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1. В 6-м томе Ландау-Лифшица «Гидродинамика» на 15 странице дан вывод уравнения 

Эйлера. Из посыла на основе 3-го закона Ньютона по Эйлеру интеграл от давления 

жидкости берется по поверхности рассматриваемого объема: 
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В ходе преобразований получается уравнение Эйлера: 
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Если же учесть новый подход, то начальный посыл будет выглядеть так: 
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Тогда конечное уравнение, выведенное по тому же принципу, будет таким: 
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Можно назвать это уравнением анти-Эйлера, и его то и нужно подставить в систему 

уравнений гидродинамики вместо уравнения Эйлера. 

 

2. Решим уравнение анти-Эйлера: 
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для стационарного случая, преобразуя и пренебрегая 

градиентом от плотности, получаем: 
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это значит, что скорость перпендикулярна градиенту от 

записанного выражения, то есть, если стационарное движение 

кольцевое, то градиент направлен по радиусу этого движения. 

Если так, то можно записать решение в виде: 
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Это решение для двумерного случая вращения по малому кольцу 

тора с угловой скоростью ω, если учесть и вращение вокруг оси z, 

то получится в точности уравнение для зависимости давления от 

радиуса, такое как на данной экспериментальной картинке, где 

изображено сечение тороидального кольца дыма. 



 
Из уравнения (3) видно, что давление минимально у поверхности 

тора, и возрастает к нейтральному центу, в котором давление 

равно давлению окружающего газа. 
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