УДК 534.2

О МЕХАНИЗМЕ СВЕРХГЛУБОКОГО ПРОНИКАНИЯ ЧАСТИЦ В МЕТАЛЛИЧЕСКУЮ ПРЕГРАДУ

С. П. Киселев, В. П. Киселев

Институт теоретической и прикладной механики СО РАН, 630090 Новосибирск

Предложена физико-математическая модель явления сверхглубокого проникания, учитывающая прочностные свойства преграды. На основе данной модели впервые численно решена задача о сверхглубоком проникании вольфрамовых частиц в стальную преграду.

Явление сверхглубокого проникания микрочастиц в металлические преграды обнаружено в начале 80-х гг. [1] и подробно исследовано в экспериментальных работах, краткий обзор которых дан, например, в [2]. Существует несколько различных гипотез о механизме данного явления [2–7], однако последовательное описание до сих пор отсутствует, что делает актуальным построение его полной математической модели.

Явление сверхглубокого проникания частиц в преграду заключается в следующем. Пусть имеется металлическая преграда, на которую с большой скоростью налетает поток частиц. Тогда при некоторых условиях малая доля частиц (примерно 0,1%) проникает на очень большую глубину порядка сотен и тысяч диаметров частиц. (В обычных условиях глубина проникания не превышает десяти диаметров частиц.) Сверхглубокое проникание наблюдается для частиц, диаметр которых $d \leq 100$ мкм, прочность частиц должна превышать прочность преграды, скорость частиц $v_p \geq 10^3$ м/с, их средняя плотность в налетающем потоке $\rho_2 \geq 10^3$ кг/м³.

Обычно в экспериментах использовались частицы вольфрама, а в качестве материала преграды выбиралась сталь. Анализ стальной преграды после воздействия потока частиц показал [8], что каналы за частицами, проникшими на большие глубины $l \sim 10^3 d$, оказались полностью схлопнувшимися. В работе [8] отмечено, что в окрестности оси каждого схлопнувшегося канала можно выделить три качественно различающихся области. В первой области r < 0.15d материал полностью утратил свою кристаллическую структуру и перемешан с материалом частиц (r — расстояние от оси канала). Во второй области $0.15d \leq r \leq (0.5 \div 1.0)d$ материал преграды испытал интенсивную пластическую деформацию. В третьей области $r \geq (0.5 \div 1.0)d$ наблюдается слабая пластическая деформация материала. В данной работе предложена физико-математическая модель, отражающая указанную структуру деформирования материала.

В работах [2–4] предполагалось, что течение материала преграды можно описать в рамках модели идеальной жидкости. В этом случае для безотрывного обтекания справедлив парадокс Даламбера и сила, действующая на частицу со стороны материала, равна нулю. Глубина проникания равна произведению скорости частицы на время t^* существования давления p в преграде, под действием которого происходит схлопывание канала за частицей. Поскольку давление создается при торможении частиц в приповерхностном слое, то t^* равно времени действия потока частиц на преграду. Критерий реализации данного режима получен из условия возникновения догоняющей и толкающей частицу струи, образующейся при схлопывании канала, и имеет вид $p > \rho_s v_p^2 \operatorname{tg}^2 \alpha_*/2$, где ρ_s — плотность материала преграды; $\alpha_* \approx 20^\circ$ — критический угол схождения струй, при котором возникает догоняющая частицу струя.

Следует заметить, что моделирование материала преграды идеальной несжимаемой жидкостью является грубым и противоречит описанной выше структуре канала за частицей [8]. Покажем, что разупрочнение материала и его моделирование жидкостью возможно только в окрестности частицы на расстояниях, не превышающих диаметра частицы. В остальной области деформации малы и материал деформируется упругопластическим образом. Вблизи частицы скорости деформации велики: $\dot{\varepsilon}_0 \sim v_p/d \sim 10^7 \div 10^8 \text{ c}^{-1}$, и тепло не успевает отводиться от плоскостей скольжения, что и приводит к разупрочнению материала [9]. Обозначая среднее расстояние между плоскостями локализации деформации через Δ , условие разупрочнения запишем в виде неравенства $\Delta^2/æ > d/v_p$, где $\Delta^2/æ$ — время релаксации температуры вследствие теплопроводности; æ — коэффициент температуропроводности. Величина Δ должна быть порядка расстояния между плоскостями скольжения 0,1-1,0 мкм. Подставляя в данное неравенство значения $\Delta \simeq 1,4$ мкм, $æ = 2 \cdot 10^{-5} \text{ м}^2/\text{c}$, $v_p \simeq 10^3 \text{ м/c}$, получим ограничение на диаметр частицы $d \leq \Delta^2 v_p/æ \approx 100$ мкм, что согластичной оценкой в [2, 3].

