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t ollisional diffusion in long-mean-free-path, geometricaj. ly nonsymmetric regimes is
characterized by Bohm-like scaling laws. A variational principle is found for calcula-
tion of diffusion constants.

In toroidal confinement geometries with rota-
tional transform, the magnetic field can be de-
signed to form surfaces. The trajectories of the
particles, in general, form drift surfaces that
lie roughly within a gyroradius of the magnetic
surfaces. However, in the case of particular to-
roidal geometries and particles having small ve-
locities parallel to the magnetic field, the dis-
placements from the magnetic surfaces can be
much larger. Collisional diffusion can then lead
to a considerable increase of the particle and
heat transport relative to the classical expecta-
tion.

In axisymmetric toruses or in straight stel-
larators the conservation of canonical angular
momentum limits the particle excursions' to the
gyroradius times a geometric factor that be-
comes large only for small rotational transform. '
The largest excursions are made by low-parallel-
velocity particles that are trapped ("banana" or-
bits), or nearly trapped, in regions of weak mag-
netic field. The enhanced transport coefficients
that result in the axisymmetric case have been
calculated by Galeev and Sagdeev, ' and were
found to scale with magnetic field strength and
collision frequency like the classical transport
coefficients, but to exceed them by factors de-
pending on the torus geometry.

In the present analysis we consider particle
motion and associated transport in a toroidal
stellarator. We treat the limit of small gyrora-
dius r, where excursions and diffusion would
become negligible in a symmetric geometry. In
the toroidal stellarator, however, canonical an-
gular momentum is not conserved, and the trapped
particles can make excursions that remain of fi-
nite size as r& becomes small. 4 The resultant
collisional transport coefficients'~' no longer
scale like the classical coefficients, and can ev-
en approximate Bohm scaling in certain param-
eter ranges.

We will be concerned principally with an / = 3

stellarator model of small inverse aspect ratio
et =r/R,

B =B [I-e cos3(8-az)-e cos8],
0 h t

«I, de /dr=3& /r,t h
'

h h

which is valid near the magnetic axis (the z axis,
going along the major circumference). The mag-
netic surfaces are approximately concentric cy-
linders. We can use 8 =B~S in dealing with the
trapped-particle drifts. The particle trapping is
due to the eI, term (the contribution of the helical
stellarator windings), and the existence of finite
excursions is due to the et term, which spoils
the helical symmetry.

The trapped-particle motions are calculated
from conservation of the energy W, the first
adiabatic invariant p. , and the second adiabatic
invariant

J= (2/m )'"gdl[W eC pB-)"'—
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We include an electrostatic potential 4(r). The
quantities K and E are the first and second com-
plete elliptic integrals.

The trapped particles bounce between mirrors
at a fast rate &ug =[ms J(W, g, r)/sW] '- a '(pBpeIt, /
m)'", and the resultant bananas drift on constant-
4 orbits along the loci of the mirror points (i.e. ,
8-az = const). In general, the bananas are un-
trapped (their drifts encompass the minor cir-
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cumference); and their radial excursions follow
from Eq. (2) by expansion to first order in r, =r

+o

E (cosa -cos8)K(k')
I p

0
'3e 2E(k')-K(k'}(1 +er 4'/V. 8pc )

(3)
h

When 4 ' is small, we thus have rl =O(~feb ');
at k' = kp' = 0.83, however, the denominator in

Eq. (3) has a null, and we must expand Eq. (2) to
second order in ~, . We then obtain a class of
trapped bananas whose orbits (superbananas) are
localized in 6, and therefore also in z, and
whose maximum radial excursions are large: r1
= O(sf"'ek "'). In the presence of an electrostat-
ic potential such that er04'& pB0&h, there are
only untrapped bananas, making excursions r1
=

O(afar.

