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CHAPTER VII.

STATICS, OF SOLIDS AND FLUIDS,

661. WE commence with the case of a rgid body or system,
that is, an ideal substance continuously occupying a given solid
figure, admitting no change of shape, but free to move transla-
tionally and rotationally. It is sometimes convenient to regard
a rigid body as a group of material particles maintained by
mutual forces in definite positions relatively to each other, but
free to move relatively to other bodies. The condition of perfect
rigidity is approximately fulfilled in natural solid bodies, so long
as the applied forces are not sufficiently powerful to break them
or to distort them, or to condense or rarefy them to a sensible
extent. To find the condifions of equilibrium of a rigid body
under the influence of any number of forces, we follow the
example of Lagrange in using the principle of work (§ 289)
and take advantage of our kinematic preliminary (§ 197).

662. First supposing the body to be perfectly free to take
any motion possible to a rigid body :—Give it an infinitesimal
translation in any direction, and an infinitesimal rotation round
any line.

I. In respect to the translational displacement, the work
done by the applied forces is equal to the product of the
amount of the displacement (being the same for all the points
of application) into the algebraic sum of the components of
the forces in its direction. Hence for equilibrium (§ 289) the
sum of these components must be zero.
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II, In respect to rotational displacement the work done Equili-
by the forces 1s (§ 240) g¢qual to the product of the infinitesimal fzr;o;elﬁ;id
angle of rotation into the sum of the moments (§ 231) of the
forces round the axis of rotation. Hence for equilibrium (§ 289)

the sum of these moments must be zero.

Since (§ 197) every possible motion of a rigid body may be
compounded of infinitesimal translations in any directions, and
rotations round any lines, it follows that the conditions necessary
and sufficient for equilibrium are that the sum of the com-
ponents of the forces in any direction whatever must be zero,
and the sum of the moments of the forces round any axis
whatever must be zero.

Let X, Y, Z be the components of one of the forces, and
x, Y., % the co-ordinates of its point of application relatively
to three rectangular axes. Taking successively these axes for
directions of the infinitesimal translations, and axes of the
infinitesimal rotations, we find, as necessary for equilibrium, the
following equations :—

3(X,)=0, =(¥))=0, =(Z,)=0........ e (1),
3(Zy,—Y2)=0, 3(X2—-2%)=0, 3(Yx,—X,y)=0...(2)

Of the latter three equations the first members are respectively
the sums of the moments round the three axes of co-ordinates, of

the given forces or of the components X,, Y,, Z,, &e., which we
take for them.

553. It is interesting and important to remark that the ﬁﬁ%ﬁsﬁg ‘
evanescence of the sum of components in any direction what-
ever is secured if it is ascertained that the sums of the com-
ponents in the directions of any three lines not in one plane
are each nil ; and that the evanescence of the sum of moments
round any axis whatever is secured if it is ascertained that the
sums.of the moments round any three axes not in one plane are
each nil.

Let (I, m, n), (I, m/, n'), (I, m", n”) be the direction cosine: proved.
of three lines not in one plane, a condition equivalent to non-
evanescence of the determinant ! m’ %"’ — &c. Let F, F', F” be

the sums of components of forces along these lines. We have
F =1 3(X)+m 3(Y)+n 3(Z)
F =U3(X)+m Z(Y)+0 2(L)) P -oonviinininnnnn. (3).
F'=U'S(X)+m"3(Y) +n"3(Z,)
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Equili- If each of these is zero, each of the components 3X, 5%, 37
}ﬂ: ﬁ;{ﬁ must be zero, as the determinant is not zero. The correspond-
vody. ing proposition is similarly proved for the moments, because
(§ 233) moments of forces round different axes follow the same
laws of composition and resolution as forces in different direc-

tions.
Equili- 664. For equilibrium when the body 1s subjected to onme,

constrained two, three, four, or five degrees of constraint, equations to be

rigi y. ] eyey o
fulfilled by the applied forces, to ensure equilibrium, correspond-
ingly reduced in number to five, four, three, two or one, are

found with the greatest ease by giving direct analytical expres-
sion to (§ 289), the principle of work 1n equilibrium.

Let %, 9, 2, =, p, o be components of the translational velocity
of a point O of the body, and of the angular velocity of the
body; and (§ 201) let

At+By+C2+Gw+Hp+Io=0
A+ By+C2+GFm+Hp+To=0% ,,.......... (4),
&ec., &c.,

be one, two, three, four, or five equations, representing the con-
straints. The work done by the applied forces per unit of time is

23 (X)) + y3(Y,) + 23(Z,) (5)
+ a3 (0, — Y \2) +p3(X 2, ~ Zx) + o3 (Y, - X)) 7
or X+ Yy+2Ze+ La+Mp+No............... (5),

where X, ¥, Z, L, M, N denote the sums that appear in (5),
that is to say, the sums of the components of the given forces
parallel to the axes of co-ordinates, and the sum of their mo-

ments round these lines.

This amount of work, (5), must be zero for all values of
&, 9, 2, w, p, o which satisfy equation or equations (4). Henee,
by Lagrange's method of indeterminate multipliers, we find

S(X)+A4d + N4 + ... =
S(Y,)+AB+ANB +... =
3(Z) + A0+ N0+ ... — 'L |
S(Zo— V) + NG+ NG +...=0 [ (9
S( Xz, —Lx)+ A H+NH' +...=0
S(Ya,-Xy)+ M +XNI'+ ...=0]
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and the elimination of A, X/,... from these six equations gives Equili-
| L L L 4 b
the correspondingly reduced number of equations of equilibrium constrained

among the applied forces. rigid body.

