
D(lv), the function which gives the dependence of the
ratio f"i/f&" on the velocity v; 1.5/P is the mean
square electron velocity.

The electron-ion interaction is relatively simple to
consider. Equation (28) of CSR must be modified to
include a factor Z, the mean ionic charge, defined by

Z= Q,~—,Z;s/rs„ (4)

summed over all positive ions, each of charge Z;e and
of particle density e;. We 6nd

K(ff;)= L3ZLf"iD(lv) cos8j/2v', (5)

where all the symbols have the same meaning as in
CSR, except that to avoid confusion with the current
density, j has been replaced by l.

The quantity K(ff), giving the contribution of
electron-electron interactions to B.f/8l, is much more
complicated. To evaluate the diffusion coefficients
needed, the values of A~, A„and A~, the changes of
velocity in a single collision, along coordinates parallel
and perpendicular, respectively, to the original ve-
locity, were first determined. In this computation, the
velocity changes were first taken in a frame of reference
moving with the center of gravity of the two particles.
If the orbit lies in the xy plane, and the x axis is taken
to be in the direction in which the original particle is
moving, the velocity changes become very simple. The
components of the vector change in velocity along the

g, ii, and { axes may then be found by successive rota-
tions of the coordinate axes.

Next the values of the velocity changes, together
with their products and squares, are averaged over all
collisions, in accordance with Eq. (8) of CSR. The final
values for (Ap), (hP), and (6„') are the same as given
in Eqs. (31) through (35) of CSR. For the two re-
maining coefficients we 6nd

4LP
(6„)= — sin8{Ip(~ )—Ip(x)+Is(x)/x'}, (6)

sin8{0.4x(Ip( po )—Ip(x))

+Is(x)/x' 0.6Ip(x)/x4}, (7)—

where L and I„(x) are defined in Eqs. (29) and (37) of
CSR.

If these values of the diffusion coe%cients are sub-
stituted into K(ff), Eq. (1) yields, after considerable
algebra, the equation

D"(x)+P(x)D'(x)+ Q(x)D(x) =R(x)+S(x), (8)

exactly as in Eq. (41) of CSR; x is defined as fv. While
P(x) is unchanged from the form given in Eq. (42) of
CSR, Q(x) and S(x) become

1 Z+ C (x)—2x'C '(x)
Q(x) = ——2

X2 A.
(9)

where C (x) is the error function, while A(x) is defined
in Eq. (46) of CSR. If an electrical field is present,

R(x) = —(2x'A/ZA) {Z—1+1.2x'} (11)

where A is again given by Eq. (40) of CSR. If a tem-
perature gradient is present, we have

R(x) = —(x 8/h. ){2.5—x'} (12)
where

qC' is given in

2eT'( VTi8=
ere,e' ln (qC')

Eq. (65), CSR.

(13)

TABLE II. Values of the velocity distribution function D(x)
when a temperature gradient is present.

0.10 0.0005906
0.11 0.0009028
0.12 0.001309
0.18 0.001821
0.14 0.002448
0.15 0.008197
0.16 0.004074
0.17 0.005082
0.18 0.006225
0.19 0.007504
0,20 0.008922
0.22 0.01217
0.24 0.01596
0,26 0.02027
0.28 0.02508
0.30 0.08085
0.82 0.03607
0.84 0.04218
0.36 0.04865
0.88 0.05545
0.40 0.06254
0.44 0.07746
0.48 0.09802
0.52 0.1090
0.56 0.1250
0.60 0.1407
0.64 0.1558
0.68 0.1700
0.72 0.1829
0.76 0.1944
0.80 0.2086
0.88 0.2151
0.96 0.2189
1.04 0.1965
1.12 0.1587
1.20 0.0957
1.28 +0.0021
1.86 —0.1289
1.44 -0.8041
1.52 —0.5889
1.60 —0.8268
1.76 —1.657
1.92 —2.921
2.08 —4.774
2.24 —7.448
2.40 —11.28
2.56 —16.5
2.72 —23.5
2.88 —33.2
3.04 —46.0
8.20 -62.0

2=2

0.0002806
0.0008680
0.0005460
0.0007914
0.001110
0.001515
0.002016
0.002624
0.008348
0.004200
0.005188
0.007601
0.01064
0.01484
0.01874
0.023S4
0.02966
0.03616
0.04388
0.05126
0.05978
0.07866
0.09966
0.1224
0.1466
0.1717
0.1973
0.222S
0.2476
0.2714
0.2984
0.8296
0.8506
0.8502
0.8210
0.2546

+0.1414—0.0802—0.2784—0.6040—1.040—2.820—4.330—7.866—11.81—18.18—27.1—39.8—55.9—77.8—106.

ZD(T) /B
2=4

~ ~ ~

~ i ~

0.003095
0.004668
0.006744
0.009400
0.01270
0.01678
0.02152
0.02718
0.03860
0.04092
0.04916
0.06840
0.09116
0.1174
0.1468
0.1790
0.2134
0.2497
0.2871
0.8249
0.3624
0.4824
0.4896
0.5244
0.5252
0.4796
0.8717

+0.1884—0.1067—0.5240—1.098—2.861—5.752—10.25—16.98—26.78—40.6—59.9—86.0—121~—166.

