з. магнитоспиновый резонанс в дециметровом диапазоне ДЛИН ВОЛН*)

В последнее время нами было установлено 1, 2, что парамагнитное поглощение во взаимно перпендикулярных полях достигает максимальной величины при совпадении частоты переменного поля с ларморовской частотой ионного спина. Было замечено, что для следующих солей: MnSO₄, $CuCl_22H_2O$, $CrCl_3$, $MnCO_4$ — положение максимума при $v=10^5$ кгу соответствует значению спина 1/2, так что фактор Ланде для них равен 2**). Это хорошо согласуется с результатами гиромагнитных измерений.

В настоящей заметке сообщаются основные результаты исследования поглощения на значительно больших частотах, для чего был использован метод, описанный ранее в статье 1. Генератором в диапазоне длин волн $10 \div 14$ см служил магнетрон мощностью 0.3 вт.

На рис. 1-3 представлены графики зависимости парамагнитного поглощения Q от магнитного поля H, причем поглощение отложено в относительных единицах (O = 0 при H = 0), а магнитное поле — в эрстедах ***).

Из этих данных можно вычислить отношение $v/H^*=a$, где $H^*=$ напряженность поля в максимуме поглощения на частоте у. По данным рис. 1—3 находим соответственно: $a = 2,74 \cdot 10^6$; $2,73 \cdot 10^6$; $2,73 \cdot 10^6$ сек $^{-1}$ $^{-1}$. Отличие этих величин от теоретического значения 2,8.106 для спина S=1/2 не превышает 2%.

Более подробно наши эксперименты будут описаны в другом месте. Автор желает выразить благодарность проф. П. Капице за предоставление возможности проведения данной работы в Институте физических проблем и проф. А. Шальникову за постоянные и весьма ценные консультации.

Институт физических проблем АН СССР Казанский государственный университет

Получено редакцией 12 февраля 1946 г.

ЛИТЕРАТУРА

E. K. Zavoisky, J. Phys. (USSR) 9, 211 (1945).
 E. K. Zavoisky, J. Phys. (USSR) 9, 245 (1945).

539.9

О КОЛЕБАНИЯХ ЭЛЕКТРОННОЙ ПЛАЗМЫ ****)

Л. Д. Ландау

ассмотрены колебания электронной плазмы, возникающие в результате произвольного начального неравновесного распределения в ней. Показано, что колебания поля в плазме всегда затухают со временем, и определена зависимость частот и декремента затухания от волнового вектора при малых и больших значениях последнего.

Рассмотрено проникновение периодического внешнего электрического поля в плазму. Получен закон изменения поля на больших расстояниях внутри плазмы. Особо рассмотрен случай частоты внешнего поля, близкой к резонансной.

^{*)} Воспроизводится по J. Phys. (USSR) 10, 2 (1946).
**) Как выяснилось впоследствии, спин равен 1/2 только для иона меди, однако фактор Ланде для всех этих ионов равен 2.

^{***)} Рис. 1—3 здесь не воспроизводятся. (Ред.)
****) Воспроизводится по ЖЭТФ 16, 574 (1946). Опубликовано также на англ.
языке в J. Phys. (USSR) 10, 25 (1946).

Колебания электронной плазмы описываются при больших частотах сравнительно простыми уравнениями. Если частота колебаний достаточно велика, то столкновения электронов с ионами и друг с другом не существенны и в кинетическом уравнении можно пренебречь интегралом столкновений; мы можем также считать колеблющимся только распределение электронов, при неизменном распределении ионов. Пусть $F(\mathbf{v}, \mathbf{r}, t)$ есть функция распределения электронов; если $f_0(v)$ есть равновесная (максвелловская) функция распределения, то

$$F = f_0(v) + f(\mathbf{v}, \mathbf{r}, t), \tag{1}$$

где f — малая по сравнению с f_0 величина. Кинетическое уравнение (без интеграла столкновений) есть

$$\frac{\partial f}{\partial t} + \mathbf{v}\nabla f - \frac{e}{m}\nabla \phi \frac{\partial f_0}{\partial v} = 0$$
 (2)

 $(\phi-$ потенциал электрического поля). Сюда надо еще присоединить уравнение Пуассона

$$-\Delta \varphi = 4\pi e \int_{\Gamma} f \, d\tau \quad (d\tau = dv_x \, dv_y \, dv_z)$$
 (3)

(равновесный электронный заряд $e\int_{0}^{\infty}f_{0}\ d\tau$ компенсируется, разумеется, положительным зарядом ионов).

Эти уравнения были применены к изучению колебаний плазмы А. А. Власовым 1,2 , однако большая часть полученных им результатов являются ошибочными. Власов искал решения вида const. $e^{-i\omega t + i\mathbf{k}\mathbf{r}}$ и определял зависимость частоты ω от волнового вектора \mathbf{k} . Выражение, определяющее эту зависимость, получилось у него содержащим расходящийся интеграл, что уже указывает на математическую некорректность примененного им метода. Власов 2 обходит эту трудность взятием главного значения интеграла, для чего, однако, нет никаких оснований *). В действительности вообще не существует никакой определенной зависимости ω от \mathbf{k} и при заданном \mathbf{k} возможны произвольные ω . Недостаточность решений вида $e^{-i\omega t + i\mathbf{k}\mathbf{r}}$ видна уже из того, что они дают лишь ∞^3 -множество решений (соответственно трем независимым параметрам k_x , k_y , k_z), между тем как в действительности должно иметься ∞^6 -множество решений (уравнения содержат шесть независимых переменных x, y, z, v_x , v_y , v_z).