To 1llustrate the use of these equations suppose, for example, Example.

the number of constraints to be two, and all except four of shratnts i
the applied forces be given: the six equations (5) determine equations of

. . . equilibrinm
these four forces, and allow us if we desire it to calculate the found.

two 1ndeterminate multipliers A, N\’. The use of finding the
values of these multipliers is that

A, AB, \C, M@, \H. AT

are the components and the moments of the reactions of the and the two
. . factors de-
first constraining body or system on the given body, and - termining
o amounts
_ - of the con-
K’A’, ANDB s KFC", A G’, NH ’, A straining
forcescalled

are those of the second. info action.

569. When 1t is desired only to find the equations of equili- Equations

. . . ' . . of equi-
brium, not the constraining reactions, the easiest and most direct 111;15-311:1%
. = . » wiLnou

way to the object is, to first express any possible motion of the expression

: of con-
body in terms of the five, four, three, two or one freedoms straining

(8§ 197, 200) left to it by the one, two, three, four or five con- reacHons.
straints to which it is subjected. The description in § 102 of
the most general motion of a rigid body shows that the most
general result of five constraints, or the most general way of
allowing just one freedom, to a rigid body, is to give it guidance
equivalent to that of a nut on a fixed screw shaft. If we unfix
this shaft and give it similar guidance to allow it one freedom,
the primary rigid body has two freedoms of the most general
kind, Its double freedom may be resolved in an infinite
number of ways (besides the one way in which it is thus com-
pounded) into two single freedoms. Triple, quadruple, and
quintuple freedom may be similarly arranged mechanically.

956. The conditions of equilibrium of a rigid body with
single, double, triple, quadruple or quintuple freedom, when
each of the constituent freedoms is given in the manner speci-
fied in § 553, are found by writing down the equation or eqna-
tlons expressing that the applied forces do no work when the
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for the line of the second force, and so on; we have, for the

body moves simply according to any one alone of the given
equations of equilibrium,

freedoms. We shall take first the case of a single freedom of
the most general kind.

. | | | s2P cos?, +2a P sint, =0-

Rt o xprotcs the rlation butmeon axial trealatiossl velo oyl D i o PO SR )

plied to o 'git iy P el ot . _ §"2,P cos1,” +Za P sini” =0

autons - city, and angular velocity in the possible motion. Let HK be &e., &e., _

fixedscrew. the axis of the screw, and N, the nearest point to it in L M, Th . ¢ : : :
the line of P,, a first of the applied forces. Let i, be the incli- the equations of constraint being, as in § 553, (4), aralytioally
nation of L, M, to HEK, and a, the distance of N, from HXE. A3 +Bj +0; + Gw +Hp +Io =0 torms of
At any pomt m L M, most conveniently at the point N, AG+Biy+C0s+Go+Hp+To=0p crem.. (9), rectangular
resolve P, mnto two components, £, cosz,, parallel to the axis of e nates

freedom, and P, sin 4, perpendicular to it. The former compo-
nent does work only on the axial component of the motion, the
latter on the rotational; and the rate of work done by the

suppose, for example, these equations to be four in number.
Take two more equations

two together 1s | ai +by +¢z +gw +hp +i0 =w (10)
Work done S@ Pl cos'i1+amPlsin ?:1. Gféf/‘+b'y+0’ﬁ +g'm'+h’p+-£'a=m" )
by a single . . .
e Henc?, if % de}lflte_s summation for all the given forces, the where @, b, ... and a', b,... are any arbitrarily assumed quanti-
Egrgwﬁx ed equatlon of equlhbrmm to prevent them from t&klﬂg ad?a,nta.ge ties: and from the six equa,tions (9) and (10) deduce the fol-
of the first freedom 1s lowing :
Equation of ' 82, P, cost, +2a P, sins =0........... e{1) =0+ Ao, g=Bo+B, 2=Cu+ €, } (11);
Po:%?t{;- or, in words, the step of the screw multiplied into the sum of the 7=Go+ &, p=Ro+W, o=To+ T, ’
pli 8 ‘

where @, 3,... and &', ¥,... are known, being the determi- Two gene-

nutona  axial components must be equal to the sum of the moments of 7o &
ra com-

preceding statement 1s the direction opposite to the rotation
which the nut would have if it had axial motion in the direc-
tion taken as positive for those axial components.

557. The equations of equilibrium when there are two or more
freedoms, are merely (7) repeated with accents to denote the
elements corresponding to the several guide-screws other than
the first. Thus if s, &, 7, &c., denote the screw-steps; a, a,,
a,”, &c., the shortest distances between the axes of the screws
and the line of P; 1., ¢, 4,”, &c., the inclinations of this line to

1
the axes; and a,, a,, &c., and 1, 1., &c., corresponding elements

* The quantity s thus defined we shall, for brevity, henceforth eall the
screw-step.

frictionless . ‘ ‘ . .
screw.  the force round the axis of the screw. nantal ratios found in solving (9) and (10)., Thus the six rect- ponent

The direction taken as positive for the moments in the angular component velocities are expressed in terms of two ;’Er?-:é‘;éﬁid.

ing to two

generalized component velocities o, o/, which, in virtue of the freedoms.
four equations of constraint (9), suffice for the complete specifi-
cation of whatever motion the constraints leave permissible.
In terms of this notation we have, for the rate of working of

the applied forces,

Xo+ Yy+Zi+La+ Mp+ No
=(AX+BY+CZ+GL+BM+1V)w U ¢ §))
+(@X+ WY+ CZ+ G L+ WM+ 'N)o'

This must be nil for every permitted motion in order that the
forces may balance. Hence the equations of equilibrium are

| ﬂX+BY+€BZ+€EL+ﬁM+lIN=O}-
and AX+B'Y+ @ Z+&GL+PM+1'N=0
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Similarly with one, or two, or three, or five (instead of our ex-
ample of four) constraining equations (9), we find five, or four,
or three, or one equation of equilibrium (13). These equations
express obviously the same conditions as those expressed by (8);
the first of (13) is identical with the first of (8), the second of
(13) with the second of (8), and so on, provided o, ',... coOr-
respond to the same components of freedom as the seveml SCrews
of (8) respectively. The equations though identical 1n substal}ce
are very different in form. The purely analytical transformation
from either form to the other is a simple enough piece of ana-
lytical ‘geometry which may be worked as an exercise by the
student, to be done separately for the first of (8) and the first
of (13), just as if there were but one freedom.

