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CXV. On 8Sir J. J. Thomson’s Muodel of a Laght-Quantum.
By Prof. N. P, KasrerIN, Research Institute of the
1 Moscow Uraversity ™.

T is commonly accepted that the quantum theory is
almost incompatible with Maxwell’s equations (* Clerk
Maxwell’s Electromagnetic Theory,” by H. A. Lorentz, the
Rede Lecture, 1923, p. 34) ; however, Sir J. J. Thomson t
constructed a most valuable model of alight-quantum which,
as will be shown, is formally congistent with the system of
Maxwell’s equations. |

By the way of examining the simplest case of a light-
quantum, we shall explain the difference of the Faraday-
Maxwell-J. J. Thomson’s electrodynamies from the usual
Maxwell- Hertz-Lorentz's interpretation of an electromag-
netic field, the form of the differential equations for the free
sether being the same in both theories.

The light-quantum in the model of Sir J. J. Thomson
congists in a ring-shaped Faraday tube moving with the
speed of light at right angles to its own plane. The ring 1is
preceded and followed by ordinary waves of feeble intensity;
their wave-length is equal to the circumference of the ring.
The energy contained 1n such a ring will be of the form Av
(Planck’s law) if we admit, with Sir J. J. Thomson, that
the cross-gsection of the tube is proportional to the square of
the radius of the ring.

These two fumdamental laws, as will be shown, are
formally in accordance with the system of Maxwell’s equa-
tions under the condition that we accept Sir J. J. Thomson’s
interpretation of an electromagnetic field.

Let E, (fig. 1) be a closed ring.shaped Faraday tube
referred to fixed axes, Let us suppose that at t=0 the
plane of the ring coincides with the plane ZOY, and that
U, is the velocity of the ring. The Maxwell’s equations for
the free mther are of the form |

divE=0, . . . . . . . (1)
, 1 OE

curlM_E Y IO (2)
divM=0, . . . . . « . . {9
lcurlE.—-u—%a—h:, N )

* Communicated by the Author, | *
+ “A Suggestion as to the Structure of Light,” Phil. Mag. [6] x]viii,
p. 787 (1924); “ The Structure of Light,” Phil. Mag. 1, p. 1182 (1925).

Sir J.J. Thomson’s Model of a Ligﬁtn.Quaan. 1209

where ¢ is the velocity of light, E the electric and M the

magnetic intensity. In the case of stationary motion the
. 193 . 0 . 0,
operation -y will be replaced by — ﬁxg.z-: if B.= =,

and the equations (2) and (4) will be transformed into
curl M = 0 k (2')
and curlE=0, . . . . . . (4)

where M has for components

Mm; M;y -}- ﬁm-Eﬁp M.# _ﬁ:ﬂE;l/
-ﬂ.ﬂd E ...... Em, Ey'—ﬁﬂ:Mﬂ, EE + BmMy.

The simplest solutions of the equations (2') and (4') are the
following: M=0 and E=0 for the whole space. Now

M =0 gives M,=0,M,= — 3,E,, and M,=3,E,. Since E=0,
we have E,=0, E,(1—8,)=0, and B,(1—28,% =0. These
equations can be satistied ﬁy two different suppositions:

'E-ﬂﬂ=01 Ey=0, E#=0; or Eﬂ:ﬂO, Ey%o, EE¢O, 1_ﬁ£ﬂ=0-

Let us divide the whole space round the point O into ZAree
parts :—Part I, annular. space between two cones (fig, 2),
obtained by rotation of OA and OB round the 2-axis, having
a common vertex at O, the angle AOB being infinitesimal.
Part I1, the inside of the above-mentioned cones. Part IIT
is taken out of 1 by the spheres of r, and 7, with the centre
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at 0. For parts I and II we take the first solution of the
equations (2) and (4'), i.e. Ex=0, E, =0, E;=0; hence
My=0, My=0, M;=0. For the region III we take the
second selution : E,=0, E,= —¥E,sina, E,=E,cosa, E,50,
B,=+1; hence M =0, My=—E,cosa, M,=-—E,sin .
Thus we obtain an electric field only in the region III. This
field is moving with the velocity of light (first law of the
ight-quantum theory). If we _trans%cnrm the equation
divE = 0, using polar coordinates », ¢, «, we obtain

OE,

S = 0. Thus E, is a function of » only ; the cross-section

of the Faraday tube is constant.

Fig, 2.

