Zeroth and Second Laws of Thermodynamics Simultaneously Questioned in the Quantum Microworld

V. Čápek
Institute of Physics of Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, 12116 Prague 2, Czech republic (Tel. (00-420-2)2191-1330, Fax (00-420-2)2492-2797, E-mail capek@karlov.mff.cuni.cz), (January 19, 2001)

Abstract

Several models of quantum open systems are known at present to violate, according to principles of the standard quantum theory of open systems, the second law of thermodynamics. Here, a new and rather trivial model of another type is suggested describing mechanism that violates, according to the same principles, the zeroth and the second laws of thermodynamics simultaneously. Up to a technically minor modification, the model resembles some models already known, solved by standard means, and properly understood. Universal validity of two basic principles of thermodynamics in strictly quantum situations is thus simultaneously called in question.

PACS numbers: 05.30.-d, 05.70.-a, 44.90.+c

I. INTRODUCTION

Phenomenological arguments against general validity of standard statistical thermodynamics and call for inclusion of cooperative, selforganization and similar complicated phenomena even in absence of, e.g., external flows and far from equilibrium exist already for a long time. Since early nineties, one can find them especially in, e.g., theory of electron-transfer chemical reactions where, in connection with their phenomenological non-linear description, inclusion of such effects seems to be indispensable []]. Necessity of their inclusion follows also from detailed analysis of what is known in molecular biology about how individual molecules (molecular machines) work in living organisms [2]. Selforganization is usually believed to be a domain of nonlinear theories. In 1996, the first hamiltonian linear quantum model was suggested that can lead to a selforganized state upon thermalization in a bath even when no external flows exist and, simultaneously, this state is energetically disadvantageous [3, [4]. Recent analysis has revealed that the former non-linear phenomenological and the latter linear first-principle type of reasoning strive in the same direction and can be easily united [5]. The reader is referred to [6] (8] or also to [5] for previous models (extending also reasoning of [3, [4]) where the cooperative and selforganizational tendencies in such models can be shown to provide a basis and unique possibility of violating even the second law of thermodynamics.

Some of such models allow a mathematically rigorous treatment throughout all the calculations ([6] is perhaps the first one of them). However, for technical reasons, just one-step processes have been treated so far. Only very recently, first in 1998, the first rigorously solvable quantum model working cyclically as a perpetuum mobile of the second kind (i.e. converting heat from a single bath into, this time, a usable work without compensation) and violating thus, for the first time explicitly, the Thomson formulation of the second law of thermodynamics [9] was reported (10-12. In 1999 and 2000, also other groups arrived, independently and for other situations, at the same conclusion challenging universal validity of the second law [13 [5]. From them, in particular paper [14] by Allahverdyan and Nieuwenhuizen inspired a public response [16]. Completely different mechanism (connected with dynamically maintained steady-state pressure gradients in rarified gasses) potentially allowing violation of the second law was recently suggested by Sheehan - compare, in connection with previous paper [17], the discussion in [18, 19]. Another and even rather positively experimentally tested system was suggested by Sheehan already in 1994 [20 [22]. Because of complicated nature of the problem as well as owing to 150 years of traditionally presumed universal validity of thermodynamic principles, it is likely that irrespective of final result of the above counter-examples, the problem of potential violation of thermodynamic principles will remain topical for many years to come. A comment is only worth mentioning here that the above models of the present group always work from strong correlations (entanglement) among particles and/or competing and mutually interfering reaction (transfer) channels. Thus, like in [13, 14], the mechanisms discussed are appreciably different from those based on, e.g., the Feynman ratchet and pawl systems [23,24]. It is most likely that such ratchet-like systems (that would transform the thermal noise into one-directional linear or rotational motion) rather fail in experiment once they are devised to violate the second law [24], irrespective of previous opposite expectations but fully in accordance with the Feynman original analysis (23].

The above models of the present group (usually described as isothermal Maxwell demon models because of dynamic opening and closing 'gates', i.e. reaction channels) are in fact so far sufficiently complicated. Moreover, their classical counterparts do not work. All this is why they can and
really do, at the first inspection, naturally induce fully comprehensible prejudice, mistrust, or misunderstandings. To this mistrust, also the fact contributes that the principles on which their activity relies remind of the original Maxwell demon 25 (opening and closing a gate after checking state or performance of previous steps and thus deciding about next elementary steps in, e.g., particle transfer). The idea of Maxwell demon was, however, often and in detail analyzed during the last 130 years 26, 27]. Result of the analysis was usually negative but it well applies to just classical models. In this connection, it is worth mentioning that all models 3810 14 really cease to work in the classical (high-temperature) limit. On the other hand, this analysis does not regard purely quantum models working on, e.g., principles known from nature, in particular from the contemporary molecular biology (interplay between particle transfer and accompanying topological reconstruction of the particle surroundings [2]) built in [3, 8, 10 [2].

The situation seems to be even more serious as the quantum model of the isothermal Maxwell demon of [3, 4] (model of uni-directional isothermal particle transfer even against potential forces) allows a simple generalization to a greater set of sites available to a greater number of particles. This analysis then implies that in a stationary state (equilibrium one in the sense of thermodynamics), chemical potentials of one sort of particles in two subsystems interconnected by sophisticated (e.g. molecular) bridges could become even different 28]. This questions universal validity of another basic principle of the statistical thermodynamics [29]. In order to make the situation simpler, we have here rebuilt the model of [3, 4] to describe transfer of excitons (i.e. excitation energy) and analyzed principles of its work in connection with those of the original model. It appeared that the rebuilt model could be appreciably simplified to such an extent that it becomes fully independent. No possibility is seen to simplify it further and to preserve, simultaneously, the unusual phenomena investigated. The above elementary steps of 'checking performance of previous steps' and 'opening or closing the gate according to the result of the check', so typical of the Maxwell demon - like models, completely disappeared. What, on the other hand, remained is the existence of quantum interference of different reaction (transfer etc) channels. Except for a small (rather physical than technical) modification connected with presumed initial conditions and existence of two thermodynamic baths, the form of the model is fully standard. Without this modification, its solution is known, has been obtained many times and in many different ways, and is correspondingly believed to be well understood. Simplicity of the model and many times verified applicability of the really standard technical 'weaponry' applied to it is what may then, hopefully, change the so far reserved attitude of general public to the above provoking ideas questioning, on grounds of the quantum theory of open systems, universal validity of principles of the statistical thermodynamics. These questioned principles include now, in the light of the present results, not only the second but, as argued below, also the zeroth law of thermodynamics.

II. MODEL

System of a few levels interacting with a thermodynamic bath is a standard quantum problem. We shall use it also here. Specifically, here, we assume three levels, one ground and two excited ones, and refer to the excited levels as those with a Frenkel exciton placed either on site 1 or site 2. These sites might be, e.g., two different molecules or local centres in, possibly, two different but adjacent solids representing two different electron subsystems. As it is easy to verify, it is for our problem here irrelevant whether we include or ignore the fourth level corresponding to both molecules (molecular systems, local centres) excited. For technical simplicity, we choose the latter
alternative. Corrections owing to the (here ignored) two-exciton states are, in, e.g., the excited state occupation probabilities and for small $1 \leftrightarrow 2$ exciton transfer rates, $\propto \exp \left\{-\beta\left(\epsilon_{1}+\epsilon_{2}\right)\right\}$ where $\epsilon_{j}, j=1,2$ are the local exciton energies. Thus, they can be easily identified.

The exciton residing possibly at sites 1 or 2 (if not lacking at all for some time owing to finite life-time effects admitted here) can in principle be transferred between the sites (subsystems) either coherently or incoherently. Here, we choose the first alternative, designating the hopping (resonance or transfer) integral as J. Finally, we complete the model by adding a bath interacting with the system. The tricky feature whose real sense will be seen only below is that we ascribe to each subsystem (designated as I with site 1 and II with site 2) its own thermodynamic bath represented by harmonic oscillators (phonons). Because we assume that initially, both the baths have a canonical distribution with possibly equal temperatures, this step is in such a case isomorphic to assuming that the exciton at site 1 or 2 interacts respectively with, e.g., just even or odd modes of a single bath. Technically, the next step is not relevant but physically, it is important to assume that these two baths are in a way separated as we shall discuss the energy (heat) flow from bath I to II and vice versa. Adding that the exciton-phonon coupling (with coupling constants g_{κ} and G_{κ}) leading to the above exciton finite life-time effects (i.e. non-preserving the number of excitons) is assumed linear in the phonon creation $\left(b_{j \kappa}^{\dagger}\right)$ and annihilation ($b_{j \kappa}, j=1$ and 2) operators, one can directly write the Hamiltonian as

$$
\begin{gather*}
H=H_{I}+H_{I I}+J\left(a_{1}^{\dagger} a_{2}+a_{2}^{\dagger} a_{1}\right), \\
H_{I}=\epsilon_{1} a_{1}^{\dagger} a_{1}+\sum_{\kappa} \hbar \omega_{\kappa} b_{1 \kappa}^{\dagger} b_{1 \kappa}+\frac{1}{\sqrt{N}} \sum_{\kappa} g_{\kappa} \hbar \omega_{\kappa}\left(a_{1}+a_{1}^{\dagger}\right)\left(b_{1 \kappa}+b_{1 \kappa}^{\dagger}\right), \\
H_{I I}=\epsilon_{2} a_{2}^{\dagger} a_{2}+\sum_{\kappa} \hbar \omega_{\kappa} b_{2 \kappa}^{\dagger} b_{2 \kappa}+\frac{1}{\sqrt{N}} \sum_{\kappa} G_{\kappa} \hbar \omega_{\kappa}\left(a_{2}+a_{2}^{\dagger}\right)\left(b_{2 \kappa}+b_{2 \kappa}^{\dagger}\right) . \tag{1}
\end{gather*}
$$

The exciton creation (annihilation) operators are assumed to fulfil the Pauli relations

$$
\begin{gather*}
\left\{a_{1}, a_{1}^{\dagger}\right\}=\left\{a_{2}, a_{2}^{\dagger}\right\}=1,\left[a_{1}, a_{2}^{\dagger}\right]=0, \\
\left\{a_{1}, a_{1}\right\}=\left\{a_{2}, a_{2}\right\}=\left[a_{1}, a_{2}\right]=0 \text { etc. } \tag{2}
\end{gather*}
$$

Here, $\{\ldots, \ldots\}$ and $[\ldots, \ldots]$ are the usual anti- and commutators. The phonon frequencies ω_{κ} are, for simplicity, assumed the same for both the baths. Finally, $\epsilon_{j}, j=1,2$ are the exciton energies while N is the number of the phonon modes (finite before taking the baths thermodynamic limit) in each bath separately. Technically, the existence of two separated and uncorrelated baths, each of them interacting with just one exciton level, makes also the form of our matrices below simpler.