558. Any system of forces which if applied to a rigid body

would balance a given system of forces acting on it, 1s called an

equilibrant of the given system. The system of forces equal
and opposite to the equilibrant may be called a resultant of the

given system. It is only, however, when the resultant system

is Jess numerous, or in some respect simpler, than the given
system that the term resultant is convenient or suitable, It 1s
used with great advantage with respect to the resultant force
and couple (§ 559 g, below) to which Poinsot’s method lead-s, or
to the two resultant forces which mathematicians before Poinsot
had shown to be the simplest system to which any system ?f
forces acting on a rigid body can in general be reduced. It 1s
only when the system is reducible to a single force that the

term “ resultant” pure and simple is usually applied.

559. As a most useful commentary on and illustration of
the general theory of the equilibrium of a rigid body, which we
have completed in §§ 552—557, and particularly fox: the pur-
pose of finding practically convenient resultants in a very
simple and clear manner, we may now with advantage 1ntro-
duce the beautiful method of Couples, invented by Poinsot.

In § 284 we have already defined a couple, and shown that
the sum of the moments of its forces is the same about all
axes perpendicular to its plane. It may therefore be shifted to
any new position in its own plane, or In any parallel plane,
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without alteration of its effect on the rigid body to which Couples
1t 18 applied. Its arm may be turned through any angle

in the plane of the forces, and the length of the arm and the
magnitudes of the forces may be altered at pleasure, without
changing its effect—provided the moment remain unchanged.
Hence a couple is conveniently specified by the line defined as

its “axis” in § 234. According to the convention of § 234 the

axis of a couple which tends to produce rotation in the direc-

tion contrary to the motion of the hands of a watch, A
‘must be drawn through the front of the watch and
vice versd. This may easily be remembered by the C
help of a simple diagram such as we give, in which '
the arrow-heads indicate the directions of rotation, [
and of the axis, respectively.

999 b. It follows from §§ 233, 234, that couples are to be composi-
compounded or resolved by treating their axes by the law of soupies
the parallelogram, in a manner identical with that which we

have seen must be employed for linear and angular velocities,
and forces.

Hence a couple &, the direction cosines of whose axis are

A, p, v, 18 equivalent to the three couples G\, Gu, Gv about the
axes of z, y, z respectively.

669 c¢. If a force, F, act at any point, 4, of a body, it may pyree re-
be transferred to any other point, B. Thus: by the principle of jorecany®
superposition of forces, introduce at B, in the line through it ®"P'*
parallel to the given force F, a pair of equal and opposite forces
Fand —F, Then F at 4, and — F' at B, form a couple, and

there remains F at B.

From this we have, at once, the conditions of equilibriun: application
of a rigid body already investigated in § 552. For, each force g:'i?:lqn? of
may be transferred to any assumed point as origin, if we intro- i body
duce the corresponding couple. And the forces, which now act
at one point, must equilibrate according to the principles of
Chap. v1.; while the resultant couple, and therefore its com-
ponents about any three lines at right angles to each other, must

vanish,
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669 d. Hence forces represented, not merely in magnitude

By the sides and direction, but in lines of action, by the sides of any closed

a’polygon.

¥orces pro-
portional

and n-

dicular to
the sides of
a triangle.

Composi-
tion of
force and
couple.

polygon whether plane or not plane, are equivalent to a single
couple. For when transferred to any origin; they equilibrate,
by the Polygon of Forces (§§ 27, 256). When the polygon is
plane, twice 1ts area i1s the moment of the couple; when not
plane, the component of the couple about any axis is twice the
area of the projection on a plane perpendicular to that axis. The
resultant couple has i1ts axis perpendicular to the plane (§ 236)
on which the projected area is a maximum.

669 e¢. Lines, perpendicular to the sides of a triangle, and
passing through their middle points, meet; and their mutual
inclinations are equal to the changes of direction at the corners,
in travelling round the triangle. Hence, if at the middle points
of the sides of a triangle, and in its plane, forces be applied all
inwards or all outwards; and if their magnitudes be proportional
to the sides of the triangle, they are in equilibrium. The same
is true of any plane polygon, as we readily see by dividing it
into triangles. And if forces equal to the areas of the faces be
applied perpendicularly to the faces of any closed polyhedron, at
their centres of inertia, all 1nwards or all outwards, these also
will form an equilibrating system; as we see by considering the
evanescence of (1) the algebraic sum of the projections of the
areas of the faces on any plane, and of (11) the algebraie sum of
the volumes of the rings described by the faces when the solid
ficure 1s made to rotate round any axis, these volumes being
reckoned by aid of Pappus’ theorem (§ 569, below).

569 £ A couple and a force in a given line inclined to its
plane may be reduced to a smaller couple in a plane perpen-
dicular to the force, and a force equal and parallel to the given
force. For the couple may be resolved into two, one in a plane
containing the direction of the force, and the other in a plane
perpendicular to the force. The force and the component
couple in the same plane with it are equivalent to an equal
force acting in a parallel line, according to the converse of

§ 559 c.

draw a line, A A’, at right angles to it through any point C of
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559 9. We have seen that any set of forces acting on Composi-
tion of
a rigid body may be reduced to a force at any point and  any set of

couple. Now (§ 559 f) these may be reduced to an equal force ing ona
acting 1n a definite line in the body, and a couple whose plane 1s i body.
perpendicular to the force, and which is the least couple which,
with a single force, can constitute a resultant of the given set of

forces. The definite line thus found for the force is called the

. Central Azis. It is the line about which the sum of the moments Central

axis.

of the given forces is least.

