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Double Scattering of Electrons with Magnetic Interaction. II. Depolarization*
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H. M. Randall Laboratory of Physics, University of 3IIicttigan, Ann Arbor, frlichigan
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The depolarization occurring in attempts to measure the electron s gyromagnetic ratio by double-scat-
tering experiments in a magnetic 6eld is discussed. Formulas are found for the eGects expected to be most
significant. These are applied to estimate the possible accuracy obtainable. One part in 10 seems to be quite
feasible. In addition, formulas are appended which permit rapid estimation of other depolarization eGects.

I. INTRODUCTION Geld that is essentially constant in the s-direction. The
small radial decrease of the field is described by the
index n(0&st&1). In such a Geld a charged particle
executes small oscillations about an equilibrium cyclo-
tron orbit in the plane perpendicular to the s-direction.
The frequencies of the radial and axial oscillations about
the equilibrium orbit are4

' 'N a previous paper' the change in asymmetry pro-
~ duced by a magnetic field acting between the two

targets in a double scattering of electrons was discussed.
The magnetic field was idealized as being perfectly
homogeneous. It is, however, necessary to consider the
sects of small inhomogenities in the constant magnetic
Geld. These will tend to depolarize the beam of electrons
coming from the first target and thus decrease the
asymmetry to be found after a second scattering. If all
particles take. the same path, variations in the magnetic
Geld will not cause depolarization. The polarization
vector will merely be rotated. Depolarization occurs
only when particles take different paths through the
field.

In the following, the state of polarization will be dis-
cussed in terms of the Geld and orbit parameters. For
simplicity we restrict ourselves to the case where the
constant magnetic Geld is oriented along the plane de-
termined by the incident beam and first scattered beam
but perpendicular to the direction of the first scattered
beam. Thus, the beam executes cyclotron-like motion
between the two targets. This corresponds to case (2)
discussed in I. The other case in I corresponds to the
experiment of Louisell, Pidd, and Crane'; for those
experimental conditions the time the particles spend in
the field is short' so that depolarization is aegligible.

In the situation to be considered there is a magnetic

to„=tot, (1—I)»,
and

0)gb
=GOL,S~9 (2)

where co„, co are the radial and axial frequencies re-
spectively. or& is the Larmor frequency

tot, eXo(1 ——Ps) «/(tl—oc) . (3)

(Xo is the magnitude of the Geld along the orbit axis. )

II. DEPOLARIZATION

In considering the depolarization of the beam due to
small oscillations about the equilibrium orbit, the
particles will be considered as Dirac particles and the
eGects of the anomalous moment will be neglected. The
depolarization eGects of the radial oscijlations and
oscillations perpendicular to the plane of the equilibrium
orbit will be considered separately. It is demonstrated
that the depolarization arising from the radial oscilla-
tions is small and independent of the number of revolu-
tions executed by the particle. However, the depolariza-
tion due to the oscillations perpendicular to the plane of*Supported in part by the U. S. Atomic Energy Commission.
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'H. Mendlowitz and K. M. Case, Phys. Rev. 97, 33 (1955
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s See discussion Eq. (30), reference 1.
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where &ti
= (eh/2moc) (1—P')1= (eh/2mc). This equation

describes the positive energy solutions in the case where
the anomalous moment has been neglected.

It is found that the field that the particle sees when
executing radial oscillations in the plane of the equi-
librium orbit (xy-plane) is

K=K,=Xs+K„sino&„1, (5)

i&„(i) n

ws(i) (1—n)1
(6)

where o„(s) is the initial radial velocity and i&s(i) is the
initial orbital velocity.

Now let
C (&,') = U(1)C„ (7)

where U is a unitary transformation matrix operating on
the spin components of C, and Co is the spin wave
function at time t=0. Then

the orbit is not negligible, and places an upper limit on
the number of revolutions between the two targets.

