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The treatment presented in an earlier paper is extended to give a more exact estimate of the particle
runaway rate in a fully ionized gas under the action of a weak applied electric field. By analyzing the motion
of particles in various regions of velocity space, it is shown that in any weak applied electric Geld some
particles will always run away. The rate at which this occurs is determined by the Row of particles from
the collision-dominated to the electric-field-dominated region of velocity space. The probability, Q(r), of
electron runaway as a function of time is calculated with the help of the Boltzmann-Fokker-Planck equation
and can be expressed in the form Q(r) = 1—exp( —X&r). The runaway rate, 4, is presented as a function of
applied electric Geld, and the plasma temperature and density. It exceeds by several orders of magnitude
the rate recently proposed by Harrison. The runaway rate for positive ions is shown to be exceedingly small
compared to ) &, in the circumstances usually encountered.

A brief discussion is devoted to the experimental evidence, the effects of magnetic fields, and the excitation
of plasma instabilities. The correction which particle runaway introduces in the equation of pressure balance
is presented for the case of a static pinched discharge.

I. INTRODUCTION

' 'N the first paper of this series' (hereafter denoted by
. . R-I) hydrodynamic equations were used to describe
the Row of electrons and positive ions of a fully ionized

gas under the inQuence of an applied electric field. In
this description, the dynamical friction force which

arises through the agency of two-body electron-ion
encounters was evaluated for Maxwellian electron and
ion velocity distributions. Under the action of an elec-
tric field, these distributions move through velocity
space with the electron and ion drift velocities, and in
this approximation the motion carried out by any
particle in the distribution is very similar to that carried
out by the average particle moving with the drift
velocity. Specifically, if the applied field is weak com-

pared to the critical electric field for runaway, E„
introduced in R-I, and the average particle does not
runaway, then according to the hydrodynamic ap-
proximation no other particle in the distribution can
run away.

This result is not strictly valid. It ignores the
existence of certain groups of energetic particles in the
distribution which take part in collisions so infrequently
that for these almost any applied field, 8, may be con-
sidered to be strong (in the sense defined in R-I), even

though the same field fu16lls the weak-field criterion
E(&E, when the main body of particles in the dis-

tribution are considered.
The primary purpose of this paper is to examine the

runaway effect in this weak-field limit. These calcu-
lations are presented in Sec. II.' In Sec. III a brief
discussion is devoted to the experimental evidence, the
role of plasma instabilities and magnetic fields, and the

*Work performed under the auspices of the U.S. Atomic Energy
Commission.' H. Dreicer, Phys. Rev. 115, 238 (1959).' These results were first reported by the author at the Tenth
Annual Gaseous Electronics Conference, Cambridge, Massa-
chusetts, October, 1957 PH. Dreicer, Bull. Am. Phys. Soc. 3, 86
(1958)g.

corrections which runaway introduces into the equations
of pressure balance.

II. WEAK FIELD RUNAWAY

A. Dehtion of Problem

In this treatment, we consider a uniform fully
ionized plasma of electrons and protons (or deuterons).
Prior to the instant when the externally applied electric
field is switched on, the electron and ion velocities are
assumed to be distributed according to the Maxwellian
law

F,(c)= e(P,/ir) & exp( —P,c'),

F,(c)= rt(P;/ir)& exp( —P;c')

where e is the particle density

P,= rrt/2ItT„P, =M/2ItT, ,

and the electron and ion masses and temperatures are
given by nz, M and T., T;, respectively. For simplicity,
the main part of this paper is restricted by the tem-
perature relation T, & T; which is usually encountered
in practice. The opposite limit is briefly discussed in
Sec. II, D.

At some instant of time an external electric field, E,
is switched on which is weak in the sense defined in
R-I, i.e.,

where

I' =4or(e'/4neprrt) 1n()/pp),
'h = (epkT, /rte') &=Debye radius,

pp=average impact parameter for a 90' Coulomb
deQection,

k1 6p = 9 )& 10 ' coulomb-volt '—meter '.

This inequality implies that in the mean free electron-
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ion collision time v ', where TABLE I. Lifetime of weak-Geld regime.

i = (e/m)E, P,l, (2) Lifetime obtained in R-I
(in units of t ~) ~-&(z./z) ~

the electric field alters the energy of an average electron
in the distribution by an amount which is small com-
pared to kT, . The collision rate v is also approximately
the rate of encounter between those electrons in a
Maxwellian distribution which are moving with average
random speeds.

Electron-electron encounters cannot alter the drift
energy imparted to the electrons by the field. This can
only be brought about by electron-ion encounters, i.e.,
Joule heating. In weak electric fields this process limits
the drift velocity of the electrons in the main body of
the Maxwellian distribution (hereafter called body elec-
trons) to approximately the directed velocity imparted
to such an electron in a single mean free electron-ion
collision time. This behavior is expressed by the relation

3&~Z - ( 4~t )-
&.(t)= P. ' ~ ——expl—

4 E. ( 3+m)
(3)

With the help of Eqs. (2) and (3) this expression may be
rewritten in the form

(derived in R-I) which shows that v, reaches its terminal
value several mean free collision times after the field is
turned on. Any subsequent increase in e, is coupled to
the rise in electron temperature. For the body electrons
a rise in temperature is a result of electron-ion en-
counters which randomize the drift energy imparted by
the field, and electron-electron encounters which redis-
tribute this energy into a Maxwellian distribution. As

long as we concern ourselves with the body electrons,
the results of R-I will apply; and with the help of Eqs.
(22b) and (29) (R-I), we find that these electrons are
Joule heated at the rate
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body electrons in the weak-field regime: After the
electric field is switched on, the terminal drift speed is
established in several mean free collision times. The
subsequent increase in the drift speed follows the rise
in temperature for an interval of time equal to about
(8 p/8)'v ', after which the strong field regime is
reached and runaway of the body electrons occurs.
Since the lifetime of the weak-6eld regime for the body
electrons exceeds u ', we may expect the body velocity
distribution to behave adiabatically and remain very
closely Maxwellian throughout this time.