—
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The equation div M=0, which is also to be solved for the
region I1L, after transformation takes the form

a a )
2(FMY=0 . . . . .. ()
or %(ﬂ:,):@. S ¢
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Here, namely in this equation (5), lies the divergence
between the Maxwell-Hertz-Lorentz electrodynamics and
the theory of Faraday-Maxwell-J. J. Thomson. From the
standpoint of the first theory the equation (3) is valid 1n
the whole space occupied by the free sther, and consequently
will be valid in regions I and III and at their boundaries.
So that if we admit E,=0 and M,=0 for the region I, the

constant in the solution E,== Q?Eft' of the equation (5') for

the region III must also vanish. So, according to the first
theory, there can be no electromagnetic field in the
region ITI, since there is no field in the regions I and 1.
We cannot admit the existence of a field in the region I, as

it must have the form E,= EE}HSE’, which gives for the

point O, E,=0a0 . s

From the point of view of Sir J. J. Thomson’s theory the
structure of the field 18 discontinuous. 'The field consists 10
a system of Faraday tubes moving relatively to one another ;
the intensity of the magnetic field is determined by the
intensity of the electric field and by the normal velocity By
of the tube, from the equation M=73,E. It follows (1) that
the equation (2/) 1is satisfied identically; (2) that the
intensity M has a definite value different frem zero only
where the Faraday tubes are in motion. The equation (3),
div M =0, exists only where the Faraday tubes are in motion ;

" in the rest of the free mther M does not exist. If we admit

the theory of J.J. Thomson, the equation divM=0 must
be satisfied in our case only in the region III up to its
boundaries of 1I. At the boundary I-1IT we may have a
discontinuity of M, and consequently of E;. Hence for the
region IIT we may satisfy (5') by th supposition E »*=finite
constant. | - | |

(Jaleulating the energy of the ring, we obtain

. (E? + M?) x volume of the ring = 2.4¢.E 53'..,.,.,1,..__“;"""ﬂﬁ.E y
gt T ' Fing = &.56. . =, ¥
where e is the charge of the electron, E: ;)%ﬁ, and e/2dy

the constant of integration. Thus we obtain the second law
of the light-quantum theory (Law of Planck). '

From the preceding considerations we may conclude that
the Maxwell’s equations actually lead to the solution given
by Sir J. J. Thomson.

It seems to me also that the difference between the
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Maxwell-Hertz-Lorentz electromagnetic theory and the

theory of Faraday-Maxwell-J. J. Thomson might be ana-
lytically formulated as follows :—(1) For the free sether the

- differential equations are the same in both theories, being
the Maxwell’s system : '

div E=90, . . . . . . . (1
1 o8
curlM:—c VL (2)
div M=0, . . . . . . . (3)
] oM
and cur] E= PR-TCIURET R (4)

(2) The first theory postulated that all these equations are
valid in the whole space filled by the free sther ; in
the second theory the equation (3) occurs only where we
have a moving eleciric field. Formulating this difference
geometrically, we may say that the electric lines of force in
the free mther are everywhere continuous, while the magnetic
may be discontinuous: they must end on the boundaries di-
viding the moving Faraday tubes from those at rest. This
circumstance gives the possibility of introducing discontinuities
in electromagnetic field, and enormously increases the varia-
bility of the special instances, which satisfy the Maxwell
systems of equations, The Maxwell equations, as it has been
shown above, admit such forms of electromagnetic fields as
have the same properties as the light-quanta.

- It seems to me that this interpretation enables us to
construct, on the basis of Maxwell’s equations, investigating
them for the case 8,°=1, a rational quantum theory.

Research Institute of the
1 Moscow University,
1 April, 1926,
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(OXVI1, The Resistance of High-Frequency Circuits. DBy
R. R. Rawmsey, Phr.D., Professor of FPhysics, Indiana
University *.

HE resistance of a high-frequency circuit 1s apparently

easy to determine, However, the separation of the

resistance of the ceil from that of the condenser is a difficult
matter.

It has been customary to consider the resistance of
the condenser small enough to be meglected, so that the
entire resistance of the circuit is ascribed to the coil.

The first attempt to measure the resistance of a condenser
at high frequency was made a little more than a year ago
by Weyl and Harris (Institute of Radio Engineers, Proec.,
vol. xiit. p. 109, Feb,, 1925). In this work the resistance
of a rectangular coil approximately eighteen feet by twenty-,
five feet was calculated, assuming the resistance of the
rectangle at the given frequency to be the same as the high
frequency resistance of a straight wire of the saume diameter,
whose length was the same as the perimeter of the coil.
The resistance obtained. in this manner varied with the
capacity of the condenser from one ohm at *0005 microfarad
to about twenty ohms at 00009 microfarad.

Callis (Phil, Mag. vol. 1. p. 428, Feb. 1926) has made
measurements in which he used coils made of No. 36
and No. 40 copper wire. The method used was to measure
the resistance of a circuit with a coil and condenser at
a given setting using the resistance variation method, then
to measure the resistance of the circuit again after the first
coil had been replaced by one made exactly like the
first. Then the two were connected 1n series opposition
and their position adjusted, so the combined inductance
of the two was the same as the inductance of a single
coil, and the combined resistance was measured again.
From these results the resistance of the condenser could
be eliminated and the resistance of the coils determined.
Since the results gave the resistance of the coils to be
the same as the D.C. resistance, it was assumed that the
resistance of small wire wound in a coil was the same as

‘the resistance of the wire when straight, which was very

close to its D.C. resistance at a frequency of one million.
From these same equations the resistance of the condenser
was determined. It was found that the resistunce of a

* Communicated by the Author,