Bp/eC ') (A p. otential of this magnitude
has a negligible effect on the trapping of parti-
cles. )

The time scale of the banana drifts is obtained
from

The latter assumption is strictly correct only
for the case of plasma diffusion on an indepen-
dent population of scatterers. However, because
of the nonsymmetric nature of the present geom-
etry and the attendant removal of the constraint
due to conservation of canonical angular momen-
tum, the assumption of Maxwellian scatterers
appears justified also for the more important
case of self-diffusion of charged particles, which
we will consider here.

We will specialize, finally, to the case where
the existence of trapped banana orbits can be ne-
glected, either because v/ek exceeds ~rf, or be-
cause a banana-untrapping electrostatic poten-
tial arises in the course of ambipolar diffusion.
This simplifying assumption is appropriate for
the parameter ranges of practical interest. (We
note merely that in the contrary case the diffu-
sion falls to zero as v vanishes. }

Under these conditions on the scattering, and
using Eqs. (2), (3), and (4), we obtain the banana
kinetic equation

c ad/rae
eBO aJ/aW (4) (r') n+ (u(k') ~

er 86)

using Eq. (2). For the untrapped bananas, which
are of principal interest in what follows, the or-
bits have approximately the form r =r, (B + &ut),

with &u =O(~b /&uc), where &uc is the cyclotron
frequency [cf. Eqs. (6) and (7)]. For the trapped
bananas, where the orbits are not so simple, it
is convenient to use the third adiabatic invariant
(the flux B,A through the superbanana) and cal-
culate the inverse Period urf/2s = (c/eBP)[aA(W,
y, , J)/aW] ' by manipulation of Eqs. (2) and (3).
This precession rate is reduced from that of the
untrapped bananas by (ef/ek)'".

We now consider the diffusion caused by colli-
sions acting on the drifting banana guiding cen-
ters. The governing equation is the Fokker-
Planck equation, ' the important term being that
leading to diffusion in the pitch angle cos '(I

(pB,/W-))'" The di.ffusion in pitch angle leads
to a diffusion in the quantity k' of Eq. (3), and
the correct diffusion equation is obtained by aver-
aging over a banana period (dy '. Thus we re-
quire the effective collision frequency v/ek to be
small compared with wy. On the other hand, we
will require that v be large compared with the in-
verse lifetime of the plasma, so that the plasma
distribution function is close to Maxwellian and
we may use a linearized collision operator, we
also treat the scatterers as Maxwellian.

K(s)ds ' =—Cf„'ek' (5)

pc ckT
(r') = v sin8, vr ' r temp' r h eBrp"

2B(k2) cC ' p.B„
(d(k ) =3(0 x

K(k2)
+ ~ ) x =

2 one 1.
v = vA(x), v =~ ~(2(k&pl2,

3
2 1A(x)=x ti'+q 1-—

(7)

F = 2, f d&f dk'K(k)f, (r)

The problem is solved by writing f, =X cos&
+ Y sin6 and setting up a maximal variational

1 1

tt(x) =2m ', e s'ds,

where ~ is the usual logarithm of the ratio of
Debye length to minimum impact parameter.
Here afJar is the equilibrium density gradient,
and Eq. (5) is to be solved for f„subject to the
boundary conditions that it be regular at k'=0
and vanish at k = 1, which is the limit of particle
trapping. The diffusion flux F is obtained by in-
tegrating f,(r) over k',

512



VOLUME 22, NUMBER 11 PHYSICAL REVIEW LETTERS 17 MARcH 1969

principle for the diffusion coefficient D = -E(&f0/&r)

"'u '(v '(

,Q'J, K(s)dsjdk,
2 & ke / .0 (udk'

SS(s(s(s( (
—'

$ „,(
"(X,frC, (s(ds() +(X'&* a('s'

(10)

This rate is independent of particle species and
collision rate, within the limitations assumed
above, and for practical parameters does not lie
too far below the Bohm value. The limitations
on collision frequency, however, are seldom
satisfied in practice for both ions and electrons
simultaneously.