§ 1. КОЛЕБАНИЯ ПРИ ЗАДАННОМ НАЧАЛЬНОМ РАСПРЕДЕЛЕНИИ

Для того чтобы получить правильное решение уравнений (2), (3), необходимо рассматривать задачу в той или иной конкретной постановке; мы рассмотрим здесь две такие задачи.

Предположим, что задано (во всем объеме плазмы) некоторое определенное (неравновесное) распределение электронов в начальный момент времени; требуется определить возникающие в результате колебания. Поскольку уравнения (2) и (3) линейны и не содержат в явном виде координат, то искомая функция $f(\mathbf{r}, \mathbf{v}, t)$ может быть разложена в интеграл Фурье по координатам и уравнения могут быть написаны для каждой компоненты Фурье в отдельности. Другими словами, достаточно

^{*)} Последующие теоретические исследования показали, что в волнах хотя и малой, но конечной амплитуды, может иметь место захват резонансных электронов и образование так называемого плато функции распределения, так что периодические решения A. A. Власова также имеют определенный физический смысл и область применимости. (Π pum. $pe\partial$.)

рассматривать решения вида

$$f_{\mathbf{k}}\left(\mathbf{v},\ t\right)e^{i\mathbf{k}\mathbf{r}}$$
.

Ниже мы будем, для простоты обозначений, опускать индекс \mathbf{k} у $f_{\mathbf{k}}$, так что $f(\mathbf{v}, t)$ будет обозначать компоненту Фурье искомой функции распределения. Посредством $g(\mathbf{v})$ обозначим (также опуская индекс \mathbf{k}) компоненту Фурье начального распределения $f(\mathbf{r}, \mathbf{v}, 0)$. Наконец, выберем ось x вдоль направления вектора \mathbf{k} , к которому относится $f(\mathbf{v}, t)$.

Взяв компоненты Фурье уравнений (2) и (3), получим

$$\frac{\partial f}{\partial t} + ikv_x f - ik \frac{e}{m} \varphi \frac{\partial f_0}{\partial v_x} = 0, \tag{4}$$

$$k^{2}\varphi\left(t\right)=4\pi e\int f\,d\tau.\tag{5}$$

 $\varphi(t)$ есть компонента Фурье потенциала $\varphi(\mathbf{r}, t)$. Для решения этих уравнений применим операционный метод, согласно которому вводим функцию $f_p(\mathbf{v})$, определяемую как

$$f_{p}(\mathbf{v}) = \int_{0}^{\infty} f(\mathbf{v}, t) e^{-j \cdot t} dt;$$
 (6)

тогда

$$f(\mathbf{v}, t) = \frac{1}{2\pi i} \int_{-i\infty+\sigma}^{+i\infty+\sigma} f_p(\mathbf{v}) e^{i\nu t} dp,$$
 (7)

где интегрирование производится в комплексной плоскости по прямой, параллельной мнимой оси и проходящей справа от нее ($\sigma > 0$).

Умножаем обе стороны уравнения (4) на e^{-pt} и интегрируем по dt. Замечая, что

$$\int\limits_0^\infty \frac{\partial f}{\partial t} \, e^{-pt} \, dt - f e^{-pt} \Big|_0^\infty + p \int\limits_0^\infty f e^{-pt} \, dt = p f_p - g$$

[мы подставили $f(\mathbf{v}, 0) \equiv g(\mathbf{v})$], находим

$$(p+ikv_x)=ik\frac{e}{m}\varphi_p\frac{\partial t_0}{\partial v_x}+g.$$

Аналогично из (5) получаем

$$k^2 \varphi_p = 4\pi e \int f_p \, d\tau.$$

Первое из этих уравнений дает

$$f_{p}(\mathbf{v}) = \frac{1}{p + ikv_{x}} \left\{ g(\mathbf{v}) + ik \frac{e}{m} \varphi_{p} \frac{\partial f_{0}(\mathbf{v})}{\partial v_{x}} \right\} , \qquad (8)$$

после чего из второго вычисляем ϕ_p :

$$\varphi_p = \frac{4\pi e}{k^2} \frac{\int \frac{g(v)}{p + ikv_x} d\tau}{1 - \frac{4\pi i e^2}{km} \int \frac{\partial f_0}{\partial v_x} \frac{d\tau}{(p + ikv_x)}}.$$
 (9)

Эти формулы решают (принципиально) поставленную задачу, определяя электронное распределение и электрическое поле по произвольному заданному начальному распределению.

Переходя к исследованию полученных формул, замечаем предварительно, что в (9) можно произвести непосредственно интегрирование

по $dv_y dv_z$. Введя для дальнейшего обозначения $v_x \equiv u$ и

$$g(u) = \int g(\mathbf{v}) dv_y dv_z,$$

пишем

$$\phi_{p} = \frac{4\pi e}{k^{2}} \frac{\int_{-\infty}^{+\infty} \frac{g(u)}{p + iku} du}{1 - \frac{4\pi i e^{2}}{km}} \int_{-\infty}^{+\infty} \frac{df_{0}(u)}{du} \frac{du}{(p + iku)},$$
(10)

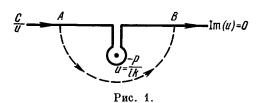
где равновесная функция

$$f_0(u) = n \sqrt{\frac{m}{2\pi \kappa T}} e^{-mu^2/2\kappa T}$$
(11)

(ж— постоянная Больцмана, n— равновесное число электронов в единице объема плазмы). Выражение типа

$$\varphi_{p} = \int_{0}^{\infty} \varphi(t) e^{-\gamma t} dt,$$

рассматриваемое как функция комплексного переменного p, имеет смысл лишь в правой полуплоскости, т. е. при Re(p) > 0. То же относится соответственно и к выражению (10). Мы можем, однако, определить ϕ_p в левой полуплоскости как аналитическое продолжение выражения (10). Легко видеть, что если g(u) (рассматриваемая как функция комплексного



