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To characterize the possible dispersion of the velocity of light in space (vacuum) a Cauchy-
type formula, n =1+A/v +8v, is used. It is shown that relativity only allows a nonzero
A term, independent of the nature of the waves or a quantization thereof. Recent experimen-
tal data provide upper bounds for A and B, limiting thereby the dispersion in the microwave,
infrared, visible, and ultraviolet regions of the spectrum to less than one part in 1020.

Recent observations of radio-wave, ' visible, '
and x-ray' emissions from pulsars have been in-
terpreted to provide experimental bounds on the
dispersion of light in interstellar space. ' ' The
dispersion or lack thereof has been discussed us-
ing the expression"'

modified Cauchy expression of the form'

n =1+—+BvA
V

or

(2)

to relate measurements in different regions of the
spectrum giving different limits of dispersion ~c
in the velocity. It was pointed out by Brown' that

P clearly cannot be a good constant to characterize
the variation of velocity with energy, because it
would be infinite for A. , =A.2. Even though that dif-
ficulty could be avoided by the introduction of

(X, —A, )/X, in place of X,/A. , in the definition of p,
there remains the more serious objection against
the concept of p, in our opinion, that it suggests a
linear dependence of c on X.

It appears preferable to the present authors to
represent the dispersion (if there is any) via a

where n is defined by c~b, = co/n and c, is the ve-
locity of light in the absence of dispersion. The
corresponding group velocities, to be used in the
analysis of the experimental data, are readily
calculated from the above expressions.

In anticipation of their use in regions of the
spectrum remote from resonances, only the lead-
ing terms in v' and (l/v)', or X' and (l/A)', are
retained in Eqs. (2) and (3). The absence of odd

powers of v or A. is assured by the presumed sym-
metry with respect to reversal of the direction of
time. '

Expressions (2) and (3) describe the frequency
dependence of the speed of light in any dispersive
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medium in frequency domains far from all reso-
nances. It should be noted that in vacuum the only
possible dispersion formula compatible with the
special theory of relativity is one in which A or A'
may be nonzero but B=B'=0. This can be seen by
applying the relativistic addition theorem for ve-
locities to c~h which leads to the transformation
rule for n

n+Pn'=
1+nP ' (4)

where P = v/c and (for simplicity) the relative ve-
locity, v, between the two systems is along the
direction of light propagation. Simultaneously the
frequency, v, transforms by the relativistic Dop-
pler formula

v' 1+nP
(1 Pz)1/2

Elimination of P from Eqs. (4) and (5) leads to

[n'(v')' —1]v" =[n(v)' —1]v'.

(5)

Now, if n(v) is a dispersion function characteristic
for vacuum (space), it should transform into it-
self, thus n'(v') = n(v'). From this it follows that
(n' —1)v' A, where A is a relativistic invariant
and therefore the only possible dispersion formula
for vacuum is

n =1+—
2

A
V

if the special theory of relativity is correct. Cau-
sality requires A &0. (For A &0 the group velocity
exceeds c, and a signal may appear to propagate
backwards in time to some observer. )

It seems to us that the statement contained in
Eq. (7) was not recognized before in its full gener-
ality. It. applies to any wave for which the phase

velocity is defined as a function of frequency; it
does not require specification of the physical na-
ture of equations of motion of the wave.

As a special case, it is known for electromag-
netic waves that the only possible linear general-
ization of Maxwell's equations which is relativis-
tically invariant" leads via Proca equations to the
dispersion formula of Eq. (7). The same is true
for quantized matter waves of de Broglie or of
Klein and Gordon, for which A =-(mc'/ft)', where
m is the rest mass of the particles. Consequently,
a dispersion formula of the above type can also be
attributed to a finite rest mass of the photons. The
general character of Eq. (I) implies that it also
should be valid for gravity waves whether or not
they should prove to be quantized by de Broglie's
rule or in some other way.

Although the principle of relativity rigorously
rules out BW0 in vacuum, we shall nonetheless re-
tain the 8 term in Eq. (2) in interpreting data on

the frequency dependence of the speed of light, to
allow for suggested breakdowns of Einstein's prin-
ciple of relativity at very short wavelengths. ""

The results of several recent pulsar measure-
ments interpreted according to Eq. (2) are sum-
marized in Table I, together with other evidence
concerning the lack of-dispersion of the speed of
light in vacuum, namely, from measurements of
the speed of y rays" and upper bounds determined
for the "mass" of a photon. """

It is to be noted that the visible measurements
by themselves, ' while they provide the least strin-
gent bounds on A and B, nonetheless limit the dis-
persion of c in the visible region to -10 ". Radio-
wave measurements"' provide a tighter bound on
A, by about 8 orders of magnitude, while x-ray
measurements' reduce B by 5 orders. Taken to-
gether, the pulsar data interpreted according to

TABLE I. Measurements providing upper bounds on the dispersion of the speed of light in
different regions of the electromagnetic spectrum, and values of (A ~

and ~B ~
to be used in in-

terpolating to other regions of the spectrum via Eq. (2).

Type of measurement Frequency range (Hz) 6c/c visible ~A ~
(Hz2) (B

~ (Hz t) Ref.

Pulsar emissions:
Radio wave
Visible
x-ray

y-ray velocity
'Photon mass limit

1-4x 108
5-Sx 10&4

4-24x10 7

1024

Static field

&10-10

&10-16
&10-i4
&10-'

&106
&10'4 &10-45

&10-50
&10-"

'References 1,4, and 5.
Reference 2.

