Генерация рентгеновского характеристического излучения с помощью тераваттного фемтосекундного хром-форстеритового лазера

М. Б. Агранат⁺, Н. Е. Андреев⁺, С. И. Ашитков⁺¹⁾, А. В. Овчинников⁺, Д. С. Ситников⁺, В. Е. Фортов⁺, А. П. Шевелько^{*+}

+ Институт теплофизики экстремальных состояний Объединенного института высоких температур РАН, 125412 Москва, Россия

*Физический институт им. П. Н. Лебедева, 119991 Москва, Россия

Поступила в редакцию 11 апреля 2005 г. После переработки 16 декабря 2005 г.

Исследовано рентгеновское характеристическое K_{α} -излучение, возникающее при воздействии на металлическую мишень фемтосекундных импульсов инфракрасного диапазона спектра, генерируемых тераваттной лазерной системой с активной средой хром-форстерит (1240 нм, 90 мДж, 80 фс). Для мишени из железа измерен абсолютный выход (до $3 \cdot 10^8$ фотон/стерад · импульс) и коэффициент преобразования энергии лазерного в K_{α} -излучение (максимальная величина $\approx 0.03\%$). Исследована угловая зависимость интенсивности излучения от угла падения *p*-поляризованного лазерного излучения. Обсуждаются механизмы образования быстрых электронов, ответственных за генерацию рентгеновского характеристического излучения.

PACS: 42.65.Re, 52.59.Px, 52.65.-y

Изучение процессов генерации быстрых электронов и характеристического рентгеновского излучения, возникающих при образовании лазерной плазмы с помощью воздействия мощных фемтосекундных лазерных импульсов на твердотельные мишени, имеет не только фундаментальное, но и прикладное значение. Образующиеся в результате такого воздействия импульсы рентгеновского излучения субпикосекундной длительности используются для диагностики экстремальных состояний и сверхбыстрых процессов, возникающих при взаимодействии мощного лазерного излучения с веществом, кинетики химических реакций, а также в биологии и медицине (см., например, [1-3]).

Ранее в подобных исследованиях использовались титан-сапфировые фемтосекундные лазерные системы с длиной волны излучения 800 нм. В настоящей работе исследовано рентгеновское характеристическое K_{α} -излучение, возникающее при образовании плазмы с помощью тераваттной инфракрасной хромфорстеритовой фемтосекундной лазерной системы. Лазерная система обеспечивает генерацию импульсов длительностью 80 фс с энергией до 90 мДж и частотой повторения 10 Гц на длине волны $\lambda = 1240$ нм [4] с высоким контрастом по мощности излучения. На рис.1 приведена корреляционная функция, ха-

10 Intensity (arb. units) 10 10^{-1} 10 10^{-5} 10 10 -2-4 0 2 8 -6 6 Delay (ps)

Рис.1. Корреляционная функция лазерного импульса

рактеризующая временной профиль импульса в широком диапазоне изменения мощности. Измерения проводились с помощью коррелятора третьей гармоники. Контраст импульсов по мощности составлял не менее 10⁴ за 1 пс до максимума импульса и более 10⁶ за 2 пс и в наносекундном диапазоне.

Плазма образовывалась при фокусировке лазерного излучения (энергия импульса E_L до 40 мДж) на массивную мишень из железа, расположенную в вакуумной камере (10^{-3} мм.рт.ст.). Фокусировка излучения на мишень осуществлялась безаберрационным трехлинзовым объективом с фокусным расстоянием 100 мм. Диаметр фокального пятна на уровне поло-

¹⁾e-mail: asi@iht.mpei.ac.ru

Рис.2. Спектр мишени из железа: (а) обзорный спектр; (b) структура линии K_{α} (*p*-поляризация, $\theta = 45^{\circ}$, $E_L = 15$ мДж, накопление по 10 вспышкам лазера, спектральное разрешение – $\lambda/\delta\lambda = 850$)

вины интенсивности составлял ~ 10 мкм, что позволяло достигать интенсивности I_L в фокусе свыше 10^{17} Bt/cm^2 . Угол падения *p*-поляризованного лазерного излучения на мишень варьировался в диапазоне $\theta = 0 \div 45^{\circ}$. Система позиционирования обеспечивала смещение мишени на новое место от импульса к импульсу.