Предполагая, что поле скоростей в окрестности частицы описывается решением уравнения для идеальной жидкости, в сферической системе координат будем иметь v_r = $v_p(1-(a/r)^3)\cos\theta, v_{\theta} = -v_p(1+(1/2)(a/r)^3)\sin\theta$ [10], где θ — угол между радиус-вектором и вектором скорости частицы. Используя эти формулы, получим, что скорость деформации $\dot{\varepsilon} \sim \partial v_{\theta} / \partial r$ убывает с увеличением радиуса r по степенному закону $\dot{\varepsilon} / \dot{\varepsilon_0} = (a/r)^4$, где a=d/2— радиус частицы; $\dot{\varepsilon}_0\sim v_p/d$ — скорость деформации на поверхности частицы. Из данной формулы следует, что при r = 3a скорость деформации $\dot{\varepsilon} = \dot{\varepsilon}_0 \cdot 10^{-2} \sim 10^5 \div 10^6 \text{ c}^{-1}$. При этой скорости деформации разупрочнения уже не происходит, и материал сохраняет прочностные свойства [11]. Таким образом, радиус зоны разупрочнения $r \approx 3a$ имеет порядок радиуса области сильной деформации, наблюдавшейся в каналах за частицами [8]. Это позволяет предположить, что в процессе внедрения частицы разупрочнение материала происходит в области интенсивной деформации $r \leq 3a$, а в области слабой деформации $r \ge 3a$ материал сохраняет прочностные свойства. Несмотря на то что механические свойства разупрочненного материала подобны свойствам жидкости, расплавления материала при этом не происходит. Разупрочнение материала, в отличие от плавления, требует малых энергетических затрат. Например, чтобы расплавить сталь в цилиндре диаметром 0,3d и длиной 10^3d , требуется энергия $E \approx 0,5$ Дж, что на два порядка больше кинетической энергии вольфрамовой частицы, имеющей скорость $v_p = 10^3$ м/с, плотность $\rho_p = 2 \cdot 10^4 \text{ кг/м}^3$ и диаметр d = 100 мкм. Поэтому вблизи оси канала r < 0.15d происходит разупрочнение, а не расплавление материала. Нарушение его кристаллической структуры, по-видимому, связано со значительной деформацией, которая возникает за счет вязких напряжений и согласно [12] сопровождается большими локальными поворотами.

Получим критерий сверхглубокого проникания с учетом прочностных свойств материала преграды. Для этого рассмотрим твердую сферическую частицу диаметром d, движущуюся в материале преграды вдоль оси x, в случае, когда материал в окрестности частицы разупрочнен. Пусть в момент времени t частица имеет скорость v_p и координату x_p . За время $\Delta t \approx d/v_p$ частица сместится в точку $x'_p = x_p + d$. Тогда в точке x_p возникнет сферическая полость (пора) радиуса a = d/2, которая под действием давления p будет заполняться материалом преграды. Если за время Δt пора успевает затекать, то имеет место режим безотрывного обтекания частицы. Это приведет к резкому уменьшению силы сопротивления и сверхглубокому прониканию частицы. Построить аналитическое решение, описывающее течение вязкоупругопластического материала в окрестности частицы, не представляется возможным.

Для того чтобы найти время затекания поры τ , рассмотрим следующую модельную задачу. Пусть имеется сферическая ячейка радиуса b, в центре которой находится пора

38

радиуса a = d/2, который совпадает с радиусом частицы (рис. 1). Будем считать, что в слое $a < r < r_p$ материал находится в жидком состоянии, а в слое $r_p < r < b$ является вязкопластическим. При $a < r < r_p$ жидкое состояние моделирует разупрочненный материал, а в слое $r_p < r < b$ материал сохраняет прочностные свойства. Исходя из полученной выше оценки для радиуса зоны разупрочнения материала выберем верхнюю границу жидкого слоя $r_p = d$.

Поскольку в [8] не приводится верхняя граница слабодеформированной области, то для определения b нужно привлечь дополнительные соображения. Используя

Рис. 1

закон Гука в дифференциальной форме $\dot{S}_{ij} = 2\mu\dot{e}_{ij}$ и полученную выше оценку для скорости деформации $\dot{\varepsilon} \sim (v_p/d)(a/r)^4$, оценим напряжения, возникающие в точке, удаленной от центра частицы на расстояние r:

$$S_{ij} \sim 2\mu \dot{\varepsilon} \Delta t \sim 2\mu \frac{v_p}{d} \left(\frac{a}{r}\right)^4 \frac{d}{v_p} \sim 2\mu \left(\frac{a}{r}\right)^4,$$

где $\Delta t = d/v_p$ — характерное время деформирования; S_{ij} , e_{ij} — девиаторы тензоров напряжения и деформаций; μ — модуль сдвига. На границе, разделяющей упругую и пластическую области, напряжение достигает предела текучести $S_{ij} \approx Y$. Подставляя это значение в формулу для S_{ij} , с учетом Y = 1 ГПа, $\mu = 80$ ГПа для стали получим оценку радиуса пластической зоны $r \sim 3,56a$. Полагая радиус ячейки равным радиусу пластической зоны, найдем b = 2d.

Если к внешней границе ячейки приложить давление p, то пора будет затекать в течение некоторого времени τ . Пренебрегая сжимаемостью материала, запишем уравнения, описывающие сферически-симметричное затекание поры [13]:

$$\rho_s \left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} \right) = \frac{\partial \sigma_r}{\partial r} + 2 \frac{\sigma_r - \sigma_\theta}{r}, \qquad \frac{\partial r^2 v_r}{\partial r} = 0,$$

$$\sigma_r - \sigma_\theta = 2\eta_0 \left(\frac{\partial v_r}{\partial r} - \frac{v_r}{r} \right) \quad \text{при} \quad a < r < r_p,$$

$$\sigma_r - \sigma_\theta = Y + 2\eta \left(\frac{\partial v_r}{\partial r} - \frac{v_r}{r} \right) \quad \text{при} \quad r_p < r < b,$$
(1)

где v_r — скорость движения материала по радиусу; σ_r , σ_{θ} — компоненты тензора напряжений в сферической системе координат (рис. 1); η , Y — вязкость и предел текучести вязкопластического материала; η_0 — вязкость жидкости.