We consider next that there must exist fast electrons
in the high-energy tail of the velocity distribution which
make collisions so infrequently that almost any applied
electric held controls their motion and thus may be
considered to be a strong fieM. When this eGect is
examined we find that velocity space can roughly be
divided into a runaway region where the applied Geld

plays the role of a strong field, and into a region domi-
nated by collisions where the same Geld is weak, and
runaway does not take place.

Our first problem is to locate these regions in velocity
space in the period immediately following the switching
on of the electric field. For this purpose, we consider a
single test electron moving with the velocity c under
the inRuence of a weak electric field through a gas of
electrons and singly charged ions. During the early
times, the relative drift velocity between the electron
and ion gases is very small compared to the average
random electron speed, and the ion as well as body-
electron velocity distributions are closely Maxwellian.
Under these conditions, the Langevin equation' for the
test electron is

This result shows that the instantaneous collision rate v

exceeds the instantaneous Joule heating rate by the
factor E.2/(s. '*E'), and the lifetime of the weak-field

regime, i.e., the time taken for the body electron drift
velocity to reach the value corresponding to P,n,'=1
starting from ~.=0, is roughly (E,o/E)'i ', where E,o is

the critical 6eld expressed in terms of the initial electron
temperature T,p. Solutions of the more exact equations
derived in R-I which take into account the strong vari-
ation of the dynamical friction force with drift velocity
are tabulated for several electric fields in Table I and
are seen to yield somewhat longer lifetimes. We are
thus led to the following picture of the behavior of the

de c eE, e—+— $24( V)+y—'4(y —'V))=—E+A (t),
dt em m

where
V=P'~, v= (P./tt;)

62 (V) —Vip/d V

h2(V) =
p

V

exp (—t') dt.

In this equation, the total instantaneous acceleration
due to particle-particle interaction is separated into a

3 For a review of methods involving the Langevin equation, see
S. Chandrasekhar, Revs. Modern Phys. 15, 1 (1943).



C TRON A ND ION RUN AWA Y

ge Part, the d

FULLY ION

bing the fluct
'

frl«ion, and a

NIzFD 331

F&G. 1. Flop& ]in

an electric peld o
he dynamical fr

ectron moving

ne generates
pointing aion g,

t«ion force ( gV/

s a surface o
. g ene ati

«evolution b
g ive p, a

a out the P . ac

we And4

~ axis.

"""(8/2)+z„„7

U' sing

V cosg

ere g is the an 1

he& pf
angle subtended

p the identity
byVandE With the

V' sin8 cos8d0+ V sin'8d V=sin'8d V= V sin8d(V sin8 )

,/ )Ve,

erived earliex in H'Der '
x I H. Dreicer Ph.

gy, 1955; andc nolo published in W

li, 1956) V iol'21 p 436
y

time-aV„,
A(t) d. ..

aking us f
atlogs ab t h

pal g,

is easi~ d
'

auss' theprem th
average gy

erived and ex
, t e Qynamica

y

p electron-e]e
«electron-io

- ectron encpunt
u ctipgs

s exact va/u
-

pun s wit}

by all particl
alue is determin d

nearest

'c e positipns
ine at each in

in additiPn, the, and its rate Pf ch
stag

es &

'
e ocity of a&] pa g

nge involves

y the strong ve)„.
'"g'vin'quation is,,

F«tunate]
'ty dep. nd,n„, „'"mp»caged

e1ectrons h-
u»rly silnp]

unctl pn

'y~ a partic
~ w lch are m

-
e situation ex.

V))]) h
ovlIlg sp fa

xls'ts fpr

' a partic&es t
y s der practica&]

rcum

w»g slrnphficat.
e + functl pn

* Op5y

i»ws that the f

ls 111versel
ln requenC Co

between ne
y proportion~) tp

y cpmponeng (6)

U~2

pn«rate . n t pu h

C

t encount
deeper jntp th

g a fast and ~

ers.
Coulom

e ar itrar

(7)

Thesee remarks are

mb Qe1ds
family pf fl &.

y cpnstant wh' h
»es shp

. ' genera
F

ons to be presen
ymore detai]edk f

. orce js stron
' ' r +){)the

leading up tp E
ntedin Sec. II &

S»etic nctlon force, d
g cpmpared tp th

e e ec-

square h
.q' „( ) 3 There 6

' argulnent space at f,
' w lines ent

ynalnical

ec angeint~
' . we nd th, t

time
the velocity f h

at the mean shows th
' y xaminatipn f E

e velocity

ls prlmarll th
0 t e electron

n atlnthisre .0 qs. 6 a

apphed field
y e lt of

p r t th co d't'
g ( e c ll 't th

d (7)

bet
ather than th

gy ga'ned in th and
' g ven ln Eq (g

.' naway region)

e ween electr
e result pf en

e se of the a
» ever wh

j
ergy exchan ed E(0

as~m~~otic for
ye~ere satisfied

nge

U) jv

] ct to this restr' '

(5)
' ' however ls

o ring all el~et

the high en
p red to E, and;n d.

y e therefore
and in g~~~r l h

y electrons ls c ll;,.
g (t).

gy limit of the L . 'mensionless fp
f +&o I

the condjtipn g. . »»n domjnated

t d l
g A(t)

dV V E
3

unaway and cp&]

velocity spa, ce

The dim ensi»less

separated by th
o ision-dominat d

with gh h
' e v«lab[~

r
'

e surface
e regions

e e}
erusedh

eLan ev'
If At

etained;n th
on which g —0

g s are

P Kq (2)b
e e is defined

be smeared p
g in equation th'

were

d the reglpn
' rface wpu)d

any plan
t"e tots, l force (E ~

' y ~pace follows
useful pne It

=0 surface;
g a " y

ontaining g th
. ' )—V/V& a d

tlpn h.
' ggests an appr

. ' evertheless a

ese lines are d
an ln

w lch we ente
roximate meth

e etermjned b
After th

er lgto next.
Of solu-

Udg

y
e electric ge

dU

~p~ed U,
originate in th

' " igh-energy

3(&. Z
e ~eld by U

elr ve]ocity in th
o in a time gi

n t e direction f
lven roughly b

0

r=(



332 H. DRE I CER

P, (V,r) =Po(V, r)+pP'(V r) (12)

