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Abstract

We develop the quantization of unimodular gravity in the Plebanski and Ashtekar
formulations and show that the quantum effective action defined by a formal path
integral is unimodular. This means that the effective quantum geometry does not
couple to terms in the expectation value of energy proportional to the metric tensor.
The path integral takes the same form as is used to define spin foam models, with
the additional constraint that the determinant of the four metric is constrained to be
a constant by a gauge fixing term. This extends the results of [10] to the Hilbert space
and path integral of loop quantum gravity.

We review the proposal of Unruh, Wald and Sorkin- that the hamiltonian quan-
tization yields quantum evolution in a physical time variable equal to elapsed four
volume-and discuss how this may be carried out in loop quantum gravity.
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1 Introduction

The unimodular formulation of general relativity was first proposed by Einstein in 1919
as an approach to the unification of gravity and matter[1] . It was studied by a number of
authors in the 1980s and early 90s because of indications that it resolves two key problems
in quantum gravity[2]-[9]. These are the cosmological constant problem and the problem
of defining a physically meaningful time with which to measure evolution of quantum
states in quantum cosmology, in the absence of a spatial boundary. This is the second of
two papers which report results which support and clarify the sense in which unimodular
quantum gravity solves these two problems.

In the first of these papers[10], I constructed the constrained phase space quantization
of a formulation of unimodular gravity due to Henneaux and Teitelboim[8]. I showed
that the quantum effective action is a functional of the unimodular spacetime metric gµν
with determinant fixed to

√

det(ḡµν) = ǫ0 (1)

where ǫ0 is a fixed nondynamical volume element. This means that the quantum effective
equations of motion, which arise from varying the metric with (1) fixed have a symmetry

Tab → T ′
ab = Tab + ḡabC (2)

where C is a spacetime constant. This decouples the dynamics of the metric ḡ from any
contribution to the energy-momentum tensor, whether classical or quantum, of the form
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of a constant times the spacetime metric. This means that the puzzle of why huge contri-
butions to Tµν of this form coming from the zero point energy of the fields, expected to be
of the form of M4

P l are not sources of spacetime curvature. This is sometimes called the
old cosmological constant problem.

In this paper these results are rederived using the Ashtekar variables and the Ple-
banski form of the action. Specifically, in sections 2 to 4 we develop the unimodular
formulation of the Ashtekar variables first studied in [9]. In section 5 we formally con-
struct the path integral and show that the quantum effective equations of motion have
the unimodular property (2).

This sets up the possibility of explicitly realizing unimodular quantum gravity in the
context of a spin foam model, which is a well defined and ultraviolet finite path integral
quantization of general relativity.

In section 6 we then seek to build on these results to address the problem of time
in quantum cosmology and the related issues of defining physical observables and the
physical inner product. Here we are following a suggestion made by Unruh[5], Wald[6],
Sorkin[7] and others, which can be summarized as follows. We define, following Hen-
neaux and Teitleboim a three form aαβγ which satisfies a field equation

b̃ = (da)∗ =
√−g (3)

Here gµν is the usual spacetime metric without the unimodular condition imposed. Let us
consider a spatially compact spacetime M. On it we pick two nonintersecting spacelike
slices of a spacetime history , which we may call Σ2 and Σ1. These bound a region of
spacetime R. It follows that

∫

Σ2

a−
∫

Σ2

a =

∫

R

√
−g = V ol4(R) (4)

We may then call

τ(Σ) =

∫

Σ

a (5)

the elapsed spacetime four volume to the past of the surface Σ.
The idea of [5, 6, 7] is that the Hamiltonian constraints of general relativity are in this

formulation replaced by evolution equations in this physically well defined time coordi-
nate. To see explicitly what this means define the usual 3 + 1 slicing of spacetime, and set
up a hamiltonian formulation of unimodular general relativity. In each surface Σ we can
define a local time coordinate T̃ = a∗. This has conjugate momenta, π, so that

{T̃ (x), π(y)} = δ3(y, x) (6)

The hamiltonian constraints are then replaced by two sets of constraints.