We now want to proceed by writing down a closed set of equations for the exciton density matrix only, projecting off the information about baths. There are several well known ways leading finally to the same result. In order to be specific, we choose time-convolutionless Generalized master equations [30 [34] with the Argyres-Kelley projector [35, 36]. Practical application of the resulting equations then requires approximations (e.g. expansions) upon calculation of coefficients in the equations that can be avoided by application of scaling arguments. The method is well developed and standard now. Describing the formal apparatus, we must be, however, more specific as we are
now going to deviate from a standard weak-coupling approach. This is necessary here because of necessity to describe properly interplay between/among several competing processes.

The weak coupling theory was made mathematically perfect by Davies who properly implied the scaling idea of van Hove [37.38]. It is funny to realize that, at least for systems of finite number of levels, the mathematical prescription how to calculate properly the weak-coupling dynamics as provided by the Davies theory is not unique. For that, compare Theorem 1.4 of [38] which establishes full uniqueness just in the full Van Hove limit [see (3) below] but not for arbitrarily weak though finite coupling strengths as it corresponds to reality. Irrespective of it, because of its mathematically rigorous form, this theory (really rigorous in its region of validity) so influenced theoreticians that many of them now consider the weak coupling language as universal. This is, of course, unintentional negative consequence of the mathematical precision of the Davies theory. So, it is also (and even more than above) funny to observe that this theory fails to describe, e.g., the physical regime we are here interested in. This is owing to the overestimation, in the Davies (or, more generally, weak coupling) theory, of the role of in-phasing (that is, in our case, owing to, e.g., the coherent exciton transfer $1 \leftrightarrow 2$) as compared to the standard dephasing. 母 The latter dephasing process is, in our case, simply due to the exciton (electron) coupling to the bath. Let us be even more specific:

The standard weak-coupling theory is based on the notion of a small parameter, say g, of the coupling of the system to the bath. This means that g would be a joint small parameter of the last terms on the right hand sides of H_{I} and $H_{I I}$ in (11) only. Then a new unit of time, say $\tau=t / t^{\prime}$ is chosen and we work, instead of the true physical time t, in terms of the dimensionless time t^{\prime}. Avoiding here technical details how to avoid Poincaré cycles by performing first the thermodynamic limit of the bath [39], the result is that finally, the proper weak-coupling equations for the exciton density matrix are obtained (otherwise as below) by taking the combined limiting Van Hove procedure

$$
\begin{equation*}
g \rightarrow 0, \tau \rightarrow+\infty, g^{2} \tau=\text { const. } \tag{3}
\end{equation*}
$$

Omitting at this moment also less important mathematical details (see [38.40), the statement is that the resulting equations then describe properly the time development of the system, in terms of the new time t^{\prime}, to its canonical state corresponding to the (initial) temperature of the bath. Because of the limit $g \rightarrow 0$ incorporated into (3) and because the coherent (transfer or hopping) integrals responsible for the in-phasing are kept finite during this limit, the role of the dephasing processes in competing the in-phasing ones is fully suppressed. This is why the the corresponding asymptotic, i.e. canonical density matrix is then diagonal in the basis of the eigenstates of the Hamiltonian of the system H_{S} alone. In other words, this is why the relaxation goes to eigenstates of H_{S}.

In order to incorporate the above competition between dephasing and in-phasing processes, we shall proceed in almost the same way except for one point: We take g as a small parameter of not only the system coupling to the bath. We also assume that $J \propto g^{2}$. The resulting limiting procedure is thus not that of the weak coupling but that of, rather, slow transfer processes. Concerning the

[^0]relative strength of the $1 \leftrightarrow 2$ transfer and relaxation owing to the coupling to the bath, it might be, in such a scheme and for a general situation, still arbitrary. Here, we shall, however, assume that the latter coupling is rather intermediate or even strong as compared to the coherent $1 \leftrightarrow 2$ transfer of the exciton in the sense that the dephasing is either comparable to, or even dominates over in-phasing. (Concerning the words '...dominates over..' remember, that in the situation of the weak coupling case, the in-phasing is, in the limiting sense of (3), infinitely stronger than the dephasing. Here, on the contrary, we admit in our case of the intermediate or strong coupling that the dephasing could be even dominating over the in-phasing but, figuratively speaking, their ratio remains always finite though perhaps arbitrarily large.) This causes remarkable differences in structure of the equations we aim at as well as in the physical conclusions. In particular, we then get that the relaxation does not go (in the sense of diagonalizing the asymptotic density matrix) to the eigenstates of the Hamiltonian of the system. To what state (i.e. to what exciton density matrix) the relaxation then goes we shall see later.

Technically, the method of deriving the closed set of equations for the exciton density matrix proceeds in the following steps:

- We introduce the density matrix of the 'system+bath(s)' complex in the 'interaction' picture as

$$
\begin{equation*}
\tilde{\rho}(t)=\exp \left\{i \mathcal{L}_{0} \cdot t\right\} \rho_{S+B}(t) \tag{4}
\end{equation*}
$$

Here $\rho_{S+B}(t)$ is the density matrix of the system and the bath in the Schrödinger picture and the Liouvillean $\mathcal{L}_{0} \ldots=\left[H_{0}, \ldots\right] / \hbar$ where, however, $H_{0}=\sum_{j=1}^{2}\left[\epsilon_{j} a_{j}^{\dagger} a_{j}+\sum_{\kappa} \hbar \omega_{\kappa} b_{j \kappa}^{\dagger} b_{j \kappa}\right]$. In other words, the hopping term $J\left(a_{1}^{\dagger} a_{2}+a_{2}^{\dagger} a_{1}\right)$ is now not included in H_{0}. This is unlike the scaling inherent to the weak-coupling case (3).

- We apply, e.g., the Fuliński and Kramarczyk identity 30,31, or its more famous form by Shibata, Hashitsume, Takahashi, and Shingu [32, 33]

$$
\begin{gather*}
\frac{d}{d t} \mathcal{P} \tilde{\rho}(t)=-i \mathcal{P} \mathcal{L}(t)\left[1+i \int_{0}^{t} \exp _{\leftarrow}\left\{-i \int_{\tau_{1}}^{t}(1-\mathcal{P}) \mathcal{L}\left(\tau_{2}\right) d \tau_{2}\right\}(1-\mathcal{P}) \mathcal{L}\left(\tau_{1}\right)\right. \\
\left.\cdot \exp _{\rightarrow}\left\{i \int_{\tau 1}^{t} \mathcal{L}\left(\tau_{2}\right) d \tau_{2}\right\} d \tau_{1}\right]^{-1} \\
\left.\cdot\left[\exp _{\leftarrow}\left\{-i \int_{0}^{t}(1-\mathcal{P})\right\} \mathcal{L}(\tau) d \tau\right\}(1-\mathcal{P}) \rho(0)+\mathcal{P} \tilde{\rho}(t)\right] \tag{5}
\end{gather*}
$$

(For equivalence of (5) with [30,31] see [34].) Here \mathcal{P} is the so called Argyres-Kelley projector 35, 36

$$
\begin{gather*}
\mathcal{P} \ldots=\rho^{B} \operatorname{Tr}_{B}(\ldots) \tag{6}\\
\mathcal{L}(t) \ldots=\exp \left\{i \mathcal{L}_{0} \cdot t\right\} \frac{1}{\hbar}[\tilde{H}, \ldots] \exp \{-i \mathcal{L} \cdot t\} \tag{7}
\end{gather*}
$$

and

$$
\begin{gather*}
\tilde{H}=J\left(a_{1}^{\dagger} a_{2}+a_{2}^{\dagger} a_{1}\right) \\
+\frac{1}{\sqrt{N}} \sum_{\kappa} \hbar \omega_{\kappa}\left[g_{\kappa}\left(a_{1}+a_{1}^{\dagger}\right)\left(b_{1 \kappa}+b_{1 \kappa}^{\dagger}\right)+G_{\kappa}\left(a_{2}+a_{2}^{\dagger}\right)\left(b_{2 \kappa}+b_{2 \kappa}^{\dagger}\right)\right] . \tag{8}
\end{gather*}
$$

- Assume, for simplicity, initially factorizable density matrix of the exciton and bath and identify ρ^{B} with the initial density matrix of the bath.
- Perform the above scaling (including transition to new time t^{\prime} - we shall, however, continue writing t) with also $J \propto g^{2}$,
- Return back from the above 'interaction' picture to the Schrödinger picture.
(Details of this procedure may be found, for similar models, elsewhere - see, e.g., 41] for a method fully following the Davies approach [38,40].) Then, after some straightforward algebra, the required set of equations for the density matrix of the exciton only (designated as $\rho(t)$), that is exact in the sense of the above scaling procedure, reads

$$
\frac{d}{d t}\left(\begin{array}{l}
\rho_{00}(t) \\
\rho_{11}(t) \\
\rho_{22}(t) \\
\rho_{12}(t) \\
\rho_{21}(t)
\end{array}\right)=\left(\begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
\mathcal{C} & \mathcal{D}
\end{array}\right) \cdot\left(\begin{array}{l}
\rho_{00}(t) \\
\rho_{11}(t) \\
\rho_{22}(t) \\
\rho_{12}(t) \\
\rho_{21}(t)
\end{array}\right) .
$$

