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Division of the first of these equations by the
second yields
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Insertion into Eq. (52) yields
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Ke can solve for q 1from the above, then for q 2 from
(55), and finally for n+ ne fro—m (53).This provides
a pulse solution, in which U~, the wave velocity,

(56) and n~, the number of trapped particles, may be
specified arbitrarily.
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The theory of electron oscillations of an unbounded plasma
is extended to take into account the e6ects of collisions and
special groups of particles having well-defined ranges of veloci-
ties. It is found that as a result of collisions a wave tends to be
damped in a time of the order of the mean time between
collisions. If beams of sharply defined velocity or groups of
particles far above mean thermal speeds are present, however,
they introduce a tendency toward instability so that small
oscillations grow until limited by effects not taken into account
in the linear approximation. An estimate is made of the steady-
state amplitude for plasma oscillations in which excitation
occurs because of a peak at high velocities in the electron
velocity distribution, and in which the main damping arises
from collisions. It is also found that in variable density

plasmas, waves moving in the direction of decreasing plasma
density show even stronger instability.

In absence of plasma oscillations, any beam of well-defined
velocity is scattered by the individual plasma electrons acting
at random, but, when all particles act in unison in the form
of a plasma oscillation, the scattering can become much
greater. Because of the instability of the plasma when special
beams are present, the beams are scattered by the oscillations
which they produce. It is suggested that this type of instability
can explain the results of Langmuir, which show that beams
of electrons traversing a plasma are scattered much more
rapidly than can be accounted for by random collisions alone.
It is also suggested that this type of instability may be re-
sponsible for radio noises received from the sun's atmosphere
and from interstellar space.

I. INTRODUCTION

X the preceding paper (referred to as A), we'. gave a theory of oscillations of an unbounded
plasma, neglecting collisions, and treating in detail
only ion gases with a continuous distribution of
velocities, which decreases monotonically with in-
creasing velocity. In this paper, we extend the
theory to include effects of collisions and more
general velocity distributions, showing how these
can bring about excitation and damping of plasma
oscillations.

II. EFFECTS OF COLLISIONS

A collision may be said to occur whenever two
particles come so close together that a sudden

~ Now at Harvard University, Cambridge, Massachusetts.

transfer of momentum takes place, which is so
rapid that for macroscopic phenomena, such as
wave motion, it may be regarded as instantaneous.
These momentum transfers occur at random rela-
tive to the phase of organized wave motion; hence,
their general e6ect is to disrupt it and to cause
damping. Because of persistence of velocity, not all
of the organized motion will be lost, but in a close
collision of an electron with a heavy object, such
as a neutral atom or an ion, the persistence of
velocity is not very important, and one can, in a
~ough quantitative treatment such as this, neglect
it altogether. We therefore take a simplified model
of these col.lision processes, and assume that par-
ticles emerge from a collision with no relation to
their previous velocity, but with a velocity distri-
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bution, f(Vo), which is the same as that prevailing
in the absence of plasma oscillations (usually very
nearly Maxwellian). Between collisions, the particle
moves in the average field of all the other particles,
gaining an ordered component to its motion, which
is lost in the next collision. As a result, there is a
continual process of degradation of ordered energy
by collisions. The description is completely an-
alogous to the Lorentz theory of collision broaden-
ing of spectral lines.

Although this method provides a good representa-
tion of short range collisions, such as those between
electrons and neutral molecules, it is not so good
for Coulomb collisions, in which, because of the
long range of the forces, there is a preponderance
of distant impacts involving small momentum trans-
fers and a great deal of persistence of velocities. As
shown in A (Section II), the very distant collisions
are best treated in terms of the smeared-out average
held. A rough distinction between collision forces
and the ordered average component of the force
can be obtained by saying that momentum transfers
occurring in less than a period of oscillation do not
contribute to the ordered motion, but instead,
tend to disrupt it. This provides an upper limit on
the impact parameter, I', for collisions. To compute
this limit, we note that the time of collision is of the
order of P/V. Setting this equal to the period of a
plasma oscillation, we get P/V 2s/(4snoe'/m. )~

With V (xT/m)&, one obtains P 2s(~T/4nnp6')&
This is just 2x times the Debye length which is the
characteristic shielding radius for the plasma (see
A, Section VII).

The Debye length is usually much larger than an
atomic radius; hence, there are a great many elec-
tron-ion collisions of range so long that the rnomen-
tum transfer is very small. One can account for
these collisions roughly by adding in a mean free
path for electron-ion collisions. It is well known'
that this mean free path depends on the logarithm
of the maximum collision parameter, which should
be taken equal to a Debye length. Because of the
logarithmic dependence, the ambiguity introduced
by the arbitrary separation of collisions from the
ordered component of the force at this length will
be unimportant.

In electron-electron collisions, one deduces from
the conservation of momentum that the total cur-
rent is not changed in a collision process. It can be
sho~n, by an extension of our treatment, which is
not, however, included in this paper, that for wave-
lengths appreciably longer than a Debye length, an
electron-electron collision leaves the ordered com-
ponent of the motion unaltered, to a very high de-
gree of approximation. Hence, one can ignore the
damping due to electron-electron collisions. At very

'S. Chandrasekhar, Principles of Stellar Dynamics (Uni-
versity of Chicago Press, Chicago, 1942), p. 75.

high plasma densities, such collisions will, however,
make possible the transmission of sound waves,
by the same mechanism as occurs in a non-ionized
gas.

It is instructive to estimate the various mean-free
paths for typical cases. At a pressure of 5 X 10 ' mm,
the free path for electron-gas collisions is about 10
cm, while that for electron-ion collisions (ion density

10"/cm') is about 4E' cm, where 8 is the mean
electronic energy in electron volts, At a typical
electronic temperature of 3 ev, this is about 36 cm.
Since the mean electronic speed is of the order of
10' cm/sec. , the inter-collision time is about 10 '
sec. , which is about 1000 times the period of a
plasma oscillation, 10 " sec. Hence, the effect of
collisions will be small, and the approximation of
paper A, neglecting them, is justified.

The lowest density plasmas that are known prob-
ably occur in the gas clouds of interstellar space,
where the ion density is of the order of 1 per cm',
the plasma frequency is about 104 c.p.s. , and the
mean free path about 10I2 cm. The electronic tem-
perature is of the order of a few ev, and the time
between collisions is about j.04 sec. Hence, the
neglect of collisions is a good approximation here
also.

