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The Watch Paradox: Solution of the Problem

I.A.Solomeshch

Abstract

The article presents the detailed analysis of the watch paradox. It
is shown that it arose because of unjustified, as it turned out, identi-
fication of watch readings at the moment of its return with the time
read by it.

1 Introduction

1.1 In his first article from 1905 [1] on the special theory of relativity (SR)
for inertial reference systems( IRS ) Einstein made an unusual conclusion
from Lorenz’s transformations about the slowing of the moving watch; let’s
call it a lemma for reference. Basing on this lemma, Einstein proved an
astonishing Statement 1 in the same article.

Statement 11. In a certain point a on the axis x of some IRS S let
there be two similar synchronized watches C and C ′. If you move one of them
– C ′ along the axis x with the constant speed v to some other point b of the
axis x, and then immediately turn-around and return it to the initial point
with the same speed, then on returning, the reading of the moving watch will
be less than that of the watch constantly kept in point a.
Here, the increment of the moving watch readings from the moment of motion
start up to its return to the point a will be

γ =

(

1 −
v2

c2

)

−1/2

(1.1)

times less than the increment readings of static watch in this interval (c - is
the vacuum light speed).

The paradoxicality of Statement 1 is greatly increased if the moving watch
is connected with the coordinate system with the axis x′ directed along the

1The formulae and wordings are given regarding the one-dimensional spatial case, which
we focus on.
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axis x and the same unit of scale. Issuing from the relativity of motion,
the watch C ′ can be considered static, and the watch C – relatively moving.
Then, as it seems, Statement 1 with the role-change of watches C and C ′

leads to Statement 2.
Statement 2. By the moment of return, it is the reading of the watch

C that will be less ,
which, as it was considered, contradicts the former statement. This contra-
diction was called the watch paradox (the time, the twins paradox). So,

The watch paradox consists in the fact that the proved Statements 1
and 2 seem incompatible.

The truth of the watch paradox, as it seemed, leads necessarily to the
conclusion about the inner contradictions of SR.

The further development of events can be given just in general.
In 1911 Langevin [2] reformulated the statement about the slowing of the

watch, moving along a closed route (Statement 1), into a statement about
the age slowing of space travelers and the possibility of the farthest possible
space travels during the cosmonaut’s lifetime. In the same work Langevin
pointed out Reason 1 against Statement 2.

Reason 1. The reference system, connected with the moving watch C ′,
isn’t inertial because of the acceleration that it inevitably undergoes due to
the change in the direction of the movement, and the conclusions of SR are
inapplicable to it2.
So Statement 2 isn’t valid, and the paradox is solved.

In return Laue ([3] from 1913) noted that the acceleration is insignifi-
cant regarding the slowing of the moving watch on its return to the initial
point, because its slowing could be made voluntarily great comparing with
the change of watch readings at the sections of acceleration due to the in-
crease of sections with even motion. The most important thing is that the
watch C ′ is successively situated in two different IRSs. Besides, in [4] from
1913 Laue substantiated Statement 1 for a more real case, when the change
of the watch C ′ speed goes evenly at the beginning, at the turn in the distant
point and at the end of the route.

However, Laue’s argument can be used also in case, when it is the watch
C that is considered moving, and this leads to Reason 2.

Reason 2. At the section of C ′ distancing from C with constant speed,
as well as at the section of returning to C with constant speed, the frame of
reference, connected with C ′, will be inertial, although different, for each of
them. Then, at each of these sections, it is the watch C that can be consid-
ered moving and, according to the lemma, it is it that will slow down. Hence,

2 This objection can also be referred to the substantiation of Statement 1 by Einstein.
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with the sufficient distancing of the watch C from the watch C ′ turn-point
and maintaining the acceleration regime at the turn, Statement 2 holds true
and the paradox remains.3

Moreover, it is possible with any given relative precision to provide the equal-
ity of the quotient of increments of watches readings, now C ′ to the increment
of the watch C readings, to Quantity 1.1.

1.2 Because of the great theoretical (for SR) and ”practical” (after Lan-
gevin’s work [2]) importance, the simplicity of the wording and mathematical
formula, the watch paradox drew attention of many professionals and ama-
teurs.

”There is abundance of literature on the subject”, wrote Marder back in
1971 in the introduction to the book [5], more than 300 references, which
was a detailed review of works on the watch paradox for that year.

Publications on this subject arrive in plenty (the latest known to the
author work is [7] from 2007).

To characterize this abundance of literature, let’s consider the possible
ways of the paradox solving.