2=16

0.002146
0.003156
0.004487
0.006199
0.008856
0.01108
0.01428
0.01818
0.02281
0.02824
0.03453
0.04995
0.06955
0.09870
0.1226
0.1565
0.1952
0.2386
0.2864
0.3384
0.3940
0.5185
0.6384
0.7584
0.8565
0.9096
0.8858
0.7474

+0.4525—0.1736—0.7999—8.813—7.691—14.79—25.78—42.20—66.0—99 4—145.—207.—290.

0.0001245
0.0001821
0.0002577
0.0003546
0.0004764
0.0006271
0.0008108
0.001032
0.001295
0.001605
0.001968
0.002872
0.004052
0.005558
0.007442
0.009760
0.01257
0.01593
0.01991
0,02456
0.02995
0.04822
0.06024
0.08151
0.1075
0.1387
0.1754
0.2178
0.2668
0.8207
0.8809
0.5174
0.6708
0.8297
0.9800
1,099
1.156
1.118
0.9167

+0.5060-0.1966—2.867—8.061—17.09—81.69—54.08—87.05—184.1
-199.3—287.9
-405.8

16
S(x)= {xIs(x)—1.2xIp(x)

3~4 —x Ip(x)(1—1.2x )} (10)
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IV. SOLUTION OF THE EQUATIONS

The method of numerical solution followed is, in
principle, identical with that employed in CSR. For
values of Z different from unity the functions Qs&(x)
and Qps(x) diGered from those used previously, with
somewhat different forms for the solutions U(x) and
V(x). No changes in Est(x) or Ess(x) were required.
In each specific range the substitutions given below
were the same for both electrical and thermal con-
ductivity.

In the range x~&0.80, we have

Qs (x) = (—3Zlr&/2x') —2/x', (16)

Ut ——(Z/x) '*Is(Zia/x'), (1'/)

Vj= (Z/x) 'Es(Z'*u/x&), (18)

where n' is again equal to 6x&. For the range 0.80~& x
&3.20, we have

Qss
———2(Z+1), (19)

U, =Dz(i2'x) exp(x'/2), (20)

Vs ——D r z(2&x) exp(x'/2). (21)

In Eqs. (20) and (21) D (y) is the parabolic cylinder
function, which, for any'integral value of e, may be
expressed in terms of the error function C (x) by means
of the recursion formula. '

As before, two independent numerical solutions were
computed, each satisfying the boundary condition for
small x. A linear combination of these was taken to
satisfy the boundary condition at x=3.2. The resulting
values of the velocity distribution function are given in
Table I for electrical conductivity and in Table II for
thermal conductivity. For Z=4 the integration was
started at x=0.20, and no values were computed for
smaller x.

As Z becomes very large, the mutual electron inter-

TABLE III. Values of transport coefficients.

Z=i Z =2 Z=4 Z =16 Z = eo

0.5816
0.2727
0.4652
0.2252
0.4189

0.6833
0.4137
0.5787
0.3563
0.4100

0.7849
0.5714
0.7043
0.5133
0.4007

0.9225
0.8279
0.8870
0,7907
0.3959

1.000
1.000
1.000
1.000
0.4000

From the principle of conservation of momentum the
integral Is(ee) can be evaluated in simple form. In the
case of an electrical field, Eq. (39) of CSR becomes
modified if Z divers from unity, and we have

Is(~) =3m &A/8Z.

If a temperature gradient is considered, then we have
instead

(15)

actions become unimportant, and the following simple
formulas for a so-called Lorentz gas are applicable.

d„(x)
D(*)=Z

n=l Z~
(24)

If Eq. (24) is substituted into Eq. (8) and coefficients
of each power of Z are separately set equal to zero,
each d„ is given as a function of d 1, the first and
second derivatives of d 1, and certain integrals over
d t. The quantity d& is simply the value of D(x) for
a Lorentz gas, given by Eqs. (22) or (23); successive
functions d„were found by straightforward computa-
tion up to @=4.

V. RESULTS

In the presence of a weak electrical field E and a
small temperature gradient V'T, the current density j
and the rate of flow of heat Q per unit area are given by

j=o.E+rrVT,

Q= pE Ep T. — —
(25)

(26)

In terms of the velocity distribution function D(x),
j, summed over all electrons —see Eq. (61) of CSR—
is given by

j= 2rr=less, C(2/3)—~Is(~ ),

while for the heat flow Q we have

Q=s. & ssss.sC(s2 /3)" Is(s~),

(2&)

where e and m are the electron charge and mass, and C
is the root mean square electron velocity. From the
numerical values found for the integrals Is(eo) and
Is(~), values of the coeflicients o, n, P, and E may be
determined.

It is convenient to express these transport coeK-
cients in terms of their values in a Lorentz gas. In the
case of an electrical field, we define

ZIs(oo)/3A, ——

bs ——ZIs(oe )/12A.