Для регистрации рентгеновских спектров использовался фокусирующий кристаллический спектрометр, выполненный по схеме Гамоша и обладающий высокой светосилой в спектральном диапазоне 1 ÷ 10 Å [5]. В приборе использовался цилиндрический кристалл слюды (2d = 19.84 Å), изогнутый по радиусу R = 20 мм. В качестве детектора излучения использовалась ПЗС линейка Toshiba TCD 1304AP, имеющая 3724 элементов 8 мкм шириной и высотой 200 мкм. Рентгеновские спектры характеристического излучения регистрировались в пятом порядке отражения кристалла слюды. Высокое спектральное разрешение спектрометра ($\lambda/\delta\lambda$ ~ $\sim~1000)$ позволяло наблюдать полную структуру рентгеновских спектров характеристического излучения: $K_{\alpha 1}$ -, $K_{\alpha 2}$ -, K_{β} -линии (рис.2). Абсолютная калибровка спектрометра позволила определить (в предположении изотропного источника в 4π стерад) максимальный выход излучения за один импульс $X = 4 \cdot 10^9$ фотон/импульс и максимальный коэффициент преобразования $\eta = E_{x-ray}/E_L = 0.03\%$ лазерного излучения в $K_{\alpha} = K_{\alpha 1} + K_{\alpha 2}$ излучение [6].

Исследована угловая зависимость интенсивности K_{α} -излучения от угла падения *p*-поляризованного лазерного излучения. На рис.3 приведена зависимость выхода излучения в линии $K_{\alpha} = K_{\alpha 1} + K_{\alpha 2}$ от угла падения лазерного излучения на мишень при фиксированной энергии лазерных импульсов. Для каждого угла θ ось спектрометра устанавливалась под углом

Рис.3. Зависимость выхода излучения линии K_{α} от угла падения *p*-поляризованного лазерного излучения $(E_L = 12 \text{ мДж}, \text{ накопление по 10 вспышкам лазера})$

 $45^{\circ} \pm 5^{\circ}$ (угол наблюдения) относительно нормали к поверхности мишени. Каждая точка на графике является результатом усреднения по пяти измерениям, в каждом из которых проводилось накопление сигнала по 10 вспышкам лазера. Результаты измерений показали существенный рост выхода K_{α} -излучения при увеличении угла падения лазерного излучения *p*-поляризации. На рис.4 приведена зависимость выхода излучения $K_{\alpha} = K_{\alpha 1} + K_{\alpha 2}$ от падающей энергии лазерного импульса *p*-поляризации для $\theta = 45^{\circ}$, измеренная при тех же условиях.

Для субпикосекундных *p*-поляризованных лазерных импульсов нерелятивистской интенсивности $(I_L\lambda^2 \leq 10^{18}\,\mathrm{Bt\cdot mkm^2/cm^2})$ генерация горячих электронов может быть обусловлена, в основном, двумя бесстолкновительными механизмами: "вакуумным нагревом" и резонансным поглощением (см., например, [1]). В случае характерного размера неоднородности плотности плазмы в окрестности

Рис.4. Зависимость выхода излучения линии K_{α} энергии лазерного импульса ($\theta = 45^{\circ}$, *p*-поляризация, накопление по 10 вспышкам лазера)

критической плотности L_c , малого по сравнению с амплитудой осцилляций электронов в поле нормальной к мишени компоненты лазерного поля r_{Ep} , электроны могут быть ускорены вакуумным полем p-компоненты импульса. Температура (энергия) горячей компоненты электронов (в кэВ) оценивается при этом по формуле [7] $T_{\rm hot} \approx 74I_L\lambda^2 \sin^2\theta$, где λ – длина волны лазерного излучения в мкм, I_L – интенсивность в 10^{17} Вт/см² и θ – угол падения излучения на мишень.

В случае размеров неоднородности плазмы L_c, превышающих амплитуду осцилляций электронов в поле нормальной компоненты лазерного поля r_E , электроны могут быть ускорены в резонансно усиленном потенциальном поле в окрестности критической плотности. При этом для достаточно крутых градиентов, когда $L_c/\lambda < (2\pi)^{-1}$, энергия ускоренных электронов (в кэВ) может быть оценена по формуле [8,9] $T_{
m hot} pprox 1.3 [I_L]^{1/2} L_c \sin heta$, где I_L измеряется в 10¹⁷ Вт/см², а характерный размер неоднородности плотности плазмы L_c – в нм. Эта оценка хорошо совпадает со скейлингом, используемым в работе [10] на основе РІС моделирования для $L_c = 240$ нм и $\theta = 30^\circ$. Отметим, что в случаях, когда $r_E \approx L_c$, обе приведенные оценки энергии горячих электронов для "вакуумного нагрева" и резонансного поглощения совпадают (с точностью до множителя порядка единицы). При этом нельзя выделить преобладающий механизм нагрева, и зависимость энергии горячих электронов от интенсивности излучения может отличаться как от линейной, так и от корневой (с показателем 2).

В настоящей работе для описания воздействия фемтосекундных лазерных импульсов на твердотельные мишени была использована двухтемпературная гидродинамическая модель, дополненная уравнениями Максвелла и учитывающая процессы поглощения энергии лазерного излучения, ионизации, нагрева и разлета вещества мишени и электрон-ионной релаксации, а также затраты тепловой энергии на термическую ионизацию и пондеромоторное давление излучения [11, 12].

