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Abstract. The three-dimensional Thomas-Fermi (TF) model is used to simulate the variation of the d+d —
t + p cross-section at low impact energies, when the target deuterium nucleus is embedded in metallic or
insulator environments. The comparison of the computational results to recent experiments demonstrates
that even though the TF model can explain some increase in the low-energy cross-section for metallic host,
a full explanation of the experimental results is still lacking. Possible reasons for the disagreement are

discussed.
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1 Introduction

In a series of recent experiments [1-6] significant dif-
ferences had been found between the low-energy cross-
sections of the d + d — t 4+ p reaction when the target
nuclei are embedded in a metallic or an insulator envi-
ronment. Apparently, the source of this effect is the con-
duction electron distribution in the metallic lattice and
its screening effects on the Coulomb barrier around the
incident and target nuclei [7,8]. Hints for a similar behav-
ior were found also in the electron capture rate of Be” [9,
10]. While in some of these experiments temperature de-
pendence was also claimed [1,2], no such dependence was
found in others [9,11].

This phenomenon can be briefly introduced as follows:
The transparency, T'(Fy), of a potential barrier to an in-
cident particle having energy E}, is given by [12]

b
T(Eg) = exp {2/ \/?g[Ep(r) - Ek}dr} , (D)

where M is the reduced mass of the two particles, rny the
nuclear radius, b the classical turning point (CTP) and
E,(r) = zeV(r) is the potential energy of the incident
particle in the potential, V(r), generated by the target
nucleus. Ze and ze are the charges of the target and inci-
dent nuclei, respectively.
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If a pure Coulomb potential is substituted for the inter-
action potential, V(r) = Ve (r) = Ze/r, eq. (1) reproduces
the Sommerfeld factor

b
To(Ey) = exp{—Q/ \/2;‘24 {Zié —Ek}dr}
= exp{—2mn}, (2)
w(E) = 7 3)

In (3) vy = \/2E)/M is the velocity of the incident par-
ticle. If the target nucleus is embedded in a solid target,
the potential generated by nearby electrons, in addition
to the bare Coulomb potential, has to be included as well,

V) =Val) V) = V). @)

For low-energy reactions the electronic part of the po-
tential, V,(r), has a small but important contribution to
the total potential. This contribution is amplified by the
exponential factor of the transparency.

In general, the electronic potential generated in a
metallic lattice by the conduction electrons is a slowly
varying function. Even for low-energy particles the CTP
of the projectile is so close to the target nucleus that one
can fairly assume that along the integration path in (1)
the electronic potential practically equals its value at the
target nucleus, Vo (r) = V.(0). When this approximation
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is inserted back into (1) it gets the form,

b 2
T(Ey) Zexp {2/ \/2;24 {ere +zeVe(0)Ek] dr} .

(5)

This is equivalent to a reaction in a pure Coulomb

potential with the kinetic energy, Fy, replaced by Ey +U.,,
where

Ue = ze|Ve(0)],  (Ve(0) <0). (6)

The authors of ref. [1] tried to explain the experimental
results by means of the Debye statistical model, which ne-
glects the electrons degeneracy. A difficulty of their treat-
ment is also the point that under the stated experimental
conditions the Debye radius is significantly smaller than
the atomic radius, therefore the basic assumptions of the
model are not satisfied.

The aim of the present paper is to compute the elec-
trons spatial distribution in insulator and metallic envi-
ronments for the d +d — t 4 p reaction (Z = z = 1),
using a three-dimensional Thomas-Fermi (TF) model,
which accounts for the electrons’ degeneracy, therefore,
presumably better describing the experimental conditions
in a solid host of local high-density conditions (“strongly-
coupled plasma”). Using the TF model we try to infer the
change in the transparency between metallic and insulat-
ing environments. To illustrate our method, we shall focus
on the case of deuterium embedded in a copper lattice for
which experimental results are available [1].

2 The model
2.1 Basic data

In the experiment, ref. [1], the deuterium atom constitutes
only a small part of the target —about 11 copper atoms
for each deuterium atom [1]— one can, therefore, safely
assume that the presence of the deuterium atoms does not
significantly modify the copper lattice properties.

Our first step is to find the volume available for the
deuterium atoms. This is carried out by means of the
QEOS method [13], which is frequently used to find the
equation of state of various materials, and was found to
give accurate results. For our purposes its main advan-
tage is that QEOS can provide the volume per atom sep-
arately for each component in a mixture of materials. As-
suming a deuterium/copper solid material with 9% deu-
terium and 91% copper at 8.93g/cm? (solid copper spe-
cific gravity), QEOS predicts that the volumes of the deu-
terium (copper) atoms in the target are Volp (Volc,) =
1.79(11.7)-1072* em?/atom, i.e., the average volume avail-
able for a copper atom is by a factor of ~ 6.5 larger than
that of a deuterium atom. If these atomic volumes are as-
sumed to have the shape of a spherical enclosure, called in
the following the ion sphere (IS), then the corresponding
IS radii are R; p (Ri.cu) = 0.717(1.36) 1078 cm.