In an actual plasma, the system is seldom in
thermodynamic equilibrium, because ions and elec-
trons are continually being generated by processes
such as photo-ionization, ionization by impact, and
direct injection from a cathode, while they leave
by recombination, either in the body of the plasma
or at the walls. The generation of electrons can
alter the velocity distribution function, f(VO) in
such a way that peaks occur at high velocity. Injec-
tion from a cathode will introduce a beam of
sharply defined velocity.

The electrons are usually liberated with more
than the mean thermal energies, but they tend to
lose their excess, either by collision with individual
particles, or, as we shall see, by interaction with
organized plasma oscillations which result from the
instability of the plasma. Thus, a plasma is con-
tinually degrading a stream of energy into heat.

III. MATHEMATICAL TREATMENT

Ke shall use a method here in which the motion
of each particle is traced from the time at which it
makes its last collision to the present. To do this,
we label each particle according to the position and
velocity (&o, Vo), which it had when it emerged
from its last collision, at the time tg. We assume that
in the process of collision the particles lose all
trace of any previous ordering in velocities. This
means that one can write the distribution of par-
ticles emerging from collisions in unit time as
a product of terms involving, respectively, the
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spatial and velocity dependences, as follows:

dN=- '
f(Vp)dVpdxp, (1)

N(xp, tp)

r Av

where N(xp, tp) is the total density of particles exist-
ing at the point xp, &p, and f(Vp) is the velocity
distribution with which the particles come off after
collision. f(Vp) is normalized so that Jf(V'p)dVp=1.
If any particles are being liberated by ionization or
injection, these should be included in f(Vp), and
for these particles xo, Vo refer to the position and
velocity with which the particles entered the
plasma. '

(r)A„ is the velocity average of the mean
time between collisions.

We first seek wave-like solutions of the form

pp= pp expi(k x pi—t)
N(x, t) = np+ 8Np expi(k x pot), —

where no is the equilibrium density of particles.
As in A, we shall obtain the dispersion relation,
defining ro as a function of k.

In the presence of the average electric field, each
electron changes its velocity according to the equa-
tion of motion

m(dV/dt) = pVq =ipkyp expi(k x t)p—i

To solve for the velocity change, one must know x
as a function of t. Because qo is small, however,
the velocity must remain close to its initial value,
Vp, so that to a first approximation, x =xp+ Vp(t —tp).
This approximation is adequate to insert in the
right-hand side of the above equation, as the latter
is already proportional to the first order term qo.
The result is

m(dV/dt) ipk pip expi(k xp —
p&tp)

Xexpi(k Vp —ca)(f —tp). (2)

Integration, with the boundary condition that
V=V() at t =to, yields

pkp p expi(k xp —~tp)

m (pp —k Vp)

X (expi(k. Vp —co) (t —tp) —1).

In the subsequent work, we shall need to express
Vo as a function of V. To first order, one easily sees
that this result is

pkppp expi(k'xp pp/p)

Vo ——V+-
m (pp

—k V)

X (expi(k V pi) (t tp)
—1) =V ——5V, —(3)

' This schematic description is a way of treating the effects
on plasma oscillations of collisions and high velocity particles
without simultaneously entering into a detailed discussion of
the mechanisms by which the steady-state distribution is
maintained.

where we have replaced Vo by V in all first-order
terms. One can find x in terms of xo by integration
of (3), but we shall not do so here, because the result
is not needed in an explicit form.

Let us now consider all of the particles pass-
ing through the point x, at the time, t. The prob-
ability that such particles suffered their last
collisions between xo and xo+dxt) will be denoted
by P(x, xp, Vp, t)dxp. To a first approximation, it is
equal to (1/l) exp —~K —xp~/i), where l is the mean
free path. If the mean free path depends on the
velocity, the expression is more complicated be-
cause the particle velocity changes as the particle
moves under the action of the field. Since the motion
is determined in terms of x, xo, Vo, I;, the accurate ex-
pression for this probability is, at most a function of
these. If there were no collisions, the number of
particles starting between xo and xo+dxo with ve-
locities between Vp and Vp+dVp would be given by
Eq. (1) as

&N =N(x p, &p)f(Vp) dx pdV p (4)

One now applies Liouville's theorem, which states
that the density of particles in phase space remains
constant if one follows a moving particle for which
the equations of motion can be derived from a
Hamiltonian function. Hence, for a volume element
which follows a particle, we can write dxdV =dxodVp.
Since the number of particles in this element does
not change, we obtain from Eq. (4),

6N= N(xp, kp)f(V —bV)dxdV (5)

By dividing by dx, one obtains the contribution to
the density at the point x, resulting from particles
starting at the point xo, with the velocity Vo= V —bV,

p(x, xp, V —8V, t)dV =N(xp, tp)f(V —8V)dV (6).
To obtain the average density, one must multiply
the above by the probability that the particle
starts between xo and xo+dxo, and integrate over
xo and V. The result is

f
N(x, t) =

J J~ N(xp, &p)f(V &V)—
XP(x, xp, V —hV, t)dxpdV (7).

Let us now expand f(V bV) and —P(x, xp, V —8V, t)
as a series of powers of bV. We also write

N(xp, $p) =np+ 5Np expi(k xp —cotp) =np+ 8N(xp, tp)

With the retention of first-order terms, we get

N(x, t) = I, I [P(x, xp, V, t)(npf(V)

+AN(xp, kp)f(V)) np6V'V'y(fP) jdxpdV. (8)

From Eqs. (8), and from the fact that J'Pdxp ——1,
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we see that integration of the 6rst term over
dxodV in the integrand yields no T. he third term
may be simplified by noting from Eq. (3) that
6V is in the k direction, so that 8V Vy can be
written as IVY(8/8 ') where Vi is the component
of V in the k direction. One can now integrate this
expression by parts over Vp, noting that the inte-
grated parts vanish because f(V) vanishes at
infinity. Ke then obtain

1V(x, t)=no+ I ~ g(V)P 5E(xo, t,)

fkppsp
expi(k xo —cot,)

m 8Vk

(expi(k'V &o)(t $0) 1&
x!