(29)

(3o)

D(x) =x'A/Z for electrical conductivity, (22)

D(x) =x B(2.5—x')/2Z for thermal conductivity. (23)

Hence, for ready comparison with the Lorentz gas,
Table I gives values of ZD(x)/A, and Table II gives
ZD(x)/B.

Also listed in Tables I and II are values of the ve-
locity distribution function for Z equal to 16 and ~.
The latter values were found directly frern Eqs. (22)
and (23). Those for Z=16 were determined from an
asymptotic series for D(x) in increasing powers of 1/Z,
which we may write

5 See
' 16.7, E. T. whittaker and G. N. %atson, Modern

hen Z= j., V~ is identical with the quantity 7 intro-

Aeoiysis (Cambridge University Press, Cambridge, 1950). duced in CSR. In the corresponding case where a
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temperature gradient is present, we write

(3&)

YAM,E IV. Comparison with results obtained by
Landshoff for Z=1.

Bp= —ZIs(~)/158. (32)

From Eqs. (22) and (23) above the definition of I„(ao)—
see Eq. (37) of CSR—it is readily verified that for a
Lorentz gas all four of these coefficients are unity. On
elimination of A and 8 by means of Eq. (40) of CSR
and Eq. (13) above, we obtain, after some substitutions,

2rnC' (2y&
0=

e'Z ln(qC') E37r1

3 kC' t'2~&
Ot' =

e'Z ln(qC') (3srl

8m'C' ) 2 ~'
3e'Z ln(qC') E3sr)

20m'kC'
~ 2 ~

l

3e4Z ln(qC') (3m l

(33)

(35)

(36)

Values of the four transport coeKcients are given in
Table III for various values of Z.

The quantity qC, which is essentially 7s/bs, is given
in Eq. (65) of CSR, while values of ln(qC') are tabu-
lated in Table IV of the same paper. The electron
charge e has here been taken in electrostatic units
throughout. To obtain the conductivity in practical
units (mho) the value found from Eq. (33) must be
divided by 9)&10"

It should be noted that if a temperature gradient is
present in a steady state, but no steady current is
Rowing, the electrostatic field 8 will build up to such
a value that j vanishes. This field then reduces the Bow
of heat, and E', the eGective coefficient of heat con-
ductivity is readily shown to be

(37)
where

a= 1 3o~yr/(5brya)—. (38)

Values of e are also given in Table III.
It remains to compare these results with those of

previous workers. When this work was undertaken, the
best available results for the electrical conductivity of
a completely ionized gas were those of Chapman and
Cowling' and of Cowling, ~ who had obtained first and
second approximations, respectively, for the conduc-
tivity. In terms of the present notation, the Chapman-

~ S. Chapman and T. G. Cowling, The Mathemuticu/ Theory of
Son Uniform Gases (Ca-mbridge University Press, Cambridge,
1939).' T. G. Cowling, Proc. Roy. Soc. (London) A183, 453 (1945).

3 4 OO

yg 0.2945 0.5693 0.5743 0.5777 0.5816

Cowling method utilizes the expansion

~o'"'
D(&)= Z (—&)' I "'"(*')

p g(n)
(39)

where I.;(3~" is a Laguerre polynomial, and the ratios
6»&"&/6&"& are determined from encounter theory and
the Boltzmann equation; e is the order of the approxi-
mation used. Since the value of 0 found by Cowlingv
with m=2 was about twice the value obtained by
Chapman and Cowling with m=1, it appeared that
the present treatment, equivalent to letting e= ao in
Eq. (39), might give a markedly different value.

More recently, this same problem has been con-
sidered by Landsho8, 8 using the Chapman-Cowling
method, but with values of n up to 4. From the values
of bs, &"&/6&"' which he gives for Z=1, the constant
y~ has been computed, and is given in Table IV, to-
gether with the value found in the present work (n = oo ).

In view of the large difference between the first and
second approximation, it is rather remarkable how close
to the truth is the second approximation for yg. For
thermal conductivity the convergence is somewhat less
rapid, with the fourth approximation in close agreement
with the value for e= ~. Evidently the present result. s
agree with Cowling's' second approximation for the
electrical conductivity, provided that for the cuto6 in
the integration over the impact parameter b, we take
the Debye shielding distance h rather than the elec-
tronic separation d taken by Cowling. The value 0.490
obtained for y~ in CSR, in disagreement with Cowling s
value 0.578, was the consequence of the neglect of the
(AtA„) term in K(ff); inclusion of this term removes
virtually all the disagreement in y~.

It should be emphasized that the present theory con-
siders only those terms in Bf,/Bt which are of order
ln(Is/bs), and a variety of terms of order unity have
been neglected, including, for example, the interaction
between a high speed electron and its wake of plasma
oscillation, an e6ect explored by Pines and Bohm. '
Thus, the relative accuracy of the present theory does
not exceed 1/1n(h/bs), or some 5 to 10 percent for most
conditions of astrophysical interest. In view of the lack
of observational data in this field, development of a
more refined theory does not seem worth the very
considerable eGort required.

s R. Landshoff, Phys. Rev. 82, 442 (1951).