As it was recognized that Statements 1 and 2 are mutually contradicting,
and that the proof of Statement 1 by means of SR causes no doubts, while
the only known way of Statement 2 substantiation is Reason 2, there are only
two possibilities:

Possibility 1. Statement 2 is false.
Possibility 2. SR is contradictory.
Hence, there are only three ways to solve the watch paradox.
Way 1. To prove that Statement 2 cannot be proved by means of SR,

and the paradox would disappear for ever (within the limits of SR).
Way 2. To show that the proof of Statement 2 given in Reason 2 is

groundless. With this the paradox would disappear, at least, for the present.
Way 3. To prove that SR is contradictory. This would destroy both the

paradox and SR.
Now let’s turn to the question of provability of attempts to solve the

watch paradox.
The first way hasn’t yet been investigated by anybody 4. There are also

no well substantiated works investigating the third way.
All the works on the watch paradox finally tend to refute Statement 2

and fall into two groups according to the way of implementation of this task.

3I don’t know, who and when first came to such substantiation of Statement 2. (It
”must” have been pointed out by Laue.) Nevertheless, this substantiation is given and ”is
refuted” at once in [5, ch.3, §1] and in [6, ch.1, §2].

4Here and below such statements presuppose the reservation ”as far as the author
knows”.
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The first group includes the works repeating Langevin’s argumentation
(Reason 1) that by all means refutes all substantiations of Statement 2, of the
type given before (before the wording of this statement), but hereby Reason
2 is not taken into consideration. In particular, here belong works [8 - 17].

The second group includes works in this or that way proving Statement
1 and with the tacit supposing of SR truthfulness, Statement 2 is considered
refuted. The value of these works on the paradox is only in the fact that they
give different variants of Statement 1 proof. However, because Statement 2
presupposes a contradictoriness of SR, these works don’t refute Statement 2,
they simply consider it false at first. Here belong works [6; 18-21].

Hence, the second way hasn’t also been investigated by anyone, and it is
impossible to disagree with the opinion stated in work [22]: ”Ninety years,
hundreds of books, thousands of articles, but this matter still stands at the
point von Laue left it.”

1.3 This work shows that besides possibilities 1 and 2 there is yet a
third one - Statement 2 also holds true and doesn’t contradict Statement 1.
It became possible to demonstrate that the fact that the watch C ′ readings
at its meeting with the watch C are greater, doesn’t yet mean that C ′ has
read more time. The solving of the twin paradox proved to be found quite
another way; it was only necessary to precise the contents of Statements 1
and 2.

This situation is quite similar to the one happened to a Mr.N.
At 9 o’clock in the evening Mr.N started from the town clock moving

to point A, intending to return by 6 o’clock in the morning next day. Last
week Mr.N had already completed the same route during 9 hours. Mr.N
traveled the distance keeping the speed of his previous trip exactly. However,
when Mr.N returned, he was struck - the town clock read 7 o’clock. This
mysterious phenomenon could be easily explained: Mr.N neglected the fact
that the previous night the town clock hands had been moved one hour
forward because of the start of the summer time.

2 Additional information. Setting the task

This work considers only the one-dimensional spatial IRSs S, S ′ etc. of the
special theory of relativity, with the coordinate axes x, x′ etc. directed the
same way and sliding one on another with a relative movement. The points of
the coordinate axis x (x′ etc.) have watches synchronized among themselves
according to Einstein. Let’s name t (t′ etc.) the time of the IRS S (S ′ etc.)
and O (O′ etc.) - the origin of coordinates on the axis x (x′ etc).

2.1 Additional information. For convenience let’s cite the following
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most frequently used information from SR.
2.1.1 Let A be a point event, i.e. an event taken place at a certain

point of space, at a certain point of time.
xA is the coordinate of the point on the axes x, where the event A took

place, and tA - the time according to the watch placed in that point, when
that event took place, are called space-time coordinates of A in the IRS S.
In a word, they speak about the event A taking place in the space-time point
(xA , tA) of the system S.

If we know the space-time coordinates of some event A in the system S
- (xA , tA), and in the system S ′ - (x′

A
, t′

A
) (i.e. this event took place in the

point xA of the axis x at the moment, when this point coincided with the
point x′

A
of the axis x′, and the watches of the systems S and S ′ placed in

this point read the time tA and t′
A

accordingly), the space-time coordinates
of the IRSs S ′ and S are connected by Lorenz’s transformation







x′ − x′

A
= γ {(x − xA) − v(t − tA)}

t′ − t′
A

= γ
{

(t − tA) −
v

c2
(x − xA)

}

, ∀x, t,
(2.1)

where v is the speed of S ′ relatively to S, and γ is defined by (1.1).
Let’s call the event A coordinating the systems S and S ′.
The literature on the subject cites more often the special case, when

(xA , tA) = (x′

A
, t′

A
) = (0, 0) ,

i.e. when the origins of coordinates O and O′ coincide just when the watches
of both systems, placed in these points, read the same time - zero:







x′ = γ (x − vt)

t′ = γ
(

t −
v

c2
x
)

, ∀x, t.
(2.2)

The system of equations (2.2) connects four variables x, t, x′, t′, while the
two latter ones are expressed in it by means of the two former ones. Choosing
an arbitrary pair of variables, basing on (2.2), the rest can be expressed
through them.