Here the blocks

$$
\begin{gather*}
\mathcal{A}=\left(\begin{array}{ccc}
-\gamma_{\uparrow}-\Gamma_{\uparrow} & \gamma_{\downarrow} & \Gamma_{\downarrow} \\
\gamma_{\uparrow} & -\gamma_{\downarrow} & 0 \\
\Gamma_{\uparrow} & 0 & -\Gamma_{\downarrow}
\end{array}\right), \mathcal{B}=\left(\begin{array}{cc}
0 & 0 \\
i J / \hbar & -i J / \hbar \\
-i J / \hbar & i J / \hbar
\end{array}\right), \\
\mathcal{C}=\left(\begin{array}{ccc}
0 & i J / \hbar & -i J / \hbar \\
0 & -i J / \hbar & i J / \hbar
\end{array}\right), \\
\mathcal{D}=\left(\begin{array}{cc}
-\frac{1}{2}\left(\gamma_{\downarrow}+\Gamma_{\downarrow}\right)+i\left(\epsilon_{2}-\epsilon_{1}\right) / \hbar & 0 \\
0 & -\frac{1}{2}\left(\gamma_{\downarrow}+\Gamma_{\downarrow}\right)-i\left(\epsilon_{2}-\epsilon_{1}\right) / \hbar
\end{array}\right) . \tag{10}
\end{gather*}
$$

From the whole set of 9 equations for elements $\rho_{i j}(t), i, j=0,1$ or 2 , we have in (9) omitted those ones that are separated (the whole set factorizes) and are not important below. Index 0 corresponds to the unexcited state where there is no exciton in the system. As for, e.g., the zero element in the left lower corner of the square matrix, it is owing (and corresponds) to the above stressed importance of the existence of two baths. The following notation has been used:

$$
\gamma_{\uparrow}=\frac{2 \pi}{\hbar} \frac{1}{N} \sum_{\kappa}\left(g_{\kappa} \hbar \omega_{\kappa}\right)^{2} \frac{1}{\exp \left(\beta_{1} \hbar \omega_{\kappa}\right)-1} \delta\left(\hbar \omega_{\kappa}-\epsilon_{1}\right),
$$

$$
\begin{gather*}
\gamma_{\downarrow}=\frac{2 \pi}{\hbar} \frac{1}{N} \sum_{\kappa}\left(g_{\kappa} \hbar \omega_{\kappa}\right)^{2}\left[1+\frac{1}{\exp \left(\beta_{1} \hbar \omega_{\kappa}\right)-1}\right] \delta\left(\hbar \omega_{\kappa}-\epsilon_{1}\right), \\
\Gamma_{\uparrow}=\frac{2 \pi}{\hbar} \frac{1}{N} \sum_{\kappa}\left(G_{\kappa} \hbar \omega_{\kappa}\right)^{2} \frac{1}{\exp \left(\beta_{2} \hbar \omega_{\kappa}\right)-1} \delta\left(\hbar \omega_{\kappa}-\epsilon_{2}\right), \\
\Gamma_{\downarrow}=\frac{2 \pi}{\hbar} \frac{1}{N} \sum_{\kappa}\left(G_{\kappa} \hbar \omega_{\kappa}\right)^{2}\left[1+\frac{1}{\exp \left(\beta_{2} \hbar \omega_{\kappa}\right)-1}\right] \delta\left(\hbar \omega_{\kappa}-\epsilon_{2}\right) . \tag{11}
\end{gather*}
$$

Implicitly, we assume everywhere the thermodynamic limit of the bath(s) to be already performed. As for β_{1} and β_{2}, notice that we have assumed the bath to consist of two (sub-)baths designated as 1 and 2 , each of them connected (forming inherent part thereof) with its own subsystem I or II. In order to get rid of the initial condition, i.e. inhomogeneous, terms (otherwise resulting in the set (9)), we have assumed that the bath is initially statistically independent of the system. We impose further condition here: As the two sub-baths do not directly interact, we ascribe both of them initial canonical distributions with presumably different initial temperatures T_{1} and T_{2}. Then $\beta_{j}=1 /\left(k_{B} T_{j}\right), j=1,2$. Unless the opposite gets mentioned explicitly below, however, we shall assume the two initial temperatures of the baths equal, i.e. $\beta_{1}=\beta_{2} \equiv \beta=1 /\left(k_{B} T\right)$. Then only one type of the Bose-Einstein distribution $n_{B}(z)=[\exp (\beta z)-1]^{-1}$ for phonons enters the above formulae. Worth mentioning here is also the fact that all the γ 's and Γ 's in (11) result as standard Golden Rule transition rates (fulfilling the usual detailed balance conditions) between states of a localized and absent exciton. No J appears in these formulae. Also this is one of consequences of our above scaling procedure that leads to description of relaxation not in the weak-coupling but rather intermediate or strong coupling regimes (comparable dephasing which is due to the coupling to the bath, and in-phasing which is owing to the above J-term (hopping term)).

III. RELATION TO THE WEAK-COUPLING LIMIT DYNAMICS

The weak-coupling limit dynamics is best described in terms of eigenstates of the Hamiltonian of the system split off the bath

$$
\begin{equation*}
H_{S}=\sum_{j=1}^{2} \epsilon_{j} a_{j}^{\dagger} a_{j}+J\left(a_{1}^{\dagger} a_{2}+a_{2}^{\dagger} a_{1}\right) \tag{12}
\end{equation*}
$$

In our case, one such an eigenstate is known, it is the ground state $|0\rangle$ of the electronic system (no exciton in the system). As for the next two states, they read for $\epsilon_{1} \neq \epsilon_{2}$
where

$$
\begin{gather*}
\phi=\frac{2 J \operatorname{sign}\left(\epsilon_{2}-\epsilon_{1}\right)}{\sqrt{2 \sqrt{\left(\epsilon_{2}-\epsilon_{1}\right)^{2}+4 J^{2}}\left[\left|\epsilon_{2}-\epsilon_{1}\right|+\sqrt{\left(\epsilon_{2}-\epsilon_{1}\right)^{2}+4 J^{2}}\right]}}, \\
\chi=\sqrt{1-\phi^{2}}=\frac{\left|\epsilon_{2}-\epsilon_{1}\right|+\sqrt{\left(\epsilon_{2}-\epsilon_{1}\right)^{2}+4 J^{2}}}{\sqrt{2 \sqrt{\left(\epsilon_{2}-\epsilon_{1}\right)^{2}+4 J^{2}}\left[\left|\epsilon_{2}-\epsilon_{1}\right|+\sqrt{\left(\epsilon_{2}-\epsilon_{1}\right)^{2}+4 J^{2}}\right]}} . \tag{14}
\end{gather*}
$$

The corresponding eigenenergies (unperturbed by the coupling to the bath) read

$$
\begin{equation*}
E_{ \pm}=\frac{1}{2}\left[\epsilon_{1}+\epsilon_{2} \mp \operatorname{sign}\left(\epsilon_{2}-\epsilon_{1}\right) \sqrt{\left(\epsilon_{2}-\epsilon_{1}\right)^{2}+4 J^{2}}\right] . \tag{15}
\end{equation*}
$$

Still for the above case, $|+\rangle \rightarrow|1\rangle$ and $|-\rangle \rightarrow|2\rangle$ when $J \rightarrow 0$. For simplicity, let us consider just the case of $\epsilon_{1} \neq \epsilon_{2}$. In the basis of states $|0\rangle,|+\rangle$, and $|-\rangle$, the rigorous weak-coupling dynamics [37.38] as obtained by scaling (3) of the exciton density matrix with the above initial condition reads

$$
\begin{gathered}
\frac{d}{d t}\left(\begin{array}{c}
\rho_{00}(t) \\
\rho_{++}(t) \\
\rho_{--}(t) \\
\rho_{0+}(t) \\
\rho_{+0}(t) \\
\rho_{0-}(t) \\
\rho_{-0}(t) \\
\rho_{+-}(t) \\
\rho_{-+}(t)
\end{array}\right)=\left(\begin{array}{ccccccc}
\ldots \\
\ldots & \mathcal{E N} & \ldots & & \mathcal{D I} \mathcal{F} & \ldots \\
\ldots & & \ldots & & \ldots
\end{array}\right) \cdot\left(\begin{array}{c}
\rho_{00}(t) \\
\rho_{++}(t) \\
\rho_{--}(t) \\
\rho_{0+}(t) \\
\rho_{+0}(t) \\
\rho_{0-}(t) \\
\rho_{-0}(t) \\
\rho_{+-}(t) \\
\rho_{-+}(t)
\end{array}\right) \\
+\left(\begin{array}{ccccccccccc}
-\gamma_{+0}-\Gamma_{-0} & \gamma_{0+} & \Gamma_{0-} & 0 & 0 & 0 & 0 & 0 & 0 \\
\gamma_{+0} & -\gamma_{0+} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\Gamma_{-0} & 0 & -\Gamma_{0-} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & k & p & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & p & k^{*} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & l & q & 0 & 0 \\
0 & 0 & 0 & 0 & q & l^{*} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & m & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & m^{*}
\end{array}\right) \cdot\left(\begin{array}{c}
\rho_{00}(t) \\
\rho_{++}(t) \\
\rho_{--}(t) \\
\rho_{0+}(t) \\
\rho_{+0}(t) \\
\rho_{0-}(t) \\
\rho_{-0}(t) \\
\rho_{+-}(t) \\
\rho_{-+}(t)
\end{array}\right) .
\end{gathered}
$$