A. Radial Oscillation

We erst consider the eGect of the small radial
oscillations. It has been shown, "that in the Foldy-
Kouthuysen representation, the equation of motion for
the spin wave function for a Dirac particle is given by

they mould obey the same Hamiltonian, and so

"(1)= U(1) "(o)U+(&'), (13)

where p(t) is the density matrix at time t and p(0) is the
density matrix at /=0. From this follows that

trace['p&'& (&')j'= trace['pi' (0)j' (14)

and so the final degree of polarization is the same as the
initial polarization. The depolarization vanishes. We see
that even though the spin states of the individual
particles precess about the field, the beam keeps the
same polarization.

The case of interest is the one where the particles take
diGerent paths. This is caused by variations in the
initial velocities. In this case, the initial density matrix
does not describe a pure Inomentum state. YVe assume
that we can average over the momentum states. We
obtain from Eq. (8)

p&'(1) =(U(0~"(o)U+(1)&

=Q.(&)(W(&) "(0)W'(&)&Q +(&),

where the angular braces denote an average over the
momentum states of the ensemble. Although the parti-
cles of the beam spend different times in the magnetic
field (depending upon the amplitude of the small
oscillation about the equilibrium orbit) the experiment
is designed so that the number of revolutions is the
same for all the particles of the beam. Therefore coqt is
the same for each particle of the beam.

Q p(/) is then the
same for each electron in the ensemble. Therefore

U(1) =Qv(1) exp o,—sin'co„t =Qp(1)W(~) (g) trace[j&" (&)$'=traceHWP~'(0)W+)(WP~'&(0)W+}j. (16)
Gt) p Xo

where

Qv (t) = expficozo, t/2$. . (9
Let W(1) be expressed as

The transformation matrix U(t) for any given particle
in the beam depends upon the amplitude of the oscil-
lating field K„. The relavant parameter being 3C,/Ks
which is seen to be a function of the initial orbit parame-
ters as given in (6).

If the initial spin density matrix is given by

p~'& =-'[11a.e] (10)

P (initial) —P (final)
D.p.=

P (initial)
(12)

Since the Hamiltonian is Herrnitian, U(t) is unitary.
Therefore, if all the particles travelled in the same orbit,

~ K. M. Case, Phys. Rev. 95, 1323 {1954).' U. Pano, Phys. Rev. 93, 621 (1954).

where 1 is a two-by-two unit matrix and e is the Pauli
spin vector, the degree of polarization can be defined as'

8= [v/(v —1)J)trace(p&'&) —1/v)=
~ u~ . (11)

s being the number of accessible polarization states for
the system. The degree of depolarization is then defined
as

W(t) =exp i o, sin—'e&,1.—=expL(i/2)yo h], (17)
- (or Xo

where h is the unit vector in the direction of 3Cs, the
main component of the 6eld. Then

(Wpi'(0)W+)=-', {1+ea(cos»+e h(h. a)
)& L1—(cos»$+e (h&(a)(sin»), (18)

and

trace[ad&*'(1) j'= —,'+ {(h a)'+La'+ (h. a)')
SP1Q

XP(cos»'+(sin»'J) . (19)
The depolarization is

La' —(h a)'j
D.P.= {1—L(co»&'+(»'j) (20)

gQ

If the initial polarization were such that the non-
vanishing component of a was along the direction of h,
the depolarization given by (20) would be identically
zero. However, in general, the other components do not
usually vanish. Therefore, it is necessary to study the
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behavior of the trigonometric functions as a function of where
time (number of revolutions) to know how the depolar-
ization will vary with time. The argument of the
function y is given by (17) as

X, =3'., Since, t,

BCy=Kg cosco~t.

(27)

(28)

Mg Kz
lyl = ——sin'(o„t ( ——,

Go& Kp Goq Xp

so that, independent of time, the upper limit of y is

zz v„(i)

1—I vp(z)
(22)

The fall off index of the field, e, is much less than unity
in the proposed experiment. The ratio of the initial
radial velocity to the initial orbital velocity is much
smaller than unity. We can therefore consider

and

(siny) (y),

(cosy)~1—(y')/2,

(23a)

(23b)

B. Transverse Oscillations

The depolarization of the ensemble arising from small
oscillations of parts of the beam in a direction transverse
to the plane of the equilibrium orbits will now be con-
sidered. The particles oscillate in the s-direction and
"see"an oscillating magnetic Geld in the radial direction
given by

(R),=X,, sinp, t, (24)

(&./3') = —
L *(z)~'/ (z)3 (25)

Here v. (i) is the initial velocity in the s-direction, mp(i) is
the initial orbital velocity, and e is the fall oQ' index of
the "constant" magnetic field discussed above.

