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Excitation of Internal Kink Modes by Trapped Energetic Beam Ions
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Energetic trapped particles are shown to have a destabilizing effect on the internal kink
mode in tokamaks. The growth rate is near the ideal magnetohydrodynamic value, but the
frequency is comparable to the trapped-particle precession frequency. A model for the insta-
bility cycle gives stability properties, associated particle losses, and neutron emissivity con-
sistent with the "fishbone" events observed in poloidal divertor experiments.

PACS numbers: 52.35.Py

In recent poloidal divertor experiments (PDX)
with high-power, nearly perpendicular beam injec-
tion, bursts of large-amplitude magnetohydro-
dynamic (MHD) fluctuations, dubbed "fish-
bones, " have been observed. ' These fishbone
bursts are found to be correlated with significant
losses of energetic beam ions and thus have serious
implications for the achievable P (=8mnT/B )
values in tokamaks. Detailed experimental mea-
surements have identified the mode structure of
the fishbone as an m = 1, n = 1 mode with addition-
al m ~2 components. (Here m and n are, respec-
tively, poloidal and toroidal mode numbers. )

We consider a large-aspect-ratio tokamak plasma
consisting of core (c) and hot (h) components.
For the purpose of formal orderings, we use
e = a/8 « 1 as the small parameter. Since we are
interested in the parameter range of the first stabili-

ty boundary of the internal kink mode, 3 we order

/3~ —0 (1) and, for simplicity, p~h
—0 (e). (p~ is

the poloidal beta. ) Temperatures are ordered as

T,/T„—O(e ), which implies nh/n, —O(e ) and,
hence, overall charge neutrality may be assumed.
We also have, for PDX parameters, ~co/co„~—gdh/~q ~

—O(e ), similar to the usual internal
kink ordering. Here ~dI, is the toroidal precession
frequency of the trapped hot particles, and cud

denotes the magnetic drift frequency.
Consistent with the above orderings, we adopt

the ideal MHD description for the core plasma. For
the hot component, however, we employ the gyro-
kinetic description, 5 neglecting the finite-Larmor-

radius correction. Summing the collisionless equa-
tions of motion for each species, we obtain

~ pm(
= c (5 j x B+ j x SB) —75P —7 SP (1)

where ( is the usual fluid displacement vector. In
Eq. (1), noting that nh/n, —O(e ), we have p
n p 1?l . The following ideal MHD relations hold:
SP = —[( '7P +yP (V ()], 5Ei=i~(xB/c,
SE II

——0, SB= '7 x ( ( x B), and 5 J = c '7 x SB/4vr.
The perturbed distribution of the hot component,
5F&, is given by

e 5 p, SBII 5
SFh = —5$ — Fph + SHh, (2)

~c c p,

~ u
II 6/Bl —i (~ —

~dh ) ]SHh ——i (e/m) g 5$, (3)
where E =u2/2, p, =u~/2B, co, is the cyclotron fre-
quency, 8/Bl —= e

II
'7, hp = 54 —v

II SA II/c + v

xhBII/2(o, c, g = (o) 9/BE+a), h)Fph cum~h (I/
cu, )(eII '71nFph) 7, &udh= —ivd„'7, vd„ is the
magnetic drift velocity, and 5$ and SA II are related
to g by c 75$ = —ice( x B and cuhA II/c
= —i 85$/Bl. When one notes that the frequencies
are much smaller than the hot-particle transit and
bounce frequencies, Eq. (3) can be solved readily
for both trapped (r) and untrapped (u) particles.
We find that SH„„=—eghg/mm and SHh, = —eg
x5$/mes +SGh, , where 56h, =2QEJ/(co —~dh).
A = ()tAdl/v II ))/())dl/(uII () denotes bounce
averaging, and J = (uB/2) '7 (~ —(1 —3uB/2)
x ( g

' K, with n = p, /E and K = 8 e/pl. Substituting
SHinto Eq. (2), we have SP„given by

h (J. +i J. +( II J. ) II ll]h+5 J. (5 II 5 J. )
where

5P~ E5/2 nB/2 (1 —nB)'=2 mqBJI mdm(l — B)''J mdE J '

SP f] Bma QJ EO dp

(4)
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correspond to kinetic contributions due to the trapped energetic particles. Substituting 5P„ into Eq. (1), we
have a complete normal-mode equation in terms of (.