(c0 —k V)

Since P now multiplies only 6rst-order terms,
we can evaluate it by its first approximation,
(1/f) (exp —!x—xo! /l) To firs. t order, one can also
replace x —xo by V(t —to). We also set 1/V= r(V)
=mean time between collisions. We get

Ke note that as the collision time, 7, becomes in-
finite, this reduces to Eq. (9) of paper A obtained
with the neglect of collisions. We shall concern
ourselves with situations in which the collision
time is much larger than the period of the plasma
oscillations. For collision times comparable with a
period of oscillation„ the use of an average field to
describe the forces on plasma particles becomes a
bad approximation and our treatment breaks
down. ' This means that we will neglect powers of
the quantity 1./cour higher than the first. At long
wave-lengths, k Vo/co is small compared to unity
for all Vo for which f(Vo) is appreciable. Expanding
in powers of k Vo/cv as in paper A, Eq. (10), we
obtain

2k Vp
aP=a&p' I f(VO)dVO 1+

(k Vp)'
+31 !

+''' —L24» & j.
(d ) Mr

With the same assumptions for the distribution
function as in A, we find as the dispersion relation
for small k,

Ar(x, t) =na+expi(k x (gt)—
dtp

dV—exp —(t —tp)/rf(V)

or
co' = (ap'+ (3aT/m) k' (icep/r)—

a) =

(asap'+

(3~T/m) k') l (i/2r—). (&2)

Sptgp
5%0 expi(co —k V)(t —to) —— k'

mV

Xexpi(co —k V) (3 —to)—
8k

pexp —i(~ —k V)(t —to) —1q-
x!

E. co —k.V )

The result of carrying out the integration over tp is

~+oo

A (x, t) =no+5¹expi(k x—cut) dVof(Vo)

This shows that the effect of collisions is to damp
the wave. The time necessary for the intensity to
fall to 1/e of its initial intensity is just the collision
time, v. This result is reasonable because each
electron was assumed to lose all ordered motion on
collision. As a result, the time needed to dissipate
most of the ordered energy is just the mean time
between collisions. It should be noted that unless
there are speci6c excitation processes such as those
described further ahead in this paper, plasma oscil-
lations cannot persist.

IV. VALIDITY OF LINEAR APPROXIMATION

As shown in paper A, Section I I I, in the absence
of collisions the linear approximation always breaks

%peak (Pp

+ (10)
m(co kVO+—i/r)' r((u kVO+i/r)!—

4xnpe'
1=)~f(V0)dVO

m ((o kV0+i/r)'—

+i/r (&&)
(co k Vp+i/r)— .

According to Poisson's equation, —k'pp = —4vc65~p.
Eliminating hap between these two equations gives
the following dispersion relation

Note that Eq. (11) approaches the dispersion relation
corresponding to organized motions. The non-medium-like
oscillations considered in paper A, Section (VI), are produced
mostly by a few particles near the wave velocity. In the colli-
sion treatment that we have just given, the density distribu-
tion is assumed at all times to be a continuous function of the
velocity, so that there can be no waves in which most of the
oscillation is carried by a few particles near a special velocity.
In order to obtain waves of the latter type, one would have to
start out with a density distribution in which a few particles
of some definite velocity had a large trigonometric perturba-
tion in density, much greater than that of particles of any
other velocity. As shown in A (Section VI), such oscillations
can have at most a very small amplitude.' Our treatment is too rough to be able to lead to sound waves
in the limit of short free path.

If ~ is a function of velocity, the above refers to a suitable
average over velocities.
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down for particles close to the wave velocity,
because these are trapped in the trough of the
potential, oscillating back and forth many times.
It is easily seen that the efFect of collisions is to
improve the linear approximation for particles near
the wave velocity. From Eq. (3), one sees that each
particle suffers an oscillatory change of velocity,
and that particles very close to the wave velocity
(where co=k Vo) will in a long time suB'er very
large changes of velocity, so that the assumption
that 6V is small, tends to break down. If particles
collide before they have time to do this, however,
the linear approximation will be valid even for
particles near the wave velocity. In the coordinate
system in which the wave is at rest, the description
of this eA'ect is that the time between collisions is
much less than the period of oscillation of a particle
in the potential trough.

In order that the linear approximation be valid,
it is necessary that for each group of particles of a
given velocity, the charge density resulting from
the response to the average potential be much less
than the unperturbed initial density after collision,
eof(VO). According to Eq. (10), the density result-
ing from the response to the potential is

q ok'np bNp
f(Vo) .+i

m(~ kVO—+i/r)" r("u& caVO+i/r—)

It is clear that the most unfavorable values for the
validity of the linear approximation is co —k Vp = 0.
At this point, the hrst term in the above expression
is usually larger than the second in the ratio v-'&&',

and cops is usually much greater than unity. Hence,
our criterion becomes'

(13)

Thus, in accordance with our qualitative picture,

a short collision time improves the linear approxi-
mation.

V. EXCITATION OF PLASMA OSCILLATIONS AS A
RESULT OF INSTABILITY

Ke shall now study some of the processes which
can lead to excitation of plasma oscillations, and
which can overcome the collision damping. The
6rst of these processes involves the efFects of
particles near the wave velocity Vs =(co/k')It. In
Eq. (12) we expanded the dispersion relation, under
the assumption that there were so few particles
near the wave velocity that their eR'ects could be
neglected. If there are an appreciable number of
such particles, this expansion is not permissible,
and we shall see by a more accurate treatment that
either excitation or further damping may be
brought about.

If r is large, the integrand in Eq. (11) has a very
high and narrow peak centering at Vo = (a&/k')k. For
small k, this peak occurs at such a high value of
Vo that f(VO) is fairly small. It is convenient to
divide the domain of integration over Vo into twc
regions, with the division line at a value of Vo
large enough so that f(VO) is already fairly small,
but such that I1/(~ k Vo+—i/r.)I' is also fairly
small. The contribution of the hrst region to the
integral can then be obtained by expansion; in fact,
the result is identical with that given Eq. (12).
The contribution of the second region is now written
down explicitly. '

f(Vo)~~'d Vo

"vi ((u —k Vp+i/r)'

i I" f(UO)d Vp
+— (14)

r ~r, ((o kVO+—i/r)

Since the frequency must, in general, be complex,
we write co=coo+iX. We then get

(1
(~0—k Vo)'+I —+X Ijr )I

(- -k v)'+
I
-+~

I Ii )

(1 )' (1 l) i 1(1
I

(~0-k Vo)' —
I
-+~

I
-2i(~o-k Vo)

I
-+I

I I
-(~0-k Vo)+-I -+I

I))s= ~ f(VO)dVO (oa' +

fhe dispersion relation is obtained by adding to 5,
the contribution of the low velocity region, ob-
tained from Eq. (12). We get (for small k, large r)