Each electron is considered as traveling in a cyclotron-
like orbit but each "sees" a radial oscillating field of
magnitude depending upon the amplitude of oscillations
in the s-direction (initial s-velocity). The direction of the
oscillating field that the electrons "see" is always in the
same direction as the electron goes about in its orbit.
Let us consider this the x-direction. This can be decom-
posed into two circular Gelds'

3..=-,'(sc.pe„,o)+-,'(ac„—ae„, o), (26)

~ Rabi, Ramsey, and Schwinger, Revs. Modern Phys. 26, 167
(19S4).

L(cosy)'+(»ny)'3
—=1-(y')+(y)'= L1-((y-(y))'H (23)

If this is substituted in into (20), we see that the
depolarization is extremely small, of the order of small
quantities squared. It is seen that no matter how much
time the particles spend in the Geld, the depolarization
arising from the radial oscillations is negligible. This is
independent of the initial polarization of the beam.

The depolarization arising from one of the circular
fields in (26) will be considered. This will probably tend
to depolarize the beam more than the superposition of
both fields of (26) where one would tend to cancel the
eGects of the other. We now consider the following field
$C acting on the electron.

Kg —Xp)

K,=—,'K, sino&, t,

Ky= gK~ cosG)~t~
I

(29a)

(29b)

(29c)

The solution of (30) is given by (Appendix A)

U(t)=Q (t)W(t), (31)

where Qz(t) is given by (9) and

W'(t) =expt —,'(~L,—(o )o',t)
&(exp(-', iz.a.,) exp Pea, t). (32)

X and r are defined by

A COST= (ppZ,
—cd'),

X sin'r= p ppgK~/Kp.

(33a)

(33b)

For the case of interest, the fields will be held as
uniform as possible so that

(34)

The initial velocity in the s direction will be very small
compared to the orbital velocity because it is desired
that the electrons execute a very large number of
revolutions in a comparatively small distance bs, so that

v, (i)/e p (i)«1.
From (2), (25), and (33), we have

ran. = r =X./(2', )«1. (36)

Therefore, the term in W'(t) depending on 0. can be
expressed as

exp(-', z. ,)=I+-,'z~..
The contributions of this term to

l
p&'&(t)]' differ from

unity by small quantities of the order of magnitude of r,
which is small for any part of the beam. It should also
be noted that this quantity is independent of the time.
In further considerations this will therefore be replaced

where BC is diQ'erent for diGerent parts of the beam.
The equation of motion of the spin wave function is

given by (4) and a solution in the form of (7) is assumed.
This gives us

BU zcog' X,
0,+ (0., since, t+0.„cospp, t) U. (30)

Bt 2 2Rp
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by the unit matrix. W(t) can now be given by

W(t) =exp( ——,'i[A —(oiz —pp.)o,t]).
From (33), we can write

Ag

so that
P,—(oil, oi,)'—gt = ', (X,/-2X p)'o&z t=y'.

Therefore

(38)
Y

FIG. 1. Schematic
diagram of a double-
scattering experi-
ment. In the case of
interest ttj =90'.

W(t) =exp (-,'io,y') =exp (-,'iy'o" h), (39)

where h is the unit vector in the direction of the main
Geld Ko.

If the initial spin density matrix is given by (10), then
the depolarization is given by

D.P.=
[a'- (h a)']

(1—[(cosy')'+(»ny')'3), (40)

where the angular braces denote the averaging over the
initial momentum states of the particles in the beam.
Although all the particles of the beam do not spend the
same amount of time in the field, the experiment is
designed so that all the particles mak. e the same number
of revolutions between the two scatterings, and there-
fore, the factor in (38) p&rl is the same constant for all
electrons. The only variation in p' among the various
electrons in the beam that is to be considered arises
from the different initial velocities (radial fields).