We now derive a dispersion relation variationally. Perform fd3x (' on Eq. (1) and assume a fixed con-
ducting boundary. We have D [(] = 5 WMHD + 5 W„+5I, where, with P = P, + (P i + P

i
)z/2,

5WMHn= 2 Jld x' — ((axe Ji) 5Bi —2((i '7P)(gi K)
4m c

+8'IV g, KI2+qP, Iv
j

p —1

5Wk= —2 m mrJ)RBr dr Jt, dn Jt dEE Kbj' J;
max

(5)

(6)

KI, =J)(dH/2m)(1 —nB) 'i; and 5I = ——,co fd x p IP is the inertial term. Note that in the high- and
low-frequency limits 58'k reduces, respectively, to that of the collisionless and the low-frequency kinetic
energy principles. ' To apply the variational method, we have, for the present orderings,

5Wt —(Pgg/e)(8 I g/R I V) —e (8 I(/R I V) —51( &

Here, Vis the volume, superscripts denote the orderings, and we have noted in ordering 5I the existence of
an inertial singular layer with a width 5„—(cu/cuz )a —e a at q (r, ) =—rB,/RB~ = 1. The variational scheme
then is to find a trial function, 8„which minimizes D to 0 (e ) or smaller. Since both 5 WMHo and 5I [with
the assumption that Ilmco I/IReco2I —0 (e), i.e. , near marginal stability in the present case] are variational,
this minimizing procedure is identical to that of ideal MHD. Let D ((,) be D, + D, where D, and D, are the
contributions from outside and inside the singular layer, respectively. For the case of circular cross sections,
for I r —r, I ))A„we have (,' as given by Bussac ei al. We then obtain D, —= D [ g,'] as
D, = 5 WM„D [(,'] + 5 W„[(,'] + 0 (e ), where, for n = 1,

', 8, Ig„,l'5w, -=lg„l' ' ' 5w, (7)

with 5 WT given in Ref. 3 and, to 0 (e ),

t+ r/~
2 23/2 d d g dE ES/2

2mR 0
"

R02 0 1 —r/R 0 Kb mdh 1, 1

=—I(.ol'
2R

5 Wk
0

K2=J)(dH/27r)cosH(1 —uB) ' 2' (l, l) refers to m =1, n =1; 8 =Bo(1—r cos0/R), and b, q =1—q(0)
—O(E) is assumed. Note that, assuming a parabolic q profile, we have 5Wf 37rhqr, (——„,—P~, )/Ro with

P~, = —(Ro/ir, ) f, r P'dr
Near the singular q =1 surface, we have lxl —= lr —r, l

—Ib,„l and the Euler equation for g,
' is

d[(3' —Ik'ii I V„x )(d(,',/dx)]/dx=0, with lk',
i I=q,'/Ro. This equation can be solved readily and (,',

matched to it:„by use of the causality condition. It is then straightforward to show that

D, = 5 WMHD [(,']+51"'[(,*]+0 (e') = 2~R o(Bor,/2R o)' lg, ol'( —i~/~, ) + 0 (e'), (9)

with ~z = Vq/(3 Ros) and s = r, q,
' Combining D. , and D, then yields the dispersion relation:

—i o)/~g + 5 Wf + 5 Wk = 0. (10)

The terms in Eq. (10) are all formally of the same order.
Without the trapped-particle term, 58'„, we recover the ideal MHD results. Within the present orderings,

the inclusion of 58'k has the most interesting effect of introducing a trapped-particle —induced branch which
can become unstable at co = co, and 5 8'f & 0. By substituting into 58'k a monoenergetic, single magnetic mo-
ment distribution Fo„we find a thresholdless unstable solution with ru„-—cadi, and cu; increasing with (Pz, )
(the average trapped-particle P within the q =1 surface) and ~, i, /cozen, ) 0. This new instability mechanism
thus has the character of coupling between a negative-energy/dissipation trapped-particle precession mode
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and a core-plasma MHD mode, which is positively dissipated because of the i0, —k ii V„Alfven resonance.
Many interesting features of Eq. (10) can be derived by assuming a model distribution function for the
slowing-down beam iona; Foh = coE S(n —no) for 0 ~ E (F. , where co(r) = Ph (r)/ (mKhomhBo2 E ),
Kho = Kh (n = no). The corresponding dispersion relation is then given by

—i 0 (cudiii /«iq ) + & Wfi + (p„,Io) 0 ln ( 1 —1/0 ) = 0,

where

«idiii =«idh(E =E~), 0 =(0/«id~, (y) =—(2//r, ) ~ yr dr, IO= (1/2KbO) ~nOI'(nO) +I(nO)t0~h/«idh]
0

t«; = «ig (~ /4) ((ph, iIO) (ph. iIo) (12)

tends to be of the same order as the usual ideal
MHD growth rate.