'For a typical plasma in a discharge tube X=0.1 crn,
nscuJ'/k'=20 ev, / 10 cm, so r=l/V 10 ' sec and one ob-
tains eq, =m(~y'/k~) (1/orp~r')~2. 10 ' ev. In the inter-
stellar plasma /=1013 cm. With 'A=10~ cm we have ~q
~10 '7 ev. We see that near the wave velocity the linear
approximation breaks down badly. The e8ects of particles near
the wave velocity on observable plasma oscillations must be
studied by the non-linear treatment given in A.

where co is close to co~,

cop' ( 3k'~T) i
+s.

g ( BIMp ) (opr

One must satify both real and imaginary parts of
the above equation. With co =~o+i), the imaginary

' In this work, we restrict ourselves to the one-dimensional
case.
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part yields

2i4ppcop' ( 3k'ccT) i —i
(cd 2+F2)2 ( mpopp J cop T g v

The real part yields

1
2(cop —k Vp)I —+X Icop'

)
1
-(~o —k Vo)

f(Uo)d Uo

(1 (1
I (- -»")'+I -+&

I I (- -kU. ) +I -+~
I) ) )

(17)

(1
cop'I (coo —kVp)' —

I

—+)
IJ)cd p'(coo' —I ') ( 3k'ccT)

, , I 1+, I+„iI f(Uo)dUo- -+
(coo +X ) 'E mcdp ) yc (1

I
(coo —kUo)'+

I

—+) j )

(18)

(cpp —k Vp) '+ I

—+),
I

Er )

We observe that if f(Vp) is small near the wave
velocity, neither the real nor the imaginary part
of the frequency will be greatly altered by the
integral from Vi, to ~. Equation (18) will describe
mainly a small shift in the real part of the fre-
quency, in which we are not interested, here. & Let
us then study Eq. (17), from which one can esti-
mate the imaginary part of the frequency. Since the

main contribution to the integral comes from a
small region near Up ——co/k, one can expand f(Vo)
=f(cdo/k) +(Uo coojk—)f'(copjk) + ' . If urer is large,
the second term in the integral appearing in

Eq. (17) can be shown to be very small compared
with the first; hence, we neglect it. The integral
then becomes

(cdo& ( cool (cool ( coo) '
fI —

II Uo ——I+f'I —
II Uo ——I+

(1 q t." (ki E kl Ek) E k)
2I +X Icop'k

i

l (1
( -»'o)'+I -+

) 2

If Vi is far away from cop/k, the range of integra-
tion can, with small error, be extended to infinity.
The first integral is then zero, because the integrand
is an odd function of Up —(cop/k). The second in-
tegral becomes —2f'(cop/k)( c/ppk o). pPr /2.

Noting that for small k and large 7., co is close to
(dp, we obtain the following approximation to X

Q)p
X———+ f'(pop/k)— (19)

2v 0' 2

The term involving 1/27 leads to damping; it has
already been obtained in Eq. (12). The second
term, however, can lead either to further damping,
if f (cop/k) is negative, or to excitation, if it is
positive. In a Maxwellian-like distribution, where f
decreases monotonically with the velocity, f'(coo/k)
is usually so small that the additional damping is
negligible in comparison with that due to collisions.
In a Maxwellian distribution, for example, one can

I If f(V&) is large near the wave velocity, then the shift may
be large. %'e consider such cases later, in connection with
teams of well-defined velocity.

write f= (m/2p. ~T)& exp —m V'/2ccT, obtaining

1 pr coo cdpo (m ),
exp mpi' /2cc Tk'. —-

2r 2 (2p.)& k' kccT/

For a typical value of cop=10" c.p.s. , ~T 1 ev, and
a wave-length of 1 cm, the additional damping rate
is =10 "/sec. , which is very sma, ll in comparison
with 10 ' per second, resulting from collisions.
For large k, however, the damping is very large;
in fact, as one approaches the Debye wave-length,
the damping time becomes less than the period of a
plasma oscillation. This shows that when collisions
are taken into account, one obtains an additiona1
reason why organized oscillations shorter than a
Debye length cannot occur; beyond those reasons
given in A, Section (VII). The significance of this
point will be discussed further ahead.

In order to obtain excitation, one must have a
region above mean thermal speeds where f'(cop/k)
is positive; this requires a peak in the distribution
function at high velocities, or in other words, a
special group of high energy particles. The reason
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why particles near the wave velocity can excite
or damp plasma oscillations can be understood in
terms of the transfer of energy from particles to
waves. Let us recall that particles near the wave
velocity can interact very strongly with the wave,
because they stay in a force of the same phase for a
very long time. It will be shown that particles which
emerge from collision with a speed greater than that
of the wave tend, on the average, to lose energy to
the wave by the time they make their next collision,
while particles starting out a little slower gain
energy. If (Bf/BV)(ruo/k) is positive, this means
that there are more faster than slower particles,
so that the wave tends to be built up at the expense
of the kinetic energy of the particles, while a
negative f'(coo/k) produces the opposite tendency.
In order to build up the wave in this way, it is
necessary, then, that there be a group of particles
of higher than average velocity, so that f'(Vo) can
be positive for a velocity, a&/k, at which a plasma
oscillation can exist. "If there were no oscillation, this
energy would be degraded by collision, but the
plasma wave provides a means of intercepting this
stream of energy before it is degraded, and trans-
forming it into electrical energy.

Let us first calculate the energy transfer in the
linear approximation. If Vo is the velocity with
which a particle emerges from the collision at the
point xo, and the time to, and b V is the change of
velocity suffered by the particle before it undergoes
another collision at the time, t, and the point, x,
the kinetic energy lost by the particle to the wave is

&&=—(Vo' —(Vo+b V)')
2

(8 V)'
= —m Vpb V—m (20)

2

According to Eq. (3), h V is to the first order, pro-
portional to expi(kxo ceto); h—ence, its average will
vanish when taken over all possible starting posi-
tions, xo, leaving only second-order contributions.
b V must therefore be obtained by solving the equa-
tions of motion to second order. Let us denote this
solution as 6V=SV~+5V2, where bVi is the first-
order solution, given in Eq. (3), and 8V2 is the
second-order correction. One must average AB over
xq with the weighting factor

N(xo, to) =no+Re 0%0 expi(kxo —~&0) = no+8K.
Since DB is already of first order, N need only be
expressed to first order, in order to obtain a result
correct to second order. The mean energy transfer
per unit volume per second per unit velocity is then

(d W /dt)« my{ V,)/r((n, +———8Ã) ( V, (S V,+S U)
+1/2(b Vi+ b V2)')A, (21)

In A, Section VII, it was shown that organized oscillations
cannot exist when co/k is below mean thermal velocities.