переменного u) есть целая функция от u (т. е. не имеет никаких особенностей при конечных u), то и интеграл

$$\int_{-\infty}^{+\infty} \frac{g(u) du}{p + iku},$$

аналитически продолженный в левую полуплоскость *p*, определяет

целую функцию от p. Действительно, для того чтобы аналитически продолжить изображаемую этим интегралом функцию из правой полуплоскости в левую, сместим предварительно путь интегрирования в плоскости комплексного переменного u достаточно далеко в нижнюю полуплоскость так, чтобы точка u=-p/ik лежала выше пути интегрирования. Таким образом, мы получим аналитическую функцию, определяемую интегралом, который при $\mathrm{Re}\ (p)>0$ берется по действительной оси, а при $\mathrm{Re}\ (p)<0$ — по пути, изображенному на рис. 1 сплошной линией. Эта функция не имеет особенностей ни при каком конечном p, т. е. является целой.

То же самое относится, очевидно, и к интегралу, стоящему в знаменателе выражения (10), поскольку df_0 (u)/du есть целая функция. Таким образом, аналитическая во всей плоскости функция ϕ_p есть [при целой g(u)] частное двух целых функций. Отсюда следует, что единственными особенностями (полюсами) функции ϕ_p являются нули выражения, стоящего в знаменателе (10); все эти полюса лежат в левой полуплоскости.

Эти соображения позволяют определить асимптотический вид потенциала $\phi(t)$ как функции времени при больших значениях последнего. В формуле обращения

$$\varphi(t) = \frac{1}{2\pi i} \int_{-i\infty+\sigma}^{+i\infty+\sigma} \varphi_p e^{pt} dp$$
 (12)

интегрирование производится по вертикальной прямой в правой полуплоскости. Однако понимая под φ_p определенную указанным образом во всей плоскости p аналитическую функцию, мы можем сместить путь интегрирования в левую полуплоскость так, чтобы нигде не пересечь ни одного из полюсов функции φ_p . Пусть p_k есть тот из полюсов функции φ_p , т. е. тот из корней уравнения

$$\frac{4\pi i e^2}{km} \int_C \frac{df_0}{\partial u} \frac{du}{(p+iku)} = 1$$
 (13)

(интегрирование по пути, изображенному на рис. 1), который обладает наименьшей по абсолютной величине действительной частью (т. е. ближайший к мнимой оси). Будем производить интегрирование в (12) по пути, смещенному достаточно далеко за точку $p=p_k$ и огибающему эту точку (а также и другие полюсы, лежащие справа от него), указан-

ным на рис. 2 образом. Тогда в интеграле (12), взятом по этому контуру, при больших t будет существенным только вычет относительно полюса p_h , остальные части интеграла, в том числе интеграл по вертикальной части пути, будут экспоненциально малы по сравнению с указанным вычетом благодаря наличию в подынтегральном выражении множителя e^{pt} , быстро спадающего с увеличением | Re(p) |.

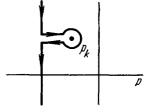


Рис. 2.

Таким образом, при больших t потенциал поля $\varphi(t)$ будет пропорционален множителю $e^{p_h t}$.

При комплексном p_k он распадается на периодический и на затухающий $[\mathrm{Re}\ (p_k) < 0]$ множители. Мы приходим, следовательно, к существенному результату, что поле, вообще говоря, экспоненциально затухает со временем, с декрементом, равным — $\mathrm{Re}\ (p_k)$.

Уравнение (13), определяющее p_k (т. е. частоту и декремент затухания колебаний), формально совпадает с уравнением, полученным Власовым, с тем, однако, отличием, что у него интеграл берется не вдоль контура C, а просто вдоль действительной оси. Это отличие приводит, как мы увидим, не только к количественно, но и к качественно иным результатам, именно — к наличию затухания.

Рассмотрим предельный случай длинных волн, $k \to 0$. Точка u = -p/ik, которую огибает путь интегрирования C (см. рис. 1), отодвигается к очень большим |u|, и поскольку функция f_0 (u) быстро падает с увеличением |u|, в первом приближении можно ограничиться в (13) интегрированием вдоль действительной оси. Разлагаем подынтегральное выражение по степеням k; первый член разложения обращается в нуль, поскольку

$$\int_{-\infty}^{\infty} \frac{df_0}{du} du = f_0 \Big|_{-\infty}^{+\infty} = 0.$$

Второй член дает

$$\frac{4\pi e^2}{p^2m}\int\limits_{-\infty}^{+\infty}u\,\frac{df_0}{du}\,du=1.$$

Замечая, что

$$\int_{-\infty}^{+\infty} u \frac{df_0}{du} du = uf_0 \Big|_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} f_0 du = -n, \tag{14}$$

находим отсюда

$$p_k = -i\omega, \quad \omega = \sqrt{\frac{4\pi n e^2}{m}} \equiv \omega_0$$
 (15)

(мы выбрали здесь знак, соответствующий волне, распространяющейся в положительном направлении оси x). Это выражение соответствует обычной собственной частоте плазмы, которую мы обозначим через ω_0 ; в следующем приближении вычисление приводит к такой зависимости частоты от волнового вектора:

$$\omega = \omega_0 \left(1 + \frac{3}{2} a^2 k^2 \right), \tag{16}$$

где $a=\sqrt{\varkappa T/4\pi ne^2}$ есть электронный дебай-хюккелевский радиус. Мы не приводим здесь соответствующих вычислений, так как они совпадают с произведенными Власовым в его первой работе 1 ; эта часть его вычислений оказывается правильной в связи с тем, что при малых k можно при вычислении частоты ограничиваться в (13) интегрированием вдоль действительной оси.