Here

$$
\begin{gather*}
\gamma_{+0}=\frac{2 \pi}{\hbar} \frac{1}{N} \sum_{\kappa}\left(\chi^{2} g_{\kappa}^{2}+\phi^{2} G_{\kappa}^{2}\right)\left(\hbar \omega_{\kappa}\right)^{2} n_{B}\left(\hbar \omega_{\kappa}\right) \delta\left(E_{+}-\hbar \omega_{\kappa}\right), \\
\gamma_{0+}=\frac{2 \pi}{\hbar} \frac{1}{N} \sum_{\kappa}\left(\chi^{2} g_{\kappa}^{2}+\phi^{2} G_{\kappa}^{2}\right)\left(\hbar \omega_{\kappa}\right)^{2}\left[1+n_{B}\left(\hbar \omega_{\kappa}\right)\right] \delta\left(E_{+}-\hbar \omega_{\kappa}\right), \\
\Gamma_{-0}=\frac{2 \pi}{\hbar} \frac{1}{N} \sum_{\kappa}\left(\phi^{2} g_{\kappa}^{2}+\chi^{2} G_{\kappa}^{2}\right)\left(\hbar \omega_{\kappa}\right)^{2} n_{B}\left(\hbar \omega_{\kappa}\right) \delta\left(E_{-}-\hbar \omega_{\kappa}\right), \\
\Gamma_{0-}=\frac{2 \pi}{\hbar} \frac{1}{N} \sum_{\kappa}\left(\phi^{2} g_{\kappa}^{2}+\chi^{2} G_{\kappa}^{2}\right)\left(\hbar \omega_{\kappa}\right)^{2}\left[1+n_{B}\left(\hbar \omega_{\kappa}\right)\right] \delta\left(E_{-}-\hbar \omega_{\kappa}\right), \tag{17}
\end{gather*}
$$

are the Golden Rule transfer rates between eigenstates of the unperturbed Hamiltonian of the system H_{S}; clearly, e.g. $\gamma_{+0} \rightarrow \gamma_{\uparrow}$ when $J \rightarrow 0$ etc. Further, $\left(\begin{array}{ccc}\ldots & \ldots & \ldots \\ \ldots & \mathcal{E N}-\mathcal{D I \mathcal { F }} & \ldots \\ \ldots & \ldots & \ldots\end{array}\right)$ is the 9×9 diagonal matrix with diagonal elements $0,0,0, \frac{i}{\hbar} E_{+},-\frac{i}{\hbar} E_{+}, \frac{i}{\hbar} E_{-},-\frac{i}{\hbar} E_{-}, \frac{i}{\hbar}\left(E_{-}-E_{+}\right)$, and $\frac{i}{\hbar}\left(E_{+}-E_{-}\right)$. Finally,

$$
\begin{array}{r}
k=-0.5\left(\gamma_{+0}+\gamma_{0+}+\Gamma_{-0}\right), \quad l=-0.5\left(\Gamma_{-0}+\Gamma_{0-}+\gamma_{+0}\right), \\
m=-0.5\left(\gamma_{0+}+\Gamma_{0-}\right), \quad p=0.5\left(\gamma_{+0}+\gamma_{0+}\right), \quad q=0.5\left(\Gamma_{0-}+\Gamma_{-0}\right) . \tag{18}
\end{array}
$$

Topologically, the weak-coupling relaxation matrix (the square matrix in the second term on the right hand side of (16)) resembles that in our intermediate or strong-coupling case (9-10). These relaxation matrices are written down in different bases, however, and in these bases, they have a simple, standard and easily understandable form. Difference between the 'extended' basis $|0\rangle,|+\rangle$, and $|-\rangle$ and the 'localized' one $|0\rangle,|1\rangle$, and $|2\rangle$ is why the free-motion terms (the first terms on the right hand side of (16) and (9)) formally differ. Coincidence of the free-motion terms is of course complete once they are brought to the same (either localized or extended) basis. This is, on the other hand, unlike the relaxation matrix. If we set $J \rightarrow 0$ in all the coefficients in the relaxation matrix in the extended basis in the second term in (16), we do not reproduce the relaxation matrix of (9) in this basis. Instead, we get, in this way, the relaxation matrix of (9) as it is written down in (9), i.e. in the localized basis. The point is that

- in the scaling (3) underlying the weak-coupling regime, the in-phasing (which is due to J that is kept constant during the scaling) is automatically, as a consequence of (3), presumed dominating over dephasing processes. Nothing is changed on this feature even if we additionally take J arbitrarily small. That is why the free-motion term is diagonal in the extended basis and the relaxation term describes relaxation in the same basis, i.e. that of eigenstates of H_{S} with $J \neq 0$. This relaxation including dephasing is, owing to the form of (3), to be understood as (in the limiting sense) infinitely slow as compared to the in-phasing processes. On the other hand,
- with our scaling

$$
\begin{equation*}
g \rightarrow 0, J \rightarrow 0, \tau \rightarrow+\infty, g^{2} \tau=\text { const, } \frac{g^{2}}{J}=\text { const } \tag{19}
\end{equation*}
$$

also J is scaled. Hence, as we are allowed, in such a scaling, to keep just second order (in g) processes, we must set $J=0$ inside all the relaxation superoperator (correction to $\mathcal{P} \mathcal{L}(t) \mathcal{P} \rho(t)$ on the right hand side of (D_{5})) as the latter is already $\propto g^{2}$ owing to its proportionality to the second power of the coupling to the bath). That is why the relaxation term in (9) describes relaxation to eigenstates of $\left.H_{S}\right|_{J=0}$, i.e. in the localized basis. J must be, however, kept nonzero in the free-motion term. That is why we get a proper competition between freemotion (no transitions in the extended basis, i.e. between eigenstates of $\left.H_{S}\right|_{J \neq 0}$) reflecting in-phasing owing to term $\propto J$ in (11), and relaxation going between eigenstates of $\left.H_{S}\right|_{J=0}$, i.e. in the localized basis.

The situation in our intermediate or strong coupling case connected with scaling (19) thus reminds a bit of the Hubbard model when the band and site-local interaction terms are diagonal just in the extended and and local bases, respectively. In our case, full equivalence between (16) and (9) appears only in the extreme case of J taken as zero from the very beginning, in both the free-motion and relaxation terms. This is because then the extended and localized bases coincide.

IV. PARTICLE AND ENERGY FLOWS

Let us return to our above scheme of the slow exciton dynamics as described by (9-10) and let us first discuss solution for the case of zero J (for this particular case, correspondence with the weak-coupling approach as above can be found quite easily). It is easy to verify that the stationary (and in this particular case definitely also equilibrium) solution to (9) reads

$$
\begin{gather*}
\rho_{00} \equiv \rho_{00}(t \rightarrow+\infty)=1-\rho_{11}-\rho_{22} \\
\rho_{11}=\frac{\exp \left(-\beta \epsilon_{1}\right)}{Z}, \rho_{22}=\frac{\exp \left(-\beta \epsilon_{2}\right)}{Z}, Z=1+\exp \left(-\beta \epsilon_{1}\right)+\exp \left(-\beta \epsilon_{2}\right) \tag{20}
\end{gather*}
$$

As for stationary values of site off-diagonal elements of ρ, they turn to zero. So as to derive (20), we have used the detailed balance relations $\gamma_{\uparrow} / \gamma_{\downarrow}=\exp \left(-\beta \epsilon_{1}\right)$ and $\Gamma_{\uparrow} / \Gamma_{\downarrow}=\exp \left(-\beta \epsilon_{2}\right)$. Formulae (20) are still in full agreement with the equilibrium statistical mechanics, in particular the canonical distribution. In order to see that, let us realize that we have omitted, for purely technical reasons, the two-exciton state with both levels (1 and 2) occupied by excitons. This means errors of the order $\propto \exp \left(-\beta\left(\epsilon_{1}+\epsilon_{2}\right)\right)$. Within this accuracy, we can well approximate, e.g., the stationary value ρ_{11} as $\rho_{11} \approx \frac{\exp \left(-\beta \epsilon_{1}\right)}{1+\exp \left(-\beta \epsilon_{1}\right)}$ what is the canonical equilibrium probability P_{1} of finding the site 1 occupied by the exciton, as prescribed by the equilibrium statistical mechanics. Refraining, on the other hand, for a while from the above omission of the two-exciton state and designating the two-exciton state as state 3 , we might reconsider the problem on the more general level. This would yield the stationary value $\rho_{11}=\exp \left(-\beta \epsilon_{1}\right) / Z^{\prime}$ and $\rho_{33}=\exp \left(-\beta\left(\epsilon_{1}+\epsilon_{2}\right)\right) / Z^{\prime}$ where $Z^{\prime}=Z+\exp \left(-\beta\left(\epsilon_{1}+\epsilon_{2}\right)\right)$. From that, the probability of finding the exciton at site 1 irrespective of the occupation of site 2 results as $P_{1} \equiv \rho_{11}+\rho_{33}=\frac{1}{1+\exp \left(\beta \epsilon_{1}\right)} \quad$ [2, in a full correspondence with the above reasoning based on discussion of accuracy of our treatment.

Interesting and important for what follows below is also the dynamics of occupation of site 1. As we still keep $J=0$, we may for this purpose ignore the state 2 at all. Doing so, we shall for a while completely neglect γ_{\uparrow} as compared to γ_{\downarrow}. \$ Then the dynamics (time dependence) of probability of finding the exciton at site 1 reads

$$
\begin{equation*}
P_{1}(t)=P_{1}(t=0) \mathrm{e}^{-\gamma_{\downarrow} t} \tag{21}
\end{equation*}
$$

[^1]This corresponds to the probability amplitude of finding the exciton at site 1 in form of $\mathrm{e}^{-i \epsilon t / \hbar-\gamma_{\perp} t / 2}$ whose Fourier transform reads as Lorentzian $\frac{1}{\pi} \frac{\gamma_{\downarrow} / 2}{\left[\omega-\epsilon_{1} / \hbar\right]^{2}+\left[\gamma_{\downarrow} / 2\right]^{2}}$. This indicates that the exciton level ϵ_{1} (and similarly for the level ϵ_{2}) is broadened as a Lorentzian with the half-width $\gamma_{\downarrow} / 2$. This is what we shall need below.