and to second order, noting that (5Vi)«vanishes,
we get

(d Wl/dt)« —— (—mf/r) fiioUO(fiV2)All

+ Vo(RA Vi)«+1/2iio((8 Vi)')«). (22)

After averaging over xo, (dWi/dt)A, must be multi-
plied by the probability that the particles go for a
time, without collision, which is

(t —to) exp —(t to)/r, —

and integrating over to. These calculations are car-
ried out in the appendix. The result is, for sufficiently
long collision times,

f(Vo) ~'(pp'k4 np Vo(UO —co/k)
(d Wi/dt)A, = (23)

m [(a)—k Vp)'+1/r']2

For large r and Vo close to co/k, the energy transfer
becomes large, and it is clear that for Vo) ~/k, it is
positive, while for Vo(a&/k it is negative. '

For large pp or large v, the energy transfer im-
plied by the linear approximation may be much
larger than the energy available. In this case, one
must go to a non-linear treatment. In A (Section
III), we already saw that particles near the wave
velocity are trapped and oscillate in the trough of
the potential, so that after a long time, their gains
and losses of energy tend to balance, thus prevent-
ing the indefinitely large transfer predicted for
large v, by the linear theory. Yet, in the non-
linear limit, the same qualitative result holds.
To see this, we note that particles, emerging from
their last collision faster than the wave, will, when
the potential is large or the mean free path long,
end up by oscillating about a mean velocity equal
to that of the wave, and hence, lose energy on the
average, while particles starting slower than the
wave will do the opposite. The non-linear eAects
merely set a limit to the amount of energy that a
given particle can deliver.

In paper A, where it was assumed that no colli-
sions took place, no excitation or damping by
particles near the wave velocity was obtained in the
exact non-linear treatment. The reason is that in A,
the assumption was made that each particle had
come to equilibrium with the wave, so that over a
long period of time, transfer of energy between

' In studying the excitation of plasma waves, we have
adopted the procedure of regarding the particles near the
wave velocity, as a separate system, interacting with the rest
of the wave. To justify this, we use the results of A, (Section
VI), where it was shown that for organized plasma oscillations,
the contribution to the charge density of particles near the
wave velocity was negligible. Hence, it is permissible as a
first approximation to discuss the wave motion, independently
of these special particles, and then to bring in the interaction
between these special particles and the rest of the wave. For
the non-plasmatic oscillations, also treated in A, (Section X I),
this procedure would be impossible, because the oscillation is
supported mainly by particles near the wave velocity.
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( (d)
xm-I vo ——I&(vo)dI vo ——

I (25)
k & k) 0 ki

where the integration is carried out over the trapped
range of velocities. If the gas is in a steady state,
the number of particles entering a given velocity
range is also equal to the number leaving as a
result of collision. Thus, we obtain

nof( Vo)
&( Vo)d Vo = d Vo,

7 f
' L. Landau, J.Phys. , U.S.S.R., 10, 25 (1946).

(26)

particle and wave averaged out to zero, But in the
collision treatment, particles are assumed to emerge
with no particular phase relation to the wave; in
obtaining such a phase relation as a result of the
forces, the particles either lose or gain energy, de-
pending on whether they are faster than the wave
or slower, and thus can excite or damp the wave.
I andau' has given a treatment neglecting collisions
in which the particles are assumed to start out at
t =0 with no particular phase relation to the wave;
he obtains the same type of excitation and damping
due to particles close to the wave velocity, that we
have obtained here. As one approaches the Debye
length, where there are many particles near the
wave velocity, it becomes necessary to bring so
many particles into phase with the wave that
heavy damping results.

To estimate the amplitude to expect when the
linear approximation breaks down, we see that if
f'(ooo/k) is positive, and large enough to overcome
collision damping, the wav= amplitude will grow
until the energy dissipated by collisions is equal to
that made available by the fast particles as they
are slowed down to the wave velocity. Only particles
which can be trapped will exchange appreciable
amounts of energy with the wave over a long period
of time. According to A (Section III), the range of
trapped velocities is (Vo —(o/k)2~222oo/m. Since the
particle ends up with an average velocity equal to
that of the wave, Vtr=&o/k, the average energy
gained by the particle over a long time will be

m ( (o2) m ( (o) ( (A))
~E=—

I
vo' ——I=—

I vo ——
II vo+2) k2// 24 k) (. k)

If 22 is not too large, Vo will be close to (o/k, so that
to a erst approximation, the above becomes

AE = m((d/k) (Vo oo/k). —(24)

If R(vo)dVo is the mean number of particles en-
tering the range dVO per cm' per second, then the
mean rate at which the particles gain energy is

dW )+(2eoo/m) &

~I —(2oyo/m) &

where T.f is the mean time between collisions for fast
particles. Ke then get

d W to+(2o2 o/m) '

d/ ~ —(2ooo/m) )
(o ( /d) nof(Vo)

xm-I v, ——
I d(v, —/k).

kE k)

If the range of velocities is not too broad, f( Vo) can
be approximated by expansion as a series of
Vp (o/k. The result is

dW2 (o no 2 (22(/oo&
'* ((o)—m———

k., 3& m ) &k)
(2&)

To obtain the rate at which the wave dissipates
energy by collision, we use the result (Eq. (12)) that
the wave dies out to 1/e of its value in a time 1/r, .
From this, one concludes that dW2/dt = —W/r, is
the rate of loss of energy, where t/I/' is the energy
density in the wave, and ~, is the mean time be-
tween collisions for slow particles. Since the total
energy of any harmonic oscillation is always twice
the mean potential energy, we get W=(E2)A„/42r
=k2(/oo2/82r where E is the electric field.

Setting (dW/dt)+(dW2/dh) =0 for a steady state,
we obtain

m (oop ' (16 (dp2 r, (oo) )
f'I ——

I I

2 (k) &3 k' rg Ekj)
(28)

One sees that for small eq, the possible energy trans-
fer is much larger than ey itself. This is because a
particle moving at the speed of the wave feels a
force of the same sign for a very long time. For
example, consider a wave with ego ——0.1 ev, and
wave-length 0.1 cm, so that k=22r/)(=202r cm '.
The maximum electric field is E= Ik//ooI =22r v

In order to get appreciable amplitudes, one needs a
region in which f is increasing rapidly with in-
creasing velocity; this is possible only if there is a
group of high energy particles. In a typical case,
one may take (op/k=10U/A, and consider a beam
of high energy particles containing 0.01 of the
total number, and with a velocity spread of the
order of mean thermal velocities. Take r~/r, =100.
Then (oop2/k2) f'((d/k) 1. With thermal energies
of the order of 1 ev, one obtains eq 0 0.3 ev.