В действительности, однако, колебания являются затухающими, хотя декремент затухания и мал при малых k. Для вычисления этого декремента исходим из предположения (подтверждаемого результатом), что при $k \to 0$ действительная часть p_k тоже стремится к нулю (как мы увидим, экспоненциально), между тем как мнимая часть остается конечной. Тогда точка $u = -p_k/ik$, которую огибает контур C, при малых k расположена на конечном расстоянии от мнимой оси и очень близко к действительной (под последней). Положим

$$p_{k} = -i\omega - \gamma;$$

величина γ ($0 < \gamma \ll \omega$) есть искомый декремент затухания. Выберем на действительной оси некоторую точку A (см. рис. 1), расположенную достаточно близко к точке $u = -p_k/ik$, но так, что ее расстояние до этой точки все же велико по сравнению с $|\operatorname{Im}(u)|$. Проведем через эту точку полуокружность AB, охватывающую особую точку $u = -p_k/ik$ (пунктирная линия на рис. 1), и заменим ею соответствующий участок пути интегрирования C.

Интеграл по прямолинейным участкам пути действителен в пределе Re (p)=0; его можно в рассматриваемом приближении положить равным $-4\pi ne^2/mp^2$. Интеграл же по полуокружности равен умноженному на πi (половина полной окружности) вычету относительно полюса.

В результате получаем уравнение (13) в виде

$$-\frac{4\pi ne^2}{mp^2}+i\,\,\frac{\pi^2e^2}{mk^2}\,\frac{df_0\,(-p/ik)}{du}=1\,.$$

Полагая здесь $p=-i\omega-\gamma$ и решая это уравнение последовательными приближениями, получим для декремента затухания γ следующее окончательное выражение:

$$\gamma = \omega_0 \sqrt{\frac{\pi}{8}} \frac{1}{(ka)^3} e^{-1/2(ka)^2}. \tag{17}$$

Таким образом, декремент затухания экспоненциально падает с уменьшением k.

Область применимости формул (15)—(17) определяется условием $\gamma \ll \omega$. Оно приводит к неравенству, которое можно написать в виде

Рассмотрим теперь обратный предельный случай больших k:

$$ka\gg 1$$
.

Пишем снова $p=-i\omega-\gamma$. Как будет подтверждено результатом, при $k\to\infty$ обе величины ω и γ неограниченно возрастают, но так, что при больших k $\omega\ll\gamma$, а частные ω/k , γ/k стремятся соответственно к нулю и бесконечности. Тогда полюс u=-p/ik расположен относительно близко от мнимой, но на большом расстоянии от действительной оси (Re (u) мало́, а Im (u) велико). Поскольку функция f_0 экспоненциально растет при больших мнимых значениях u, в интеграле (13) достаточно ограничиться лишь интегрированием по окружности вокруг полюса, пренебрегая интегралом вдоль действительной оси. Таким образом, получаем уравнение (13) в виде

$$\frac{4\pi e^2}{mk^2} \cdot 2\pi i \, \frac{df_9\left(-p/ik\right)}{du} = 1,$$

или, подставляя выражение (11) для $f_0(u)$:

$$\sqrt{2\pi} \frac{p}{\omega_0 (ka)^3} e^{\frac{p^2}{2\omega_0^2 (ka)^2}} = 1.$$
 (18)

Взяв модуль от обеих сторон равенства и воспользовавшись предполагаемым неравенством $\gamma \gg \omega$, получим

$$\xi e^{\xi^3/2} = \frac{1}{V2\pi} (ak)^2, \tag{19}$$

где

$$\xi = \frac{\gamma}{\omega_0 ka}$$
.

Далее, фазовый множитель выражения в левой стороне уравнения (18) есть в том же приближении

$$\exp\left(\frac{i\gamma\omega}{\omega_0^2a^2k^2}\right)$$
.

Поскольку в правой стороне стоит действительная положительная величина, то этот множитель должен быть равен +1. Отсюда находим

$$\frac{\gamma\omega}{\omega^2a^2k^2}=\pi$$

[приравняв 3π , 5π , ..., мы получили бы, как можно показать, не наиболее близкий к мнимой оси корень уравнения (13)]. Вместе с определением величины ξ это дает

$$\omega = \pi \sqrt{\frac{\varkappa T}{m}} \frac{k}{\xi}, \quad \gamma = \sqrt{\frac{\varkappa T}{m}} k\xi.$$
 (20)

С функцией $\xi(k)$, определяемой в неявном виде уравнением (19), эти формулы определяют частоту и декремент затухания колебаний. Функция $\xi(k)$ есть очень медленно (в основном как квадратный корень из логарифма) возрастающая функция от k. Отношение γ/ω возрастает с k как ξ^2 , т. е. в основном как $\ln ka$.

Во всем предыдущем мы предполагали, что заданная функция g(u) есть целая функция. Если же эта функция имеет особенности, то и функция ϕ_p будет, вообще говоря, иметь особые точки, помимо полюсов, связанных с обращением в нуль знаменателя выражения (10). Тогда точка p_h , которую огибает контур на рис. 2 и которая определяет поведение потенциала $\phi(t)$ при больших t, должна быть выбрана как ближайшая

к мнимой оси из числа корней уравнения (13) и особых точек, возникающих от особенностей g(u).

В частности, если g(u) есть кусочно-гладкая функция (на действительной оси), то ϕ_p будет иметь чисто мнимые особые точки $p=-iku_{\rm oc}$, где $u_{\rm oc}$ — точки на действительной оси, в которых g(u) имеет изломы. Таким образом, поведение функции $\phi(t)$ при больших t будет определяться чисто мнимыми значениями p_k , т. е. поле будет незатухающим. Отсюда видна недопустимость замены гладкой функции g(u) кусочно-гладкой в целях приближенного решения задачи; при такой замене получается качественно иная картина с незатухающим полем.