Интегрируя уравнения (1) по r с граничными условиями

$$\sigma_r(a) = 0, \quad \sigma_r(b) = -p, \quad \sigma_r(r_p - 0) = \sigma_r(r_p + 0), \quad v_r(r_p - 0) = v_r(r_p + 0),$$

получим

$$p = \frac{2}{3}Y \ln \frac{\alpha}{\delta + \alpha - 1} + \frac{\rho_s a_0^2}{3(\alpha_0 - 1)^{2/3}} \Big(\ddot{\alpha}\Big(\frac{1}{\alpha^{1/3}} - \frac{1}{(\alpha - 1)^{1/3}}\Big) + \frac{\dot{\alpha}^2}{6}\Big(\frac{1}{(\alpha - 1)^{4/3}} - \frac{1}{\alpha^{4/3}}\Big)\Big) - \frac{4}{3}\dot{\alpha}\Big(\frac{\eta - \eta_0}{\delta + \alpha - 1} - \frac{\eta}{\alpha} + \frac{\eta_0}{\alpha - 1}\Big), \quad (2)$$
$$v_r = \frac{a_0^3 \dot{\alpha}}{3(\alpha_0 - 1)r^2}, \quad \alpha = \frac{b^3}{b^3 - a^3} = \frac{b^3}{b_0^3 - a_0^3}, \quad \delta = \frac{r_p^3 - a^3}{b^3 - a^3},$$

где $\alpha_0 = \alpha(0); a_0 = a(0) = d/2; b_0 = b(0) = 2d;$ точками обозначены производные по времени; δ — доля жидкого материала в ячейке. Полагая в первом уравнении (2) $\dot{\alpha} = \ddot{\alpha} = 0$, $\alpha = 1$, найдем минимальное давление p_* , при котором произойдет полное затекание поры:

$$p_* = (2/3)Y \ln(1/\delta).$$

Отсюда следует, что если разупрочнения материала не происходит, то $\delta \to 0, p_* \to \infty$ и пора вообще не будет затекать. При этом за частицей будет возникать полый канал и сверхглубокое проникание станет невозможным. В нашем случае для стали $\delta \approx 0,11$, Y = 1,2 ГПа получим минимальное давление $p_* \simeq 1,4$ ГПа. Из уравнений (2) следует, что время полного затекания поры τ будет функцией

$$\tau = \psi(p, \rho_s, a_0, \eta, Y, \alpha_0, \delta). \tag{3}$$

(Поскольку $\eta \gg \eta_0$, то при записи (3) не учитывается зависимость от η_0 .) Используя Пи-теорему, формулу (3) перепишем в безразмерном виде

$$\tau = a_0 \sqrt{\frac{2\rho_s}{p}} \varphi \left(\alpha_0, \, \delta, \, \frac{p}{Y}, \, \frac{\sqrt{\rho_s p} a_0}{\eta} \right). \tag{4}$$

Функция φ (4) находилась путем численного интегрирования уравнений (2).

Выше отмечено, что при сверхглубоком проникании в окрестности частицы должно происходить разупрочнение материала, а пора, возникающая за частицей, должна успевать затекать за время $\Delta t = d/v_p$. Следовательно, условие сверхглубокого проникания можно записать в виде неравенств

$$\tau \leqslant d/v_p \leqslant \Delta^2/\mathscr{R}.\tag{5}$$

Используя формулу (4), первое неравенство в (5) перепишем следующим образом:

$$p \geqslant \frac{\rho_s v_p^2}{2} \,\varphi^2. \tag{6}$$

Из сравнения формулы (6) с критерием, полученным в [2–4], следует, что в этих работах величина φ является константой $\varphi = \text{tg } \alpha_*$, в то время как в предлагаемой модели φ зависит от вязкопрочностных свойств материала и параметров ячейки (см. формулу (4)). На рис. 2 показана зависимость времени затекания τ от p, полученная путем численного интегрирования уравнения (2) для следующих значений параметров: $\rho_s = 7,85 \cdot 10^3 \text{ кг/м}^3$, $Y = 1,2 \ \Gamma\Pi a$, $\eta = 10^2 \ \Pi a \cdot c$, $\eta_0 = 2 \cdot 10^{-3} \ \Pi a \cdot c$, $a_0 = 50 \ \text{мкм}$, $r_p = 100 \ \text{мкм}$. Штриховая кривая описывает зависимость τ от p для жидкой ячейки Y = 0, $\eta = \eta_0$ при $b_0 = 200 \ \text{мкм}$. Сплошные кривые 1–3 описывают зависимости $\tau(p)$ с учетом прочности $Y = 1,2 \ \Gamma\Pi a$ при начальных ра-

диусах ячейки $b_0 = 300, 250, 200$ мкм. Видно, что радиус ячейки b_0 слабо влияет на время затекания. Учет прочности материала $Y \neq 0$ приводит к значительному увеличению τ при давлениях p < 5 ГПа.