With the notation of §§ 552, 553, let us suppose the origin to

be changed to any point ', 9/, 2. The resultant force has still
the components 3 (X), 3(Y), 2(Z), or Rl, Rm, Rn, parallel to
the axes. But the couples now are

3[Zy-y)-Y ()], 2| X(e—2)~Z(w-2)), 3[¥(e—a)-X(y-y)];
or

GA - R (ny' — mz), Gu— B (Iz' —nx’), Gv—- R (mz’ - ly".

The conditions that the resultant force shall be perpendicular to -
the plane of the resultant couple are

GA— R (ny'—mz') Gu-R(lz'—nx'). Gv-—R(mx'—ly')

[ m n

These two equations among z, %', 2° are the equations of the
central axis.

We find the same two equations by investigating the con-
ditions that the resultant couple

JION= By =ma )+ [Gu—E (I na) [+ [Gv B (ma'~ by )T
may be a minimum subject to independent variations of o/,
Yy 2

560. By combining the resultant force with one of the Reduction
forces of the resultant couple, we have obviously an infinite foroms
number of ways of reducing any set of forces acting on a rigid

body to two forces whose directions do not meet. But there is

one case in which the result 1s symmetrical, and which is there-

fore worthy of special notice.

Supposing the central axis of the system has heen found, Symmetrl-



Symmetri-
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Composi-
tion of
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1t, and make CA equal to CA". For R, acting along the central
axis, substitute (by § 561) 1R at each end of 4A4’. Then,
choosing this line 44" as the arm of the couple, and calling it

&

@, we have at one extremity of it, two forces, P perpendicular

to the central axis, and 3R parallel to the central axis. Com-

3
pounding these we get two forces, each equal to (iR’+%k) ,

through 4 and A’ respectively, perpendicular to 44’ and
inclined to the plane through A4’ and the central axis, at
angles on the two sides of it each equal to tan™ %% :

061. A very simple, but important, case, is that of any
number of parallel forces acting at different points of a rigid

body.

Here, for equilibrium, obviously it is necessary and sufficient
that the algebraic sum of the forces be nil ; and that the sum of
their moments about any two axes perpendicular to the com-
mon direction of the forces be also nil.

This clearly implies (§ 553) that the sum of their moments
about any axis whatever is nil.

To express the condition in rectangular coordinates, let
P, P, &c. be the forces; (x,, y,, 2,), (,, ¥, 2,), &c. points in
their lines of action; and I, m, » the direction cosines of a

line parallel to them all. The general equations [§ 552 (1), (2)]
of equilibrium of a rigid body become in this case,

(2P=0, m3P=0, n3P=0; .
nZPy-~m3Pz=0, IZP:~n3Px=0, m3Px~I3Py=0.

These equations are equivalent to but three independenf equa-
tions, which may be written as follows :

If the given forces are not in equilibrium a single force may
be found which shall be their resultant. To prove this let,
if possible, a fuorce — R, in the direction (I, m, n), at a point
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(%, ¥, %) equilibrate the given forces. By (1) we have, for

the conditions of equilibrium of - &, P, P, &c,

and
Ef_’a: — RE B E_Py-— Ry _ 3Pz— Rz
[ B m - n

Equation (2) determines R, and equations (3) are the equa-
tions of a straight line at any point of which a force equal to
— £i, applied in the direction (, m, #), will balance the given
system.

Suppose now the direction (/, m, n) of the given forces to be
varied while the magnitude P, and one point (x,, ¥,, z ) in the
line of application, of each force is kept unchanged. We see by
(3) that one point (, ¥, 2) given by the equations

2Prx _ 3Py _ 3Pz
R:y'—R!zﬁ'

18 common to the lines of the resultants.

H r

The point (%, 7, z) given by equations (4) is what is called
the centre of the system of parallel forces P, at (,, v, 2,), P,
at (2, ¥, 2,), &c.: and we have the proposition that a force in
the line through this point parallel to the lines of the given
forces, equal to their sum, is their resultant. This proposition
18 easily proved synthetically by taking the forces in any order
and finding the resultant of the first two, then the resultant of

this and the third, then of this second force, and so on. The line

of the first subsidiary resultant, for all varied directions of the

given forces, passes through one and the same point (that is the

point dividing the line joining the points of application of the
first two forces, into parts inversely as their magnitudes).
Similarly we see that the second subsidiary resultant passes
always through one determinate point: and so for the third,
and so on for any number of forces.

Composi-
tion of
Hel

Oor'ces.

662. It is obvious, from the formulas of § 230, that if masses Centre of
proportional to the forces be placed at the several points of 5™ "

application of these forces, the centre of inertia of these masses
will be the same point in the body as the centre of parallel
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Oentreof  forces. Hence the reactions of the different parts of a rigid
body against acceleration in parallel lines are rigorously re-
ducible to one force, acting at the centre of inertia. The same
is true approximately of the action of gravity on a ngid body
of small dimensions relatively to the earth, and hence the
centre of inertia is sometimes (§ 230) called the Centre of
Grawty. But, except on a centrobaric body (§ 534), gravity 1s
in general reducible not to a single force but to a force and
couple (§ 559 g); and the force does not pass through a point
fixed relatively to the body in all the positions for which the
couple vanishes.