The atomic structure of copper is [Ar]3d'?4s. In a
pure copper metal lattice there are at most 11 electrons
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per atom in the conduction band. Their average density is
ne = 11/11.7-1072* = 9.4-10?3 electrons/cm?®. If the small
amount of deuterium atoms does not significantly change
this distribution, then the same density prevails within the
deuterium IS as well, generating n. Volp = 9.4-1023 x 1.79-
10724 = 1.7 extra electrons inside the deuterium IS. Thus,
together with its own electron, the deuterium IS contains,
on the average, N, = 2.7 electrons. Changing the Cu/D
target density by +10% changes this quantity only by
+5%. In our computations we have used N,, the number of
electrons in the deuterium IS, as an adjustable parameter.

2.2 The modelling of the electronic potential in
insulating and metallic environments

The electronic potential of a free deuterium atom in a
high-density insulating environment was calculated by the
computer program RELDIR, which solves the relativis-
tic Dirac equation of a deuterium (or any other) atom in
a finite radius ion sphere with any number of free elec-
trons within the IS. The results of this computation are
the bound and free electrons wave functions, their spatial
density, and the corresponding potentials.

As a first step, the computation was carried out for
a solid density deuterium lattice, which is known to be
an insulator, (0.202g/cm?, 6.08 - 10?2 atoms/cm?, R; =
1.58 - 1078 ¢cm). From the result of RELDIR for the elec-
tronic potential one obtains U, = 20eV, in accordance
with the experimental results of ref. [1] in an insulating
environment. This result was used as the basic reference
for comparison.

The evaluation of the electronic potential near a deu-
terium atom embedded in a metallic lattice was carried
out by means of the Thomas-Fermi (TF) model in con-
junction with the Born-Oppenheimer (BO) approxima-
tion. Owing to the high-density environment, a Fermi-
Dirac statistics for the electrons, as used by the TF model,
provides a better approximation for the electrons spatial
and energy distributions inside the copper lattice than the
Debye model [1,2] which is more appropriate for weakly
coupled low-density matter. In this context, the physical
meaning of the BO approximation is that nearby electrons
rapidly adjust their local distribution to any change in the
nuclei positions, so that the electron distribution depends
only on the instantaneous distance between the two nuclei,
but not on their relative motion.

The TF model for the electrons consists of a set of
three equations. The first one is the Poisson equation,

VVe(r) = 4ren,(er;r), (7)

whose solution is the electronic potential, V. (r), when the
electrons spatial density, n.(ep;r), is known. In (7) ep is
the Fermi energy. The second equation is the Fermi-Dirac
distribution of the electrons inside the IS,

1 [(2m kT\*?
ne(€F§r):ﬁ T

crp +eVi(r
><F1/2( a T ( )§

eV(r)
kT

). ®
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which provides the electron density as a function of the
total potential V(r) = V,(r) + Vo(r). In (8), kT is the
temperature of the target material (= 300K) in energy

units, and

(o]

y1/2 dy
1+ exp{y — z}

Fyjo(z; 8) :/

B

is the incomplete Fermi-Dirac integral [14]. The boundary

condition applied to egs. (7) and (8) is Gauss’ theorem,
f ) E-dS = 4mwe N,. Finally, the Fermi energy, ey, is
IS surface

computed from the condition that the total charge inside
the IS equals N,

N, = ne(ep;r) d>r.

IS volume

(10)

The simultaneous solution of eqs. (8)—(10) yields the
electronic potential, V,(r), the electron density, n.(ep;r),
and the Fermi energy, ep. When these solutions are in-
serted back into (1) and (4), one finds the CTP, b(N, E),
and the transparency, T'(N,, E}) as a function of the num-

ber of electrons inside the IS and the incident particle’s
kinetic energy.