Силу, действующую на частицу со стороны преграды, определим по формуле Златина [14]

$$\boldsymbol{F} = -\left(H + p + \frac{\rho_s}{2}(\boldsymbol{v}_p - \boldsymbol{v}_1)^2\right) \frac{\pi d^2}{4} \frac{\boldsymbol{v}_p - \boldsymbol{v}_1}{|\boldsymbol{v}_p - \boldsymbol{v}_1|},\tag{7}$$

где v_1 — скорость материала преграды. Первое слагаемое в скобках H, называемое динамической твердостью, обусловлено работой сил прочности при деформации материала. Если частица внедрилась в материал на глубину l, то работа этих сил будет равна $A = \int \rho_s \Delta E \, dV$. Объем интегрирования представляет собой цилиндрический канал за частицей радиусом d и длиной l, поэтому $A \approx \rho_s \Delta E \pi d^2 l$. Приращение удельной энергии ΔE оценим по формуле

$$\Delta E = \int \frac{1}{\rho_s} \sigma_{ij} \dot{\varepsilon}_{ij} dt \approx \frac{1}{\rho_s} S_{ij} \dot{e}_{ij} \Delta t \approx \frac{1}{\rho_s} Y \frac{v_p}{d} \frac{d}{v_p} \approx \frac{Y}{\rho_s},$$

где $S_{ij} \sim Y; \dot{e}_{ij} \sim v_p/d; \Delta t \approx d/v_p; \sigma_{ij} = -p\delta_{ij} + S_{ij}$ — тензор напряжений.

Подставляя ΔE в формулу для работы, найдем $A \approx \pi d^2 l Y$. В то же время работа определяется по формуле $A = (\pi d^2/4) l H$. Приравнивая эти два выражения, получим величину $H \approx 4Y$, которая в два раза превосходит экспериментально определенную динамическую твердость стали H = 2 ГПа [14]. Из данного рассуждения следует, что если в окрестности частицы при r < d происходит разупрочнение материала, то $H \approx 0$.

В формуле (7) второе и третье слагаемые, стоящие в скобках, обусловлены образованием полости за частицей. В этом случае давление на переднюю полусферу частицы $p + \rho_s (v_p - v_1)^2/2$, умноженное на площадь миделя $\pi d^2/4$, определяет силу, действующую на частицу. Если реализуется режим безотрывного обтекания, то полость за частицей отсутствует и эта сила равна нулю. В случае сверхглубокого проникания реализуются оба условия (5) и правая часть в (7) равна нулю. Однако необходимо учесть, что вне области разупрочнения d < r < 2d происходят пластические деформации материала, скорость которых $\dot{\varepsilon} \sim (v_p/d)(a/r)^4 \sim 10^{-2}v_p/d$. Это приводит к уменьшению на два порядка работы сил прочности и соответственно величины динамической твердости $H' \approx 10^{-2}H$. Учет прочностных свойств материала преграды приведет к еще меньшим значениям $\dot{\varepsilon}$, поэтому для динамической твердости в этом случае будет справедливо неравенство $H' \leq 10^{-2}H$.

В разупрочненной области d/2 < r < d предел текучести Y = 0, а вязкость совпадает с вязкостью расплава $\eta_0 = 2 \cdot 10^{-3}$ Па · с. Соответственно число Рейнольдса для параметров обтекания частицы $v_p \approx 10^3$ м/с, $d \approx 100$ мкм, $\rho_s = 8 \cdot 10^3$ кг/м³ равно Re = $\rho_s v_p d/\eta_0 \approx 4 \cdot 10^5$. Следовательно, силы вязкости будут проявляться только в тонком пограничном слое толщиной $\delta \approx 5, 6\sqrt{\nu_0 d/v_p} \approx 5, 6d/\sqrt{\text{Re}} \approx 1$ мкм, где $\nu_0 = \eta_0/\rho_s$ [10]. Повидимому, наблюдавшаяся в эксперименте [8] первая область интенсивной деформации в канале диаметром порядка 0,3d представляет собой пограничный слой, сходящий с частицы. Однако при $d \approx 100$ мкм диаметр этой области составляет 30 мкм, что на порядок больше приведенной выше оценки δ . Данное различие может быть связано с тем, что в пограничном слое после схода с частицы скорость деформации и температура уменьшаются. Это приводит к резкому увеличению вязкости и толщины пограничного слоя в канале за частицей. Так как $\delta \ll d$, то для определения силы вязкого сопротивления частицы можно воспользоваться автомодельным решением Блазиуса. Умножая тензор вязких напряжений в пластине [10] на площадь поверхности частицы, получим

$$F'_{\eta} = \frac{1}{2} \rho_s v_p^2 \frac{1.3}{\sqrt{\text{Re}}} \pi d^2.$$

В результате полная сила, действующая на частицу в режиме сверхглубокого проникания, будет равна

$$\boldsymbol{F}_{p} = -\left(H' + 2.6 \,\frac{\rho_{s}(\boldsymbol{v}_{p} - \boldsymbol{v}_{1})^{2}}{\sqrt{\text{Re}}}\right) \frac{\pi d^{2}}{4} \,\frac{\boldsymbol{v}_{p} - \boldsymbol{v}_{1}}{|\boldsymbol{v}_{p} - \boldsymbol{v}_{1}|},\tag{8}$$