Parallel 563. In one case the propositionr of § 561, that the system
forces . . _ . .
wlggge has a single resultant force, must be modified : that is the case
a3 raic

sum is zero. in which the algebrz—uc sum of the given forces vanishes. In
this case the resultant is a couple whose plane 1s parallel to the
common direction of the forces. A good example of this case
is furnished by a magnetized mass of steel, of moderate dimen-
sions, subject to the influence of the earth’s magnetism. The
amounts of the so-called north and south magnetisms in each
element of the mass are equal, and are therefore subject to equal
and opposite forces, parallel in a rigorously uniform field of
force. Thus a compass-needle experiences from the earth’s
magnetism sensibly a couple (or derective action), and is not
sensibly attracted or repelled as a whole.

Conditions  564. If three forces, acting on a rigid body, produce equil-

of equili- A . . . . e

briumof  brium, their directions must lie in one plane; and must all meet

three . . .

forces. in one point, or be parallel. For the proot we may introduce
a consideration which will be very useful to us in 1nvestigations

connected with the statics of flexible bodies and fluids.

Physical If any forces, acting on a solid, or flurd body, produce

axiom-  eguiltbrium, we may suppose any portions of the body to become

fized, or rgvd, or rigid and fixed, without destroying the equi-
lbrium. | |

Applying this principle to the case above, suppose any two

points of the body, respectively in the lines of action of two of

the forces, to be fixed. The third force must have no moment

feft of QR, the equilibrium will obviously be
stable. Hence, if it be below R, the equilibrium
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about the line joining these points; in other words, its direction Physical
must pass through that line. As any two points in the lines of
action may be taken, it follows that the three forces are coplanar.

And three forces, in one plane, cannot equilibrate unless their
directions are parallel, or pass through a point.

660. It 1s easy, and useful, to consider various cases of Equiliori-
equilibrium when no forces act on a rigid body but grawty?ﬁﬂ?ﬁﬁ
and the pressures, normal or tangential, between it and fixed * &™"'%"
supports. Thus if one given point only of the body be fixed, it
1s evident that the centre of inertia must be in the vertical line
through this point. For stable equilibrium the centre of inertia

need not be below the point of support (§ 566).

066. An interesting case of equilibrium is suggested by Rocking
what are called Rocking Stones, where, whether by natural or *""™
by artificial processes, the lower surface of a loose mass of rock
is worn into a convex or concave, or anticlastic form, while the
bed of rock on which it rests in equilibrium may be convex
or concave, or of an anticlastic form. A loaded sphere resting
on a spherical surface is a particular case.

Let O, O’ be the centres of curvature of the ﬁxed and rock-

Ing, bodies respectively, when in the position of
equilibrium., Take any two infinitely small,
equal arcs PQ, Pp; and at @ make the angle
O'QR equal to POp. When, by displacement, @
and p become the points in contact, QR will
evidently be vertical; and, if the centre of inertia
@, which must be in OP(Q’ when the movable
body is in its position of equilibrium, be to the

is stable, and not unless.
Now if p and o be the radii of curvature OP,

O
O'P of the two surfaces, and @ the angle POp, the angle QO'R

08

g

will be equal to *—; and we have in the triangle QO'R (§ 112)

RO : o = sin 6 : sin (9+ E;)
i1 o : o+ p (approximately).
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Hence PR =c¢ ctp pta’

and therefore, for stable equilibrium,

o

PI
PG<P+G.

If the lower surface be plane, p is infinite, and the condition
becomes (as in § 291)

PG <o

If the lower surface be concave the sign of p must be changed,
and the condition becomes

PG <L

p—a

which cannot be negative, since p mus{ be numerically greater
than o in this case.

567. If two points be fixed, the only motion of which the
system 1s capable 1s one of rotation about a fixed axis. The
centre of inertia must then be in the vertical plane passing
through those points. For stability i1t i1s necessary (§ 566) that
the centre of inertia be below the line joining them.

568. If a rigid body rest on a frictional fixed surface there
will in general be only three points of contact; and the
body will be 1n stable equilibrium if the vertical line drawn
from 1its centre of inertia cuts the plane of these three points
witkan the triangle of which they form the corners. For if one
of these supports be removed, the body will obviously tend to
fall towards that support. Hence each of the three prevents
the body from rotating about the line joining the other two.
Thus, for instance, a body stands stably on an inclined plane (if
the friction be sufficient to prevent it from sliding down) when
the vertical line drawn through its centre of inertia falls within
the base, or area bounded by the shortest line which can be
drawn round the portion in contact with the plane. Hence a
body, which cannot stand on a horizontal plane, may stand on
an inclined plane.

569.] STATICS. 113

569. A curious theorem, due to Pappus, but commonly Pappus’
eorem.

attributed to Guldinus, may be mentioned here, as it is em-
ployed with advantage in some cases in finding the centre of
gravity (or centre of inertia) of a body. It is obvious from
§ 230. If a plane closed curve revolve through any angle about
an axis in its plane, the solid content of the surface generated is
equal to the product of the area of the curve into the length of the
path described by the centre of inertia of the area of the curve ;
and the area of the curved surface 7s equal to the product
of the length of the curve into the length of the path described
by the centre of inertia of the curve.

570. The general principles upon which forces of constraint
and friction are to be treated have been stated above (§§ 293,
329, 452). We add here a few examples for the sake of illus-
trating the application of these principles to the equilibrium
of a rigid body in some of the more important practical cases
of constraint.

571. 'The application of statical principles to the Me- Mechanical
chanical Powers, or elementary machines, and to their combi- %™

nations, however complex, requires merely a statement of their
kinematical relations (as in §§ 79, 85, 102, &c.) and an immediate
translation mnto Dynamics by Newton’s principle (§ 269); or by
Lagrange’s Virtual Velocities (§§ 289, 290), with special atten-
tion to the introduction of forces of friction as in § 452, In no
case can this process involve further difficulties than are implied
in seeking the geometrical circumstances of any infinitely small
disturbance, and in the subsequent solution of the equations
to which the translation into dynamics leads us. We will not,
therefore, stop to discuss any of these questions; but will take
a few examples of no very great difficulty, before quitting for
a time this part of the subject. The principles already de-
veloped will be of constant use to us in the remainder of the
work, which will furnish us with ever-recurring opportunities
of exemplifying their use and mode of application.