Let’s consider the variants that will be necessary further.



















x =
x′

γ
+ vt

t′ =
t

γ
−

v

c2
x′ ,

(2.3)
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t =
1

v

(

x −
x′

γ

)

t′ =
1

v

(

x

γ
− x′

)

, v 6= 0 ,

(2.4)















x′ =
x

γ
− vt′

t =
t′

γ
−

v

c2
x .

(2.5)

The analogous variants for the system (2.1) are got from (2.3)-(2.5)
through the change of x, t, x′, t′ into x−xA , t− tA , x′−x′

A
, t′− t′

A
accordingly;

we’ll refer to them as to (2.3A) – (2.5A). If the coordinating event is named
with another letter, let’s substitute it for A.

2.1.2 Let S ′ and S be arbitrary IRSs, v - the speed of S ′ relatively to S.
Lemma (about the slowing of the moving watch)
If the watch fixed at a certain point of the axis x′ at the moment t′

1
read by

this watch, passed by the watch fixed on the axis x and reading time t1, and
then at the moment t′

2
passed by the watch fixed on the axis x and reading

time t2, then

t′
2
− t′

1
=

1

γ
(t2 − t1).

In other words, the time interval between two events taking place at the
fixed point of system S ′, read by the watch of this system situated in this
point, is γ times less the time interval calculated according to the readings
of the watches, static in the system S and placed in the points where these
events took place.

2.2 Setting the task Studying the watch paradox, we adopt the
scheme of the instant speed C ′ change into the opposite. Of course, the
instant turn back of a real physical object is impossible, but here we speak
about the model task within the mathematical model of space-time relations
between different IRSs in SR.

The instant change of speed direction preserving its module was used
by Einstein in [1] from 1905 and, much later after ”the discussion Langevin
- Laue”, by other famous specialists in SR (see, for example, [12, 13, 19,
20]). Taking also into consideration that the watch paradox arose just while
using the scheme of ”the instant turn” and that the results of calculations
according to this scheme enable to get a very good approximation for the
case of even speed changing (substantiations by Laue [3, 4] and similar to
them in Reason 2 and up to the point 1.2, then the adoption of this scheme
is justified.
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Besides, we can admit that there is no acceleration and slowing of the
watch C ′ near the watch C, considering that it passes by C with the speed
v at first, and in the end – with the speed −v.

Task.
Let’s name C (C ′) the watch of the system S (S ′) placed at the origin of
coordinates on the axis x (x′). Let:

1) The IRS S ′ move relatively to the IRS S with a relative speed v > 0;
2) The watch C ′ moves by C (the first meeting - the event B) at the mo-

ment, when the watches C ′ and C read the time t′ = 0 and t = 0 accordingly;
3) In tR time by the watch of the system S after the meeting of watches

C ′ and C, the watch C ′ instantly changes its speed from v to −v (the event
R), still remaining static relatively to the axis x′. Thus, in the process of
reverse movement the watch C ′ will remain at the origin of coordinates of
the same axis x′, but in another IRS. 5.

Taking into consideration the relativity of movement, it is necessary to
calculate the readings of the watches C ′ and C at the moment of their second
meeting, i.e. when the watches C ′ and C are found at the same level (the
event E),

a) considering the system S and the watch C static (task 1) and
b) considering the systems S ′ and the new one in succession and the watch
C ′ static (task 2).

3 Solving of tasks 1 and 2

The solving of tasks 1, 2 is of the same type. The process of changing of
the watches C and C ′ mutual position between the events, the first and the
second meetings are subdivided into two stages: the first meeting – the turn,
and the turn – the second meeting. Then for each of the events, marking
these stages, the readings of the moving watch (C ′ or C, depending on the
viewpoint) are studied at the moment of this event, as well as the readings
of the watch of the ”static” IRS at the same moment at the point, where the
event took place.

We suggest two ways of solving each task: the simplest, but nevertheless
strict, and more formal, but enabling to analyze the result in details.