'Reference 3.
Reference 13.
Refer,ence 17.
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Eq. (2) indicate that the speed of light is constant
to &10 "throughout the visible, near infrared,
and ultraviolet regions of the spectrum.

A somewhat tighter bound on B is provided by
the direct measurements of the speed of 6-GeV y
rays. " It may be noted that if the y-ray or x-ray
results are interpreted according to the theory of
Pavlopoulos, "they put a bound on the fundamental
length lp in his theory, which causes. dispersion at
high frequencies, of lp&'10 "cm, which is the
Compton wavelength of a mass m, &100 GeV. This
upper bound on /p is about 3 orders of magnitude
smaller than expected by Pavlopoulos.

By far the most stringent limit on A. comes from
measurements of the "mass" of the photon. Ac-
cording to de Broglie, if the photon has a mass,
m, then the constant A in Eq. (7) becomes A
= -(mc'/k)'. An upper bound of" m & 4x 10 4'

g (or
&1.15x10-" cm ' for use in the classical Proca
equation) leads to ~A ~

& 1 Hz', as indicated in the
last line of Table I. More accurate bounds on m

promise still smaller values for A. ." Thus if Ein-
stein's principle of relativity holds for all frequen-
cies, then c in vacuum is constant to better than

10 "for all frequencies &10"Hz.
It is worth noting in conclusion that available ex-

perimental data interpreted according to Eq. (2)
already indicate c is constant to an accuracy which
exceeds that of any metrological experiment likely
to be performed in the foreseeable future at any
frequency between that of short radio waves and

that of x.rays.
This fact provides additional experimental sup-

port for the suggestion reviewed recently"'" that

c be used in metrology to connect the unit of time
(the second) and the unit of length (the meter). The
connection is made by assigning an agreed upon
value to c in m/sec. The results of this paper
show that in the above-mentioned broad spectrum
this assignment can be made without reference to
frequency.

After making the connection between the two
units, it is preferable to consider the unit of time
and c as standards rather than the unit of length
and c. The preference for time follows from the
fact that in any system of inertia under steady con-
ditions the periodicity in time (frequency) is con-
served in wave propagation while the periodicity
in space (wavelength) depends on the geometry of
the wave propagation and changes in general from
point to point.

Besides the theoretical appeal and simplicity of
the unified time-length measuring system, its ad-
vantages are the following:

(1) The accuracies of the two units with respect
to their definitions are' the same and equal to that
of an optical or microwave transition judged to be
the best choice for a standard.

(2) In case of future improvements only one
unit needs to be redefined. Presumably this will
be the unit of time, the second. Simultaneously,
the meter will be automatically refined via c for
the possible use of improvements in length-mea-
suring techniques.

The practical requirements for the introduction
of such a unified system are discussed in Refs.
19 and 20.
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For a classical-mechanical system of any fixed number of particles it is observed that
,space-translation invariance and conservation of angular momentum imply conservation of
momentum. For three particles it is shown, as previously for tv', that Poincarb invariance
implies that the total kinematic momentum cannot be a constant of motion unless the acceler-
ations are zero. The equations involved make it appear most likely that this is true for any
number of particles.

We have learned only recently how relativistical-
ly invariant classical mechanics can describe in-
teractions of a fixed number of particles, without
fields, as in ordinary Newtonian equations of mo-
tion. ' ' As yet, not very much is known about
these interactions. For two particles it has been
shown that their constants of motion do not include
the total kinematic particle momentum or angular
momentum. " (These quantities could have the
same values before and after a collision by being
asymptotic limits of constants of the motion which
would depend on the interaction and could corre-
spond to translation and rotation invariance. From
the field-theory point of view there is momentum in
the fields that propagate the interaction; Newton's
third law does not hold because the fields do not
propagate the interaction instantaneously. )

Here we observe that for any number of particles
the impossibility of kinematic momentum being a
constant of motion implies the same for angular
momentum. We prove the statement about momen-
tum for three particles. The equations involved
make it appear most likely that it is true for any
number of particles.

The idea is very simple. Suppose the kinematic
momentum is a constant of motion. It is also
space-translation invariant. We assume the dy-
namics is Poincare invariant. It follows that every
Lorentz transform of the kinematic momentum is
a constant of motion, that is, the sum of the kine-
matic momenta of the particles taken at the same
ti.me in the transformed frame. It seems the only

way every one of these can be a constant of motion
is for the individual particle momenta to be con-
stants of motion, which means there is no interac-
tion. "

The same idea for space-translation invariance
shows that conservation of total kinematic momen-
tum follows from that of angular momentum, as we
shall see as soon as we introduce some notation.

Let x" and v" be the position and velocity of the
nth particle, m„ its mass, and

~un ~ ~+n[I (vn)2]-I/2

its (kinematic) momentum.
Suppose that the angular momentum

g xn ~~un

is a constant of motion. If the dynamics is space-
translation invariant, it follows that the translated
angular momentum

that is, the angular momentum in a frame trans-
latedadistance Z, is a constant of motion. For this
to be true for every c the momentum

must be a constant of motion.
For a Lorentz transformation with velocity tanhe

in the 0th direction, the jth component of the trans-
formed position of the nth particle, that is, the