Наконец, остановимся на самой электронной функции распределения. Для проинтегрированной по $dv_y \ dv_z$ функции распределения имеем согласно (8)

$$f_p(u) = \frac{1}{p + \iota k u} \left\{ g(u) + \frac{\iota k e}{m} \varphi_p \frac{d f_0(u)}{d u} \right\}, \quad f(u, t) = \frac{1}{2\pi \iota} \int_{-i\infty + \sigma}^{+i\infty + \sigma} f_p(u) e^{pt} dp.$$

Поведение функции f(u, t) при больших t определяется чисто мнимыми особыми точками p = iku функции $f_p(u)$. Таким образом, функция распределения оказывается при больших t пропорциональной множителю e^{-ikut} , т. е. незатухающей периодической функции времени, зависящей от скорости частот ku.

§ 2. КОЛЕБАНИЯ ПЛАЗМЫ ВО ВНЕШНЕМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ

Предположим, что плазма находится во внешнем периодическом электрическом поле, и поставим задачу об определении картины проникновения поля внутрь плазмы. Внешнее поле может быть разложено в интеграл Фурье по времени; поэтому достаточно ограничиться рассмотрением монохроматического поля с частотой ω . Ограничивающую плазму стенку считаем плоской; все распределение зависит только от координаты x вдоль оси, перпендикулярной к стенке.

Электрическое поле можно разложить на продольную часть, направленную вдоль оси x, и на поперечную часть, параллельную стенке. Рассмотрение поведения плазмы в поперечном поле не представляет интереса, так как сводится к поведению ее в электромагнитной волне, описываемому хорошо известными формулами. Поэтому мы ограничиваемся рассмотрением лишь продольной части, соответственно чему предполагаем поле направленным вдоль оси x.

Как и в § 1, будем пользоваться функцией распределения, проинтегрированной по несущественным переменным v_y , v_z . Эту функцию f(u, x, t) (где по-прежнему $u \equiv v_k$) можно искать в виде $f(u, x) e^{-i\omega t}$. Тогда кинетическое уравнение (2) приобретает вид

$$-i\omega f + u \frac{\partial f}{\partial x} + \frac{eE(x)}{m} \frac{df_0(u)}{du} = 0$$
 (21)

[электрическое поле пишем в виде $E(x)e^{-i\omega t}$]. В качестве второго уравнения нам будет удобно воспользоваться здесь не уравнением Пуассона (3), а уравнением, выражающим отсутствие источников для полного тока (истинного тока ј и тока смещения):

div
$$\left(\mathbf{j} - \frac{i\omega}{4\pi}\mathbf{E}\right) = \frac{d}{dx}\left(j - \frac{i\omega}{4\pi}E\right) = 0.$$

Отсюда находим, что $4\pi j - i\omega E$ есть постоянная; поскольку вне плазмы

j=0, эта постоянная равна — $i\omega E_0$, где $E_0 e^{-i\omega t}$ есть внешнее поле. Таким образом, имеем уравнение

$$-i\omega E(x) + 4\pi j(x) = -i\omega E_0. \tag{22}$$

Плотность тока j(x) выражается через функцию распределения посредством

$$j = e \int_{-\infty}^{+\infty} uf(u, x) du.$$
 (23)

На больших расстояниях от стенки поле E в плазме определяется непосредственно условием постоянства продольной компоненты индукции $D=\varepsilon E$, где диэлектрическая постоянная плазмы равна известному выражению

$$\varepsilon = 1 - \frac{4\pi n e^2}{m\omega^2} \,. \tag{24}$$

Вне плазмы $D = E_0$; таким образом, имеем предельное условие

$$E = \frac{E_0}{\epsilon} \quad \text{при } x = +\infty \tag{25}$$

(положительное направление оси х внутрь плазмы).

Свойства ограничивающей плазму стенки будем описывать (как это обычно делают в аналогичных случаях) предположением ее идеальной отражательной способности. Другими словами, считаем, что при столкновении со стенкой электрон отражается с неизменной по величине скоростью под углом, равным углу падения (так что v_y , v_z не меняются, а $v_x = u$ меняет знак). Это значит, что функция распределения f(u, x) должна удовлетворять на стенке (x=0) граничному условию

$$f(u, 0) = f(-u, 0).$$
 (26)

Интегрируя формально уравнение (21), находим

$$f(u, x) = -e^{i\omega x/u} \int \frac{eE(x)}{mu} \frac{df_0}{du} e^{-i\omega x/u} dx.$$

Для того чтобы определить постоянную интегрирования, воспользуемся следующим приемом. Будем рассматривать ω как комплексный параметр с малой положительной мнимой частью (которую затем устремим снова к нулю). Тогда внешнее поле $E_0e^{-i\omega t}$ будет возрастать со временем, и поскольку при всех конечных значениях t оно также конечно, мы можем утверждать, что и функция распределения должна быть везде (в том числе при $x=\infty$) конечной.

Пусть сначала u < 0. Тогда множитель $e^{i\omega x/u}$ неограниченно возрастает с x, и, для того чтобы $f(u,\infty)$ было конечным, надо написать при u < 0

$$f(u, x) = e^{i\omega x/u} \int_{-\infty}^{\infty} \frac{eE(\xi)}{mu} \frac{df_0(u)}{du} e^{-i\omega \xi/u} d\xi.$$
 (27)

Функция же f(u, x) для u > 0 должна быть написана так, чтобы удовлетворялось условие (26). Это дает при u > 0

$$f(u, x) = e^{i\omega x/u} \left[\int_{0}^{\infty} \frac{e^{E(\xi)}}{mu} \frac{df_0(u)}{du} e^{i\omega \xi/u} d\xi - \int_{0}^{x} \frac{e^{E(\xi)}}{mu} \frac{df_0}{du} e^{-\frac{i\omega \xi}{u}} d\xi \right]$$
(28)

[напоминаем, что $f_0(u)$ есть четная функция от u, так что df_0/du — нечетная функция].