где $\operatorname{Re} = |\boldsymbol{v}_p - \boldsymbol{v}_1| d / \nu_0.$

Как отмечалось выше, только очень малая доля падающих частиц (порядка 0,1%) проникает на большую глубину. По-видимому, это связано с тем, что начиная с некоторого момента времени t происходит экранирование падающих частиц теми частицами, которые накопились в поверхностном слое преграды. Если объемная концентрация частиц m_2 в поверхностном слое меньше некоторой критической m_2^* , то падающие на поверхность частицы могут проникать в металл. (Объемной концентрацией частиц m_2 называется доля единичного объема, занятая частицами.) Если $m_2 > m_2^*$, то падающая частица сталкивается с частицами в поверхностном слое и застревает в нем. Отдельные импульсы, создаваемые падающими частицами, распределяются между всеми частицами слоя, в результате чего плотный слой частиц действует на преграду со средним давлением [2] $p_L = 0.3\rho_L v_L c$, где c — скорость звука в преграде; ρ_L , v_L — средняя плотность и скорость частиц в облаке. Отсюда следует, что проникание частиц в преграду будет происходить при условии

$$\langle m_2 \rangle < m_2^*,\tag{9}$$

где $\langle m_2 \rangle = \int_0^{l_p} m_2 \, dx / l_p$ — средняя объемная концентрация частиц в поверхностном слое

толщиной l_p ; l_p — длина релаксации скорости частицы при внедрении в материал. Выведем формулу для l_p . Подставляя силу F_p из формулы (7) в уравнение движения для частицы и пренебрегая давлением и динамической твердостью, получим уравнение движения $dv_p/dt = -v_p^2/l_p$, в которое входит длина релаксации скорости $l_p = 4\rho_p d/\rho_s$. Величина m_2^* выбиралась из условия согласования расчетов и эксперимента по числу проникших частиц $m_2^* = 0.25$.

Перейдем к формулировке уравнений, описывающих процесс сверхглубокого проникания частиц. Как отмечалось выше, прочность частиц всегда больше прочности материала преграды, так что частицы можно считать несжимаемыми шариками диаметром d. Объемная концентрация проникающих в преграду частиц мала ($m_2 \ll 1$), поэтому столкновениями между частицами можно пренебречь. Для описания движения частиц и материала преграды воспользуемся континуально-дискретной моделью, развитой ранее для смеси газ — частицы [13]. В этой модели частицы описываются бесстолкновительным кинетическим уравнением

$$\frac{\partial f}{\partial t} + \boldsymbol{v}_p \frac{\partial f}{\partial \boldsymbol{x}} + \frac{\partial}{\partial \boldsymbol{v}_p} \left(\frac{\boldsymbol{F}_p}{m_p} f\right) = 0, \quad m_2 = \frac{\pi d^3}{6} \int f \, dV_v, \quad \langle \boldsymbol{v}_p \rangle = \frac{\pi d^3}{6m_2} \int \boldsymbol{v}_p f \, dV_v, \quad (10)$$

где $f = f(t, v_p, x)$ — одночастичная функция распределения; $dV_v = dv_{px} dv_{py} dv_{pz}$ — бесконечно малый объем в пространстве скоростей частиц; $m_p = \pi d^3 \rho_p / 6$ — масса частицы; $\langle v_p \rangle$ — средняя скорость частиц. Сила F_p определяется по формулам (7), (8) и зависит от режима движения частицы.

Систему уравнений (10) нужно дополнить уравнениями для материала преграды. Используя тензорные обозначения, запишем их в системе координат x^i с базисными векторами e_i :

$$\frac{\partial \rho_s}{\partial t} + \nabla_i \rho_s v_{1i} = 0, \quad \rho_s \frac{dv_{1i}}{dt} = \nabla_j \sigma_{ij} - F_i, \quad \rho_s \frac{dE}{dt} = \sigma_{ij} \dot{\varepsilon}_{ij} + \dot{Q}, \\
\frac{d}{dt} = \frac{\partial}{\partial t} + v_{1i} \nabla_i, \quad \sigma_{ij} = -p \delta_{ij} + S_{ij}, \quad \dot{\varepsilon}_{ij} = \frac{1}{2} \left(\nabla_i v_{1j} + \nabla_j v_{1i} \right), \\
\dot{e}_{ij} = \dot{\varepsilon}_{ij} - \frac{1}{3} \dot{\varepsilon}_{kk} \delta_{ij}, \quad \hat{S}_{ij} = \begin{cases} 2\mu \dot{e}_{ij}, & (3/2)S_{ij}S_{ij} < Y^2, \\
-\dot{\lambda}S_{ij} + 2\mu \dot{e}_{ij}, & (3/2)S_{ij}S_{ij} = Y^2, \end{cases} \tag{11}$$

$$\begin{split} \hat{S}_{ij} &= \frac{dS_{ij}}{dt} - \omega_{ik}S_{jk} - \omega_{jk}S_{ik}, \quad \omega_{ij} = \frac{1}{2}(\nabla_i v_{1j} - \nabla_j v_{1i}), \quad p = p_{\rm x} + p_{\rm T} \\ p_{\rm x} &= K\Big(\frac{\rho_s}{\rho_s^0} - 1\Big), \quad E = E_{\rm x} + E_{\rm T}, \quad E_{\rm x} = \frac{K}{2\rho_s^0}\Big(\frac{1 - \rho_s}{\rho_s^0}\Big)^2 + \frac{\mu}{\rho_s} e_{ij}^e e_{ij}^e, \\ e_{ij}^e &= \frac{S_{ij}}{2\mu}, \qquad p_{\rm T} = \Gamma\rho_s E_{\rm T}, \qquad i, j = 1, 2, 3, \end{split}$$