Let us begin with the case of the Balance, of which we
promised (§ 431) to give an investigation,
VOL. II. 8
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6572. Ex. 1. The centre of gravity of the beam must not
coincide with the knife-edge, or else the beam would rest in-
differently in any position. We shall suppose, in the first place,
that the arms are not of equal length.

572.1 | STATICS, 115

- The only forces acting are three, R the pressure of the wall Exempies.

on the rod, horizontal ; S that of the rail on the rod, perpendi- &‘?.‘fﬁz‘;ii’;a
cular to the rod; W the weight constraint.

of the rod, acting vertically
downwards at its centre of

B Let O be the fulecrum, & : S "B
Q the centre of gravity of the f]:avltg.b 1f the half-lel}gth of
beam, M 1ts mass; and sup- ‘e rod be a, and the dlsta.ncg ]
' ‘ P of the rail from the wall b, D

pose that with loads P and @
in the pans the beam rests
(as drawn) in a position

these are given—and all that
1s wanted to fix the position of

making an angle @ with the equilibrium is the angle, CAB, which the rod makes with the

horizontal line. wall. If we call it 8 we have AD:sirl: 9

Sensibility.  Taking moments about O, and, for convenience (See §_220),f

using gravitation measurement of the forces, we have ~ Resolving horizontally, R —.8 cosd = O, (1),
Q(ABcosf0+0Asin )+ M, OGsin 8= P(ACcos §—0A sin ). vertically, W—~S8s8m@=0................(2).
From this we find Taking moments about A
~ P.AC-Q.AB S.AD—~ W .asin 8=
Wnl= Py 04+ M. 06" = -asn6=0,
or S.b—W.asin®0=0................... (3).

If the arms be equal we have

(P—Q)AB : As there are only three unknown quantities R, S, and @, these
three equations contain the complete solution of the problem.

By (2) and (3)

tan b= 50704 + M. 0G

Hence the Sensibility (§ 431) 1s greater, (1) as the arms are

longer, (2) as the mass of the beam 1s less, (3) as the fulcrum sind @ = b , which gives 6.
is nearer to the line joining the points of attachment of the @

pans, (4) as the fulcrum 1s nearer to the centre of gravity of And by (9 114

the beam. If the fulecrum be ¢n the line joining the points of And by (2) . S = 5n o’

attachment of the pans, the sensibility 1s the same for the same

difference of loads in the pans. and by (1) R =8cos8= Weot 4.

Examples.  Lx. II. Find the position of equilibrium of a rod 4B

frictionjess Testing on a frictionless horizontal rail D, its lower end pressing

oonstraint  against a frictionless vertical wall AC parallel to the rail.

Ez. I1I. As an additional example, suppose the wall and Rod con-
rail to be frictional, and let u be the coefficient of statical imetecar”
friction for both. If the rod be placed in the position of equi- surfaces.

The figure represents a vertical section through the rod, librium just investigated for the case of no friction, none will
which must evidently be 1n a plane perpendicular to the wall be called into play, for there will be no tendency to motion to

and rail. The equilibrium 1s obviously unstable. be overcome. If the end A be brought lower and lower, more
8—2
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and more friction will be called into play to overcome the tend-
ency of the rod to fall between the wall and the rail, until we
come to a limiting position in which motion is about to com-
mence. In that position the friction at 4 1s u times the pres-
sure on the wall, and acts upwards. That at D 1s u times the
pressure on the rod, and acts in the direction DB. Putting
CAD =26, in this case, our three equations become

R + pS,sin 8, — 8, cos 6, =0.........(1),
W — uR, — S, sin 0, ~ uS, cos , =0 ceenenne(2),
Sb— Wa sin® 8, =0..c0eeea(3).

The directions of both the friction-forces passing through 4,
neither appears in (3,). This 1s why A 1s preferable to any
other point about which to take moments,

By eliminating R, and S, from these equations we get

@

1-3

sin® 0, = p g sin® @, (2 cos 6, — wsin )......(4),

from which 6, is to be found. Then §, is known from (3),
and R, from either of the others.

If the end A be raised above the position of equilibrium
without friction, the tendency is for the rod to fall outside the
rail ; more and more friction will be called into play, till the

position of the rod (6,) 1s such that the friction reaches its
greatest value, p times the pressure. We may thus find
another lvmiting position for stability; and in any position
between these the rod is in equilibrium.

It is useful to observe that in this second case the direction
of each friction is the opposite to that in the former. Hence
equations of the first case, with the sign of u changed, serve
for the second case. Thus for 8,, by (4,),

a

b

a

1—+sn*0,=—pu 5 sin’ @, (2 cos 0, + u sin 0,).
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Ez. IV. A rectangular block lies on a frictional horizontal Exsmples.
plane, and is acted on by a hori- T triotions)
zontal force whose line of action . o i
138 midway between two of the
vertical sides. Find the mag-
nitude of the force when just
suffictent to produce motion,
and whether the motion will

be of the nature of sliding or
overturning.

If the force P is on the point of overturning‘ the body, 1t is
evident that it will turn about the edge A, and therefore the
pressure, £, of the plane and the friction, §, act at that edge.

Our statical conditions are, of course,

R=W,
=P
Wb = Pa,
where b 1s half the length of the solid, and a the distance of P
from the plane. From these we have S =% W.
Now S cannot exceed wR, whence we must not have 2

greater than u, if 1t 1s to be possible to upset the body by a
horizontal force in the line given for P.