The usual case for both present-day experi-
ments and fusion applications is that the ion col-
lision rate lies near the range envisaged above,
but the electron collision rate is somewhat too
high. Equal diffusion is attained only with the
appearance of an electrostatic potential 4 (r, 8, z),
in which the 8 and z dependence can be impor-
tant. ' For present purposes, we confine our-
selves to the much simpler model 4(r), assum-
ing a plasma component with sufficient mobility
within each magnetic surface to provide the re-
quired charge neutralization, and neglecting the
contribution to Eq. (9) from the perturbation in
the neutralizing component. To solve this prob-
lem, we first consider the diffusion coefficient
in the case of large collision rate v/ek»(dr (but
still &(dk). The maximizing trial function is giv-
en by (d gX =k -1, and we find jn this case

D =12D (u e /v.
0 (12)

If now we treat the case ve/ek & ~r & vf/ek, then

where X'=dX/dk . At k'=1, we require X=EX
=(v/ek) Se 'CX uraf0/-Sr=0; while at k'=0, we
require that X and CX be regular and that (v/
~k)'C(d 'RX ursf0-/sr =0. To find the overall
diffusion coefficient, D should be maximized for
each energy p. BO and then averaged over p.90.

The variational principle (10) can now be ap-
plied to various cases of interest. If the colli-
sion frequency is in the range v/ek & (ur (but still
&(art), and if there is no electric field, then the
maximizing trial function X' is peaked around k'
=0.83, where co vanishes, and we find

ckT

D-1 8D (v ./e )"'(.d /(u0 i h
(13)

To obtain self-consistency, two cases must be
considered. (a) We equate the electron and ion
diffusion given by Eqs. (12) and (13), by choosing
(dg appropriately. The particle diffusion and
thermal conductivity are then given by Eq. (12)
for electron parameters. This regime pertains
as long as ey&kT, or (uE«drek ' (b) F.or
larger values of calculated (dg, the potential can-
not actually rise above kT, since the ions will go
toward electrostatic equilibrium, with the ion
flux F = (n'/n e4'/kT)D co-rrespondingly reduced.
In this limit the particle diffusion is given by Eq.
(12) for electron parameters, but the thermal
diffusion is given by Eq. (13) for ion parameters
and (dg = (dgEg

We note, finally, that collective plasma modes
might act to short out the ambipolar potential 4,
and that diffusion could then proceed at the rate
given by Eq. (11).

The present results for purely collisional dif-
fusion are of practical interest in the toroidal re-
actor regime, where substantial improvements
over the Bohm time are required. It appears,
however, that collisional diffusion alone will not
constitute a barrier to the stellarator-type reac-
tor. These are also the conclusions of a numeri-
cal computation carried out by Mason and Gibson,

The enhanced collisional diffusion due to stel-
larator geometry is unlikely to explain the obser-
vations on anomalous losses in present-day torus
experiments. Our theoretical loss rates are
somewhat too small to account for Bohm-like dif-
fusion in stellarators; and the observation of

! for the electrons Eq. (12) still holds, but for the
ions the diffusion is not so large as in Eq. (11)
because the electric-field rotation (uE = (c/r 0B0)4 '

& (d~ leads to a reduction of particle excursions.
The maximizing trial function for the ions is lo-
calized near k' = 1, and leads to a diffusion of
order
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Bohm-like loss rates also in certain axisymmet-
ric torus regimes suggests that the symmetry
of the magnetic-field geometry cannot be the sole
relevant consideration.

In this context, it is suggestive to note that ir-
regularities of the electrostatic potential'o have

precisely the same desymmetrizing effects on

particle orbits" as has the stellarator geometry.
It seems plausible that potential irregularities
amounting to a fraction of kT could arise from
technical imperfections of plasma generation,
or from slow-growing instabilities (e.g. , trapped-
particle modes), or indeed from the diffusion
process itself, and could entail collisional trans-
port rates accounting for the experimentally ob-
served anomalous losses.
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