W = π
√
q − h̃ = 0 (7)
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where h̃ is the usual hamiltonian constraint, with vanishing cosmological constant, Λ,
with density weight one. The second set of constraints are

Ga = ∂aπ = 0 (8)

This tells us that π is a constant, and there are indeed equations of motion that confirm
that it is a spacetime constant. Its value on any solution is the cosmological constant.
From (6) we see that this variable cosmological constant is the momentum conjugate to
elapsed four volume.

In section 6 we discuss the implementation of (7,8) in an extension of the spin network
representation. We show that the Wheeler-DeWitt equations (or quantum Hamiltonian
constraint equations) can be interpreted to give a version of a many fingered time evolu-
tion of the quantum state of geometry in the time τ , in either the connection or the spin
network representation.

In the following we restrict ourselves to the case where spacetime has a topology Σ×
R where Σ is a compact three manifold without boundary. The case where there is a
boundary or asymptotic conditions is interesting, but is reserved for a possible future
paper.

2 The Plebanski formulation of unimodular gravity

Henneaux and Teitelboim[8] reformulated unimodular gravity so that the action depends
on the full unconstrained metric and the gauge symmetry includes the full diffeomor-
phism group of the manifold. They do this as follows. They introduce two auxiliary
fields. The first is a three form1 aαβγ , whose field strength is bαβγδ = daαβγδ. The dual is a
density2

b̃ =
1

4!
ǫαβγδbαβγδ = ∂αã

α (9)

where ãα is the vector density field defined as ãα = 1
6
ǫαβγδaβγδ. The second is scalar field

φ which serves as a lagrange multiplier.
Their action translates into the Plebanski formulation as

SHT =

∫

M

(

Bi ∧ Fi − ΦijB
i ∧ Bj − φBi ∧ Bi + Lmatter

)

+
1

8πG
φb̃ (10)

where we impose the tracefree condition

Φii = 0 (11)

1We use greek indices for four dimensional manifold indices and latin indices for thee dimensional
indices

2We use the notation where tildes refer to densities.
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By varying φ we find the unimodular condition emerging as an equation of motion

b = Bi ∧Bi (12)

Varying ãa we find
∂aφ = 0 (13)

so that the field φ becomes a spacetime constant on solutions, so we can write

φ(x) = Λ (14)

Varying Bi we find the Einstein equations for any value of the constant Λ

Fi = ΛBi + ΦijB
j (15)

plus matter terms. The last equation of motion is

Bi ∧ Bj − 1

3
δijBi ∧Bk = 0 (16)

It makes sense to define the field

Φ′
ij = Φij +

1

3
δijφ (17)

so that Φ′
ii = φ. If we use the equation of motion for Bi we can rewrite the action as

SHT2 =

∫

M

(

F i ∧ F j(Φ′)−1
ij + Lmatter

)

+
1

8πG
φb̃ (18)

Finally, we can give an interpretation of the field ã as follows. Let us integrate (12)
over a region of spacetime R bounded by two spacelike surfaces Σ1 and Σ2. Then we
have

∫

Σ2

a−
∫

Σ1

a = V ol =

∫

R

√
−g (19)

That is a pulled back into the surface is a time coordinate that measures the total four
volume to the past of that surface. We can consider that time coordinate associated to a
surface Σ to be

τ =

∫

Σ

a. (20)

3 Constrained hamiltonian dynamics of Plebanski unimod-

ular gravity

It is easy to construct the constrained hamiltonian framework for the Henneaux-Teiltelboim
form of the theory (18). We do the usual 3 + 1 decomposition and define momenta for all
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the fields. For this and the next section we neglect matter, it is trivial to reinsert it. We
find the canonical momenta for the gauge field

Ẽa
i = ǫabcFbc(Φ

′)−1
ij (21)

and also the primary constraints
E = π0 − φ = 0 (22)

as well as
P

ij
Φ = Π0

i = πφ = πc = 0 (23)

Here πa, π0 are the momenta conjugate to the ãa and ã0, respectively.
The definition (22) cannot be inverted to eliminate the velocities unless the following

primary constraints are also imposed.