F'( V, r) «F'(V, r),

and subsequently we may consider these to have run tion of the form
away. The motion of these early runaways is dominated
by the electric field, and is easily followed. Their total
particle density is, however, only of the order

2e
V' exp( —V') sinMod V

+7I Ij p ~ Vs sec(8/2) —m Vb exp( —Vbs). (8)

A more diTicult question involves those electrons
which originate in the collision dominated region. These
consist very largely of body electrons whose velocity
distribution is very nearly Maxwellian. In the course
of time, these electrons disuse across the E=O surface
and run away. Our problem is to calculate the rate
with which this mechanism depletes the collision
dominated region, and we turn to the Boltzmann
equation for a solution to this problem.

B. Boltzmann Treatment

The calculation proceeds from the Boltzmann and
Fokker-Planck equations which have the following
forms in our dimensionless units:

BIio 1
(V'J),

Br V' BV
(14)

BP' F' M„- E BIio

Br V 8V E, BV
(15)

In this equation the current J and the potential II„.
are given by

BH„o O'G„o Iio O'G„o
J= —p& +ipo +

8V 8V' V 8V'

where p is the cosine of the angle subtended by E and V.
As shown in R-I, this expansion is valid for the body
electrons in the weak-Geld limit E((E,. The intro-
duction of Eq. (12) into Eqs. (9a) and (9b) leads, after
integration over p, to a set of coupled equations for Iio

and F' which take the form

ap, E (ap.i
Vrp, =—f-

ar Z,

Ear�),

(9a)
1 BJ'"o 82G o Po BG o

+— —— +— F' (16)—
28V BV' V' BV 3E,

~ap, ~ a ~aa, . aa.;q-
+( ar ), aVb E aVb aVb)

IIei
I

dp

dV' 1
a(v')

fV—V'f

where

1 a' t' a'G a'G,
F.

l

"
+

"
f, (9b)

2 aVbaV, (aVkaV, aVbaV, )
r F,(V', )r

JI =2 -d&V'

fV —V'f
(10a)

(10b)

G..= ~P.(V', r) fV—V'fd'V',
0

(11a)

G.;= F,(V',r) f
V—V'

f
d'V'. (11b)

F, and F; are the electron and ion velocity distributions,
respectively. Summation over the components of the
velocity VI„V; is implied wherever these components
appear repeatedly. Integrations over the entire velocity
space are implied in Eqs. (10a) to (11b).

An exact analytic solution of the Boltzmann equation
does not seem feasible, and it is necessary to resort to an
approximate treatment. In this paper we make use of an
expansion in spherical harmonics5 and search for a solu-

'For an example of this method see T. Holstein, Phys. Rev.
70, 367 (1946).

In Eqs. (15) and (16) all terms which are proportional
to m/M have been neglected. The ions are therefore
taken to be inGnitely massive, and for this reason their
velocity distribution is given by a Dirac delta function.
Terms proportional to (F')' have also been dropped in
this derivation. The H, ,b and G,,b functions in Eq. (16)
are generated by F', the spherically symmetric part of
the distribution.

At this point we introduce two other simpliGcations.
The first of these restricts the solution of Eqs. (14)
and (15) to the collision dominated (E(0) region by
requiring that the electron velocity distribution vanish
on the E=O transition surface. This assumption is
based on the expectation that runaway reduces the
electron population in the neighborhood of this surface
below the value, ~ I exp( —Vbs), which exists in the
absence of the applied electric field. As a consequence
of this simplification, all interaction between electrons
in the runaway region which results in their reap-
pearance in the E&0 region, and all interaction between
electrons on opposite sides of the transition surface is
neglected. The second simpliGcation replaces the E=O
transition surface by a sphere of radius V&, and thus
introduces spherical symmetry into the problem. Jus-
tification for this approximation is presented a posteriori

in Sec. II, C.
Equation (14) is a nonlinear diffusion equation for F'.
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The current density J is therefore radial in velocity
space, and receives contributions only from processes
which involve energy exchange. Among these processes,
the contribution from electron-ion encounters is smaller
than that due to electron-electron encouriters by the
factor m/M and has therefore been neglected. This
accounts for the fact that G„does not appear in F.q.
(16). In Kq. (15), on the other hand, we are dealing
with momentum transferred to and from the electrons,
and here it is the electron-ion encounters, whose col-
lision rate in dimensionless units is just V ', which

play the dominant role. Directed energy gained from
the electric 6eld is randomized in direction by these
collisions, and contributes the Joule heating current
(F'/3) (E/E, ) to J.We have neglected the contribution
to BF'/Br from electron-electron encounters since these
do not alter the momentum of the electron gas directly.

The solution of Eq. (15) subject to the condition
that no current Aows prior to the application of E is

0.4

0.5

(a)~ 0.&

O. I

-O. I

8 9

I'xo. 2. The variation of the eigenfunctions m1, m2, and m3 with the
normalized speed V, for E/E, =0.03 and Vb=8.85.

nearly Maxwellian except for the immediate neighbor-
hood of Vb (see curves of tbi in Figs. 2 and 3). Substi-
tution of Eqs. (19) and (20) into Eq. (14) yields

( r)
F'(V, r) =exp l V') ~s

( s ) F BF'(V,s)
expl

EV') F., BV 2V' BV

BFo %(V) BsFo —
hs(V) 4(V) BFo

+
Br 2V BV'

The exponential time factors in this equation express
the contribution from particles moving with the speed
V to the transient buildup in the asymmetry F'. The
majority of electrons in the collision dominated region
move with speeds in the neighborhood of the most
probable speed V= 1, and for these the transient motion
dies out in several mean free collision times (i.e.,
r=2—3). The subsequent time dependence of F' arises
from Joule heating, and diffusion of electrons into the
runaway region, and is related to the time-dependent
behavior of F' which we consider next.