All this is very reasonable and known, in different context, for already many years. In what follows, we return to a general situation. We shall argue now that the matter will drastically change once we put J nonzero. To be more concrete, we are going to argue that under the above defined conditions and for still equal initial temperatures of the baths $T_{1}=T_{2}=T$, there will be a permanent exciton (and also energy) flow between sites 1 and 2. Because of our joining these sites with different and mutually non-interacting baths, this implies the existence of the exciton (energy) flow also between our subsystems I and II.

This prediction is perhaps shocking for standardly thinking physicists. In order to deprive potential opponents of tempting, at the first sight fully legitimate but still insufficiently justified arguments, let us already here state (admit) two important things right here:

- The weak-coupling theory does not yield the persistent nonzero flows.
- Application of the canonical distribution to the whole system (consisting of two subsystems, each of them having its own bath and electronic, i.e., exciton levels) also yields that these flows are in average zero.

The counter-arguments against such an easy beating off our type of reasoning and results are, however, that

- The weak coupling theory has even potentially no possibility to yield such flows at all. So, it cannot serve as an arbitrator. The point is that such flows, as shown below, need a sufficiently strong dephasing (as compared with in-phasing processes) to broaden the energy levels ϵ_{1} and ϵ_{2} (as we shall see below, the transfer is between tails of these levels). The very definition of the weak-coupling approach (see (3) above) is based on the Van Hove limit leading to a negligible role of the dephasing (as compared to the in-phasing), i.e. the approach is unable to model the situation we speak about, where we predict the existence (nonzero values) of the flows. Under the condition of the dominating in-phasing (over the dephasing as in the weak-coupling regime), exciton at sites 1 and 2 becomes shared. In other words, a special type of a covalent bonding appears between the sites which (as also found in other situations) prevents such flows.
- If we are really right in our prediction that, in the thermodynamic limit, there is a persistent flow between sites 1 and 2, i.e. between systems I and II, application of the canonical distribution is unjustified. The point is that the canonical distribution is based on maximizing entropy under solely two constraints: Normalization condition $(\operatorname{Tr} \rho=1)$ and mean energy conservation $(\operatorname{Tr}(H \rho)=\bar{E}=$ const $)$. If we are right, then at least the third constraint

[^2]$\operatorname{Tr}(\hat{I} \rho)=$ const (\hat{I} being the flow operator) should be added what makes the usual canonical distribution improper. Also other approaches used to justify the canonical distribution always use, explicitly or implicitly, the $a d$ hoc assumption of non-existence of other persistent quantities than energy. So, if we are really right in our arguments here, then, definitely, nor the canonical distribution can be used as an arbiter.

Let us start our reasoning here by deriving a sufficiently reliable form of the exciton flow formula. From our Hamiltonian (11) and the Liouville equation, we get that

$$
\begin{gather*}
-\frac{d}{d t}\left\langle a_{1}^{\dagger} a_{1}\right\rangle=\frac{i}{\hbar}\left\langle\left[a_{1}^{\dagger} a_{1}, H\right]\right\rangle \\
=\frac{2 J}{\hbar} \Im \mathrm{~m}\left\langle a_{2}^{\dagger} a_{1}\right\rangle+\frac{2}{\sqrt{N}} \sum_{\kappa} g_{\kappa} \omega_{\kappa} \Im \mathrm{m}\left\langle b_{1 \kappa}^{\dagger} a_{1}\right\rangle . \tag{22}
\end{gather*}
$$

The last mean value can be calculated, using principle of the adiabatic switching on the interactions, as

$$
\begin{equation*}
\delta\left\langle b_{1 \kappa}^{\dagger} a_{1}\right\rangle=\frac{d}{d t}\left\langle b_{1 \kappa}^{\dagger} a_{1}\right\rangle=-\frac{i}{\hbar}\left\langle\left[b_{1 \kappa}^{\dagger} a_{1}, H\right]\right\rangle, \delta \rightarrow 0+ \tag{23}
\end{equation*}
$$

Here, terms containing J should already be omitted if we work to the second order in our small parameter g only (remember that $J \propto g^{2}$ - see (19)). Thus, within this accuracy,

$$
\begin{equation*}
\left\langle b_{1 \kappa}^{\dagger} a_{1}\right\rangle \approx \frac{1}{\hbar \omega_{\kappa}-\epsilon_{1}+i \hbar \delta} \frac{1}{\sqrt{N}} g_{\kappa} \hbar \omega_{\kappa}\left\{n_{B}\left(\hbar \omega_{\kappa}\right)\left[1-\left\langle a_{1}^{\dagger} a_{1}\right\rangle-\left[1+n_{B}\left(\hbar \omega_{\kappa}\right)\right]\left\langle a_{1}^{\dagger} a_{1}\right\rangle\right\}\right. \tag{24}
\end{equation*}
$$

So, (22) reads, within the required accuracy, as

$$
\begin{equation*}
-\frac{d}{d t}\left\langle a_{1}^{\dagger} a_{1}\right\rangle \approx \frac{2 J}{\hbar} \Im m \rho_{12}-\rho_{00} \gamma_{\uparrow}+\rho_{11} \gamma_{\downarrow} \tag{25}
\end{equation*}
$$

As the last two terms express the exciton number imbalancing owing to transfers $1 \leftrightarrow 0$, the proper formula for the real $1 \leftrightarrow 2$ flow is connected with the first term on the right hand side of (25). Thus, the $1 \leftrightarrow 2$ exciton flow (taken as positive if flowing from 1 to 2) reads

$$
\begin{equation*}
I=\frac{2 J}{\hbar} \Im m \rho_{12} \tag{26}
\end{equation*}
$$

The fact that I is determined by the (imaginary part of the) site off-diagonal elements of the particle density matrix follows already from the elementary quantum mechanics.

The long-time (stationary) value of the ρ_{12} element of the density matrix can be found, however, from (9) (by setting the time-derivatives zero), incorporating also the normalization condition

$$
\begin{equation*}
\sum_{j=0}^{2} \rho_{j j}=1 \tag{27}
\end{equation*}
$$

After a simple algebra, the result is

$$
I=\frac{2 \pi}{\hbar} J^{2} \cdot \frac{1}{\pi} \frac{\frac{\hbar}{2}\left(\gamma_{\downarrow}+\Gamma_{\downarrow}\right)}{\left[\frac{\hbar}{2}\left(\gamma_{\downarrow}+\Gamma_{\downarrow}\right)\right]^{2}+\left[\epsilon_{2}-\epsilon_{1}\right]^{2}}
$$

$$
\begin{equation*}
\cdot \frac{\gamma_{\uparrow} \Gamma_{\downarrow}-\gamma_{\downarrow} \Gamma_{\uparrow}}{\gamma_{\downarrow} \Gamma_{\downarrow}+\gamma_{\downarrow} \Gamma_{\uparrow}+\gamma_{\uparrow} \Gamma_{\downarrow}+X\left[\gamma_{\downarrow}+\Gamma_{\downarrow}+2 \gamma_{\uparrow}+2 \Gamma_{\uparrow}\right]} \neq 0 . \tag{28}
\end{equation*}
$$

Here

$$
\begin{equation*}
X=\frac{2 \pi}{\hbar} J^{2} \cdot \frac{1}{\pi} \frac{\frac{\hbar}{2}\left(\gamma_{\downarrow}+\Gamma \downarrow\right)}{\left[\frac{\hbar}{2}\left(\gamma_{\downarrow}+\Gamma_{\downarrow}\right)\right]^{2}+\left[\epsilon_{2}-\epsilon_{1}\right]^{2}} . \tag{29}
\end{equation*}
$$

Since we are obliged to stick to the required accuracy, we can deal, using the formalism allowed, with just the leading terms. Hence, we shall omit the terms $\propto X$ in the denominator assuming that

$$
\begin{equation*}
X \ll \frac{\gamma_{\downarrow} \Gamma_{\downarrow}}{\gamma_{\downarrow}+\Gamma_{\downarrow}} . \tag{30}
\end{equation*}
$$

This means that, up to terms of higher than sixth order in g (still remember that $J \propto g^{2}$),

$$
\begin{gather*}
I \approx \frac{2 \pi}{\hbar} J^{2} \cdot \frac{1}{\pi} \frac{\frac{\hbar}{2}\left(\gamma_{\downarrow}+\Gamma_{\downarrow}\right)}{\left[\frac{\hbar}{2}\left(\gamma_{\downarrow}+\Gamma_{\downarrow}\right)\right]^{2}+\left[\epsilon_{2}-\epsilon_{1}\right]^{2}} \\
\cdot \frac{\gamma_{\uparrow} \Gamma_{\downarrow}-\gamma_{\downarrow} \Gamma_{\uparrow}}{\gamma_{\downarrow} \Gamma_{\downarrow}+\gamma_{\downarrow} \Gamma_{\uparrow}+\gamma_{\uparrow} \Gamma_{\downarrow}} \\
=\frac{2 \pi}{\hbar} J^{2} \cdot \frac{1}{\pi} \frac{\frac{\hbar}{2}\left(\gamma_{\downarrow}+\Gamma_{\downarrow}\right)}{\left[\frac{\hbar}{2}\left(\gamma_{\downarrow}+\Gamma_{\downarrow}\right)\right]^{2}+\left[\epsilon_{2}-\epsilon_{1}\right]^{2}}\left[\rho_{11}-\rho_{22}\right] . \tag{31}
\end{gather*}
$$