It is of interest to estimate how much energy
a wave of a given potential can exchange with a
particle. The maximum value of this quantity can
be obtained from Eq. (24) by setting

I
Vo —((o/k)

I

= (22(oo/m)&. One gets

oo (22(oo) l (m (oo/k)2) l
~W,„=m—

IkEm) (2 2(2o )
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per cm, so that if the particle moves with the wave
for 1 cm, it can deliver 2m v, although no potentials
larger than 0.1 v exist; hence, relatively small
wave potentials may provide a very effective means
of exchanging energy with particles.

VI. PLASMAS OF VARYING DENSITY

If the plasma density varies slowly with posi-
tion, as, for example, it might do in the neighbor-
hood of a wall, where ions and electrons are being
lost by recombination, then there are much more
powerful mechanisms for excitation of plasma
oscillations. Let us refer to Eq. (12) for the plasma
frequency, but express k as a function of co. We get

(3g T/m) k' = (g' —cop' = &o' —(4n.a'/m) no(x) (.30)

Suppose that we have a plasma oscillation of a
definite frequency, which is moving in a direction in
which no(x) is decreasing. The wave-length,
X=2m/k, then decreases in the direction of motion
of the wave; and the phase velocity, Vpi, =&a/k,
also decreases.

Consider now a particle which enters the velocity
range in which it can be trapped so that it oscillates
back and forth about the potential trough. If the
wave velocity decreases slowly enough, the particle
will respond adiabatically as it moves with the
wave, and it will continue to be trapped, oscillating
about slower and slower speeds, and giving up more
and more energy. When the wave velocity decreases
to mean thermal speeds, however, wave motion
becomes impossible (see A (Section VII)) so that
this mechanism can operate only on particles
considerably faster than the mean thermal speed,
but where it does operate, practically the entire
energy of the particle can be given up.

If the wave moves in the direction of increasing
density, its phase velocity increases, and trapped
particles can be accelerated. We have suggested
this as a possible cause of acceleration of cosmic-
ray particles. '

To estimate the wave amplitudes that might be
produced in this way, we set the rate of loss of
energy by particles to the wave equal to

dW ~+(2erpo/m) m (~) 2—
l

—
l
z(v, )dl v, —

l
(31)

dS ~ —(2ecpp/m) ~ 2 E k) k)

The rate of loss of energy by collisions is still given
by de/dt = —W/r, . Setting dWi/dh+dW2/dt =0,
we obtain

E+0 T~ (dp (C0$ (M)m, k' (ki Ek)
(33)

The ratio, 0, of this potential to that obtained in
Eq. (28), is

co (co't

9 r, cop' &o
—4» k (k)

2 rf k' k [f'(a)/k)]'
(34)

One readily sees that for small f and f', 0. can be-
come very large. In this mechanism, the energy for
excitation of the wave comes from a non-equilibrium
property of a plasma of non-uniform density. There
is a continual diffusion of particles from regions of
high to low density, and this dissipates free energy.
The wave can intercept this stream of energy, and
transform part of it into energy of ordered motion.

VII. INSTABILITY OF BEAMS OF
WELL-DEFINED VELOCITY

The treatment of instability given thus far ap-
plies only to a continuous and differentiable ve-
locity distribution. Let us now consider a plasma in
which there may be groups of particles within a
narrow range of velocities, so that the expansion of
Eq. (18) is no longer permissible.

The 6rst problem that we shall consider here is
that of a one-dimensional plasma consisting of two
beams of the same speed, but moving in opposite
directions through a plasma positive ion back-
ground with charge density compensating that of
the beams in the absence of oscillations. Although
this problem is somewhat abstract, it demonstrates
in a simple way the most important effects of a
sharply defined distribution function. Let f(Uo)
have the following values: f( Vo) = 1/28 when

»es between
I vol =a, and

I vol =a —~'
f(UO) =0 for all other values of Uo. This means that
each beam has a velocity spread of width, b. This
system has a zero mean velocity.

We assume a very long free path, so that colli-
sions can be neglected, and the treatment given in
paper A can be used. According to A (Eq. (9)), the
dispersion relation becomes

d Wi no (a& ) (cu ) f'2erpo') &

=—ng
dt rf (k)

)k&hami

(32)

3 P, Bohm and E. P. Gross, Phys. Rev. 'N, 624 (1948).

This expression implies that every trapped particle
liberates all of its kinetic energy. R( Vo) is evaluated
in Eq. (26). Here, for small po we need retain only
the 6rst term in the power series. The result is

2-
~ ~ a+5 ~a ~

— dV'
+

25 ( & —. ~.-))) ((o —k Vo)'

1 1

2kl) .a) —ka a —k(a —f))

1 1
+

g+ka or+k(a —6)
(35)
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or
~A '(A»'+k'a(a —h))

~-.L( '+k'( '+( —&)'))'

4k'a(—a 8) (k'—a(a —8) —
coA ') ]&. (36)

We shall restrict ourselves here to the case of small
k. One root is (for small k):

A»' —A»p'+k'[a'+ (a —5)'+a(a —8)j (37)

((g' —k'a') (oP —k'(a —8) ')

This is a second-order equation for ~', the roots are

s)p'+k'(a'+ (a —h)')

number of possible frequencies of oscillation, in a
manner which is analogous to the behavior of two
coupled harmonic oscillators.

Let n& denote the density of the main plasma, n2
that of the special beam. We take V~ as the mean
velocity of the beam, and assume a uniform sym-
metric spread in velocity of 8 about V&. We seek
solutions where all quantities vary as exp(k x —cot),
but restrict outselves to waves long enough so that
expansions in k Va,j'co are possible for the main
plasma. We also assume infinite free path. We take
the x axis of coordinates to be in the V~ direction.
8 is taken parallel to V2.