Following an approach used by Chandrasekhar' in
the theory of star clusters, we specify the initial velocity
of a test electron and trace its subsequent statistical
behavior by means of Eq. (14). Moreover, as we have
argued before, it appears reasonable to assume that all
other body electrons are distributed according to a
Maxwellian distribution since we can expect this region
to be depleted slowly compared to the rate at which
these electrons exchange energy. The utility of this
approximation lies in the fact that we have thus reduced
Eq. (14) to a linear partial differential equation, with
the interaction terms expressed once and for all in the
form

H,.'(V) =2hz(V)/V,

d82 1E 1
+2 F'+ — —(V—'F'), (21)

dV 3E V'BU

which we must solve subject to the initial and boundary
condltlons

5(V—Vs)
F'(V,O)=, Vp( Vb,

4~Vp'

F'(Vb, r) =0, r &0.

(22)

(23)

0.5

F'(,Vr) =f(V) exp( —Xr). (24)

04

0.5

0.2

O. I

After several mean free collision times, the transient
buildup terms in F' die out, and under certain con-
ditions Kq. (21) can subsequently be satisfied by a
separable solution of the form

j. 1 dh2
G,P(V) =hs(V) V+ +-

2V 2dV
(20)

A discussion of the limitations which linearization
imposes upon the validity of the solution is given in
Sec. II, C. However, we may add at this point that the
distribution function obtained in this way is very

b S. Chandrasekhar, Astrophys. J. 98, 54 (1943).

-0.1

FIG. 3. The variation of the eigenfunctions m», m2, and m3 with the
normalized speed U, for E/E, =0.1 and Vb= 7.20.
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(1/ V') —X

(26)

f(V)

n the boundary we then have

w(Vi, )=0.

In terms of this new fu, is new function, the diffi erential equation

(27)

» sho w this we subs
'

result
substitute Eq. (24 in ~ . . einto Eq. (18). Thee determin

approximatio

E, BV

is nearly pro ory proportional to exp( —X~xp —Xv provided

X(V '&Vg '.

In Sec. II C s ow, C, we shall show
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+-I—

C

V' 2U'

dh2 V) 82(V) (8 i'
dV V' & )C

3% (V)
=0. (28)

dw (E)' 8, V~(V) 3%'(V)

dV EE,2
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su ]ect to the addit'i ional boundary

102- w(0) =0. (29)
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Foor each choice of V
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0
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I

I I
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I I I

7 8 9 lp

Vb
where

n=1 ~VVo&

w„(V)w„(VO)r(VO)
exp( —X 7), (30)

Pro. 4. The va
, with the normal' ed tra ize transi ion sphere $w (V)$'r(V)dV,
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moving with the speed Vb, and it la sn it plays the role of a
an . e total conditional probabilitya iity,

io'

ELECTRON A N D ION RUNA WAY I N FIN FULLY ION IZED GAS. I I

1

Q(v IV. I
)= P(Vol Vol r)dr,

Jo

foo—

io-'-

satisfies tt e normalization condition V
s ~

It may therefore be ex re ore e expressed in the equivalent form

Q(Vbl Vol r)

P Q (V, Vo)L1 —exp( —X„)7

=P C„(Vb)w„(Vo)l 1—exp( —X.r)7

X P C (Vb)w„(vo),

IO 2-

where
(dw„i1 dw

X.X. & dV) v=vb

I l

I

I

2 3 4 5 8 9 fo

Finall is ay & '
veraged over a Maxwellian i

th i 'ti 1 d V
'

hs o wit the result

vb l r) =Q „A„(vb)L1—exp (—x„r)7, (31)

Fzo. S. The v
' ' va, e invariation of the ei enval

wher

units of the collision rate v with

e

ormalized transition spimrensp eie g (V) Vo' exp( —Vo')Q-(V» Vo)d Vo

r(V) =p(U)
2V

and the weighting function is given by

1fE q' %(v)-
-I —

l
v'+

3 EZ,)

pV5
Vo' exp( —Voo)d Vo.

ree co ision timesA ter several mean fr 11'

mined almost entirely by the deca y of the fu damental

$8o/ V' 34(V)/2 V'+(P—//P. )' V'7

P%(V)/2 V+ '(E/Z )'V'-p(V) =exp
JO

P(v, l
v, l.)

i
P(vl vol r) is th e conditional velocit dis

e conditional probability P(vb~ Vo r
e t a siton'

i ia spec is Vo cross

simply the negative of the total curr ent, V'J, evalu-

(30) together with the bound
' ' r =0

b. se of Eqs. (16), (19~ 20

yields
i e oundary condition Fo(vb, r) =0

1O1

to0

Q(Vbl )=~i!1—exp( —& )7. (32)

2V5

~ w (Vo)r(Vo) (dw„)

~=& 4z-VovbX L dV) v=vb
exp( —X„r).

lO'-

I

I 2 3 4 5 66 7 8 9 10

Vb

The coefficient in the square bracket is th FIG. 6. The variation of the ei envalu
units of the collision rate with the

di V fo E/8, =0.223.