Da = Ẽb
iF

i
ab = 0 (24)

which generate diffeomorphisms and the modified Hamiltonian constraints

H = ǫijkẼa
i Ẽ

b
jFabk − φdet(Ẽa

i ) = 0 (25)

We also find from the preservation of the vanishing of Π0
i and πc, respectively the two

Gauss’s law constraints
Gi = DaẼ

ai = 0 (26)

Gc = ∂cπ0 = 0 (27)

where we have used (22).
We can eliminate π and πφ by using (22) with (25) to find

W̃ = ǫijkẼa
i Ẽ

b
jFabk − π0det(Ẽ

a
i ) = 0 (28)

The standard calculation shows that there is also a Hamiltonian, which is

H =

∫

Σ

(∂aã
a)

(

ǫijkẼa
i Ẽ

b
jFabk

det(Ẽa
i )

)

(29)

If one wants one can alternatively eliminate (27) and replace it by

Sc ≡ ∂c

(

ǫijkẼa
i Ẽ

b
jFabk

det(Ẽa
i )

)

= 0 (30)

Thus, the hamiltonian then vanishes on the constraint surface as (30) implies that there is
for every solution a constant Λ for which

ǫijkẼa
i Ẽ

b
jFabk = Λ · det(Ẽa

i ). (31)
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The Hamiltonian is then on the constraint surface equal to

H = Λ

∫

Σ

(∂aã
a) ≈ 0 (32)

The constraints πa and G⌋ generate gauge transformations, respectfully

ãa → ãa + r̃a, ã0 → ã0 + ∂cs̃
c (33)

where r̃a and s̃c are arbitrary vector densities.

4 Physical observables of the classical theory

We first show that there is in this formalism a definite method for calculating physical
observables which is no more complicated than solving evolution equations as in uncon-
strained dynamical theories.

Let us eliminate the pair (ãa, πa) by solving the constraints πa = 0 at the same time we
choose a gauge generated by that constraint in which ãa = 0. This gives us a formulation
of the theory on the phase space Γ defined by canonical pairs (Ai

a, Ẽ
a
i ), and (ã0, π0). The

constraints are W , (28), Da (24), Gi(26), Gc (27). Let us note that

{τ, πo(x)} = 1 (34)

and write W as the undensitized form

W = π0 − h = 0 (35)

where h is

h =
ǫijkẼa

i Ẽ
b
jFabk

det(Ẽa
i )

(36)

Let us now consider a physical observable on Γ

O = O[A,E, ã0, π0] (37)

Let us assume that it is locally gauge invariant and spatially diffeomorphism invariant so
it satisfies

{Gi,O} = 0 (38)

{D(v),O} = 0 (39)

for any vector field va on Σ. We want to solve

{W,O} = 0 (40)

{Ga,O} = 0 (41)

7



We solve the latter, (41) first. This gives us

∂

∂xa

(

∂O
∂ã0(x)

)

= 0 (42)

This is solved by making O a function only of the integral τ =
∫

Σ
ã0. Now we can consider

(40). This is one equation for every point x ∈ Σ,

0 = {W(x),O[τ ]} =
∂O[τ ]

∂τ
− {O[τ ], h(x)} (43)

However it is straightforward to show that if this is satisfied at any one point x ∈ Σ it is
satisfied for all points y ∈ Σ. Consider that x and y are nearby so that there is a vector
field va such that h(y) = h(x)+ {D(v), h(x)}+ ..., where the ... indicate higher order terms
in brackets with D(v) that come from exponentiation. Then we can write

{O[τ ], h(y)} = {O[τ ], h(x)} + {O[τ ], {D(v), h(x)}}+ ...