From Eq. (10) the change in density for
the main plasma, resulting from the potential
p=yoexp(k x —co&) is

This root corresponds to the usual plasma fre-
quency, obtained in A (Eq. (11)).The other root is

en&k' t' (k V,)'~
1+

men' E
(39)

A»'= —k'a(a —8) . (38)
For the beam particles

Unless 8=a, this root corresponds to an imaginary
frequency; hence, it represents an instability of the
system. (When 8=a, the two beams fuse, and this
root approaches co=0. It is readily verified that
the root corresponding to the negative sign of
the square root is always imaginary, as long as
k'( pA'»/a(a fA)—

The physical reason for the instability of this
system is as follows: A very small perturbation
away from zero field at a given point causes a
velocity modulation of each beam. In time, this
produces a bunching of space charge, in the direc-
tion of motion of each beam, which creates a much
larger potential than that due to the original per-
turbation. The fields due to any one beam modulate
the other beam, which then feeds the disturbance
back to the source in a highly amplified form. Thus,
the perturbation builds up cumulatively, and in-
stability results. If the beams have a spread of
velocity, however, particles of different velocity
tend to bunch in different places, so that the am-
plification of the original perturbation is less, and
the instability is reduced. When the two beams fuse,
the instability is removed altogether. We shall see
that, in general, beams of well-defined velocity lead
to instability which can be reduced or eliminated
by a velocity spread.

Another illustrative problem arises if one sends
a beam of fairly well-defined velocity into a main
plasma having a continuous and more or less
iMaxwellian velocity distribution. In paper A,
(Section VI), it was shown that a beam of sharply
defined velocity adds another degree of freedom
to the organized motion of a plasma; in fact, such a
system is best described as being made up of two
interpenetrating and interacting plasmas. One may
therefore expect a corresponding increase in the

~n. k' p~'+' d V8¹=———
(p Il

m 28 vA —5 ((0 kz V2)
(40)

From Poisson's equation we obtain the dispersion
relation

(41)
(c» —k.V2)' —Pk 2

One can obtain two of the roots by first noting
that when co~ =0, the roots are

pk V,y'
co—&co&I 1+

I I I
= &ca .

E

For small a&2 the solutioqs will bt: changed only

where coP =4 n~ne'/m; A»2'=4nn&e /m We sh. all con-
sider here only the case of a weak beam where
n2((n& so that co2((~i.

The above equation has six roots, when
((k.V0/co)')A~ is not neglected. Even in the absence
of a special beam, this term would introduce addi-
tional roots, which are brought in by the applica-
tion of the expansion in powers of k' beyond the
region of its validity. The only roots to be retained
are, therefore, those which go continuously into the
four obtained by neglecting this term.

Let us divide the discussion of the roots into
three cases.

Case (a) (k.VA)-'))(uA"-.
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slightly. The result is

( k.V,) ' b'k, '

+Q)y ~

(42)

we write n = co —k, V2. From Eq. (41) we then
obtain

0.' =k,'b'+ (46)
(k ~oi'1-—I1+ I J

We have assumed that both

cubi/k,

V2 and
((k Vo/o)i)')All are small. These roots correspond
to the normal modes in which the main plasma
carries most of the energy, and the special group
undergoes a small forced oscillation of velocity and
density in the held of the main plasma.

To find the second type of root, we notice that if
or~=0, the solution would be

a) =k, Vg+(a)2'+b'k, ')&=a)gy. (43)

This represents an oscillation involving the special
group of particles. The frequency is just the plasma
frequency for the special group. For large k U2 it is
readily verified that the main plasma is only slightly
perturbed by the fields due to the special group.
We obtain

((o —k, V2)' = b2k'

Q7
2

+ (44)

I1+ I

(k V, p'

E &gi,g J,„J

Since co~y'&&coP, the above implies only a small fre-
quency shift away from ~~~. This is, therefore, the
normal mode in which the beam oscillates almost
independently of the rest of the plasma. The fre-
quency of oscillation may be, for this case, far
above the natural frequency, co&, of the main
plasma. Physically, this happens because the
special group of particles has an oscillation with a
very short wave-length, which together with the
Doppler shift results in a frequency so high that
the main plasma cannot respond appreciably.

The behavior of this system is very analogous to
that of two weakly coupled harmonic oscillators.
The case considered above corresponds to a situa-
tion in which the natural frequencies of each oscil-
lator are very diAerent. The normal modes then
involve the excitation mainly of one oscillator to a
time, while the other oscillator responds weakly.

Case (b) k, V2«cubi.

Ke can obtain the approximate solutions in a
way similar to Case (a). One finds for the solution
oscillating near the main plasma frequency

~'=~i'+((k vo)')A + — (43)
((oi —k.V2)' —b2k, '

To obtain the oscillation near the beam frequency,

We now assume n/k, U2«1 T. he above equation
yields, with the neglect of n on the right-hand side,

(k.V21 '
n' k,'—b (47)( coi J ( (k Ve)'

l1+ I

E k, V, J

Since a&2/cubi))1, and k,b«k V2, we see that a is
indeed much less than k, V2.

The oscillation frequency' has not been changed
much from k, V2, but there is a qualitatively new
effect; namely, 0. can become imaginary, so that
the system becomes unstable. We note that the
spread of velocities, 6, opposes this instability;
in fact, if b'& (&v22/cui2) V22 cos'8, where 8 is the angle
between k ance V2, the distribution is stable. This
result is very analogous to that obtained with the
plasma consisting of interpenetrating beams moving
in opposite directions. In this case, the instability
is due to amplification of a perturbation by bunching
of the beam, with subsequent feedback through the
main plasma.

Case (C) k.V2—All.

This corresponds to the resonant case for har-
monic oscillators, because co is close both to k V2

and to co~. The interactions of the two systems will
be greatest in this region. I t is also in this region that
the change from real to complex roots occurs, since,
when k V2)&ori, all the roots are real, while two of
them are complex when k V2&(mi. Furthermore
I
Im uI must have a maximum for some value of

k, V2, because it rises steadily as k, V2 is increased,
but must fall to zero again at the point of transi-
tion between real and complex roots. The maximum
can be reached only in the region where k V2/~i
is neither large nor small, hence, it must occur
where k, V2—~i. An order of magnitude estimate of
this maximum can be obtained by setting k, V2

=coi/2 in Eq. (47). The result is

n' „—k 'b' —(co22/4).

To prevent instability, the spread of velocities must
be at least b=co2/2k . This means that sharply de-
fined beams cannot exist in equilibrium for any
great length of time; they create the oscillations
which scatter them.

~ Note k V2&(co1, so that we have oscillations far below the
main plasma frequency. These can exist only by virtue of the
beam charges,
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VIII. CONCLUSION

Whenever a plasma contains beams of particles
of well-defined velocity, or groups of particles for
above mean thermal speeds, the system can become
unstable, and small oscillations grow until they are
limited by the appearance of non-linear effects.
Collisions tend to damp the wave, and thus provide
a stabilizing effect. In a sense, special groups of
particles may be said to create the oscillations which
scatter them since plasma electrons can scatter
much more effectively when they move coherently
than when they set at random. This effect must be
taken into account in estimating the rate at which
a. Maxwellian distribution among the electrons
tends to be established. Kith these results, one can
explain the experiments of Langmuir' which showed
that groups of fast electrons are scattered much
more rapidly than can be accounted for by random
collisions alone.