336 H. D RE I CER

IO

I.O—

Joule heating current

1 f'E q 1 (E )' BIi'

3 EE) 3 4E) BV

IO =

IO

IO

-4
IO

IO

-6
IO

0.3I6E
Ec~+ 0.225

Ec
~E l

Ec 6

ME I

Ec lO

E -2-—~6xf0
Ec

—5 x lOE -2
c

I I I I I I I I I I I I

2 4 6 8 IO I2

V

on the other hand, does represent a consistent diGusion
of electrons to higher energies. This is brought about
by the fact that electrons exchange very little energy
(in our approximate treatment none at all) with the
positive ions, and store nearly all of the energy gained
from the electric field. Energy exchange between elec-
trons is a result of Coulomb encounters, whereas energy
gain from the electric field is hindered by encounters.
To see this we note that the Joule heating current
given in the above equation is proportional to (E/E, )'
and thus decreases with an increase in the rate of col-
lision. Since the Rutherford scattering law governs the
rate of collision, we must expect to And that at large
velocities J is almost completely determined by the
electric field. More precisely it can be seen from the
coeKcient of d'w/dV2 in Eq. (28), which is just the
mean square increment per unit time in the speed of an
electron moving with speed V, that the contribution
from the electric 6eld equals the contribution arising
from collisions when

FIG. 7. The variation of the runaway rate, X1, expressed in units
of the collision rate v, with the normalized transition sphere
radius Vq. The normalized electric Geld E/E, is treated as a
parameter.

or

1 (E )' 4'(V() 1

3 4E,) 2U, 2VP

Except for the inclusion of electric field effects, Eq. (32)
is a result obtained earlier by Chandrasekhar' in con-
nection with the escape of stars from clusters.

C. Numerical Results

The eigenvalue problem defined by Eqs. (27), (28),
and (29) has been solved on a 704 IBM digital computer
by a standard Runge-Kutta integrating technique.
Eigenfunctions and eigenvalues were obtained as a
function of the boundary coordinate V& with the electric
field E/E, playing the role of a parameter. Typical
numerical results are shown in I'igs. 2 to 7.

The most significant result to come out of the cal-
culation is that A& becomes essentially independent of
V& for suKciently large V&. In particular, these results
show that X~ becomes independent of Ub for a sphere
radius which agrees well with the value derived in
Eq. (7) from the Langevin equation. The values of Ai
obtained by Chandrasekhar' correspond to E/E, =O
in the range 2.3&V~&2.7 and agree closely with our
results.

The variation of Xi with Vq and E/E, can be explained
in terms of the processes which give rise to J.Of these,
mutual electron encounters contribute a thermalizing
current to J which depends upon the deviation of P'
from the Maxwellian distribution, but represents no
consistent diffusion of electrons to higher energies. The

V, (E,./E)".

The inverse of X& is essentially the time required for an
average body electron to disuse from V~1 to V= V&

under the action of electron-electron encounters. The
slight slope which remains in the curve of X~ eersgs V~

when ) ~ saturates above V~ is contributed by the addi-
tional time required by an electron to be accelerated
from V~ to larger velocities by the action of the electric
Geld. It is this behavior of X& which we invoke to justify
our substitution of a sphere for the transition surface
defined by Eq. (6). Since Xi becomes essentially inde-

pendent of V~ for large Vb, we can expect that deforma-
tion of the transition surface in this region cannot
affect the results very strongly. Moreover, this result
seems to bear out the validity of both the boundary
condition F'(Vi„i.) =0 and the neglect of the interactions
which scatter electrons back into the sphere.

In our treatment, electrons which cross the sphere
run away. Actually electrons which enter the region
shaded in Fig. 8 do not get very far before they return
to the main body of electrons in the E&0 region. This
error has roughly the eGect of halving the true diffusion

length in the problem, or increasing X~ by a factor of
four. The purely angular scattering of electrons from
the shaded region into the true runaway region due to
encounters with positive ions will tend to reduce this
error somewhat.
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TAsLE Il. Probability coefficients for the fIrst 6ve decay modes.

&/&c A1 A3

0.223
0.166
0.10
0.06
0.03

1.120
1.106
1.049
1.007
1.000

—1.14X10 '
—1.23X IO-&
—7.16XIO '
—1.19X10 '
—2.32XIO 4

—1.38X10~
1.18X10 2

2.96X10 2

6.64X10 3

1.91XIO 4

9.2XIO '
9.4X10 3

—59XIO 3

—2.89X10 3

—1.6X10 4

5.0X10-4
—2.9X10-3
—1.7X10 '

7.07X 10-4
1.1X10-'

1.002
1.001
0.999
1.000
1.000

4.0
5.0
7.5
8.0
90

Strictly speaking, the spherical harmonic expansion
of the distribution function defined in Eqs. (12) and
(13) is a poor approximation for velocities in the range
V&& V& Vb. In this velocity range, collisions are already
so rare that the electric Geld must produce a pronounced
drift of these electrons in one direction, and the velocity
distribution must deviate rather seriously from a
spherical distribution. Our treatment does not take
this eGect into account, but we believe that a more
rigorous treatment will preserve the essential features
of Fig. 7. Our results seem to indicate that the eigen-
value ) & depends primarily upon the net loss of electrons
out of the V&V~ portion of the collision dominated
region, rather than the direction in which these traverse
the region V~& V& Vg and cross the transition surface.
This result follows from the fact that the time an elec-
tron spends in the region between V~ and Vq is small
compared to ) ~ ', independent of the direction in which
it Rows across this region. A more precise calculation
has not been made to check this point.

In Sec. II, 3, the F distribution was simplified by
the neglect of transients. This approximation was based
upon the inequality Xi(Vb ' (see Eq. (25)g, and a
comparison of Xi and Vi„made with the help of Eq. (7),
shows that this inequality is indeed satisfied for E/E,
&10—'.