3.1 Solving of task 1

3.1.1. Simplest solving.
Stage B – R. According to term 2) of the task the watch C ′ is in the

point x = 0 of the system S at the moment t = 0, i.e. at the moment of

5 Such like operation is considered in [1,§3].
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the event B. Because C ′ moves relatively to S with the speed v, then in the
time interval tR (i.e. by the moment of the turn, i.e. - the event R) it will
be found in the point xR = vtR just when the watch of the system S reads
the time tR in this point.

According to the lemma about the slowing of the moving watch,

t′
R
− t′

B
=

1

γ
(tR − tB),

considering that according to the term 2) t′
B

= tB = 0,

t′
R

=
1

γ
tR. (3.1)

Remember that the events B and R take place in the point of the watch
C ′ position, and that is why t′

B
and t′

R
are the readings of the watch C ′ at

the moment of these events.
Stage R – E. At the point xR C ′ instantly changes its speed into −v,

still remaining static relatively to the axis x′. So in the process of reverse
movement the watch C ′ will be situated at the origin of coordinates of the
same axis x′, but in another IRS. Let’s name it S ′′ and rename the axis x′

and the watch C ′ after the turn into x′′ and C ′′ to avoid ambiguity.
Readings of the watch C ′ at the moment of the turn don’t change, so we

have
t′′

R
= t′

R
. (3.2)

Because at the moment tR C ′′ was found at the point x = xR > 0, then,
moving with the speed −v relatively to the axis x it will be found at the

point x = 0 at the moment tR +
xR

v
= 2tR. So at the moment of the event E

the watch C reads the time
tE = 2tR. (3.3)

According to the lemma t′′
E
− t′′

R
=

1

γ
(tE − tR). Taking into consideration

(3.2), (3.1) and (3.3), we get t′′
E

=
2tR

γ
.

So the watches C and C ′′ (that is C ′) at the moment of their second
meeting (the event E) read:

tE = 2tR, t′′
E

=
2tR

γ
,

t′′
E

tE

=
1

γ
. (3.4)

3.1.2. More formal solving
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Stage B − R. According to term 2) of the task, the coordinates of
the event B in the system S are (xB , tB) = (0, 0), and in the system S ′ —
(x′

B
, t′

B
) = (0, 0).

Considering the event B as coordinatig for S and S ′, we see that the
relation between the coordinates of the events is presented in these systems
with any of the equation systems (2.2) - (2.5).

According to the very sense of the event R, it is known that it takes
place at the point x′ = 0 at the moment t = tR by the watch of the system
S. The two other coordinates of R — x and t′ can be easily found from
(2.3), substituting the already known x′ and t:

x =

(

x′

γ
+ vt

)∣

∣

∣

∣

∣

R

= vtR

t′ =

(

t

γ
−

v

c2
x′

)
∣

∣

∣

∣

∣

R

=
tR

γ
.

So the coordinates of R in the systems S and S ′ are

(xR, tR) = (vtR, tR), (x′

R
, t′

R
) = (0, tR/γ) (3.5)

accordingly. But the coordinates of the event R in the systems S ′ and S ′′

are the same (it’s enough to recall that this event takes place at the origin
of coordinates of both systems, and consider (3.2), so we have

(x′′

R
, t′′

R
) = (0, tR/γ). (3.6)

Stage R − E. Considering R as an event, coordinating the systems S
and S ′′, we arrive at the conclusion that the coordinates of events in them are
related through the system of equations (2.1) and the systems (2.2R)−(2.5R)
equivalent to it (see the last passage of point (2.1.1) after the substitution of
v into −v in all these systems of equations (because the speed of S ′′ relatively
to S is −v) and ′ into ′′. For the calculation of tE and t′′

E
that are of interest

to us, because according to the very wording of the event E it is known that
xE = x′′

E
= 0, it is convenient to make use of the system (2.4R). Considering

(3.5), (3.6), we get

t − tR = −
1

v

{

(x − xR) −
x′′ − x′′

R

γ

}
∣

∣

∣

∣

∣

E

=
xR

v
−

x′′

R

vγ
,

t′′ − t′′
R

= −
1

v

{

x − xR

γ
− (x′′ − x′′

R
)

}∣

∣

∣

∣

∣

E

=
xR

vγ
−

x′′

R

v
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and then

t = tR +
xR

v
= 2tR, t′′ = t′′

R
+

xR

vγ
=

2tR

γ
,

i.e.

tE = 2tR , t′′
E

=
2tR

γ
,

t′′
E

tE

=
1

γ
, (3.7)

that coincides with the result arrived at before (see (3.4)).
3.2. Solving of task 2

Now it is the watch C that should be considered moving together with
the IRS S. At first let’s study the movement of S ′ relatively to C and only
then let’s reformulate the things, considering the case, when it is the watch
C that is considered moving.