Interesting point is that the expression for the exciton flow on the right hand side of (31) is correct even without assuming (30). This follows from (28) by taking into account that from (9), we obtain the asymptotic-time populations

$$
\begin{gather*}
\rho_{11}=\frac{\gamma_{\uparrow} \Gamma_{\downarrow}+X\left(\gamma_{\uparrow}+\Gamma_{\uparrow}\right)}{\gamma_{\downarrow} \Gamma_{\downarrow}+\gamma_{\downarrow} \Gamma_{\uparrow}+\gamma_{\uparrow} \Gamma_{\downarrow}+X\left(\gamma_{\downarrow}+\Gamma_{\downarrow}+2 \gamma_{\uparrow}+2 \Gamma_{\uparrow}\right)} \approx \frac{\mathrm{e}^{-\beta \epsilon_{1}}}{Z}, \\
\rho_{22}=\frac{\gamma_{\downarrow} \Gamma_{\uparrow}+X\left(\gamma_{\uparrow}+\Gamma_{\uparrow}\right)}{\gamma_{\downarrow} \Gamma_{\downarrow}+\gamma_{\downarrow} \Gamma_{\uparrow}+\gamma_{\uparrow} \Gamma_{\downarrow}+X\left(\gamma_{\downarrow}+\Gamma_{\downarrow}+2 \gamma_{\uparrow}+2 \Gamma_{\uparrow}\right)} \approx \frac{\mathrm{e}^{-\beta \epsilon_{2}}}{Z} . \tag{32}
\end{gather*}
$$

In the last approximate expressions, we have again used condition (30).
Clearly, expression (31) for the exciton flow is, quite surprisingly at the first sight, clearly nonzero. Already this is remarkable as we have to realize again that the exciton transfers energy and the transfer channel $1 \leftrightarrow 2$ is the only channel connecting our systems I and II and able, within our model, to transfer energy between them. Before getting into more physical details connected with this observation, let us also comment that expression (31)

- has a proper total balance structure with transitions $1 \rightarrow 2$ and $2 \rightarrow 1$ (contributing to (31) by terms $\propto \rho_{11}$ and $\propto \rho_{22}$, respectively), and
- is fully compatible with (in fact, it is exactly equal to) the second-order Golden Rule of quantum mechanics (J is the matrix element of the transfer part of the Hamiltonian between states of the exciton at sites 1 and 2) assuming that the energy conservation law is properly broadened owing to exciton decay processes.

This broadening means that the exciton transfer is neither at level ϵ_{1} nor at level $\epsilon_{2}\left(\neq \epsilon_{1}\right)$ but generally at arbitrary energy in tails of the two broadened exciton levels. (Realize that the exciton is, as generally in nature and as also anticipated in our model, just a finite life-time quasiparticle.) This interpretation is clearly confirmed by the fact that one can rewrite (31) also as

$$
\begin{equation*}
I=\frac{2 \pi}{\hbar} J^{2}\left[\rho_{11}-\rho_{22}\right] \cdot \int_{-\infty}^{+\infty} \frac{1}{\pi} \frac{\frac{\hbar}{2} \gamma_{\downarrow}}{\left[\frac{\hbar}{2} \gamma_{\downarrow}\right]^{2}+\left[\epsilon-\epsilon_{1}\right]^{2}} \cdot \frac{1}{\pi} \frac{\frac{\hbar}{2} \Gamma_{\downarrow}}{\left[\frac{\hbar}{2} \Gamma_{\downarrow}\right]^{2}+\left[\epsilon-\epsilon_{2}\right]^{2}} d \epsilon \tag{33}
\end{equation*}
$$

and the fact that any quasiparticle exponentially damped with the decay rate γ, i.e. the survival probability amplitude

$$
\begin{equation*}
\left\langle a_{1}(t) a_{1}^{\dagger}\right\rangle=\exp \left(-i \epsilon_{1} \cdot t / \hbar-\gamma t / 2\right) \tag{34}
\end{equation*}
$$

has its energy level (here ϵ_{1}) broadened into a Lorentzian with the energy half-with $\hbar \gamma / 2$. See also a comment in this respect above. The forms of (31) and (33) thus leave only very limited space for speculations about validity of our approach.

Our statement about persistent energy transfer between subsystems I and II kept at (initially) equal temperatures is already justified by our expressions for the exciton flow I. Nevertheless, let us raise the (in a way) subsidiary question what is the energy flow between the two subsystems. According to the above quasiparticle interpretation, one would expect that the energy flow is

$$
\left.\begin{array}{c}
\left.Q=\frac{2 \pi}{\hbar} J^{2}\left[\rho_{11}-\rho_{22}\right] \cdot \int_{-\infty}^{+\infty} \frac{1}{\pi} \frac{\frac{\hbar}{2} \gamma_{\downarrow}}{\left[\frac{\hbar}{2} \gamma_{\downarrow}\right]^{2}+\left[\epsilon-\epsilon_{1}\right]^{2}} \cdot \frac{1}{\pi} \frac{\frac{\hbar}{2} \Gamma_{\downarrow}}{2} \Gamma_{\downarrow}\right]^{2}+\left[\epsilon-\epsilon_{2}\right]^{2}
\end{array} d \epsilon\right] .
$$

The problem is with general justification of this formula. In fact, one should define the energy flow Q between systems I and II in full generality as

$$
\begin{equation*}
Q=-\frac{d}{d t}\left\langle\bar{H}_{I}\right\rangle \tag{36}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
Q=\frac{d}{d t}\left\langle\bar{H}_{I I}\right\rangle \tag{37}
\end{equation*}
$$

Here \bar{H}_{I} and $\bar{H}_{I I}$ should have the meaning of energies of the subsystems I and II, such, that $\bar{H}_{I}+\bar{H}_{I I}=H$ (in order to have (36) compatible with (37)). Because J must be assumed nonzero, these evidently cannot be the Hamiltonians H_{I} and $H_{I I}$ introduced in (11). Really, making this or any other trivial identification of \bar{H}_{I} and $\bar{H}_{I I}$ leads to hardly interpretable results. The physical reason for that is that nonzero values of J cause effects like J-dependent renormalization of the exciton coupling to the bath. Its exact form is unknown so that one can ignore it only when the corresponding coupling constants are negligibly small (when there is nothing to be renormalized). That is why, for very small g_{κ} (i.e. negligible γ_{\downarrow}), one can define the energy flow properly and reliably by (36), identifying (in this particular case) \bar{H}_{I} with H_{I}. Then (36) reduces to the above formula (35) with negligible γ_{\downarrow}. In the opposite limiting case, when G_{κ} gets very small (i.e. with negligible Γ_{\downarrow}), (37) also reduces to the above formula (35), this time with negligible Γ_{\downarrow}, provided we identify $\bar{H}_{I I}$ with $H_{I I}$.

So summarizing:

- Suggested interpolation formula for the energy flow (35) can be properly justified in the two above mentioned limiting cases. Then it definitely yields nonzero values of the energy flow between our subsystems when $\epsilon_{1} \neq \epsilon_{2}$ and still $T_{1}=T_{2}$ (equal initial temperatures of the two baths).
- Formula for the exciton flow (31), or its equivalent form (33), can be, in the above way, properly justified for all the values of the parameters involved. It always, for $\epsilon_{1} \neq \epsilon_{2}$ and $T_{1}=T_{2}$, yields nonzero exciton flow between the subsystems, always in the direction from the system with higher population to that one with the lower population of the corresponding exciton level. As the excitons bear energy, this clearly implies (and fully corresponds to the above) nonzero mean energy flow.

The last point to be stressed here results from rather a trivial reasoning based on the above formulae and continuity, with respect to, e.g., temperature T_{2}, of the results obtained. On the other hand, it is of highest importance from the point of view of interpretation: It is easy to see that if we take (as always here) energies of the exciton levels in our two systems different, i.e. $\epsilon_{1} \neq \epsilon_{2}$, but allow the initial temperatures of the two subsystems be different $\left(T_{1} \neq T_{2}\right)$, we can, for any values of $\epsilon_{1} \neq \epsilon_{2}$ and arbitrary T_{1}, find such a value of the initial temperature T_{2} of the second subsystems that 'separate-equilibrium' (for $J=0$, i.e. for separated subsystems I and II) values of population of the disconnected exciton levels ϵ_{1} and ϵ_{2} become equal. In other words, $\rho_{11}=\rho_{22}$. According to what has been argued above, however, this makes, upon reintroducing the (sufficiently weak - see (30)) exciton transfer channel (setting J nonzero though small enough in the sense of (30)) both the exciton I and the energy flows Q (simultaneously) zero - see formulae (31), (33), and (35).

In particular, assume now that, e.g., $\epsilon_{2}>\epsilon_{1}$. Then clearly, arguing just from the above 'separate-equilibrium' values of ρ_{11} and ρ_{22}, the temperature T_{2} for which the values of ρ_{11} and ρ_{22} get equal, is greater that T_{1}. Let us call this temperature $T_{2}^{c r i t}$. It is easy to show that $T_{2}^{c r i t}=T_{1} \epsilon_{2} / \epsilon_{1}$. Clearly, for temperatures T_{2} greater than T_{1} but less than $T_{2}^{c r i t}$, the energy (exciton) flow is nonzero and still going in the direction from the subsystem I with the higher exciton population (lower temperature $T_{1}<T_{2}$ but essentially less excitation energy $\epsilon_{1}<\epsilon_{2}$) to that one with the lower exciton concentration - subsystem II. This means, the exciton and energy flow goes, fully surprisingly, against the temperature step. This conclusion is of highest importance.

V. TOWARDS THE SECOND LAW OF THERMODYNAMICS

There are several formulations of the second law. The form by Clausius from 1865 involves entropy that was not discussed here. Existence of entropy is, however, in fact consequence of three main formulations of the second law, that one by Thomson (1849), Clausius (1850), and Carathéodory (1909) (for connections to entropy see [9] or standard textbooks on axiomatic thermodynamics). The statements are (cited according to [9]):

Thomson (as Baron Kelvin of Largs since 1892) 42]: No process is possible, the sole result of which is that a body is cooled and work is done.