The eigenvalues associated with m2 to m~ are shown
in Figs. 4 to 6 as a function of Vb with E/8, treated as
a parameter. Examination of these as well as the values
of A~ to Aq listed in Table II shows that the asymptotic
form

g(Vi,
~
r) 1—exp( —) ir)

is a very good approximation after several mean free
collision times. The validity of this relation is, however,
limited by the linearization which we have imposed
upon the Boltzmann equation. This effect shows up in
essentially two ways. First the density of electron scat-
terers decreases with time, and secondly Joule heating
of the body electrons may increase their temperature
if there are no compensating heat losses. These changes
have the efI'ect of decreasing the electron-electron col-
lision rate, thus increasing the mean free collision time
to which we normalize ) ~. On the other hand, the ratio
E/E, increa, ses with the rise in temperature, but is

only partially affected by electron density changes in
the collision dominated region since E, is a result of
electron-ion as well as electron-electron encounters. To

estimate the rise in temperature when there are no
energy losses we make use of Eq. (4) which states that
strong Geld runaway of the body electrons can be
expected after a time given approximately by (Z.o/E)'.
For each E/E, o studied, this time is either comparable
to or much shorter than lii '. lf Joule heating is balanced
by other energy losses and the electron temperature
remains constant, then our results are limited roughly
to the e-folding time ) &

'. Very reasonable corrections
can be made by adjusting the mean free collision time
to take account of the gradual depletion of electrons in
the collision dominated region. Eventually, however,
the interaction between electrons in the runaway region
must be taken into account.

D. Effect of Random Ion Motion

In this section we will brieRy consider the effect of
random ion motion on the results we have obtained so
far. To extend the treatment we consider the possi-
bility of ion runaway by the method of the Langevin
equation. The dynamical friction force exerted upon an
ion moving with velocity c in a gas composed of ions
and electrons, whose velocity distributions are Max-
wellian, is obtained with the help of R-I LEqs. (6), (9),
and (17a)j in the form

f;=M(r a;;+a'a;,)

q; T, q. M+m= —eE, 2——e(p, ~q,)+— q (p.&q,), (34)
gs T~ gz M

V=V Iec-8
b 2

TRANSITION SPHERE

=V

K&0

Fxo. 8. Two-dimensional view of the actual and approximate
transition surfaces. 1n the approximate treatment, electrons in
the X)0 region as well as in the shaded portion of the X(0
region runaway.
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where
qe= C—V~) Qz= C—Vs)

and v, and v; are the electron and ion drift velocities,
respectively. The force f;, normahzed to eE„ is i us-
trated in Figs. 9 and 10 as' a, function of P.&c for a test
ion moving in the direction of (v,—v~). It is clear from
these graphs that under many of the circumstances
usually encountered in practice the large majority of
the high-energy ions in the tail of the ion velocity dis-
tribution are subject to a dynamical friction force
(originating with the electrons) which increases with

Equation (34) shows that ion runaway is possible for
any electron and ion temperature provided the velocity
distributions are well separated, i.e., lv.—v,

l
&p. &

+P; '. This situation is best handled by the methods of
R-I. However, when the velocity distributions overlap
appreciably, then it is necessary to estimate runaway
by locating the transition surface. The asymptotic
limit of Eq. (34) takes the form

dc (m q; q, $~—+eel 2— +
dt ( MP.q

a P,q,a)

Sy equating the dynamical friction and the applied
electric force, we find the condition for runaway to be

p'lcl&(&i&)' —p lv I

S the present treatment requires ' v &1 andince
t emostE&&E„we see that ion velocities must excee t e

probable random electron speed by an appreciable
factor before runaway becomes possible.i e. To calculate
accurateyt era ewi1 th t with which ions leave their collision-
s t d region it is necessary to solve the o tz-
mann-Fokker-Planck equation for the ions as we as
for the electrons. This has not been done. However, in
a qualitative manner it is possi e pto redict that the
rate involved must be much smaller than the eigenvalue
) i characteristic of electron runaway. For not only oes
the electron Joule heating rate exceed the ion Joule
heating rate by the factor 3I/nz, but the ion self-
co ision ra e w icll' ' t hich gives rise to a diGusion t roug
velocity space is smaller than the corresponding e ectron

Moreover, since we require T;&)T, for ion runaway, we

can expect appreciable energy transfer from ions to
electrons to take place. As a consequence both energy
and momentum transfer to the electrons acts to reduce
the ion runaway rate.

E. Comparison with Other Work

Recently Harrison~ has made Eq. (7) the basis of an

estimate on the rate at which electrons appear in the
runaway region of velocity space. His treatment
proceeds from the continuity equation for runaway

i I I I I
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of p &c for an ion moving paralle1 to the relatIvelized to eE., is shown as a functIon o, c or a
o e e ual and their

f')
s eed c. For this illustration tne e ec ron anelectron-ion drift velocity with the spec c. or

drift speeds were chosen to be v, =P, &; v;~ —v,~/M'.

~ K. R. Haarison, PIni. Mag. 3, 1318 (1958).
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electrons which he writes in the form

Bsg
+V j„= ~d f„(v)d's

Here e„ is the number density of runaways, j„ is their
current density in real space, and Af, (v) is the rate at
which electrons qualify for the runaway state per unit
volume of phase space at the velocity v. He states,
without presenting the physical reasoning involved,
that when the applied electric field vanishes 6f„ is to a
first approximation given by

~ I
IO

n |' m $1 ( mss)

2r, 1 2m-kT, ) ( 2kT, )
(35) IQ

The mean free collision time v., appearing in this
equation, is determined from the dynamical friction
force acting on an electron moving with the speed v,
and is given by

r,=ss/3el, .

For the total runaway rate induced by the field E,
Harrison then finds

IO

3n' exp( —Vss)
a f„(s)4m s'dv = r,P.&, (36)

2 &vs Qs Vss

where

Vs'= msb'/2kT, )

IP

and the eGect of the electric held appears in the size of
the runaway region only.