At the moment t′ = 0 the watch C ′, situated in the point O′, passes by
C, situated in the point O, to the right, or to be more precise, in the positive
direction of the axis x , with the speed v. After some yet unknown time t′

L
,

when the watch C reaches the watch C ′

1
of the system S ′, situated in the yet

unknown point x′ = x′

L
, and reading the time t′ = t′

L
, the watch C ′

1
instantly

changes its speed relatively to the axis x into −v (the turn – the event L,6 )
and without changing its position on the axis x′, it starts moving to the left
along the axis x.

In the process of reverse movement the watch C ′

1
will still remain in the

point x′ = x′

L
of the axis x′, but in another IRS. Let’s name it S ′′′, and

rename the axis x′, the watch C ′

1
and C ′ after the turn into x′′′, C ′′′

1
, C ′′′

accordingly. The readings of the watch C ′

1
at the moment of the turn don’t

change, so we have
t′′′

L
= t′

L
. (3.8)

Let’s dwell upon the solving of task 2 and consider the watch C moving.
3.2.1. Simplest solving

Stage B – L. The watch C moves relatively to x′ with the speed −v
and at the moment t′ = 0 is in the point x′ = 0 (the event B). Hence, after
the time interval t′

L
, i.e. by the moment of the turn (the event L) it will be

found at the point x′

L
= −vt′

L
, when the watch C ′

1
of the system S ′, situated

in this point, reads the time t′
L
. According to the lemma, it is C that is

moving now,

tL − tB =
1

γ
(t′

L
− t′

B
).

6x′

L
and t′

L
are the coordinates of the event L in the system S′, so the agreement about

the coordinates of events names (see 2.1.1.) is not broken here.

10



Taking into consideration that t′
B

= tB = 0, we have

tL =
1

γ
t′

L
. (3.9)

Because the events B and L take place in the point, where the watch C
is situated, then tB and tL are the readings of the watch C at the moment of
these events.

Stage L – E. At the moment t′
L

= t′′′
L

(see (3.8)) the speed of the watch
C relatively to the axis x′′′ (the former x′) instantly gets equal to v. Because
at the moment t′′′

L
the watch C was found in the point x′′′ = x′′′

L
= x′

L
, then

at the moment t′′′ = t′′′
L

+|x′′′

L
|/v = 2t′′′

L
it will be found in O′′′, i.e. it will reach

the watch C ′′′ = C ′ (the event E)7. So t′′′
E

= 2t′′′
L
, and because according to

the lemma tE − tL =
1

γ
(t′′′

E
− t′′′

L
), then, taking into consideration (3.9) and

(3.8), we arrive at tE = 2t′
L
/γ.

So the watches C and C ′′′ (that is C ′) at the moment of their second
meeting (the event E) read:

tE =
2t′

L

γ
, t′′′

E
= 2t′

L
, t′′′

E
/tE = γ. (3.10)

3.2.2 More formal solving
Stage B – L. Like in 3.1.2 the relation between coordinates of events

in S and S ′ is given with any of the equation systems (2.2) - (2.5).
The event L takes place in the point x = 0 at the moment t′ = t′

L
by the

watch of the system S ′. The two other coordinates of L in the systems S
and S ′ – t and x′ - are easy to calculate according to (2.5):

x′ =

(

x

γ
− vt′

)
∣

∣

∣

∣

∣

L

= −vt′
L
, t =

(

t′

γ
+

v

c2
x

)
∣

∣

∣

∣

∣

L

=
t′

L

γ
.

So the coordinates of L in the systems S S ′ —

(xL, tL) = (0, t′
L
/γ), (x′

L
, t′

L
) = (−vt′

L
, t′

L
). (3.11)

The coordinates of the event L in the systems S ′ and S ′′′ are the same,
hence

(x′′′

L
, t′′′

L
) = (−vt′

L
, t′

L
). (3.12)

7 The coordinate of the point on the axis x
′′′, where the watch C

′′′ (that is C
′) is fixed,

is still zero, i.e. it is in the origin of coordinates in S′′′ also. It is because the distance
between the points marked on the line, while preserving the scale, doesn’t depend on the
speed of the even rectilinear movement of this line relatively to some IRS ([23, §5], [13,
ch. 6, §5]).
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Stage L – E. Considering the event L as coordinating the systems S and
S ′′′, we arrive at the conclusion that the coordinates of events in them are
related with any system of equations (2.2L) – (2.5L) after the substitution of
v into −v and ′ into ′′′ in them.