If the particles spend a very long time in the Geld, we
have (Appendix 8)

lim (cosy')= lim (siny')=0,
~I, &-moo ~ g, g-+oo

(41)

so that from (40) we see that if a is not parallel to h the
depolarization can be very large. We could then expect
the asymmetry in the double scattering experiment to
decrease. The oscillations transverse to the equilibrium
orbit cause depolarization of the beam and this places an
upper limit on the number of revolutions that the
electrons can execute between the two scattering events
without eliminating the asymmetry.

III. DOUBLE SCATTERING WITH DEPOLARIZATION

We have shown that the major depolarization sects
arise from the small oscillations about the equilibrium
orbit in the direction of the main component of the
magnetic field. Here we will show how the formula
describing the double-scattering cross section is modiGed

by the depolarization. The notation of I will be employed.
The most interesting case is the following. The initial

incident beam on the first target IA (Fig. 1) is scattered
into the direction AB at an angle OI with the initial
beam. The magnetic field is perpendicular to the plane
IAB. If 0~= 90', then the magnetic Geld would be along

IA. In the primed coordinate system, the magnetic Geld
is along the x'-axis (Fig. 1).

If there is no depolarization, the density matrix
describing the beam incident on the second target is
given by Eq. (19) of I as

where P(t) and Q(t) are the transformation matrices
related to the rotation of the space and spin states re-
spectively. In this case, Q is given by Eq. (21) of I as

Q(t) =Q.(t)Q. (t), (43)

where Q p(t) corresponds to the same angle of rotation as
P(t) and Q, (t) arises from the rotation due to the
anomalous moment.

When the depolarization effects are included, Q(t) is
replaced by

Q(t)~ (t)Q. (t)W(t) =R(t). (44)

Equation (42) describing the beam (without depolariza-
tion) incident on the second target is now replaced by

t "=s(t)s(t)t 's+~'(t) (43)

where p' does not describe a pure momentum state. In
(44) only W(t) depends upon the momentum distribu-
tion after the Grst scattering.

Instead of I Eq. (23) describing the beam after the
second scattering, we have

( **)=~(t)e.(t) l'Q. (t)
X(W(t)p'W+(t))Q (t) V+Q (t)~'(t). («)

We have made the following approximation. We con-
sidered p as describing a pure momentum state which is
an average of the various momentum states, but the
averaging over the momentum states has been con-
sidered when calculating the spin density matrix of the
beam incident on the second target [denoted by the
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angular braces in (46)j.The scattering cross section is
obtained by taking the trace over the spin states in
(46). If P(t) is a rotation corresponding to an integral
number of revolutions, the cross section in the primed
coordinate system is given by

d(r~1 —8 cos+2(cos(6+r )), (47)

da- 1—8 cosp2Lcose(cosy') —sine(sing') j. (48)

Without depolarization, we had from I, Eq. (32),

If this is the value taken as the average over the beam,
then

A &700/e. (55)

For these values of 1V, (48) is effectively equal to (49),
the double scattering cross section without depolari-
zation.

I.et us assume that we can measure e of (49) to within
&0.3 radian and we would like to measure g, the
gyromagrietic ratio of the free electron, to one part in
one hundred thousand. Let

do'~1 —5 cosp2 cosa. (49) 6= 6p&A6p (56)

The efFect of the depolarization is given by the trigono-
metric functions of y' which are functions of the number
of revolutions executed between the two scatterers.
From (41) we see that if the number of revolutions be-
tween scatterings is very large, the bracket in (48) tends
to vanish. Thus the asymmetry will tend to vanish
because of the depolarization of the beam.

IV. APPLICATION TO MEASURING THE
GYROMAGNETIC RATIO g

In order that the amount of depolarization be small,
we will ].imit the number of revolutions by requiring tha

and the number of revolutions be given by

X=Xp&AX.

Now

,'gcoIt=~—g2m JV =2~IV+a,
so that

eo he eo
2g= 1+

2~So 2m-Ão 2mXo Xo
(58)

or

(cosy') = 1,

(sing') y'(&1,

—,
' (X./2KO)'(ur, t(&1.

(50a)

(50b)

(50c)

&IO ',
2mSo

eo AS
&10 '.