Harrison does not present the derivation of d, f„but
presumably it is based upon a detailed balancing argu-
ment. The number of electrons entering the runaway
region must just balance the number which leave this
region provid'ed steady state conditions prevail. %hen
the electric 6eld vanishes the velocity distribution is
Maxwellian, and the above expression gives approxi-
mately the number which leave the runaway region
since the main contribution to the integral comes from
the neighborhood of vb. For the moment we must ignore
the fact that in the absence of the electric field v~

becomes infinite and the integral in Eq. (36) vanishes.
The factor, 0.5, multiplying the integral presumably
was introduced to take approximate account of the
geometrical shape of the transition surface. This
estimate can be said to give the rate of runaway in the
presence of an applied electric field, provided (1) the
velocity distribution remains Maxwellian right up to
the transition surface, (2) the velocity distribution
vanishes for v&vq, i.e., no scattering back into the
s(ss region, and (3) Joule heating is neglected. With
these restrictions in mind Eq. (36) can be directly
compared with our P ~ provided that we normalize the
former with the collision rate defined in Eq. (2). This

IO
0

I

0.5 I.P

Vb

3.p 5.5

FIG. 11. Comparison, as a function of V&, of the runaway rate
X& with the runaway rate )& proposed by Harrison. These curves
agree most c1osely for the case L/E, =O.

transforms Harrison's result to

3 exp( —Ub )

A comparison of XII and Xi for E/E. =O is presented in
Fig. 11 as a function of V~. It shows that for this case
'A~ is about one order of magnitude smaller than ) ~.

When 'AIr is compared with Xi for E/E, )0, then the
results differ even 'more. This difference arises partly
from the fact that we have calculated ) ~ for a sphere,
whereas 'A~ involves the factor 0.5 to account for the
geometry. It is also connected with the diGerence in
boundary conditions at v&. In our treatment, the dis-
tribution is forced to vanish on v~, and its value for
v& v& is calculated from the Boltzmann equation.
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Harrison assumes that the distribution remains unal-
tered (i.e., Maxwellian) for tt(vs, and then he counts
the scattering out of the collision-dominated region only.

The crux of the matter is that both methods lead to
incorrect results as long as the Row across the transition
surface brought about by the electric field is neglected.
In the absence of the applied field no runaway occurs
at all. Therefore, it is precisely the deviation from the
Maxwellian distribution induced by the electric Geld
which is required for an estimate of the runaway rate.
In our present treatment no physical significance is
attached to )r for finite Vs and Z/E. =O. However, this
case does serve the purpose of separating the purely
collisional diGusion in velocity space from the diGusion
brought about by the electric Geld. Our results show
that the inclusion of the electric Geld results in a run-
away rate which exceeds by orders of magnitude the
rate proposed by Harrison.

III. EXPERIMENTAL EVIDENCE AND
RELATED PHENOMENA

A. Experimental Evidence

Evidence for the existence of the runaway effect is
meager, and originates almost exclusively with obser-
vations carried out on experimental thermonuclear
machines. Several years ago x-rays in the range of
hundreds of kev were observed to be emitted from a
toroidal pinched plasmas ("Perhapsatron" at Los
Alamos), and from a 6gure-eight electrical discharge~
("Stellarator" at Princeton). Additional evidence ob-
tained by the Princeton group" indicates the existence
of long time constant current plateaus in the Stellarator
even after the application of external electric Gelds has
ceased. Presumably these plateaus can be attributed to
runaway electrons whose mean free collision time for
momentum transfer is exceedingly long. Large x-ray
yields are frequently measured at and immediately fol-
lowing electrical breakdown of toroidal discharges.
This indicates that electron runaway also plays an
important role in the breakdown mechanism, and during

the early ionization stage of toroidal discharges. An-

other class of experiments is concerned with the spectral
analysis of the neutrons emitted from plasmas as a
result of the d-D reaction. For a number of experi-
mental machines" the measured spectrum requires the

Burkhardt, Sawyer, and Stratton, Conference on Thermo-
nuclear Reactions, Princeton University, October, 1954, Atomic
Energy Commission Washington Report 184 (unpublished), p.
68; Burkhardt, Sawyer, Stratton, and Williams, Conference on
Thermonuclear Reactions, Berkeley, February, 1955, Atomic
Energy Commission Washington Report 289 (unpublished), p. 49.

'F. F. Chen, Conference on Thermonuclear Reactions, Ber-
keley, February, 1955, Atomic Energy Commission Washington
Report 289 (unpublished), p. 297.' Bernstein, Chen, Heald, and Kranz, Phys. Fluids 1, 430
(1958)."Conner, Hagerman, Honsaker, Karr, Mize, Osher, Phillips,
and StovaH, Proceedhlgs of the Secoted United 1Vctteoas Conference
on the Peaceful/ Uses of Atomic Energy, Geneva, 1058' (United

center-of-mass motion of a considerable number of
deuterons in the direction of the applied electric Geld.
Since-, as we have pointed out, ion runaway is an ex-
ceedingly slow process, it is not unlikely that other
mechanisms operate to bring ions into the runaway
region where they are accelerated to higher energies by
the electric Geld,

The physical phenomena occuring in these experi-
ments are unfortunately large in number and too
complex to permit a clear separation of the runaway
phenomenon, and so far no true measurement of the
velocity distribution or the runaway rate has been
obtained.

3. Effects due to Magnetic Fields

We have already pointed out' that particle runaway
cannot take place when the electric and magnetic Gelds
in the plasma are mutually perpendicular. Our results
are therefore to be interpreted strictly in terms of the
component of E which is parallel to B. Magnetic field
eGects are completely absent only in certain idealized
geometries. Into this category fall the purely radial
discharges between coaxial cylinders or concentric
spheres. In practical geometries charged particle motion
may be jointly controlled by the existing electric and
magnetic Gelds to an extent which can make a clear
separation of the runaway process dificult.

An extreme example in this category is the cylin-
drically pinched plasma, con6ned solely by its own
magnetic field, and driven by an axial electric Geld. In
this situation runaway can occur only near the pinch
axis where the self-magnetic Geld vanishes. Certain
charged particles in this plasma conGguration traverse
complicated orbits which repeatedly cross the axis
where acceleration in the electric field alone can take
place. %ith the addition of an axia1 magnetic field,
runaway becomes possible at all radii, although the
curvature of the resulting helical magnetic Geld intro-
duces eGects which we have not taken into account.
Strictly speaking, our treatment applies only insofar as
the electrical currents local to a point in space are not
strongly aGected by the curvature of the magnetic Geld.