2.3 Computational details

The solution of (7) can be rewritten as [15],

Ve(ra97¢) = —€ ///
. IS volum
R;
= —e/ 2 dr!
TN
2w
<
©

Obviously, the electron distribution has cylindrical sym-
metry around the line connecting the two nuclei, therefore
ne(r’,0") is independent of ¢’. Moreover, the charge dis-
tribution has also a reflection symmetry around the plane
perpendicular to this line at halfway between the nuclei.
Using these symmetry properties, the integration over ¢’
can be carried out analytically, thereby reducing the triple
integral in (11) to a double one, see details in ref. [15]. Fi-
nally, transforming the coordinate system center onto the
target nucleus, eq. (11) gets the form,

R;
Ve(R, 1) = *46/ R* dR’/

TN H=Hmin

ne(r',0") 4

I

e
s

I

) ne(r’, 0")

r—r|

sin @’ d’

de
=0

(11)

1
dp/ ne(R', 1)

1 2B 1 2B
. \/mK<\/A+B>+\/mK< A++B> !
(12)
Ay =[(b/2+ Rcosf) £ (b/2 + R cosd')]
+(Rsin®)? + (R'sin@')?, (13)
B =2RR sinf sind’. (14)

(9)

electron density (log scale)

Fig. 1. The distribution of the electrons around the two nuclei.

In (12) R is the radial distance of the field point from
the target nucleus, p = cos, K(x) is the Jacobi elliptic
integral [16], and fimin = max(—b/2R’, —1). The reduction
of the triple integral in (11) to the shape of (12) reduced
the computational resources and improved the accuracy
of the numerical procedure.

The numerical process was greatly complicated by the
fact that the CTP, b, not only depends on the electron
density, n.(ep;r), but also determines it. It was, there-
fore, necessary to carry out a doubly iterative method
for the computations. The internal iterations calculated
the electron density and potential through egs. (12)—(14)
and (8)—(10). When these have been found, a second iter-
ative procedure was applied to solve b from the condition,

(15)

This doubly iterative method was continued until con-
vergence was achieved for all the parameters.

3 Results
3.1 The electron density

Figure 1 shows the density of the electrons around the in-
cident and the target nuclei, when the center-of-mass en-
ergy of the two nuclei is 4000 eV. The figure clearly shows
the polarization of the electrons near the nuclei. We re-
call that the TF model predicts that the electron density
diverges as 7~3/2 near the nucleus [14].

The TF model predicts an accumulation of the elec-
trons along the line connecting the nuclei, with a saddle

point at halfway between them, a fact which enhances the
screening effect.

3.2 The electronic potential

Figure 2 shows the spatial distribution of the electronic
potential in the same region as in fig. 1. In the interesting
part of the field, i.e. in the space around the two nuclei,
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Fig. 4. Fermi energy as a function of the number of electrons
300 inside the ion sphere, for 3D and 1D Thomas-Fermi simula-
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3D The difference between these two results originates
- from the fact that the electrons accumulation between
S 200 the nuclei in a 3D model is larger than in the 1D case.
J This difference clearly indicates the importance of a three-
3 - 10 dimensional treatment of the problem.
NG For N, = 3, E, = 4000eV, eq. (16) gives U, = 163 V.
v 150 This has to be compared to the experimental result, U, =
n 470+50eV, which is by a factor of 2.94+0.3 larger than the
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Fig. 3. The value of the electronic potential, Ve(r), on the
target nucleus.

the potential has very slow variation, which justifies the
approximation V.(r) = V,(0), to an accuracy of a few
percents.

The value of the potential on the nuclei, U, = |eV,(0)],
is displayed in fig. 3. This is, in fact, the quantity that is
measured experimentally. The figure shows that U, fits
excellently a linear behavior as a function of N., with a
small contribution from the incident energy,

3D: U, = |eV,(0)| = 27.2 N.+80.3+3.1-10"*E eV. (16)

The last term is always less than 4% in the range
of interest. In order to compare the importance of a 3D
modelling, we have developed also a one-dimensional TF
program that solves the same problem in a radially sym-
metrical environment. The results of this program is also
plotted in fig. 3. The TF 1D code yielded,

1D: U, = [eV.(0)| = 272N, +33.6eV.  (17)

3.3 The Fermi energy

The Fermi energy, e, strongly depends on the number of
electrons in the IS, N,, and is, of course, independent of
the incoming particle’s energy. The behavior of ex vs. N is
illustrated in fig. 4. Within the range of our computations
ep turned out to be a linear function of NV,

3D: ep = —43.7+ 38.8 N, (eV) (18)
with a hint for a slight quadratic curvature. For the 1D
case we have found a significantly higher result,

1D: ep = —15.9 + 35.3 N, (eV). (19)

It should be emphasized that the Fermi energy is pos-
itive (except for the case of N, = 1, namely, the case of
an isolated deuterium atom), and is much higher than the
target temperature (e > kT = 300K = 0.025eV), for
all the cases. This means that at the temperatures of the
experiments (room temperature and below) there is no
reason for measurable temperature variations. In fact, we
have repeated our computations with 7' = 3000 K, but
this order of magnitude change in the temperature modi-
fied the results by less than 0.5%, as expected.
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3.4 The classical turning point

The CTP fits, with excellent accuracy, a function of the
form 2

e~ /ap

b/ag = ——
/%= F U,

where €2 /ag = 27.211 eV (ag is the Bohr radius). This has
exactly the form of the Coulomb CTP, with the projec-
tile’s kinetic energy modified according to eq. (5). Fitting
the computational results to the form of (20) provides

U.=217TN,+764+576-10"* EyeV.  (21)

(20)

The agreement of this U, with the values obtained from
the electronic potential, eq. (16), can be regarded as very
good. The difference between the two results stems from
the fact that |eV.(r)| is not exactly constant along the
line connecting the two nuclei. And again, this result is
in discrepancy with the experimental value, but is much
higher than the insulator case.