Clausius [43]: No process is possible the sole result of which is that the heat is transferred from a body to a hotter one.

Carathéodory 44: In any neighbourhood of any state there are states that cannot be reached from it by an adiabatic process.

The words 'sole' imply in particular that

- in the Thomson formulation, the process should be cyclic, without any compensation (additional heat transfer to another and cooler body). A (thought) machine working in such a style is often called 'perpetuum mobile of the second kind';
- in the Clausius formulation, the process is not aided from outside.

Significance of this law and consequences of its potential violation were perhaps best described in the Introduction of [9]. For 150 years, nobody really questioned this statement based on uncountable number of observations from our everyday life. One should add and stress therefore that our thought (i.e. still not real in the sense of in-nature-existing) systems governed by quantum mechanics and comprising macroscopic baths are macroscopic, i.e. they should obey the Clausius (and not only this) formulation of the second law provided that the quantum mechanics and thermodynamics are always, including the quantum- and at least the macro-world, compatible. Sometimes, even absolutistic statements in favour of the unconditional validity the second law in the macroworld stemming from our everyday experience appear ("...No exception to the second law of thermodynamics has ever been found - not even a tiny one..." 45]). As our conclusion at the end of the previous section shows, the opposite is true in our model here. One should mention here the 'pawl and ratchet' systems originally suggested by Feynman 23 which are also often cited also in connection with the second law. These systems, however, so far fail in practical attempts to violate the second law [24], in full agreement with the Feynman [23] analysis. On the contrary, behaviour of the above model does, as argued above, contradict the second law. It is of course not for the first time that such a mathematically well-founded behaviour incompatible with standard thermodynamics appears - see 11,8 and, for other models, papers cited above or therein. The present model is, on the other hand, perhaps the simplest one. Worth mentioning is also that the above criteria for the energy flow against the temperature step may easily be compatible with, e.g., even room or higher temperatures. This is unlike, e.g., 14. In the infinite temperature (i.e. in the classical) limit, however, the effect disappears.

VI. TOWARDS THE ZEROTH LAW OF THERMODYNAMICS

In order to be specific, let us state what this law (so often, especially in the mechanical context, understood as trivial) says: If system A is in equilibrium with systems B and C then B is in equilibrium with C (see, e.g., [46]). It helps to introduce thermodynamic temperature, chemical potential etc. Though universal validity of this law has already been questioned (as far as its form for equality of chemical potential of one sort of species in different phases in equilibrium is concerned) - see [28] or in the implicit form in [4], no special attention has so far been paid to this fact. That is why we should address the question, in connection with our model above, again.

Let us fix, in the above model, again the situation with $\epsilon_{1}<\epsilon_{2}$ and be T_{1} arbitrary positive. Then clearly $T_{2}^{c r i t} \equiv T_{1} \epsilon_{2} / \epsilon_{1}>T_{1}$ and we set the initial temperature of the second bath $T_{2}=T_{2}^{c r i t}$. Hence, upon establishing a contact between subsystems I and II by taking J slightly (in the sense of (30)) nonzero, we get no energy or exciton flow. Now, we can invoke standard thermodynamic definition of what it means to say that two bodies in a contact are in mutual equilibrium. The
definition reads that introducing arbitrary obstacles hindering flows between the bodies does not change their thermodynamic state. In this sense, this is exactly the situation we are now in: We have two bodies in a contact where there are no flows between them. Hence, the thermodynamic state cannot be violated by any obstacle setting these flows zero and not influencing otherwise the state of the systems because the flows are already zero. (Notice that no other flows but those of exciton or energy can exist in model.) Remind, on the other hand, that we have such a strange thermodynamic equilibrium (in the above thermodynamic sense) that temperatures of both the systems (those of their baths) are different. This can clearly lead to other contradictions with the standard thermodynamics as we are now going to show.

Assume now that we have still another (third) exciton level and still another (third) thermal bath attached to it. In other words, we complement our Hamiltonian by terms

$$
\begin{gather*}
\Delta H=\epsilon_{3} a_{3}^{\dagger} a_{3}+\sum_{\kappa} \hbar \omega_{\kappa} b_{3 \kappa}^{\dagger} b_{3 \kappa}+\frac{1}{\sqrt{N}} \sum_{\kappa} h_{\kappa} \hbar \omega_{\kappa}\left(a_{3}+a_{3}^{\dagger}\right)\left(b_{3 \kappa}+b_{3 \kappa}^{\dagger}\right) \\
+\frac{1}{\sqrt{N}} \sum_{\kappa} H_{\kappa} \hbar \omega_{\kappa}\left(a_{2}^{\dagger} a_{3}+a_{3}^{\dagger} a_{2}\right)\left(b_{2 \kappa}+b_{3 \kappa}+b_{2 \kappa}^{\dagger}+b_{3 \kappa}^{\dagger}\right)+K\left(a_{3}^{\dagger} a_{1}+a_{1}^{\dagger} a_{3}\right) . \tag{38}
\end{gather*}
$$

Clearly, the last two terms on the right hand side of (38) provide interaction of subsystems II and III (this type of the phonon-assisted interaction exists just in the diabatic (non-rigid) basis 47]) and that of the subsystems III and I (the latter interaction and the induced exciton transfer is for simplicity assumed coherent, like that one of the subsystems I and II). Assume also that the exciton energy ϵ_{3} equals to that of the exciton in subsystem I, i.e. $\epsilon_{3}=\epsilon_{1}$. Next, we assume that again, the initial density matrix is factorizable into a product of density matrices of all the subsystems, so that there are no exciton-bath initial statistical correlations between any two of the three subsystems. Finally, assume that the density matrices of all the baths are initially canonical. Corresponding temperatures are assumed as $T_{3}=T_{2}>T_{1}$ (the last inequality being assumed already above).

Let us for a while set $J=K=0$. Then we have our subsystem I fully separated and the dynamics goes between subsystems II and III only. Exactly in the same way as above (i.e. using the same type of scaling), we get a closed set of equations for the matrix elements of the exciton system. This time, however, the situation is simpler as compared to that above. First, our coupling between subsystems II and III is assumed as bath-assisted. In connection with that, the set of equations for the site diagonal as well as site off-diagonal matrix elements of the exciton density matrix factorizes so that equations comprising the diagonal elements contain only the diagonal elements (that get separated from the set for the off-diagonal elements), reducing in form to the Pauli master equations 48]. Properties of these equations are sufficiently known. So we shall not repeat the calculations and refer the interested reader to any elementary textbook of kinetic theory. The result for the asymptotic exciton occupation probabilities reads as in the standard equilibrium statistical thermodynamics, i.e.

$$
\begin{gather*}
\rho_{22}=\frac{\exp \left(-\beta_{2} \epsilon_{2}\right)}{1+\exp \left(-\beta_{2} \epsilon_{2}\right)+\exp \left(-\beta_{2} \epsilon_{1}\right)}, \\
\rho_{33}=\frac{\exp \left(-\beta_{2} \epsilon_{1}\right)}{1+\exp \left(-\beta_{2} \epsilon_{2}\right)+\exp \left(-\beta_{2} \epsilon_{1}\right)}, \beta_{2}=\frac{1}{k_{B} T_{2}} . \tag{39}
\end{gather*}
$$

Let us stress the following points:

- Values (39) properly reproduce, within our approximation (omission of multi-exciton states, i.e. with errors $\propto \exp \left(-\beta_{2}\left(\epsilon_{2}+\epsilon_{1}\right)\right)$), standard equilibrium statistical mean exciton numbers at sites 2 and 3, i.e. $1 /\left[\exp \left(\beta_{2} \epsilon_{2}\right)+1\right]$ and $1 /\left[\exp \left(\beta_{2} \epsilon_{1}\right)+1\right]$ (see a comment above concerning appearance of these Fermi-Dirac distributions for excitons). In fact, as already argued above, reintroducing the multiple-exciton states would reproduce these values exactly. These FermiDirac distributions are, on the other hand, proper mean number of excitons at sites 2 and 3 for $H_{\kappa}=0$, i.e. separated subsystems II and III. Hence, establishing or cancelling the above contact between the latter two subsystems does not change the stationary (equilibrium) exciton populations at the corresponding sites. The same may be shown to apply to phonon populations in the corresponding baths.
- Assume now $H_{\kappa} \neq 0$. Owing to the incoherent (bath-assisted) character of the above coupling between subsystems II and III, different populations of levels 2 and 3 (in accordance with standard statistical thermodynamics) do not contradict the fact that (exciton mediated) flows between subsystems II and III remain in equilibrium exactly zero. This is due to the fact that real $2 \rightarrow 3$ and $3 \rightarrow 2$ transition rates are proportional to $\rho_{22} \times\left\{1+1 /\left[\exp \left(\beta_{2} \hbar \omega_{\kappa}\right)-1\right]\right\}$ and $\left.\rho_{33} \times 1 /\left[\exp \left(\beta_{2} \hbar \omega_{\kappa}\right)-1\right]\right\}$, respectively. Here, by the energy conservation law, $\hbar \omega_{\kappa}=$ $\epsilon_{2}-\epsilon_{1}>0$. The multiplicative factors at ρ_{22} and ρ_{33} are phonon statistical factors describing phonon-assisted induced as well as spontaneous processes. So, the transfer rates $2 \rightarrow 3$ and $3 \rightarrow 2$ are in equilibrium exactly equal, mutually cancelling their contribution to the exciton as well as energy flow between subsystems II and III (transferred energy is $\epsilon_{1}+\hbar \omega_{\kappa}=\epsilon_{2}$). Here, for simplicity, we have assumed (in accordance with assumptions underlying validity of the Pauli equations) that $\left|\epsilon_{2}-\epsilon_{3}\right| / \hbar \equiv\left|\epsilon_{2}-\epsilon_{1}\right| / \hbar$ is appreciably greater than the sum of broadenings of levels 2 and 3 , i.e. that the transitions are practically (exciton+phonon) energy conserving. These arguments are what underlies the detailed balance conditions in the Pauli master equation theories yielding the same conclusion.