C. Excitation of Plasma Instabilities

The runaway of plasma particles creates asymmetries
in their velocity distribution which in turn can promote
plasma instabilities. A detailed study of this question
requires exact solutions of the 3oltzmann-Fokker-
Planck equation. Such a program requires the use of
high-speed digital computers, and is presently under

way at Los Alamos. " Under certain simplified condi-

Nations, Geneva, 1959), Vol. 32, p. 297. Also in the same volume,
see Butt, Carruthers, Mitchell, Pease, Thonemann, Bird, Blears,
and Hartill, p. 63.

"For preliminary results, see H. Dreicer, see reference 11,
Vol. 31, p. 57.
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tions the instability problem has been solved. " The
relative drift motion of electrons and ions in an infinite
uniform plasma can be shown to cause the growth of
electrostatic plasma oscillations provided that the par-
ticle velocity distributions are suKciently peaked and
separated. This is the so-called two-beam instability
well-known to the research field concerned with travel-
ing wave tubes. '4

Instabilities of this type can be expected to affect
the rate of electron and ion Joule heating. Moreover,
under these conditions the relative electron-ion drift
velocity is probably controlled by the excitation of
plasma oscillations as well as by the electric field, In
spite of the existence of these cooperative plasma effects,
random two-body encounters can still be expected to
carry particles into regions of velocity space where the
applied field dominates the particle rrlotion.

D. Effect of Runaway on Pressure Balance

In this section we will derive the correction terms
which particle runaway introduces into the pressure
balance equation for a static cylindrically symmetric
pinched plasma. In addition to its self-magnetic Geld,

8&, the plasma is subjected to an axial magnetic field,

8,. All macroscopic properties are assumed to be
independent of axial distance. For convenience we

introduce a local Cartesian coordinate system whose

basis vectors are defined by

&t= ro, es = es Xet, es =B/B,

where B=ksB,+8sBs, and the vectors rs, Se, and ke,
form the basis vectors for the cylindrical coordinate
system whose s axis coincides with the pinch axis. The
particle velocities are assumed to be distributed ac-
cording to the displaced Maxwellian form

f m )t' m

&2vkTt & E2v.kTs &

mQf

Xexp —P (c;—v; )', (37)
~ 2kT;

with T~ =T2 . The summation over j refers to the
three orthogonal directions in the local coordinate
frame which are determined by s&, a2, and e3. The sub-

script 0, refers to the particle type, i,e., electrons or ions.
For simplicity the electron and ion temperatures are
chosen to be equal.

(T ).=(T~)'=T -=Ti

"D.Bohm and K. P. Gross, Phys. Rev. 75, 1864 (1949); A. L
Akhiezer and Ya. B. Faynberg, Zhur. Eksptl. i Teoret. Fiz. 21,
1262 (1951)i O. Buneman, Phys. Rev. Letters 1, 8 (1958).

"Kleen, Labus, and Poschl, Ergeb. exakt. Natu'. 29, 208
(1956).

The drift velocity v is given by "
3s et. (E&& 8)

er V(ekTr )+ et V(kTt )+
0 gB 40. 8' 82

vs. —— st V(ekT,.), v,.=v. (B/B),
&a~

1 VZml', (m q1

rr, 3(v.)le' (kTt&

and P;; is the momentum Qow tensor whose components
in the local coordinate frame are given, with the help
of Eq. (37) by

Pig ga(rikTia8i j+Nmaviavja)

In terms of these components, pressure balance in
Gaussian units is expressed by

], cl P Bs+g'q gs+Bs—Bss
r

rarE S~ & P,«
j. 8

+Q ——(ask Tt.r)
r Br

1- ~B,ps——
~

—
~

(iskTr +em vs )+2nm vs vs
r LB&

1 (Bg) s
——

I
—

I (rikT,.+6m.v,.s) =O. (3S)
r EB&

Finally we may neglect vs compared to (kTt/m )1
provided again the variations in plasma pressure are
small over an ion Larmor radius. ' Integration of Eq. (38)

"M. N. Rosenbluth and A. N. Kaufman, Phys. Rev. 109, 1
(1958).

C. L. Longmire and M. N. Rosenbluth, Phys. Rev. 103, 507
(1956).

These results are valid provided we are dealing with
electrons and singly charged ions, and that m vs /e B,
the distance traveled along the magnetic line during a
Larmor period, does not exceed the curvature of the
magnetic Geld.

Since pinch conditions are assumed to be static in
this analysis, the radial velocity, e&, vanishes. More-
over, if we assume that the variations in the plasma
pressure are small over an ion Larmor radius, then ions
and electrons diGuse at the same rate, ' and radial

space charge electric fields are absent. The electric field

is then purely axial in direction.
Pressure balance is described by the relation

V' (F;;+P;;)=0,
where

1 F'+B'
p. .= 8"—(F.F. +BB.)

kr 2
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over radius results in

8'(r)+E,'(r) t." Bss
+ dr++ nkT, .(r)

Sm &g err a

plasma particles. It varies monotonically with radius
since the integrand is always positive. In general,
plasma pressures deduced from the measurement of Bg
and 8, as a function of radius" will measure only the
sum of the random and centrifugal pressures. However,
if the inequality

(Bs't—
]
—

)
(tlkTs +nm 83 ') dr

8'(R)+E,s (R)
+Q NkTr (R),

where r and R represent any two radii. For the special
case T~ =73, this expression simplifies to

8'(r)+E '(r) ~" Bss
+ dr

Sx ~g 4~r

8'(R)+E,s(R)
+P ekTr. (R).

8x a

The integral involving v3 represents the centrifugal
pressure associated with the directed motion of runaway

holds true everywhere in the plasma, then the total
pressure will have a maximum on the axis provided
that the centrifugal pressure is the dominant part of
the total particle pressure. It is clear from these results
that the plasma temperature can be seriously over-
estimated whenever the centrifugal pressure equals or
exceeds the random particle pressure, and this is not
taken into account.
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