2+So X
(59b)

As an upper limit on (y') let us consider

(v') &-/2o,

HL~ (i)/~ (i)7)
8 20

The time for S revolutions is

i= 2~)V/cur, ,

so that (51) becomes

2m-Se x
( *()/ (i))&—

8 20

We assume he 0.3, which means that we must have

S&5000.

It was shown in I, Eq. (38), that
(51)

e= muzt/(1 —P')&,

a =n/2m,

n being the one structure constant. Therefore, from
(59b) we have

0, dS.
& Io-~,

(1—p')& 27' Eo

or

&&(L~e(i)/v, (i)32)—.
Se 0. AS

&&0-5,
2x &oThus we have an upper limit on the number of revolu-

tions in terms of the experimental parameters, the
initial velocities and the fallofF index e.

I.et us consider the case where the maximum velocity
in the s direction (x' direction) is given by

so that
(61)hX/1VO& 10 '.

Thus, one of the requirements on such an experiment is
that the number of revolutions be of the order of 5000.
This limits the fall-ofF index to be of the order of 0.1.
Also it is necessary that the number of revolutions be
known to within 1%.

v, (i)= vg(i) sin(1'),

v, (i)/v ) (i)=0.017.

which, for one hundred kilovolt electrons, can be ap-
proximated by

54
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V. CONCLUSION

Depolarization eGects place certain restrictions on the
accuracy with which the gyromagnetic ratio of a free
electron can be determined by double scattering experi-
ments in a magnetic Geld. However, with sufhcient care
it does seem possible to make the measurement to at
least one part in 10'. This is then another feasible
method of checking the radiative corrections.

APPENDIX A

lim (cosy'),
&y L, $-+aa

(8-1)

lim (siny'),
ea I, t';+oo

(8-2)

aGect the average of the trigonometric functions given
in Eq. (40) in the text. It is shown that as the number of
revolutions becomes very large so that coL,t~ao the
average values of both the sine and cosine functions
tend to vanish. Consider

Here we show how we can obtain Eq. (32) from Eq.
(30) in the text. We are given Eq. (30)

BU X,
=-', iarz, o,+ (o., sin~ t+o.„cosa&,t) U. (A-1)

where p' is given by

y'= —,
' (aC,/Kp)'(or t= xpn'col t,

and the maximum of

n = —',K,/Ko((1.

(8-3)

U= expPiculo, tjW=QpW,
The average value of one of the trigonometric function

(A-2) is

so that
(cosy') = I P(n') cos(-,'n'cur, t)d(n'), (8-5)

8W' icoL, X

Bt 4 Xo

Z

exp (pod -~-.)o,t o„.
2

Xexp ((eI. ~ )o—,t W. (A-3)
2

where P(cP) is the probability over the beam that a
given particle will "see" the 6elds denoted by the
parameter cP.

Let
2

VJe now express H/ as

W = exp L
——,'i(~~—&o,)0.,jX,

so that
2 ~" phd

(cosy'& = PI I
cosa. da,

(dJt ~p (Q)Jt)
(8-7)

Now let

BX Z Ml 3C~
a„+(col, s).)(r, X—.

Bt 2 2 3CO

(A-5) 2
(siny') = ~ I'

( (
sinhdX.

i~.tf
(8-8)

X COST= ((dg —(d~),

X sinr =~Lee./(2Sep),

8X/Bt=-,'A exp(-,'iro, )0, exp( ——,'iro )X. (A-8)

If we define F such that

It is assumed that P(n') is a reasonable type probability
function which is not too peaked at the origin and falls
off rapidly for large o.. Then

( X i cosh
Pi i

dP,
~p EppJ, t) sink I

then
X=exp(-,'ira. ) Y,

8Y/Bt= 2iho, Y, —

Y= exp(-,'po. t) Yp.

(A-10)

(A-11)

(cosy')
tlim =0.

(siny )

(A-9)
is a bounded function, so that

(8-9)

%here Yo may be taken as a unit matrix. Therefore

U=QJ (t)W(t),
where

W(t) = exp) ,'i ((v (I.)O—,t-j
Xexpr —,'i~, rj exp[2iko, t], (A-13)

which is Eq. (32).