= {O[τ ], h(x)} − {D(v), {h(x),O[τ ]}} − {h(x), {O[τ ],D(v)}}
= {O[τ ], h(x)} (44)

where {D(v), {h(x),O[τ ]}} vanishes by (43) and {O[τ ],D(v)} vanishes by (39).
Thus we conclude that a complete set of conditions on O[τ ] are the constraint equa-

tions (26), (24) together with the condition that it is a function of ã0 only through a depen-
dence on the physical time, τ together with the evolution equation

∂O[τ ]

∂τ
= {O[τ ], h(x)} (45)

for any x.

5 Construction of the path integral quantization

The canonical theory we have arrived at has canonical pairs, (Ai
a, Ẽ

a
i ), (ã

a, πa) and (ã0, π0).
The constraints are W , (28), Da (24), Gi(26), Gc (27) and πc. The Gc count as one constraint
because

∂[aGc] = 0 (46)

Associated to these 11 constraints are 11 gauge fixing conditions. The first seven are
standard from the Ashtekar formulation of general relativity, the four new ones gauge fix
the ãa and ã0 and will be discussed below.

There is also a Hamiltonian which is (29) which is non-vanishing on the constraint
surface.
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We follow the standard construct the path integral from the the gauge fixed Hamilto-
nian quantum dynamics. The partition function is

Z =

∫

dAi
adẼ

a
i dã

0dãadπadπoδ(W)δ(Da)δ(Gi)δ(Gc)δ(πc)δ( gauge fixing)DetFP

×exp ı

∫

dt

∫

Σ

(

Ẽa
i Ȧ

i
a + π0

˙̃a0 + πc
˙̃ac − (∂aã

a)

(

ǫijkẼa
i Ẽ

b
jFabk

det(Ẽa
i )

))

(47)

The first thing we do is to integrate over π0. This uses up the delta function in W ,
implying the substition

π0 →
(

ǫijkẼa
i Ẽ

b
jFabk

det(Ẽa
i )

)

(48)

in the rest of the integrand. This turns the delta functional in Gc into one in Sc so the
partition function is now

Z =

∫

dAi
adẼ

a
i dã

0dãadπcδ(Da)δ(Gi)δ(Sc)δ(πc)δ( gauge fixing)DetFP

×exp ı

∫

dt

∫

Σ

(

Ẽa
i Ȧ

i
a +

(

ǫijkẼa
i Ẽ

b
jFabk

det(Ẽa
i )

)

( ˙̃a0 + ∂cã
c) + πc

˙̃ac

)

(49)

We now introduce a vector density w̃a to exponentiate the constraint Sa, and integrate
over the πc. yielding

Z =

∫

dAi
adẼ

a
i dã

0dãadw̃cδ(Da)δ(Gi)δ( gauge fixing)DetFP

×exp ı

∫

dt

∫

Σ

(

Ẽa
i Ȧ

i
a +

(

ǫijkẼa
i Ẽ

b
jFabk

det(Ẽa
i )

)

( ˙̃a0 + ∂cã
c + ∂cw̃

c)

)

(50)

We now may shift the definition of ãa by

ãa → ãa − w̃a (51)

This eliminates any dependence on w̃a in the integrand so we trivially do the integral
over dw̃a. At the same time we exponentiate the two remaining constraints, Da and Gi

with lagrange multipliers, respectively, Na, the lapse and Ai
0. We then have

Z =

∫

dAi
adA

i
0dẼ

a
i dN

adã0dãcδ( gauge fixing)DetFP

×exp ı

∫

dt

∫

Σ

(

Ẽa
i Ȧ

i
a +

(

ǫijkẼa
i Ẽ

b
jFabk

det(Ẽa
i )

)

( ˙̃a0 + ∂cã
c) +NaDa + Ai

0Gi

)