Thus far, we have studied only a few of the
possible causes of instability. In Paper C, we shall
treat the effects of boundary conditions, which are
responsible for many important instabilities. A
complete investigation, extending the treatment
to include effects of variations of density and
temperature, non-linear phenomena, positive ions,
and magnetic fields remains to be carried out.

Plasmas occur not only in discharge tubes, but
also in the ionosphere of the earth, the atmosphere
of the sun, and interstellar gas and dust clouds.
Since streams of fast particles are continually being
emitted from below into the atmosphere of the
sun, one may expect a great deal of instability,
particularly because the plasma density decreases
as one leaves the surface of the sun. Vlasov, '
Martyn, ' and Haeff' have suggested also that the
motion of plasma particles in the magnetic fields of
sunspots can cause oscillations, which may be able
to account for the high intensity of radio waves
that the sun is known to emit. Khen there is a
magnetic field, transverse and longitudinal waves
are coupled, so that all plasma oscillations can
produce radio waves, which are certain to escape,
because the plasma density decreases as one leaves
the surface, so that the waves cannot be refIected
back in.

It is not unlikely that the plasmas of interstellar
space, are also highly unstable. For example,
photo-ionization should be able to supply high
energy electrons which can excite plasma waves by
the mechanism described in this paper. There may
also be a galactic magnetic field' which produces
further instabilities. Any two ion gases with differ-

4 I. Langmuir, Phys. Rev. 26, 585 (1925}.
5 J. S. Shklovsky, Nature 159, 752 (1947}.
6 D. F. Martyn, Nature 159, 27 (1947}.' A.. V. Haeff, Phys. Rev. 7'4, 1532 (1948}.' L. Spitzer, Phys. Rev. '70, 777 (1947}.

ent average velocities will also be unstable if they
collide and interpenetrate. Some of these mecha-
nisms may perhaps explain the observed radio
waves coming from interstellar space.

dU
m =Re i~k ape'&"

dt
(48)

Writing x—xp+ Vp(t tp)+bxi, where ix) is the
first-order correction to x, we get the following ex-
pression for d V/dt, accurate to the second order

dU—Re
16k pp

et(koo —ecto)ei(kro —ee&(t to)eik setto—l (49)

Now, over a finite time, it is always possible to
choose ~p so small that kbx, is also small; hence
expik Re bx~ can be expanded, and we get

d U d ek'(pp
=—(bV,) —Re—e'(" 0- '0'e'" ' "'" '"Re bx»

dt dt

where 6Vi is the first-order correction to V, given
in Eq. (3). To obtain bxl, one integrates Eq. (3)
for 5Vi, obtaining

bxg = 8 Uidt =
6k pp

et(jeep —te tp)

m

(ei(kVO ee)(t te) —
l )—

X
I

——ddt. (SO)
t'p Vi) —cp j

Ke wish to average 6V2 over xp, and then over
(t —tp) with the weighting factor exp —(t tp)/T-
This can be accomplished by first averaging
dbVp/dt over xp then integrating the latter to ob-
tain bV~, and then averaging the latter over tp.

To average over xp, we use the theorem that if f
and g are complex numbers proportional to expikxp,
then (Re f Re g)A, =(Re (f*g/2))A, We then g.et

$2+ k3—6V.
dt A„2T)t'(0 Vi) —p))

e—t(kVp —o)) (t—to)

XRe
f(& Vp-~)

(t t )e—i(kro —ee)(t te) . (3$)—

IX. APPENDIX

The expression for the average transfer of kinetic
energy from particle to wave is given in Eq. (23).
The first step is to evaluate (5 Vp)A„ the average
value of the second order correction to the velocity.
To do this, we begin with the equation of motion
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The next step is to average over (t —tp). To do this, We now evaluate the term t)E(xp, to)t) V). From
we use the result that Poisson's equation,

t') Vp(t tp) d—(t t t))—

QO d8 V2
e—""' d(t —to), (52)

t—tp 0 dt

or

v &=+4«bX

k P0
hA)'(~ t ) — pickup wtp)—

1 k'y02
(t)Et') U))c), ———— ge(et'ckvp ~)ct—tp)— 1)

2 4)rm(k Vp —co)~2~ 2k3

(Vp)A, =—
2m'(k Vp —co) Averaging over (t —tp) yields

which can be obtained by integration by parts, and averaging over z0 we get
noting that ti V(t =tp) vanishes by definition. Thus,
we obtain for average over both x0 and t —t0,

)X) e—i(kVp —co) q

dye
0 p(k Vp co)—

1 koc))o' (k Up —co)
(t)A)'8 Vg)A, ———

2 4)rm (k Vp —co)-'+1/r'
(56)

~e—t'(k Vp—o)) g The complete expression for 58' is then, according
to Eq. (22),

where we have replaced (t —to) by )). This can be
integrated to yield

(k Uo —~)~2~ 2k3

(& Vp)A. =— (54)
m' [(co—k Vp)'+1/r']'

When this is multiplied by exp —(t —tp)/r, and
integrated over (t tp), we get—

Let us now average the term t) V)' over xp (see
Eq. (20)). From (3), we obtain

g2(p 2k2

(~U')"=(p
l
t'Vkl')A =

m'(co —k Vo)'

X (1—eos(k Vp —o)) (t —to)).

mf(Vp)
(d Wt/dt)A. =—

X [no Uob V2+ Vpt)M V)+ pknpt') Vt-"]

n pf( Vo) p'ppo'k' k Up(k Vp —co)

m . [(k Up —co) -'+ 1/r']'

k Vp (k Vp —co)

2cop' (k Vp —co)'+1/r'

1 1

2 (k Vp cd)'+1/r—' (57)

(tl U)')A. =
~2~ 2k2

1 —Re
m'(td —k V,)' 1+p(co —k Vo) r

For large values of T, the 6rst term is clearly the
main one, and one obtains

2~ 2k2 1 npf(Vp) p'ppo'k'

(55) (d W)(dt)A, =
m' (td —k Vp)k+1/r' T m

Vp( Vp —td/k)
(58)

[(k Vt) —co) '+ 1/r']'