The beam loss process due to the beam-
ion-induced internal kink mode has already been
considered, " and allows us to model the full fish-
bone cycle. If we neglect variations of the core
plasma component, the internal kink mode is desta-
bilized by the trapped particles within the q = 1 sur-
face. Assuming the trapped particles to be uniform-
ly distributed within the q =1 surface, we then
have, from Eq. (12), for the amplitude of the kink
mode (A =58,/8),

dA/dt = A 1'(P„—P,„;,) (13)

with 1 =tu„(m /4) (Io). This equation for the
mode has been used in Monte Carlo simulations us-

ing the formalism of Ref. 11, which will be reported
in a future publication, but the essential results can
be reproduced by replacing the particle loss
mechanism with a simple model equation. Beam
loss takes the form of secular outward drift of those
trapped particles in resonance with the mode. Since

1124

I(no) = (2Ro/r) [2E(ko ) —K(ko ) ] /vrK(ko ),
ko2 = (1+r/Ro noBo)Ro/2r,

E(ko2) and K(ko2) being the complete elliptic in-

tegrals, co,h
= (d 1nPh, /dr)/r«i„«idh = —|2E(ko )/

K(ko2) —1]/rRt«„and 5Wf, corresponds to 5Wf
with only the core-plasma pressure contribution.
Simple analysis of Eq. (11) then reveals that, even
for 5 Wf, & 0, the interna1 kink mode is destabilized
if Ph, exceeds a critical value, (Ph iIo) „;,
=«id~/~to„, which is typically & 0(10 2) and is

consistent with the observations. ' Meanwhile, the
growth rate is peaked near 5Wf, =0 and drops

sharply as 5 Wf, increases. In fact, for a more real-

istic I' pp, stabilization can be expected for
5 Wf, & t«d~/m«iz. This may account for the
predominant occurrences of "fishbones" near ideal
MHD marginal stability. Taking 1 —q (0)
= 0 (10 '), we find n 5 WI, t«g/GLld~ & 0 (1),

«&d~ & «i, & «id~/2, and the growth rate

Kho = (2R o/r) ' K (ko )/'tr,

(14)ph/ = pmax (ph pmin) i

where D is the net deposition rate of trapped parti-
cles within the q = 1 surface, and Z is a measure of
the particle loss rate. The Heaviside 0 function re-
flects the fact that only a certain fraction f of the
trapped particles can be ejected. Note that the pres-
ence of m ~ 2 components, which extend to the
plasma boundary, is necessary for the complete loss
of trapped particles. An examination of Eqs. (13)
and (14) in the (ph, A) plane, and in particular the
symmetry of these equations about p„;,, leads to
the result that the motion is periodic with

P,„=P,„;,/(1 —, f), and P;„=(—1 f)P,„. —
We illustrate the solution of Eqs. (13) and (14)

for a PDX case with 8 =10 kG, r, = a/2, and 4
MW of near-perpendicular 50-keV neutral beam in-
jection. This gives D —0.5 sec ' The beam ejec-
tion efficiency has been obtained for this case with
Monte Carlo simulations, " giving Z = 2.5 x 106
sec ' and f=0.4. Using the expression for Io fol-
lowing Eq. (11), n =5x10'3, the bounce angle
Oh

—m/4, and ko = sin (Hh/2) « 1, we find
Io —4, and thus 1' —l. l x 10 sec ' and P„;,—0.0025. The solution to Eqs. (13) and (14) for
these parameters is shown in Fig. 1, to be compared
with Fig. 1 of Ref. 1. The fishbone period
7tb —b.ph/D =fp, „;,/D ll ——,f], which is about 2.5
msec in this case. The —30% variation of p„,
determined by the beam loss, and its time depen-
dence are in good agreement with the observed
variation of neutron emissivity. The maximum
value of A is consistent with the typical observed
values of the Mirnov loop signals. The width of the
fishbone burst is At = 4/1'(p, „—p, „;,), about half a
millisecond in this case, also in agreement with the

l

the loss occurs on a time scale much shorter than
the beam deposition time, the rate of particle loss
through the q = 1 surface induced by the m = 1 per-
turbation is approximately constant until a signifi-
cant fraction of the particles are lost. Thus
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FIG. 1. The kink-mode amplitude, A (t)cos(comdt, t),
and the beam-particle beta, Pt, (t), vs time as obtained
from Eqs. (13) and (14), for PDX parameters.

experimental results.
In summary, we have shown that energetic

trapped particles can be destabilize the internal kink
mode at a plasma pressure threshold lower than that
predicted by the ideal MHD theory. This trapped-
particle —induced instability has a real frequency
comparable to the trapped-particle toroidal preces-
sion frequency and a growth rate of the order of the
ideal MHD value. A simple model for the coupled
kink-mode and trapped-particle system produces a
time dependence for these quantities in good agree-
ment with experimental results. Finally, we remark
that since the instability mechanism is of sufficient-
ly general nature, it may be desirable to extend our
theoretical calculations to other regimes, such as

P~
—0 (e '), radio-frequency heated plasmas,

alpha-particle effects, and so on. In this respect, we
note that the ballooning-mode analog has been dis-
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