Because xE = x′′′

E
= 0, the tE and t′′′

E
sought can be easily calculated

according to (2.4L). Taking into consideration (3.11), (3.12), we arrive at

t − tL = −
1

v

{

(x − xL) −
x′′′ − x′′′

L

γ

}∣

∣

∣

∣

∣

E

=
xL

v
−

x′′′

L

γv
,

t′′′ − t′′′
L

= −
1

v

{

x − xL

γ
− (x′′′ − x′′′

L
)

}∣

∣

∣

∣

∣

E

=
xL

γv
−

x′′′

L

v

and then

t = tL −
x′′′

L

γv
=

2t′
L

γ
, t′′′ = t′′′

L
−

x′′′

L

v
= 2t′

L
,

i.e.

tE =
2t′

L

γ
, t′′′

E
= 2t′

L
,
t′′′

E

tE

= γ , (3.13)

that coincides with (3.10).
Now let’s study the relation between t′

L
and tE .

According to terms 3), 1) and 2) of the task, the time tR, when the event
R took place, is known, and

x′

R
= 0, xR = vtR. (3.14)

For the calculation of x′′′

R
, we make use of the first equation of the system

(2.2L) and (3.12), (3.14), (3.11):

x′′′

R
= x′′′

L
+ γ {(x − xL) + v(t − tL)}|

R
= −vt′

L
+ γ {vtR + v(tR − t′

L
/γ)} =

= 2v(γtR − t′
L
).

According to Note 7 x′′′

R
= 0, hence

t′
L

= γtR . (3.15)

Now the correlation (3.10) ≡ (3.13) for the watches C and C ′ readings at
the moment of their second meeting can be, like in (3.7), expressed through
tR:

tE = 2tR , t′′′
E

= 2γtR , t′′′
E
/tE = γ. (3.16).
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4 Solving of the paradox

Section 3 presented a detailed, with details in literature usualy only implied
at best, solving of the task about the watches C and C ′ readings at the
moment of their second meeting.

It turned out that the readings of the watch that is conventionally con-
sidered static will be γ times bigger.

Because the readings of the watches at the moment of their first meeting
were the same - zero, the readings at the moment of their second meeting
were identified in literature as time intervals, read by the watches between
the first and the second meetings.

This very fact brought the watch paradox, according to which it is not the
gist of the phenomenon that determines which of the watches reads greater
time, but the fact which of them is conventionally considered static.

It is shown next that watch readings and the time read by it in this
task they are, generally speaking, different quantities, and regardless of the
method of calculation, the longer time interval will be read by the watch,
fixed in one and the same IRS all the time.

The watch paradox can be explained naturally, it ceases to be a paradox.
Let’s pass on to the analysis as to what is the relation of watch readings

at the moment of their second meeting: tE , t′′
E

- in task 1 and tE , t′′′
E

- in task
2 - to the time interval between the first and the second meetings, read by
these watches, which we’ll name τE , τ ′′

E
and τ ′′′

E
accordingly. Remember that

the meaning of tE in the first and the second tasks is the same.
4.1 In task 1 it is the IRS S that was considered static. The watch C

of this system, situated in the point O, worked all the time between the first
meeting (the event B) and the second meeting (the event E) in its natural
way, and that is why the difference in its readings tE − tB = tE is the time,
read by this watch between the events B and E, i.e.

τE = tE . (4.1)

All the time the watch C ′ had been situated in the origin of coordinates of
the axis x′ (renamed into x′′ after the turn). It was the watch in the system
S ′ from the moment of the event B till the moment of the turn (the event
R).

At the moment of the turn the watch C ′ was included in the IRS S ′′ and
renamed into the watch C ′′ , but its readings weren’t changed (see (3.2)),
and it continued to work in its natural way till the moment of the second
meeting, but in the system S ′′ . That is why the time, read by the watch C ′

(later renamed into C ′′) between the events B and E is

τ ′′

E
= (t′′

E
− t′′

R
) + (t′

R
− t′

B
) = t′′

E
− t′

B
= t′′

E
.
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Here the fact that t′
B

= 0 and t′′
R

= t′
R

has been taken into consideration.
So,

τ ′′

E
= t′′

E
. (4.2)

So (see (4.1), (4.2)) in task 1 the readings of the watches C and C ′ at
the moment of their second meeting coincide with the time, read by them
between the first and the second meetings, i.e.(see (3.7))

τE = 2tR , τ ′′

E
= 2tR/γ. (4.3)

Let’s pay attention to the fact that the readings of the watch C ′ were
continuously changing during all the time period, because it was included
in the system S ′′, keeping the readings at the moment of the turn. Because
the readings of C ′ was set at the moment of the turn in the system S ′′, the
remaining watch of the system S ′ after the transformation into the system
S ′′ was to be synchronized according to the watch C ′, and a priori it’s not
clear if it has kept the continuity of readings at the moment of its movement
direction change8.