где \dot{e}_{ij} , S_{ij} , \dot{e}_{ij} , σ_{ij} , ω_{ij} — тензоры девиатора скоростей деформаций и напряжений, скорости деформации, напряжения и поворота (по повторяющимся индексам проводится суммирование); E, E_x , E_T — удельная внутренняя энергия и ее холодная и тепловая составляющие; p, p_x , p_T — давление, холодная и тепловая составляющие давления; K, μ — модули объемного сжатия и сдвига. В упругой области материал описывается законом Гука, а в упругопластической — соотношениями Прандтля — Рейса. Сила F взаимодействия частиц с материалом и скорость диссипации энергии \dot{Q} находятся по формулам

$$\boldsymbol{F} = \int \boldsymbol{F}_p f \, dV_v, \qquad \dot{Q} = \int \boldsymbol{F}_p (\boldsymbol{v}_1 - \boldsymbol{v}_p) f \, dV_v, \qquad (12)$$

 \sim

где $\boldsymbol{F} = F_i \boldsymbol{e}_i$.

На основе данной модели решена задача о сверхглубоком проникании частиц в преграду в одномерном случае. Преграда представляла собой слой материала толщиной h^0 , на который слева набегал поток частиц. В одномерном случае система уравнений (5), (7), (10)–(12) значительно упрощается и имеет вид

$$\frac{\partial f}{\partial t} + v_p \frac{\partial f}{\partial x} + \frac{\partial}{\partial v_p} \left(\frac{F_p}{m_p} f\right) = 0, \quad m_p = \frac{\pi d^3}{6} \rho_p, \quad m_2 = \frac{\pi d^3}{6} \int_{-\infty}^{\infty} f \, dv_p, \\
\frac{\partial \rho_s}{\partial t} + \frac{\partial}{\partial x} \rho_s v_1 = 0, \quad \rho_s \frac{dv_1}{dt} = \frac{\partial \sigma_1}{\partial x} - F, \quad \rho_s \frac{dE}{dt} = \sigma_1 \dot{\varepsilon}_1 + \dot{Q}, \quad \frac{d}{dt} = \frac{\partial}{\partial t} + v_1 \frac{\partial}{\partial x}, \\
\sigma_1 = S_1 - p, \quad S_2 = S_3, \quad S_1 + S_2 + S_3 = 0, \\
\dot{S}'_i = 2\mu \dot{e}_i, \quad S_i = \begin{cases} S'_i, & \frac{3}{2} \sum_{i=1}^3 (S'_i)^2 < Y^2, \\ \sqrt{\frac{2}{3}} S'_i Y / \sqrt{\sum_{i=1}^3 (S'_i)^2}, & \frac{3}{2} \sum_{i=1}^3 (S'_i)^2 \geqslant Y^2, \\
\sqrt{\frac{2}{3}} S'_i Y / \sqrt{\sum_{i=1}^3 (S'_i)^2}, & \frac{3}{2} \sum_{i=1}^3 (S'_i)^2 \geqslant Y^2, \end{cases}$$
(13)
$$= p_x + p_T, \quad p_x = K \left(\frac{\rho_s}{\rho^0} - 1\right), \quad E = E_x + E_T, \quad E_x = \frac{1}{2\rho^0} \left(K \left(1 - \frac{\rho_s}{\rho^0}\right)^2 + 3\mu (e_1^e)^2\right),$$

$$p = p_{\rm x} + p_{\rm T}, \quad p_{\rm x} = K \Big(\frac{\rho_s}{\rho_s^0} - 1 \Big), \quad E = E_{\rm x} + E_{\rm T}, \quad E_{\rm x} = \frac{1}{2\rho_s^0} \Big(K \Big(1 - \frac{\rho_s}{\rho_s^0} \Big)^2 + 3\mu (e_1^e)^2 \Big),$$
$$\dot{e}_1^e = \frac{\dot{S}_1}{2\mu}, \quad p_{\rm T} = \Gamma \rho_s E_{\rm T}, \quad \dot{e}_1 = \frac{\partial v_1}{\partial x}, \quad \dot{e}_2 = \dot{e}_3 = 0,$$
$$F = \int_{-\infty}^{\infty} F_p f \, dv_p, \qquad \dot{Q} = \int_{-\infty}^{\infty} F_p (v_1 - v_p) f \, dv_p,$$
$$F_p = \begin{cases} -\Big(H + p + \frac{\rho_s}{2} \, (v_p - v_1)^2 \Big) \frac{\pi d^2}{4} \, \frac{v_p - v_1}{|v_p - v_1|}, \\ -\Big(H' + 2, 6 \, \frac{\rho_s (v_p - v_1)^2}{\sqrt{\text{Re}}} \Big) \frac{\pi d^2}{4} \, \frac{v_p - v_1}{|v_p - v_1|}, \qquad \frac{x}{\Delta^2} \leqslant \frac{|v_p - v_1|}{d} \leqslant \frac{1}{\tau}. \end{cases}$$

Первое выражение для силы F_p применяется в случае, когда не выполняется условие сверхглубокого проникания $w/\Delta^2 \leq |v_p - v_1|/d \leq 1/\tau$, а также на стадии заглубления частиц в преграду на диаметр d. Если скорость деформации $\dot{\varepsilon} = |v_p - v_1|/d$ удовлетворяет неравенству $\dot{\varepsilon} > w/\Delta^2$, то в первом выражении для F_p – H нужно заменить на H'.