С помощью полученных выражений вычисляем плотность тока (23):

$$j = \frac{i\omega}{4\pi} \left\{ \int_{0}^{x} E(\xi) K(x - \xi) d\xi + \int_{x}^{\infty} E(\xi) K(\xi - x) d\xi - \int_{0}^{\infty} E(\xi) K(x + \xi) d\xi \right\}, (29)$$

где мы ввели функцию

$$K(\xi) = \frac{4\pi i e^2}{m\omega} \int_0^\infty \frac{df_0}{du} e^{\frac{i\omega\xi}{u}} du, \quad \xi > 0$$
 (30)

[в (29) входит функция K (ξ) только от положительных значений аргумента].

Для дальнейщего удобно представить поле E(x) в виде суммы двух членов, выделив из него величину поля при $x \longrightarrow +\infty$:

$$E(x) = \frac{E_0}{s} + E_1(x). \tag{31}$$

Согласно (25) $E_1(x)$ должно удовлетворять предельному условию $E_1(\infty) = 0$. Подставляя (31) в (29), получим после простого приведения

$$j = j_1(x) + \frac{i\omega}{2\pi\varepsilon} E_0 \int_0^x K(\xi) d\xi, \qquad (32)$$

где $j_1(x)$ определяется формулой (29), в которой только надо подразумевать $E_1(x)$ вместо E(x).

Подстановка (31) и (32) в (22) приводит после элементарных преобразований к следующему интегральному уравнению для функции $E_1(x)$:

$$E_{1}(x) - \int_{0}^{x} K(x-\xi) E_{1}(\xi) d\xi - \int_{x}^{\infty} K(\xi-x) E_{1}(\xi) d\xi + \int_{0}^{\infty} K(\xi+x) E_{1}(\xi) d\xi = \frac{2E_{0}}{\varepsilon} \int_{x}^{\infty} K(\xi) d\xi.$$
(33)

При преобразованиях здесь использовано выражение (24) для диэлектрической постоянной, а также выражение для интеграла $\int\limits_0^\infty K\left(\xi\right)d\xi$, кото-

рое можно получить следующим образом. Рассматривая снова ω как комплексный параметр с $\text{Im}(\omega) > 0$, мы можем произвести интегрирование по $d\xi$ под знаком интеграла в (30) и, поскольку множитель $e^{i\omega\xi/u}$ обращается в нуль при $\xi = \infty$, получаем

$$\int_{0}^{\infty} K(\xi) d\xi = -\frac{4\pi e^2}{m\omega^2} \int_{0}^{\infty} u \frac{df_0}{du} du.$$

Подынтегральная функция в интеграле справа есть четная функция, и потому этот интеграл равен половине интеграла (14), так что

$$\int_{0}^{\infty} K(\xi) d\xi = \frac{2\pi e^{2n}}{m\omega^{2}}.$$
(34)

Интегральное уравнение (33) может быть решено следующим образом. Продолжим формально функцию $K(\xi)$ и неизвестную функцию $E_1(x)$

(имеющую физический смысл лишь при x>0, т. е. внутри плазмы) в область отрицательных значений аргумента при помощи соотношений

$$K(-\xi) = K(\xi), \quad E_1(-x) = E_1(x)$$
 (35)

[определенная таким способом функция $E_1(x)$ имеет разрыв при x=0]. Тогда уравнение (33) после простого преобразования приводится к значительно более простому виду:

$$E_{1}(x) - \int_{-\infty}^{+\infty} K(x - \xi) E_{1}(\xi) d\xi = \begin{cases} -\frac{2E_{0}}{\varepsilon} \int_{x}^{\infty} K(\xi) d\xi & \text{при} \quad x > 0, \\ \sum_{x}^{\infty} K(\xi) d\xi & \text{при} \quad x < 0. \end{cases}$$
(36)

В таком виде оно может быть решено по методу Фурье. Умножая обе стороны уравнения на e^{-ihx} и интегрируя по dx в пределах от $-\infty$ до $+\infty$, получим

$$E_{1h}(1-K_h) = \frac{2iE_0}{\epsilon} \frac{K_0-K_h}{k}$$
,

где E_{1h} , K_h обозначают компоненты Фурье

$$E_{1h} = \int_{-\infty}^{+\infty} E_1(x) e^{-ihx} dx, \quad K_h = \int_{-\infty}^{+\infty} K(\xi) e^{-ih\xi} d\xi$$

(а K_0 есть значение K_k при k=0). С помощью обратного преобразования

$$E_1(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} E_{1h} e^{ihx} dk$$

получаем искомую функцию $E_1(x)$ в следующем замкнутом виде:

$$E_{1}(x) = \frac{iE_{0}}{\pi \varepsilon} \int_{-\infty}^{+\infty} \frac{K_{0} - K_{k}}{k(1 - K_{k})} e^{ikx} dk.$$
 (37)

Входящая в подынтегральное выражение функция K_h может быть представлена в виде

$$K_{k} = \frac{4\pi e^{2}}{m\omega} \int_{-\infty}^{+\infty} \frac{u \frac{df_{0}}{du}}{ku - \omega} du$$
 (38)