4.2 In task 2 it is the watch C ′ and the IRSs S ′ and S ′′′, related to
it in turn, that were considered static. As to the readings of the watch C,
everything mentioned in the point 4.1 remains true, so (4.1), i.e. τE = tE

still remains true.
It is yet necessary to analyze the readings of the watch C ′′′ (the watch C ′

renamed) at the moment of its second meeting - t′′′
E
.

At the point 3.2.2, while solving task 2 it had been concluded that the
coordinates of events in the systems S and S ′ are related to any system of
equations (2.2) - (2.5), and in the systems S and S ′′′ - with (2.2L) − (2.5L),
with the substitution of v into −v and ′ into ′′′. Now it is convenient to make
use of the systems (2.3) and (2.3L). The latter hadn’t been put down in
details before, so we give it here under the number (4.4):



























x − xL =
(x′′′ − x′′′

L
)

γ
− v(t − tL)

t′′′ − t′′′
L

=
t − tL

γ
+

v

c2
(x′′′ − x′′′

L
) .

(4.4)

The change of the movement of the watch C direction relatively to the
axis x′ took place at the point x′

L
of the axis x′ at the moment of time t′

L
by

the watch C ′

1
, fixed in this point (the event L). Hereby the watch C ′

1
was

included in the IRS S ′′′, preserving its coordinate on the axis x′ (now x′′′)
and the continuity of readings (see (3.112) and (3.12)).

8In the point 4.2 it will become clear that it hasn’t kept it.
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The remaining watch of the system S ′′′ also keeps its coordinate (see
Note 7), but must be synchronized according to C ′

1
(now C ′′′

1
) transiting to

the system S ′′′.
Let’s study if it keeps the continuity of readings. For this purpose let’s

consider the watch C ′

x′ of the system S ′, fixed at an arbitrary point x′ of
the axis x′. At a certain moment the direction of the movement of the axis
x will change relatively to the point x′, and the watch C ′

x′ will be included
into the system S ′′′. Let t be the time of this transition by the watch of the
system S, situated in the point x, coinciding with x′ at this moment. Then
the time t′ by the watch C ′

x′ in the system S ′ is calculated at the moment of
this transition with the help of the system of equations (2.3), and the time
t′′′ at the same moment and by the same watch, but in the system S ′′′ is
calculated using the system of equations (4.4).

Subtracting termwise the equations (2.32) from (4.42) , taking into con-
sideration the equalities x′ = x′′′, (3.11), (3.12) and (1.1), we arrive at:

t′′′ − t′ = t′′′
L
−

tL

γ
+

v

c2
(x′′′ + x′ − x′′′

L
) = t′

L

(

1 −
1

γ2
+

v2

c2

)

+
v

c2
2x′ =

=
2v2

c2
t′

L
+

2v

c2
x′ =

2v

c2
(x′ − x′

L
).

So the readings of the watch in the system S ′, situated in the point x′

(i.e. C ′

x′) at the moment of getting included in the system S ′′′ undergo a leap

The leap = t′′′ − t′ =
2v

c2
(x′ − x′

L
). (4.5)

Considering (3.11) and (3.15) in particular, the readings of the watch C ′,
situated in the point x′ = 0, undergo a leap

t′′′
R
− t′

R
=

2γv2

c2
tR , (4.6)

while getting included into the system S ′′′, i.e. at the moment of the event
R, hence its readings should be increased by this quantity due to the resyn-
chronization.

Now it’s clear that at the moment of the second meeting the readings of
the watch C ′ will be greater than the time read by it between the first and
the second meetings as much as its readings were increased with the leap at
the moment of the event R between the first and the second meetings, i.e.
2γv2

c2
tR greater.
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More formally, the time read by the watch C ′ (later renamed into C ′′′)
between the events B and E, taking into consideration (4.6), (3.16) and (1.1)
makes

τ ′′′

E
= (t′′′

E
− t′′′

R
) + (t′

R
− t′

B
) = t′′′

E
− (t′′′

R
− t′

R
) = t′′′

E
−

2γv2

c2
tR =

2tR

γ
.

So in task 2 the time read by the watches C and C ′ from the first to the
second meetings makes accordingly

τE = 2tR , τ ′′′

E
= 2tR/γ , (4.7)

That coincides with the results (4.3) got in task 1.
So the paradox disappears, and there is only a misunderstanding, because

the readings of the watch C ′ at the moment of its second meeting in task
2 were identified with the time read by it between the first and the second
meetings.