3.5 The transparency

At low impact energies the screened astrophysical fac-
tor, S(F), is enhanced relative to the unscreened one by
T(E)/Tc(E) [1], see egs. (1) and (2). Figure 5 shows our
results for this factor as a function of the center-of-mass
energy for the d + d — t + p reaction, when the target
deuterium is embedded in a copper lattice. The experi-
mental results of ref. [1] are also displayed in fig. 5. The
dashed curve represents the bare S(E) factor [1]. While
we note that the value N, = 3 is a reasonable estimate for
the conducting electrons in the deuterium IS embedded
in Cu, even for N, = 8 the 3-dimensional TF model un-
derestimates the experimental low-energy increase of the
astrophysical factor. The low U, predicted by the model
relative to the experiment is another manifestation of the
same fact. In fact, one needs 11 conduction electrons inside
the deuterium IS to get agreement with the experimental
results.

In the range of the energies used in our computations
U. < 0.1FE. Denoting £ = U./E, £ can be assumed to be a
small quantity. Using first-order expansion, an analytical
estimate can be developed for the change in the value of
T(FE)/Tc(E) caused by a change b — b/(1 + &) in the
CTP, see eq. (20). The ratio of the screened to Coulomb
transparencies becomes,

T(E)/Tc = exp{éG},

oM ¢ (n ¢
h2\/E<4_ 2)' (23)

For E = 4000eV, N, = 3 and U, = 163¢€V this formula
predicts

(22)

where

6G =G — G = 262

T(E)/Tc = exp{0G} = 1.45, (24)

in contrast to the experimental result of T(E)/Tc =~
2.0£0.2.
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Fig. 5. Comparison between the results of the 3D TF model
for the astrophysical factor, S(E), of the reaction d+d — t+p,
when the target nuclei are embedded in a copper substrate, and
the experimental results. The experimental points are taken
from [1]. The dashed line presented the theoretically extrapo-
lated “bare nucleon” S(FE) factor.

4 Discussion

In this paper we present computational results from a
three-dimensional TF model about the modification of
the low-energy cross-section for the d + d — t + p re-
action, when the target nucleus is embedded in a cop-
per lattice. Our computational result of U, = 163¢€V is
lower by a factor of ~ 3 from the experimental result of
U. = 470 + 50eV, but still is substantially higher than
the cross-section in an insulator (solid deuterium lattice),
U, =20eV.

In order to see whether such a difference holds true for
other target lattices as well, in fig. 6 we plotted the results
of all the experiments in metal lattices published in ref. [1]
in comparison to ours. The 3D TF results in the figure may
be shifted +5% up or down, due to differences in the local
IS volume of the deuterium in the various lattices. Figure 6
exhibits a consistent difference between the computational
and the experimental results. As the Thomas-Fermi is a
highly successful model, well fitted to high-density matter,
this insistent difference is of some surprise.

Obviously, the central reason for the disagreement is
the electronic potential on the target nucleus, see eq. (6).
In our opinion, the semiclassical nature of the TF model
cannot be the reason for this difference, because the
quantum-mechanical behavior of the conduction electrons
seems to be unimportant in the present problem.

On the other hand, the TF model assumption of a per-
fect spherical symmetry, and the target nucleus location
at the center of a well-defined ion sphere, may oversim-
plify the real situation. In the experiment, the deuterium
nuclei are implanted into the metal lattice by bombard-
ment of 10keV deuterons into the metal foil [2]. It is well
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Fig. 6. The experimental values of U., drawn from the results
of [1], compared to the predictions of the 3D TF model.

known that this technique does not necessarily deposit the
stopped deuterium into a spherically symmetrical environ-
ment.

Another contribution to the discrepancy may be the
local conduction electron density fluctuations around the
target nucleus. As the transparency depends exponentially
on the local electron potential, a small number of nuclei,
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with an instantaneous large electron screening, has greater
influence on the cross-section than the other nuclei with
the average electronic screening.

Finally, it is possible that QEOS underestimates the
deuterium IS volume under the specific experimental con-
ditions. A larger IS volume, with more conduction elec-
trons, may have a better agreement with the experiment.
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