[здесь использованы определения (30), (35), а интегрирование по $d\xi$ произведено под знаком интеграла по du, причем ω снова считается комплексным с $\text{Im}(\omega)>0$]. Стоящий здесь интеграл, будучи взят непосредственно вдоль всей действительной оси, расходится в точке $u=\omega/k$. Легко, однако, видеть, по какому пути следует определить этот интеграл. При выводе (38) предполагалось, что $\text{Im}(\omega)>0$, причем интеграл брался вдоль действительной оси, т. е. по пути, проходящему под (если k>0) или над (если k<0) особой точкой $u=\omega/k$. Поэтому при стремлении $\text{Im}(\omega)$ к нулю интеграл (38) должен браться при k>0 по пути C_1 (рис. 3), идущему вдоль действительной оси и обходящему особую точку снизу, а при k<0—по пути C_2 , обходящему особую точку сверху. Введем обозначения

$$K_k = K_1(k)$$
 при $k > 0$, $K_k = K_2(k)$ при $k < 0$. (39)

Функции $K_1(k)$ и $K_2(k)$, формально определяемые формулой (38) с интегралом, взятым соответственно по пути C_1 или C_2 , являются аналитическими функциями во всей плоскости комплексного переменного k.

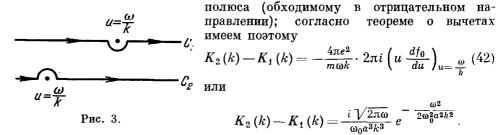
Выражение (37) неудобно для вычисления. Простым преобразованием с введением функций $K_1,\ K_2$ оно может быть представлено в виде

$$E_{1}(x) = \frac{iE_{0}}{\pi\varepsilon} \int_{-\infty}^{+\infty} \frac{K_{0} - K_{2}(k)}{k[1 - K_{2}(k)]} e^{ikx} dk + \frac{iE_{0}}{\pi\varepsilon} \int_{-\infty}^{+\infty} \frac{K_{2}(k) - K_{1}(k)}{k[1 - K_{1}(k)][1 - K_{2}(k)]} e^{ikx} dk.$$
 (40)

При преобразованиях использовано, что согласно (24), (38) и (14) имеем

$$K_0 = 1 - \varepsilon. \tag{41}$$

Разность $K_2(k) - K_1(k)$ выражается, очевидно, формулой вида (38), в которой интегрирование производится просто по замкнутому контуру вокруг



Функции K_1 , K_2 связаны друг с другом, как легко убедиться, следующими соотношениями:

$$[K_2(k)]^* = K_1(k^*), \quad K_1^*(-k^*) = K_1(k), \quad K_2^*(-k^*) = K_2(k).$$
 (43)

На бесконечности обе функции K_1 , K_2 обращаются в нуль. Исследование, которое мы здесь опускаем, показывает, что функции K_1 (k), K_2 (k) во всей плоскости комплексного переменного k имеют всего одну особую точку, именно: существенно особую точку k=0. Величина K_0 есть предел, к которому стремятся K_1 , K_2 при стремлении k к нулю вдоль действительной оси. Можно также показать, что K_1 (k) стремится к тому же пределу K_0 при стремлении k к нулю по любому пути, проходящему вне прямоугольного сектора в верхней полуплоскости, ограниченного двумя прямыми, пересекающимися в начале координат и образующими углы 45° с мнимой осью. Для функции K_2 (k) то же самое имеет место вне такого же сектора в нижней полуплоскости.

В интегралах (40) существенны точки, в которых функции K_1 , K_2 обращаются в единицу. Можно показать, что уравнение K_1 (k) = 1 имеет бесчисленное множество корней в верхней полуплоскости, сходящихся к точке сгущения k=0. В нижней же полуплоскости оно вовсе не имеет корней, если $\varepsilon>0$ (т. е. если $K_0<1$); если же $\varepsilon<0$ (т. е. $K_0>1$), то оно имеет здесь один корень, расположенный на мнимой оси. Аналогичные утверждения для K_2 (k) следуют непосредственно из соотношений (43): уравнение K_2 (k) = 1 имеет бесконечное множество корней в нижней полуплоскости, а в верхней вовсе не имеет корней или же имеет один корень (на мнимой оси), смотря по тому, имеет ли место $\varepsilon>0$, или $\varepsilon<0$.

Если $\varepsilon > 0$, то подынтегральное выражение в первом интеграле в (40) не имеет, следовательно, полюсов в верхней полуплоскости, и, сдвигая

путь интегрирования на бесконечность в этой полуплоскости, мы найдем, что интеграл обращается в нуль. Если же $\varepsilon < 0$, то имеется один чисто мнимый полюс в верхней полуплоскости и интеграл сводится к вычету относительно этого полюса. Его зависимость от x будет, следовательно, определяться множителем, затухающим по экспоненциальному закону $e^{-\alpha x}$, $\alpha \gg 0$.

Полное вычисление интегралов (40) может быть произведено лишь численным образом. Можно, однако, получить асимптотическую формулу, определяющую закон спадания поля E_1 (x) при достаточно больших значениях x ($x \gg a$). Вычисляем второй интеграл в (40) (оказывающийся, как мы увидим, более существенным, чем первый), применив к нему известный метод перевала. Подставляя (42) в (40), получаем в подынтегральном выражении экспоненциальный множитель

$$\exp\left\{-\frac{1}{2}\left(\frac{\omega}{\omega_0 a k}\right)^2 + ikx\right\}$$
.