4.3 To clear everything up, let’s study the relation between the systems
S ′′ and S ′′′. In each of them the axis x′ after the turn serves as the axis of
spatial coordinates, in one system - under the name of x′′, in the other - as
x′′′. So these systems are static as to each other.

It is convenient to consider as the systems, relating S ′′ and S ′′′ with S the
systems obtained from (2.1) through the change of v into −v, A and symbol
′ into R and symbol ′′ in the first case, and into L and symbol ′′′ - in the
second case. Let’s write out these systems under the numbers (4.8), (4.9)
accordingly.







x′′ − x′′

R
= γ {(x − xR) + v(t − tR)}

t′′ − t′′
R

= γ
{

(t − tR) +
v

c2
(x − xR)

}

,
(4.8)







x′′′ − x′′′

L
= γ {(x − xL) + v(t − tL)}

t′′′ − t′′′
L

= γ
{

(t − tL) +
v

c2
(x − xL)

}

.
(4.9)

Subtracting termwise the equations (4.81) from ((4.91) and (4.82)) from
(4.92), we get







x′′′ − x′′ = (x′′′

L
− x′′

R
) + γ{(xR − xL) + v(tR − tL)}

t′′′ − t′′ = (t′′′
L
− t′′

R
) + γ

{

(tR − tL) +
v

c2
(xR − xL)

}

.

According to (3.51), (3.111) and (3.15)

xR − xL = vtR , tR − tL = 0 ;
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and according to (3.6), (3.12), (3.15) and (1.1)

x′′′

L
− x′′

R
= −vγtR , t′′′

L
− t′′

R
= γtR(1 − 1/γ2) =

γv2

c2
tR .

Substituting it into the last system of equations, we get











x′′′ − x′′ = 0

t′′′ − t′′ =
2γv2

c2
tR.

(4.10)

Hence, the IRS S ′′′ and S ′′, which in literature before were considered as
coinciding , have one coordinate axis in common, but differ in the shift of

watch readings in the system S ′′′ by the quantity
2γv2

c2
tR comparing with the

watch of the system S ′′, situated in the same point of the coordinate axis.

5 Conclusion

Let’s describe the gist of the above-mentioned things in short.
1. The axis x is included into the IRS S all the time. The axis x′ is at first

included into the IRS S ′ and moves along the axis x in the positive direction
(to the right). Because after some time it changes its direction of movement
relatively to the IRS S, it cannot remain in the IRS S ′ and is included into
another one.

2. It turned out that in transition of the axis x′ from S ′ to another IRS,
only one watch of this axis can keep the continuity of readings; the readings
of the other one by the leap should be changed by the quantity, depending
on its position on the axis x′. These changes weren’t realized, but they were
automatically taken into consideration in Lorenz’s transformations.

3. Solving tasks 1 and 2 about the watches’ readings at the moment of
their second meeting (the moment of watches’ return to each other), it was
always admitted without special reservations, consciously or not that the
continuity of readings in the first task was kept by the watch C ′, situated
in the origin of coordinates of the axis x′ and in the second task - by the
watch C ′

1
situated on the axis x′ in the point of the utmost left position of

the watch C on this axis.
That is why in the suppositions of task 2 the readings of the watch C ′ are

increased with the leap by such a quantity that by the moment of return, its
readings will be by so many times greater than the readings of the watch C,
as they were less in the suppositions of task 1.
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4. These correct results were considered before as mutually exclusive (the
watch paradox) because tasks 1 and 2 were considered in essence before as
one and the same, but variously formulated task. Meanwhile, with unspoken
suppositions, these are different tasks, because in the first one the continuity
of readings is kept with the watch C ′, and in the second - with C ′

1
; and as a

result, the readings of C ′ are here compulsorily increased with the leap.
Because this paradox caused doubts in the inner consistency of SR, many

even great specialists (see Introduction) ”preferred” to doubt in the correct-
ness of the solving of task 2 than to agree with its results. The solving of
task 1 within the framework of SR caused no doubts.

5. After it was shown in section 4 that considering the leap of watch
readings, the time read by the watch C ′ at the moment of the return, is
the same in tasks 1 and 2; the ”great” watch paradox, threatening the inner
consistency of SR, was solved.

However, ”the small” watch paradox still remains unsolved. It’s quite
unclear why the watch C ′ should return with the readings less than the read-
ings of the watch C. Because at the sections of even movement the watch C ′,
according to SR, is just in the same conditions as the watch C, and the fact
of changing the direction cannot, according to Laue, make much difference,
the sufficient length of these sections provided.

I gratefully thank Lyudmila Timoshenko Ph.D., Department of Foreign
Languages at the Bashkir State University, for translation of the text of the
manuscript.
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