These are the characteristics of the mutual equilibrium (according to the above thermodynamic definition) state of subsystems II and III, and also of the internal equilibrium states of the isolated subsystems II and III taken separately. With this states, let us now put $H_{\kappa}=0$ (we split subsystems II and III), keep $J=0$ but put $K \neq 0$. Let us repeat: We have the two subsystems (I and III) with equal exciton energies $\epsilon_{1}=\epsilon_{3}$ (this case may be treated as a limit $\epsilon_{1}-\epsilon_{3} \rightarrow 0$ in the above formulae), initially in internally canonical states of both the subsystems (and their baths), with the respective temperatures $T_{1}<T_{3}$. In accordance with what has been said above about development of two such subsystems (subsystems I and II above) with their respective baths, the asymptotic (stationary) populations of the exciton levels 1 and 3 only slightly change upon establishing contact between the subsystems. Asymptotically, they read

$$
\begin{gather*}
\rho_{11}=\frac{\exp \left(-\beta_{1} \epsilon_{1}\right)}{1+\exp \left(-\beta_{1} \epsilon_{1}\right)+\exp \left(-\beta_{2} \epsilon_{1}\right)} \approx \exp \left(-\beta_{1} \epsilon_{1}\right), \\
\rho_{33}=\frac{\exp \left(-\beta_{2} \epsilon_{1}\right)}{1+\exp \left(-\beta_{1} \epsilon_{1}\right)+\exp \left(-\beta_{2} \epsilon_{1}\right)} \approx \exp \left(-\beta_{2} \epsilon_{1}\right), \beta_{1}=\frac{1}{k_{B} T_{1}} . \tag{40}
\end{gather*}
$$

Clearly, because $\beta_{2}<\beta_{1}$, the populations ρ_{11} and ρ_{22} are different. So, according to (31), (33) as well as (35), there are flows between the subsystems I and III, i.e. we have no equilibrium in the thermodynamic sense.

Thus, summarizing, we have subsystems I, II and III which all have well defined temperatures. Upon establishing just the above specific contact between I and II, the systems stay, in the sense of the thermodynamic definition, in equilibrium. Similarly, upon establishing just the above contact between subsystems II and III, the thermodynamic equilibrium is not violated. Thus, the zeroth law of thermodynamics should be, according to thermodynamics, well applicable. It states that establishing contact between subsystems I and III should preserve their mutual equilibrium state. As seen above, however, the opposite is true.

VII. CONCLUSIONS

We have investigated one standard and rather trivial model that allows rigorous treatment by methods of the quantum theory of open systems. The obtained behaviour contradicts what is prescribed by the second as well as zeroth laws of thermodynamics. In connection with previously expressed doubts about universal validity of the second law in specific situations, this extends challenges to general compatibility of such two basic scientific disciplines as the thermodynamics and the quantum theory.

Acknowledgement

The author is deeply indebted to the Max-Planck-Institute in Stuttgart, the University of Stuttgart, and in particular to Prof. Max Wagner for their invitation and very kind hospitality during the author stay in Stuttgart in September 1999. During this visit, basic ideas of the present work were formulated and the above model was constructed. The author is also deeply indebted to MUDr. M. Ryska (IKEM, Prague) and MUDr. A. Ivančo (NNF, Prague) for saving his life at the beginning of 2000 before this work was completed. Support of grant 202/99/0182 of the Czech grant agency is also gratefully acknowledged.

REFERENCES

[1] H. Tributsch and L. Pohlmann, Science 279, 1891 (1998).
[2] D. S. Goodsell, The Machinery of Life. (Springer Verlag, New York - Berlin - Heidelberg London - Paris - Tokyo - Hong Kong - Barcelona - Budapest, 1993.)
[3] V. Čápek, Czech. J. Phys. 47, 845 (1997).
[4] V. Čápek, Czech. J. Phys. 48, 879 (1998).
[5] V. Čápek and H. Tributsch, J. Phys. Chem. B 103, 3711 (1999).
[6] V. Čápek, Phys. Rev. E 57, 3846 (1998).
[7] V. Čápek and J. Bok, J. Phys. A: Math. \& General 31, 8745 (1998).
[8] V. Čápek and T. Mančal, Europhys. Letters 48, 365 (1999).
[9] E. H. Lieb and J. Yngvason, Physics Reports 310, 1 (1999).
[10] V. Čápek, reported at MECO 23 Conference on Statistical Physics, Trieste, Italy, April 27-29, 1998. Book of abstracts of the Conference.
[11] V. Čápek and J. Bok, Czech. J. Phys. 49, 1645 (1999). See also cond-mat/9905232.
[12] V. Čápek and J. Bok, Physica A 290, 379 (2001).
[13] A. V. Nikulov, http://xxx.lanl.gov/abs/physics/9912022.
[14] A. E. Allahverdyan, Th. M. Nieuwenhuizen, Phys. Rev. Letters 85, 1799 (2000).
[15] A. E. Allahverdyan, Th. M. Nieuwenhuizen, http://xxx.lanl.gov/abs/cond-mat/0011389.
[16] P. Weiss, Science News 158, 234 (2000).
[17] D. P. Sheehan, Phys. Rev. E 57, 6660 (1998).
[18] T. L. Duncan, Phys. Rev. E 61, 4661 (2000).
[19] D. P. Sheehan, Phys. Rev. E 61, 4662 (2000).
[20] D. P. Sheehan, Phys. Plasmas 2, 1893 (1995).
[21] R. Jones, Phys. Plasmas 3, 705 (1996).
[22] D. P. Sheehan, Phys. Plasmas 3, 706 (1996).
[23] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol 2. (Addison - Wesley, Reading, Massachusetts, 1966.)
[24] G. Musser, Scientific American 280, 13 (1999).
[25] J. C. Maxwell, Theory of Heat. (Longmans, Green and Co, London, 1871.)
[26] L. Szilard, Z. Physik 52, 840 (1929).
[27] H. S. Leff and A. F. Rex, Maxwell's demon. Entropy, Information, Computing. (Hilger and Inst. of Physics Publishing, Bristol, 1990.)
[28] V. Čápek, Mol. Cryst. Liq. Cryst. (special issue devoted to memory of E. A. Silinsh) (2001) in press.
[29] L. D. Landau and E. M. Lifshitz, Statistical Physics. Theoretical Physics, Vol.5. (Nauka, Moscow, 1964.)
[30] A. Fuliński, Phys. Letters A 25, 13 (1967).
[31] A. Fuliński and W. J. Kramarczyk, Physica 39, 575 (1968).
[32] N. Hashitsume, F. Shibata, and M. Shingu, J. Stat. Phys. 17, 155 (1977).
[33] F. Shibata, Y. Takahashi, and N. Hashitsume, J. Stat. Phys. 17, 171 (1977).
[34] H. Gzyl, J. Stat. Phys. 26, 679 (1981).
[35] P. N. Argyres, and P. L. Kelley, Phys. Rev. 134, A98 (1964).
[36] W. Peier, Physica 57, 565 (1972).
[37] E. B. Davies, Quantum Theory of Open Systems. (Academy Press, London, 1976.)
[38] E. B. Davies, Math. Annalen 219, 147 (1976).
[39] E. Fick and G. Sauermann, The Quantum Statistics of Dynamic Processes. Springer Series in Solid-State Sciences 86. (Springer-Verlag, Berlin - Heidelberg - New York - London - Paris Tokyo - Hong Kong - Barcelona, 1990.)
[40] E. B. Davies, Comm. math. Phys. 39, 91 (1974).
[41] V. Čápek and I. Barvík,, Physica A - in press.
[42] W. Thomson, Trans. Roy. Soc. Edinburgh 16, 541 (1849).
[43] R. Clausius, Ann. Phys. Chem. 79, 368 (1850).
[44] C. Carathéodory, Math. Annalen 67, 355 (1909).
[45] E. H. Lieb and J. Yngvason, Physics Today 53 (April issue), 32 (2000).
[46] M. Plischke and B. Bergersen, Equilibrium Statistical Physics. (World Scientific, Singapore New Jersey - London - Hong Kong, 1994).)
[47] E. A. Silinsh and V. Čápek, Organic Molecular Crystals. Interaction, Localization, and Transport Phenomena. (AIP Press, New York, 1994.)
[48] W. Pauli, in Probleme der Modernen Physik. Festschrift zum 60. Geburtstage A. Sommerfelds. (P. Debye, ed., Hirzel, Leipzig, 1928.)

[^0]: ${ }^{1}$ This overestimation is not owing to any formal error, it is because of the very form of the presumed Van Hove scaling. In Nature, there is, e.g., no possibility to scale coupling constants as they are real constants, not variables.

[^1]: ${ }^{2}$ This is the standard Fermi-Dirac distribution for excitons that behave as paulions, i.e on-site fermions, with zero value of their chemical potential.
 ${ }^{3}$ It is always $\gamma_{\uparrow} / \gamma_{\downarrow}=\exp \left(-\beta \epsilon_{1}\right)$ (the detailed balance condition). This ratio is definitely $\ll 1$ for $k_{B} T \ll \epsilon_{1}$. On the other hand, except in (21), this condition is not used below.

[^2]: ${ }^{4}$ Notice also that, for, e.g., negligible relativistic corrections and in absence of external magnetic field, the canonical density matrix is real in our local basis $|1\rangle$ and $|2\rangle$. Hence, formula (26) below yields zero flow between sites 1 and 2 in the canonical equilibrium, irrespective of the Golden-Ruletype prediction (31).