A simple geometrical construction enables us to solve this
and similar problems, and will be seen at once to be merely a
graphic representation of the above process. Thus if we pro-
duce the directions of the applied force, and of the weight, to
meet in H, and make at A the angle BAK whose co-tangent
is the coefficient of friction: there will be a tendency to upset,
or not, according as H is above, or below, AKX,

Ez. V. A mass, such as a gate, is supported by two rings, ,. sup-

4 and B, which pass loosely round a vertical post. In equi- Ported by

rings pass-

librium, it is obvious that at 4 the part of the ring nearest the o
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mmes. mass, and at B the part farthest from it, will be in contact with

ported by the post. The pressures exerted
rings pass-
ing round a on the rings, £ and §, will evi-

rough post. S

N L0 2
dently be in the directions AC;
| OB, indicated in the diagram,
which, if no other force besides
QfT w T% gravity act on the mass, must
meet in the vertical through 1ts
centre of inertia. And it 1s obvious that, however small be the
coefficient of friction, provided there be any force of friction at
all, equilibrium 1s always possible if the distance of the centre
of inertia from the post be great enough compared with the
distance between the rings.

When the mass is just about to slide down, the full amount
of friction is called into play, and the angles which R and S
make with the horizon are each equal to the sliding angle. If
the centre of inertia of the gate be farther from the post than
the intersection of two lines drawn from A4, B, at the sliding
angles, 1t will hang stably held up by friction; not unless. A
force pushing upwards at @,, or downwards at Q,, will remove
the tendency to fall ; but a force upwards at @Q,, or downwards
at Q,, will produce sliding. -'

A similar investigation is easily applied to the jamming of a
sliding piece or drawer, and to the determination of the proper
point of application of a force to move it.

573. Having thus briefly considered the equilibrium of a
rigid body, we propose, before entering upon the subject of the
deformation of elastic solids, to consider certain intermediate
cases, in each of which we make a particular assumption the
basis of the investigation, and thereby avoid a very considerable

amount of analytical difficulty.

Equilibrium 074  Very excellent examples of this kind are furnished by
of a flexible +1)o statics of a flexible and inextensible cord or chain, fixed
siblecord. ot both ends, and subject to the action of any forces. The
curve in which the chain hangs in any case may be called a
Catenary. Catenary, although the term 1s usually restricted to the case of

a uniform chain acted on by gravity only.
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575. We may consider separately the conditions of equi- rhree
librium of each element; or we may a,pply the gener&l condition ;‘:‘;ﬁi‘;&i& of
(§ 292) that the whole potentlal energy is a minimuny, in the "™
case of any conservative system of forces; or, especially when
gravity 1s the only external force, we may consider the equi-
librium of a finite portion of the chain treated for the time as

a rigid body (§ 564).

676. The first of these methods gives 1mmedlately the Equationsof

uilibrium
three followmg equations of equilibrium, for the catenary in with Eefer
: ence vo
-genera.l — tangent and
. osculating

plane.
(1) The rate of variation of the tension per unit of length

along the cord is equal to the tangential component of the
applied force, per unit of length.

(2) The plane of curvature of the cord contains the normal

component of the applied force, and the centre of curvature is
.on the oppesite side of the arc from that towards which this

force acts.

(3) The amount of the curvature is equal to the normal

- component of the applied force per unit of length at any point

divided by the tension of the cord at the same point.

The first of these is simply the equation of equilibrium of
an 1nfinitely small element of the cord relatively to tangential
motion. The second and third express that the component of
the resultant of the tensions at the two ends of an infinitely
small arc, along the normal through its middle point is directly
opposed and 1s equal to the normal applied force, and is equal
to the whole amount of it on the arc. For the plane of the
tangent lines in which those tensions act is (§ 8) the plane
of curvature. And if € be the angle between them (or the in-
finitely small angle by which the angle between their positive
directions falls short of 7), and 7' the arithmetical mean of
their magnitudes, the component of their resultant along the
line bisecting the angle between their positive. directions is

- 2T sin 36, rigorously : or 79, since € is infinitely small. Hence

16 = Nés, if ds be the length of the arc, and Nds the whole
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o8

amount of normal force applied to it. But (§ 9) 0=—1f p

P

be the radius of curvature; and therefore

p T
which is the equation stated in words (3) above.

577. From (1) of § 576, we see that if the applied forces
on each particle of the cord constitute a conservative system,
and if the cord be homogeneous, the difference of the tensions
of the cord at any twq points of it when hanging in equl-
librium, is equal to the difference of the potential (§ 485) of the
forces between the positions occupied by these points. Hence,
whatever be the position where the potential is reckoned zero,

the tension of the string at any point is equal to the potential
at the position occupied by it, with a constant added.

578. Instead of considering forces along and perpendicular
to the tangent, we may resolve all parallel to any fixed direc-
tion: and we thus see that the component of applied force per
unit of length of the chain at any poeint of 1t, must be equal to
the rate of diminution per unit of length of the cord, of the
component of 1ts tension parallel to the fixed lne c:f th:ls com-
ponent, By choosing any three fixed rectangular directions we
thus have the three differential equations convenient for the
analytical treatment of catenaries by the method of rectangular

co-ordinates,

These equations are
d da
— ——— ] T — X
ds(Tds) o ]
d dy _ 1
ES(TEE)" Y b oeiirereeeen (L),

d dz
Z(T%)=—72

if s denote the length of the cord from any point of it, to a point
P; x, y, = the rectangular co-ordinates of P; X, Y, Z the com-
ponents of the applied forces at P, per unit mass of the co.rd; o
the mass of the cord per unit length at P; and 7 its tension at

this point.
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These equations afford analytical proofs of § 6576, (1), (2), and Cartesian _
(3) thus:—Multiplying the first by dx, the second by dy, and equilibrium.
the third by d#, adding and observing that

de de dy dy dz,de , do’+dy’+d’
%%t ds s T ds T
we have
AT = — o (Xd + Ydy + Zd2) =-a(,x€3.‘f+ Y@+Z°—Z?) ds...(2)
- ds ~ds ~— ds ’
which is (1) of § 576. Again, eliminating d7" and 7', we have
dy dz dz .dy dz dz dzde dz dy dy . dz\
X(@dﬁ‘?ﬁda)*‘y('&da“?Edd"s)*Z(E ﬁ‘dsdds)—o ......... (3),

which (8§ 9, 26) shows that the resultant of X, ¥, Z is in the
osculating plane, and therefore is the analytical expression of

§ 576 (2). Lastly, multiplying the first by d—d—m the second by

ds’
g—g and the third by dgz , and adding, we find

(de—%rd‘-’z—@hzﬁf ds
ds 8

T=—0“'——§A—ds_' ............. (4:),
CECIEE)
ds ds ds

which is the analytical expression of § 576 (3).