Полученные результаты моделирования отвечают оценкам [12, 13] зависимости температуры основной массы тепловых электронов мишени от интенсивности и длительности лазерного излучения и находятся в диапазоне $350 \div 700$ эВ для параметров эксперимента. Высокий контраст лазерных импульсов обусловливает малый характерный размер неоднородности плотности плазмы L_c во всем диапазоне интенсивностей излучения $I_L \approx (0.5 \div 4) \cdot 10^{17} \, \mathrm{Br/cm^2}$. Расчеты, выполненные с учетом пикосекундного пьедестала (см. рис.1) для интенсивности $I_L = 1 \cdot 10^{17} \, \mathrm{Br/cm^2}$, показывают, что величина L_c в окрестности критической плотности во время действия максимума импульса составляет 10 нм при скорости разлета плазмы $\sim 10^7 \, \mathrm{сm/c}$.

Для параметров эксперимента ($I_L \sim 10^{17} \, {\rm Br/cm}^2$) амплитуда осцилляций электрона в поле p-компоненты лазерного импульса r_E становится больше характерного размера неоднородности плазмы $L_c \approx 10$ нм при углах падения излучения $\theta \geq 10^\circ$, что может приводить к генерации горячих электронов, благодаря механизму "вакуумного нагрева". Результаты экспериментов (рис.3) указывают на резкое увеличение выхода K_{α} -излучения для углов падения $\theta \geq 10^\circ$, когда оценка температуры горячих электронов по вышеприведенной формуле для "вакуумного нагрева" дает $T_{\rm hot} \approx 7 \, {\rm k}$ эВ (для $\theta = 14^\circ$ с учетом апертуры фокусирющей оптики). Эта величина отвечает диапазону энергий электронов, необходимых для генерации K_{α} -излучения, регистрируемого в эксперименте.

В то же время, если под влиянием предымпульса в наносекундном диапазоне характерный размер неоднородности L_c во время действия короткого импульса оказывается несколько больше, $L_c \approx 30$ нм, то генерация горячих электронов может быть объяснена резонансным поглощением во всем диапазоне углов, приведенных на рис.3. При этом оценка температуры горячих электронов по формуле резонансного поглощения также дает величину $T_{\rm hot} \approx 7$ кэВ для углов падения $\theta \geq 10^\circ$.

Проведенные исследования характеристического K_{α} -излучения, возникающего при образовании плазмы с помощью тераваттной фемтосекундной лазерной системы инфракрасного диапазона спектра с высоким временным контрастом импульсов, продемонстрировали эффективную конверсию лазерного излучения в характеристическое рентгеновское. Экспериментальные данные о зависимости интенсивности K_{α} -излучения от угла падения на мишень лазерного импульса дают важную информацию о механизмах образования быстрых электронов.

Планируемые эксперименты, в которых одновременно с угловой зависимостью интенсивности K_{α} -излучения будут проведены прямые измерения температуры горячих электронов $T_{\rm hot}$, позволят более определенно идентифицировать механизмы образования горячих электронов. Эти эксперименты позволят оптимизировать процессы генерации короткоимпульсного фемтосекундного характеристического излучения.

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (грант #04-02-17055).

- P. Gibbon and E. Forster, Plasma Phys. Control. Fusion 38, 769 (1996).
- 2. A. Rousse, C. Rischel, and J.-C. Gauthier, Rev. Mod. Phys. 73, 17 (2001).

- J. Sjögren, M. Harbst, C.-G. Wahlström, and S. Svanberg, Rev. Sci. Instrum. 74, 2300 (2003).
- 4. М.Б. Агранат, С.И. Ашитков, А.А. Иванов и др., Квант. электроника **34**, 506 (2004).
- 5. P. Shevelko, Yu.S. Kasyanov, O.F. Yakushev, and L.V. Knight, Rev. Sci. Instrum. **73**, 3458 (2002).
- M. B. Agranat, N. E. Andreev, S. I. Ashitkov et al., Proc. SPIE 5918, 184 (2005).
- 7. F. Brunel, Phys. Rev. Lett. 59, 52 (1987).
- J. P. Freiberg, R. W. Mitchell, R. L. Morse et al., Phys. Rev. Lett. 28, 795 (1972).
- С. Ю. Гуськов, Н. Н. Демченко, К. Н. Макаров и др., Письма в ЖЭТФ 73, 740 (2001).
- 10. Ch. Reich, P. Gibbon, I. Uschmann, and E. Forster, Phys. Rev. Lett. 84, 4846 (2000).
- 11. N.E. Andreev, V.V. Kostin, and M.E. Veisman, Physica Scripta 58, 486 (1998).
- 12. Н.Е. Андреев, М.Е. Вейсман, В.П. Ефремов, В.Е. Фортов, ТВТ 41, 679 (2003).
- H. Nakano and A. A. Andreev, J. Limpouch, Appl. Phys. B 79, 469 (2004).