Система уравнений (13) справедлива в области $x_L(t) < x < x_R(t)$, левая $x_L(t)$ и правая $x_R(t)$ границы которой меняются со временем. До тех пор пока выполняется неравенство (9), частицы проникают в преграду. В этом случае на левой границе $x_L(t)$ задается условие отсутствия напряжения $\sigma_1(x_L(t)) = 0$ и поток частиц

$$j(x_L(t)) = \rho_L v_L.$$

Скорость v_L и средняя плотность частиц ρ_L в набегающем потоке определяются по формулам

$$v_L = v_L^0 \exp(-\alpha_1 t/\tau_0), \qquad \rho_L = \rho_L^0 \exp(\alpha_2 t/\tau_0),$$
 (14)

полученным в [15] путем аппроксимации результатов численных расчетов по метанию порошка энергией взрыва. После нарушения неравенства (9) происходит экранировка падающих частиц, и на границе $x_L(t)$ задается $j(x_L(t)) = 0$, $\sigma_1(x_L(t)) = -0.3\rho_L v_L c$, где ρ_L , v_L определяются по формулам (14). На правой границе задается условие отсутствия напряжений $\sigma_1(x_R(t)) = 0$. Предполагается, что преграда достаточно «толстая», так что частицы не выходят на ее правую границу, поэтому для них условия на правой границе не ставятся. В момент t = 0 скорость v_1 , давление p и напряжения σ_i равны нулю, плотность $\rho_s = \rho_s^0$.

Система уравнений (13) решалась численным методом, разработанным ранее авторами для расчета течений смеси газ — частицы и подробно описанным в [16]. Уравнения, описывающие поведение материала преграды, решались в эйлеровых подвижных координатах по схеме «крест» [17]. Бесстолкновительное кинетическое уравнение для частиц решалось в лагранжевых переменных. Облако частиц на входе в материал разбивалось на ячейки таким образом, что частицы, попадающие в данную ячейку, имели одинаковую скорость. В этом случае уравнения движения ячейки $dx/dt = v_p, dv_p/dt = F_p/m_p$ совпадали с характеристиками кинетического уравнения. Скорость, давление и плотность материала в ячейках частиц находились интерполяцией. В качестве материала преграды выбиралась сталь с параметрами $\rho_s^0 = 7.85 \cdot 10^3$ кг/м³, $\mu = 80$ ГПа, K = 160 ГПа, Y = 1 ГПа, H = 2 ГПа. Частицы вольфрама имели диаметр d = 100 мкм и плотность $\rho_p = 19.8 \cdot 10^3$ кг/м³. Динамическая твердость и вязкость разупрочненного материала в расчетах равны $H' = 2 \cdot 10^{-3}$ ГПа, $\eta_0 = 10^{-3}$ Па · с. Параметры, входящие в (14), выбирались аналогично [2, 15]: $v_L^0 = 2$ км/с, $\rho_L^0 = 3 \cdot 10^3$ кг/м³, $\alpha_1 = 1.61$, $\alpha_2 = 0.92$, $\tau_0 = 70$ мкс, где τ_0 — время нагружения преграды потоком частиц. В начальный момент времени t = 0 координаты границ преграды $x_L(0) = 0$, $x_R(0) = 0.3$ м.

На рис. 3 показана зависимость скорости трех ячеек частиц (в дальнейшем для краткости будем называть их частицами) от времени t. Частицы падают на левую границу преграды в момент $t_1 = 0$, $t_2 = 0,19$ мкс, $t_3 = 0,38$ мкс. Видно, что в течение времени $\Delta t \approx 0,1$ мкс частицы сильно тормозятся вблизи границы преграды, до тех пор пока они не заглубятся в преграду и не выполнится условие сверхглубокого проникания. На второй стадии реализуется режим сверхглубокого проникания, поэтому сила, действующая на частицы, мала и их скорость медленно уменьшается. На третьей стадии условие сверхглубокого проникания (5) перестает выполняться и частицы вновь резко тормозятся, а их скорость уменьшается до скорости материала. Штриховой линией на рис. 3 показана скорость левой границы преграды.

На рис. 4 приведены распределения давления в преграде p(x) для нескольких моментов времени t от начала проникания частиц в преграду с интервалом $\Delta t = 20$ мкс. Из рис. 3

следует, что прекращение сверхглубокого проникания связано с торможением частиц до скорости $v_p \approx 750$ м/с, когда условие (5) перестает выполняться. Как следует из рис. 4, среднее давление, действующее в материале в момент времени $t \approx 60$ мкс, еще достаточно велико ($p \approx 8$ ГПа). Следовательно, предположение авторов [2–4] о том, что время сверхглубокого проникания частиц равно времени действия в материале высокого давления для толстых преград, является некорректным. Отметим, что чем позже частицы входят в преграду, тем меньше они тормозятся в приграничной области, и затем обгоняют частицы, вошедшие в преграду раньше, проникая на большие расстояния (см. рис. 3). Это связано с тем, что первые частицы начинают проникать в преграду, когда давление в ней равно нулю, поэтому они затрачивают больше энергии на торможение и создание высокого давления. Этот эффект обусловливает немонотонное распределение концентрации частиц в зависимости от глубины проникания.