(52)
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We now can introduce the lapse N , which is an density of weight minus unity, by
means of an insertion of unity, in the form

1 =

∫

dNδ

(

N −
˙̃a0 + ∂cã

c

Det(Ẽai)

)

(53)

This gives us

Z =

∫

dAi
adA

i
0dẼ

a
i dN

adNdã0dãcδ

(

N −
˙̃a0 + ∂cã

c

Det(Ẽai)

)

δ( gauge fixing)DetFP

×exp ı

∫

dt

∫

Σ

(

Ẽa
i Ȧ

i
a +NǫijkẼa

i Ẽ
b
jFabk +NaDa + Ai

0Gi
)

(54)

We can change variables from Ẽai, N and Na back to the frame fields eµ so we have

Z =

∫

dAi
adA

i
0de

µdã0dãcδ
(

det(e)− ˙̃a0 + ∂cã
c
)

δ( gauge fixing)DetFP

×exp ı

∫

dt

∫

Σ

(

eµ ∧ eν ∧ F+
µν

)

(55)

5.1 Gauge fixing

We now can introduce the four gauge fixing conditions

f̃0 = ã0 − t(ǫ0 − ∂cã
c) = 0, f̃ c = ãc = 0 (56)

where t is the time coordinate. ǫ0 is a fixed density needed to make the density weights
balence out. Then we have

˙̃a0 + ∂cã
c = ǫ0. (57)

The path integral now becomes

Z =

∫

dAi
µde

µδ (det(e)− ǫ0) δ( gauge fixing)Det′FP

×exp ı

∫

dt

∫

Σ

(

eµ ∧ eν ∧ F+
µν

)

(58)

so we return to an action of the form of unimodular gravity.
From here we can work back to the Plebanski formalism following the usual steps,

giving us

Z =

∫

dAidBidΦijδ
(

Bi ∧ Bi − ǫ0
)

δ(Φii)δ( gauge fixing)Det′FP

×exp ı

∫

dt

∫

Σ

(

Bi ∧ Fi − ΦijB
i ∧Bj

)

(59)

Thus, the path integral is the same as is usually taken to generate spin foam models, with
the additional constraint that Bi ∧ Bi is everywhere fixed to a background density ǫ0.
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6 The unimodular loop representation

Unimodular gravity in the Ashtekar variables was studied by [9], which we take as a
starting point. Their work was done at a time when the roles of the volume operator and
spin network basis were not fully appreciated, so it should be now possible to take their
results some steps further. Here we just make a few remarks to motivate further work.

6.1 The connection representation

To quantize in the loop representation we may begin with an extended connection rep-
resentation where the configuration space is a functional of connections Ai on a three
manifold Σ plus a scalar density field ã0. (As ãa plays no role we will eliminate it and
its conjugate momenta, which is a constraint.) For convenience we will rename ã0, T̃ and
recall that τ =

∫

σ
T̃ measures total four volume since the beginning of the universe.

Wavefunctionals are then functionals Ψ(A, T̃ ). The diffeomorphism and gauge con-
straints affect only the A dependence in the usual way. in addition, there is the hamilto-
nian constraint (25) which may be written, in singly densitized form

ı~
∂

∂T̃
ˆdet(e)Ψ(A, T̃ ) = ˆ̃

hΨ(A, T̃ ) (60)

where h̃ is the singly densitized form of the hamiltonian constraint

h̃ =
1√
q
ǫijkẼa

i Ẽ
b
jFabk (61)

There is the additional constraint Gc (27), which may be written.