Следуя методу перевала, разлагаем показатель по степеням разности $\delta k = k - k_0$, где

$$k_0 = e \sqrt[3]{rac{\omega^2}{\omega_0^2 a^2 x}} \, e^{i\pi/6}$$

есть точка экстремума показателя, после чего интегрируем по пути «наиболее крутого спада». При этом в предэкспоненциальном множителе берется его значение при $k=k_0$ и выносится из-под знака интеграла; поскольку при больших x значение k_0 мало́, в знаменателе можно положить $1-K_2$ (k_0) = $1-K_1$ (k_0) $\cong 1-K_0=\varepsilon$. В результате простого вычисления получаем следующее окончательное выражение:

$$E_{1}\left(x\right) = \frac{2E_{0}}{\sqrt{3\varepsilon^{2}}} \left(\frac{\omega}{\omega_{0}}\right)^{4/3} \left(\frac{x}{a}\right)^{2/3} e^{-\frac{3}{4}\left(\frac{\omega x}{\omega_{0}a}\right)^{2/3} + i\left[\frac{3}{4}\frac{\sqrt{3}}{4}\left(\frac{\omega x}{\omega_{0}a}\right)^{2/3} + \frac{2\pi}{3}\right]}.$$
 (44)

Таким образом, поле E_1 (x) спадает по экспоненциальному закону с $x^{2/3}$ в показателе [первый член в (40) спадает, как мы видели, по более быстрому закону $e^{-\alpha x}$ и потому при достаточно больших x становится несущественным]. Выражение (44) содержит наряду с затухающим также и периодический множитель. Особого рассмотрения требует случай почти полного резонанса, когда частота ω внешнего поля близка к собственной частоте плазмы. Диэлектрическая постоянная при этом близка к нулю; $|\varepsilon| \ll 1$ [ε при этом связано с частотой соотношением $\varepsilon = 2$ ($\omega - \omega_0$)/ ω]. Вычисления различны для $\varepsilon < 0$ и $\varepsilon > 0$.

Предположим сначала, что ϵ мало и отрицательно. Мы видели, что при $\epsilon < 0$ первый член в (40) затухает как $\epsilon^{-\alpha x}$, т. е. быстрее, чем второй член. Однако при $|\epsilon| \ll 1$ коэффициент затухания α оказывается, как мы увидим, малым, потому второй член становится преобладающим лишь при весьма больших x; в остальной же области существен первый член.

Полюс подынтегрального выражения в этом интеграле при малых $| \varepsilon |$ лежит, как мы увидим, на мнимой оси, близко от начала координат [речь идет о единственном корне уравнения K_2 (k) = 1 в верхней полуплоскости]. Поэтому при вычислении этого корня можно разложить функцию K_2 (k) по степеням k. Путь на C_2 , по которому берется интеграл (38), определяющий функцию K_2 (k), сводится просто ко всей действительной оси; такой путь обходит особую точку $u = \omega/k$ [расположенную теперь

на отрицательной части мнимой оси], как и следует, сверху. Простое вычисление дает с точностью до членов второго порядка

$$K_2(k) = 1 - \varepsilon + 3(ka)^2$$
.

Отсюда находим для искомого корня уравнения $K_2(k) = 1$

$$k = \frac{i}{a} \sqrt{\frac{|\varepsilon|}{3}}$$
.

Вычисляя теперь первый интеграл в (40) как вычет относительно полюса, получим в результате следующее выражение для полного поля E(x):

$$E(x) = \frac{E_0}{\varepsilon} \left(1 - e^{-\frac{x}{a}} \sqrt{\frac{|\varepsilon|}{3}} \right). \tag{45}$$

Таким образом, при малых отрицательных є поле монотонно возрастает с х по простому экспоненциальному закону, приближаясь к пределу E_0/ε . При x=0 формула (45) дает E(x)=0 вместо правильного значения E_0 в связи с тем, что в принятом здесь приближении величинами порядка є пренебрегается.

Наконец, рассмотрим случай малых положительных значений є. При $\varepsilon > 0$ первый член в (40) обращается в нуль. Однако второй интеграл содержит в действительности наряду с выражением (44) еще и член, спадающий по закону вида $e^{-\alpha x}$, и при малых ϵ этот последний член становится существенным во всей области, за исключением опять только самых больших х. Этот член связан с вычетом относительно полюса подынтегрального выражения, лежащего в верхней полуплоскости близко к действительной оси. Именно, оказывается, что среди бесконечного множества корней уравнения K_1 (k)=1 в верхней полуплоскости имеется один, лежащий (при малых є) очень близко к действительной оси; разлагая функцию $K_{
m i}\left(k
ight)$ в ряд по степеням k, легко получить следующее выражение для этого корня:

$$k = \frac{1}{a} \left[\sqrt{\frac{\varepsilon}{3}} + i \frac{3}{2\varepsilon^2} \sqrt{\frac{\pi}{2}} e^{-\frac{3}{2\varepsilon}} \right].$$

Наконец, вычисляя вычет интеграла относительно этой точки, получим в результате следующий закон проникновения поля внутрь плазмы:

$$E(x) = \frac{E_0}{\varepsilon} \left[1 - \exp\left\{ \frac{i}{a} \sqrt{\frac{\varepsilon}{3}} x - \frac{3}{2a} \sqrt{\frac{\pi}{2\varepsilon}} e^{-\frac{3x}{2\varepsilon}} \right\} \right]. \tag{46}$$

Таким образом, в этом случае получается своеобразный ход поля: амплитуда его сначала возрастает от нуля (в действительности от E_0) до $2E_0/\epsilon$, а затем испытывает экспоненциально затухающие колебания (с очень малым коэффициентом затухания) вокруг значения E_0/ϵ , к которому поле стремится на больших расстояниях.

Институт физических проблем Академии наук СССР

Поступило в редакцию 2 июня 1945 г.

ЛИТЕРАТУРА

- 1. А. А. В ласов, ЖЭТФ 8, 291 (1938). 2. А. А. Vlasov, J. Phys. (USSR) 9, 25 (1945).