На рис. 5 показана зависимость осредненной объемной концентрации частиц $\langle m_2 \rangle$ от координаты x в момент времени t = 100 мкс. (Рассчитанная зависимость $m_2(x)$ наряду с регулярной имела пульсационную составляющую, связанную с начальной численной дискретизацией облака частиц на ячейки. По мере проникания частиц в материал расстояние между ними возрастало и данная дискретность увеличивалась. Пульсации исключались путем усреднения рассчитанного значения $m_2(x)$ по формуле $\langle m_2 \rangle = \frac{1}{\Delta l} \int m_2(x) dx$, величина Δl

подбиралась эмпирически и была равна 25*d*.) Из рис. 5 следует, что частицы проникают на макси-

мальную глубину порядка 500*d*. Зависимость $\langle m_2 \rangle(x)$ является немонотонной и имеет два максимума. Первый максимум находится вблизи левой границы преграды и соответствует частицам, затратившим свою кинетическую энергию на создание давления в преграде. Второй локальный максимум при $x \approx 6$ см соответствует частицам, попавшим в преграду в более поздние моменты времени, когда в ней имеется уже достаточно высокое давление p. В этом случае после заглубления на диаметр d частицы начинали двигаться в режиме сверхглубокого проникания, медленно теряя свою скорость. Отметим, что зависимость $m_2(x)$ для частиц вольфрама, полученная в эксперименте [8], также немонотонна и имеет два максимума: вблизи границы и на большой глубине ($x \approx 4,6$ см). Таким образом, в данной статье разработана математическая модель, с использованием которой решена задача о сверхглубоком проникании. Результаты расчетов глубины проникания и распределения объемной концентрации частиц в преграде качественно согласуются с данными экспериментов.

ЛИТЕРАТУРА

- 1. Козорезов К. И., Максименко В. Н., Ушеренко С. М. Исследование эффектов взаимодействия дискретных микрочастиц с твердым телом // Избранные вопросы современной механики. М.: Изд-во Моск. ун-та, 1981. Ч. 1. С. 115–119.
- 2. Альтшулер Л. В., Андилевко С. К., Романов Г. С., Ушеренко С. М. Обработка металлической преграды потоком порошковых частиц. Сверхглубокое проникание // Инж.физ. журн. 1991. Т. 61, № 1. С. 41–45.
- 3. Альтшулер Л. В., Андилевко С. К., Романов Г. С., Ушеренко С. М. О модели сверхглубокого проникания // Письма в ЖТФ. 1989. Т. 15, № 5. С. 55–57.
- 4. Андилевко С. К. Гидродинамическая модель сверхглубокого проникания абсолютно твердых осесимметричных частиц в полубесконечную металлическую преграду // Инж.-физ. журн. 1998. Т. 71, № 3. С. 399–403.
- 5. Григорян С. С. О природе «сверхглубокого» проникания твердых микрочастиц в твердые материалы // Докл. АН СССР. 1987. Т. 292, № 6. С. 1319–1323.
- 6. **Черный Г. Г.** Механизм аномально низкого сопротивления при движении тел в твердых средах // Там же. С. 1324–1328.
- 7. Симоненко В. А., Скоркин Н. А., Башуров В. В. О проникании отдельных микрочастиц в прочные преграды при столкновении с ними порошкообразных потоков // Физика горения и взрыва. 1991. № 4. С. 46–51.
- 8. Андилевко С. К., Дорошкевич Е. А., Карпенко С. С. и др. Изменение плотности стали при сверхглубоком проникании // Инж.-физ. журн. 1998. Т. 71, № 3. С. 394–398.
- Grady D. E., Asay J. R. Calculation of thermal trapping in shock deformation of aluminium // J. Appl. Phys. 1982. V. 53, N 11. P. 7350–7356.
- 10. Валландер С. В. Лекции по гидроаэромеханике. Л.: Изд-во Ленингр. ун-та, 1978.
- 11. Клифтон Р. Дж. Динамическая пластичность // Успехи прикладной механики. М.: Мир, 1986. С. 49–84.
- 12. Панин В. Е., Лихачев В. А., Гриняев Ю. В. Структурные уровни деформации твердых тел. Новосибирск: Наука. Сиб. отд-ние, 1985.
- 13. Ударно-волновые процессы в двухкомпонентных и двухфазных средах / С. П. Киселев, Г. А. Руев, А. П. Трунев и др. Новосибирск: Наука. Сиб. издат. фирма, 1992.
- 14. Баллистические установки и их применение в экспериментальных исследованиях / Под ред. Н. А. Златина, Г. И. Мишина. М.: Наука, 1974. С. 194–205.
- 15. Андилевко С. К., Романов Г. С., Ушеренко С. М. Взрывной ускоритель порошковых частиц с цилиндрической выемкой, заполненной порошком вольфрама // Инж.-физ. журн. 1991. Т. 61, № 1. С. 46–51.
- 16. Киселев В. П., Киселев С. П., Фомин В. М. О взаимодействии ударной волны с облаком частиц конечных размеров // ПМТФ. 1994. Т. 35, № 2. С. 26–37.
- 17. Уилкинс М. Л. Расчет упругопластических течений // Вычислительные методы в гидродинамике. М.: Мир, 1967. С. 212–263.

Поступила в редакцию 29/III 1999 г.