ı~∂c
∂

∂T̃
Ψ(A, T̃ ) = 0 (62)

This is solved by writing,
Ψ(A, T̃ ) = Ψ(A, τ(T̃ )) (63)

Alternatively we can separate variables, by writing

Ψ(A, T̃ ) =

∫

dλ(x)Ψ(A, λ)eı
∫
Σ
T̃λ(x) (64)

which is a functional integral over values of a function λ(x) on Σ. We then find that locally

ˆ̃
h(x)Ψ(A, λ) = λ(x) ˆdet(e)Ψ(A, λ) (65)

together with the condition that

(∂cλ)Ψ(A, λ) = 0 (66)
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We see that Ψ(A, λ) has support only on configurations where λ is constant.
We can integrate (65) over any region R of the spatial manifold to find

ˆ̃
hRΨ(A, λ) = λV̂RΨ(A, λ) (67)

where

hR =

∫

R

h̃ (68)

and

V̂R =

∫

R

√̂
q (69)

If we define that constant value λ(x) = Λ we find that the wavefunction evolves as

Ψ(A, τ) =

∫

dΛΨ(A,Λ)eıτΛ (70)

This is now an ordinary integral over Λ.

It is amusing to note that the Kodama state[12] Ψk(A, λ) = e
3

λ

∫
YCS(A) is still a solution

to (65), with the state considered a function of variables A and λ. With the standard point
split regularizations, it solves the ordering

ǫijk
ˆ̃
Ea

i
ˆ̃
Eb

j

(

F̂abk −
λ

3
ǫabc

ˆ̃
Ec

k

)

Ψ(A, λ) = 0 (71)

Whether this offers any improvement of the interpretational issues facing the Kodama
state is unclear.

6.2 The spin network representation

We may now transform to the spin network representation, it is convenient to use the fact
that in (25), π0 multiplies detE so we only need to have values of T̃ on vertices of valence
four or higher, on which the volume operator doesn’t vanish. Let Ri be a decomposition
of Σ into regions, each enclosing a single vertex vi of a spin network state of valence four
or higher. Then we can associate to each vertex vi, the integral

∫

Ri

T̃ = τi (72)

so that
∑

i τi = τ which measures the past four-volume of the slice. Note that the par-
tition of τ so defined on vertex labels is arbitrary, as the regions are arbitrary parts of a
regularization procedure.

We then augment the usual definition of spin network states with these labels τi on
each vertex of non-vanishing volume. The quantum states are then functionals

Ψ(Γ, τi) (73)
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But the solutions to (27) impose that all the τi = τ so we have quantum states of the form

Ψ(Γ, τ) (74)

that satisfy for every region R,

ı~
∂

∂τ
V̂RΨ(Γ, τ) = ĥRΨ(Γ, τ) (75)

7 Conclusions

In this paper we have extended to the Ashtekar and Plebanski formulations of gravity
the results of [10], in which it is shown that the quantum effective action of unimodular
gravity retains the unimodular property, (2). The main results of this paper are the formal
expression for the path integral in unimodular form of the Plebanski action, eq, (59) and
the unimodular form of the Wheeler-deWitt equation in spin network representation, eq.
(75). We note that the when the region R in the latter is chosen to be the whole spatial
manifold, we have a kind of Schroedinger equation. But we should caution that this
equation has to be satisfied for every region, R, of the manifold. In particular, note that
there are generically regions in spin network states in the kernel of the volume operator

where the regularized forms of ĥR so far studied act non-trivially. These include nodes of
valence three; on these the hamiltonian constraint will take its usual form. What is new is
the action on regions, such as those containing generic nodes of valence four or higher, on

which the action of both V̂R and ĥR is non-trivial. The development of solutions in these
regions will give something like a many fingered time, where the “extent” of each finger
is determined by the action of the volume operator.

Hence, while unimodular gravity does offer a physical time coordinate, evolution in
terms of which is defined by a Schroedinger equation, this does not get us out of the
challenge of solving an infinite number of dynamical equations, one for each point or
region of the spatial manifold.

Given that there has been recently a great deal of progress in the construction and
analysis of spin foam models, it would be very interesting to see if a concrete definition
can be given in spin foam terms of the path integral (59). We note that some progress
in this direction has been made in [11] which also studies the unimodular form of loop
quantum cosmology.
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