APPENDIX B

Ke are interested in determining how the number of
revolutions that the partides execute in the field will

This tells us that the beam will tend to depolarize if it
stays too long in these helds. This is expressed in the
Eq. (40) of the text.

APPENDIX C

The fields causing depolarization considered in the
main body of the text are analytically so simple that the
integration problems could be handled very easily. For
many questions, however, it is convenient to have the
approximate formulas for more general situations ob-
tained below,
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we obtain

where

C {t)= V(t)C {0),

U=Q(t) W(t,n),

ihBQ/Bt=HoQ,

(C2)

(C3)

i7iitW/Bt =Q 'HiQW. (C5)

Assuming Q(t) known for Eq. (C4), W(t,n) is, correct
to first order in Hi,

Let us assume the Schrodinger equation for the spin
function to be

ikae/Bt=ttH, {t)+H,{tn)ge,

where Ho(t) is independent of the orbital parameters n
and B~ is small.

If

Using (13), the definition (12), and the approximate
formula for U @re obtain

-2 t ace(b(0)7HW" (t))—(W.(t))'3&
D.P.=

tracep'(0) —-',

2 trace((p(0) WiQ 'p(0)QW)
—{p(0)WiQ ')(p(0)QWi))

(CS)
tr acep'(0) ——',

p(0) is the initial spin density matrix. The angular braces
denote averages with respect to n. Equation (CS) is cor-
rect to second order in Hr. (This follows somewhat indi-
rectly from an assumed Hermiticity of Hi. ) It may be re-
marked, that since the limitations on experiments are
obtained by requiring the depolarization to be small,
these could be derived directly using (CS) and

where
W(t, n) = I+Wi(t, n),

t

W, (t,n) =— Q-'(t')H, (t',n)Q(t')dt'.
iv ~,

(C6)

(C7)

Ho= f(t)ts h, (C9)

Hi(t, n) =b(t,n) tr, (C10)

with h a constant unit vector, f(t) a given function of
time, and b a small, variable vector.
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Diffusion of Like Particles Across a Magnetic Field

Az,sERT SnroN
Oak Ridge Eational J-cboratory, Oak Ridge, TenrIessee

{Received July 25, 1955)

It is shown that the diffusion rate across a magnetic field due to collision of like charged particles is
derivable from the macroscopic equations of the plasma. However, it is necessary to include the off-diagonal
terms in the stress tensor. The resultant diffusion rate does not obey Fick s law and is proportional to the
inverse fourth power of magnetic field strength. This diffusion rate is usually smaller than that due to unlike
particle collisions, but may sometimes dominate.

I. INTRODUCTION
' ANY of the gross properties of a plasma may be

- ~ obtained from a consideration of the hydro-
dynamical (or macroscopic) equations of the plasma. '
Thus, for example, for a gas consisting of ions and elec-
trons and assuming an isotropic stress tensor, one has
the following momentum equation in the steady state

VP= jXH+.E.

Here I' is the gas pressure, H and 8 are the magnetic
and electric Geld strengths respectively, j is the current
and e the charge density in the plasma. Note that a
nonlinear term in the velocity is neglected. In addition
to this equation, we have another expression represent-
ing the generalized Ohm's law:

Again, steady state has been assumed and nonlinear
terms neglected. The mass velocity of the plasma is
denoted by v, the ion partial pressure by P; and the
conductivity of the plasma by o.. The conductivity is
de6ned as

o.=tie'/stict, (3)

where e is the density of electrons, nz the electron mass,
and v is the collision frequency for electron-ion impact.

As Spitzer has shown, ' an expression for the diffusion
rate across a magnetic field may be readily derived from
Eqs. (1) and (2). Assuming that the density gradient
and the electron field are in a single direction (say x) and
the magnetic Geld is in the s-direction, one may elimi-
nate j between Eqs. (1) and {2).The result is

E+ (vX H)/c= j/o+ VP;/est. (2) o,= —(c/oIP) ( ttP eE). .—(4)
'Lyman Spitzer, jr., Phystes of Fully 1ottketGases t(Inter-

science Publishers, New York, to be published). This has the usual form for diGusion in that Pick's law