679. The same equations of equilibrinm may be derived Method of
from the energy condition of equilibrium; analytically with **“®"
ease by the methods of the calculus of variations.

Let V be the potential at (x, y, ) of the applied forces per catenary
unit mass of the cord. The potentiak energy of any given length

of the cord, in any actual position between two given fixed points,
will be [ Vods.

This integral, extended through the given length of the cord
between the givenm points, must be a minimum ; while the in-
definite integral, s, from one end up to the point (, y, z) remains
unchanged by the variations in the positions of this point.
Hence, by the calculus of variations,

[ Vods + [Adds =0,
where A is a function of z, ¥, z to be eliminated.
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Oatenary. Now ¢ is a function of s, and therefore as & does not vary
when z, 3, z are changed into z+&, y+8y, 2+ 0%, the co-ordinates
of the same particle of the chain in another position, we have

3 (V)= a8V =—0c(Xdx+ Yoy + Zdz).
Using this, and |
Sds —

daddx + dyddy + dzddz
— —Z,

in the variational equation ; and integrating the last term by
parts according to the usual rule; we have
)] Ez

fds;[o'X+-—-(Va*+h )]8:u+[aY+—-(Vo'+h—):|6y+[0'Z+ (

Energy whence finally

equation of
ethbnum

{(Vcr + A) ds}+ Xo= 0

d
ds
d

{(Vo'—l- )\.) }+ Yo =0,

d | dz) B
CE {(Vﬂ' -+ A.)a-sj' +Z(T.— 0,

which, if 7' be put for Vo + A, are the same as the equations (1)
of § 578.

Common 580. The form of the common catenary (§ 574) may be of
U course mvesmgated from the differential equations (§ 578) of
the catenary in gemeral. It is convenient and instructive,

however, to work it out ab initio as an illustration of the third
method explained in § 575.

- Third method.—The chain being in equilibrium, any arc of it
may be supposed to become rigid without disturbing thé equi-
librium. The only forces acting on this rigid body are the
tensions at its ends, and its weight. These forces being three
in number, must be in one plane (§ 564), and hence, since one
of them is vertical, the whole curve lies in a vertical plane. In
this plane let x,, %,, 8, Z,, %, 8 belong to the two ends of the
arc which is supposed rigid, and 7', T, the tensions at those
points. Resolving horizontally we have

dx dux
7, (%) (&),
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dic .

Hence 7'— is constant throughout the curve. Resolving verti- Catenery,
ds . common,

cally we have

dz dz
1 (?s);' Lo (E§>f 7 (8, = &)

the weight of unit of mass being now taken as the unit of force.

dz

Hence if 7, be the tension at the lowest pomt where 5= = 0,
s =0, and 7 the tension at any point (z, 2) of the curve, we have
s ds |
T=T, 7 = El_:é .............................. (1).
Hence |
ad fdz\
Lo g (dm) -
d*z dz\?
or Toag—-o--——-zo' \/1+ .................. (2).
Integrating we have

dz dz o ,
lﬁg{ti.’.ﬂ \/l-l-(dw)} '?7—{;93'}'.0,

‘and the constant is zero if we take the origin so that x =0, when

ﬁ= 0, ¢.e., where the chain is horizontal.

dx
Hence

J 1+(5 ) =€ i (3),
whence d:,v =3 (iT“’ — € f“ ):
and by integrating again

2+ 0" = [“ (ET"’ -+ e_ﬁx)
This may be written
& %
2= éaj (ca + € f.l) .......................... (4),

the ordinary equation of the catenary, the axis of # being taken

T

at a distance @ or -;‘? below the horizontal element of the ehain.
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The co-ordinates of that element are therefore z=0,
2= % —a. 'The latter shows that

T, = oa,

or the tension at the lowest point of the chain (and therefore

also the horizontal component of the tension throughout) is the
weight of a length a of the chain.

Now, by (1), T'= Tﬂi—-i= oz, by (4), and therefore
the tension at any point 1s equal to the weight of a portion of
the chain equal to the vertical ordinate at that point.

581. From § 576 1t follows immediately that if a material
particle of unit mass be carried along any catenary with a velo-
city, 8, equal to 7, the numerical measure of the tension at any
point, the force upon 1t by which this is done is in the same
direction as the resultant of the applied force on the catenary at
this point, and 18 equal to the amount of this force per unit of
length, multiplied by 7. For, denoting by S the tangential
and (as before) by - the normal component of the applied
force per unit of length at any point P of the catenary, we
have, by § 576 (1), S for the rate of variation of § per unit
length, and therefore Ss for its variation per unit of time. That
is to say,

s= S8 =8T,

or (§ 259) the tangential component force on the moving
particle is equal to ST. Again, by § 576 (3),
vr=L_%,
p P

or the centrifugal force of the moving particle in the circle of
curvature of its path, that is to say, the normal component of
the force on 1t, 18 equal to N7I. And lastly, by (2) this force
13 1n the same direction as N. We see therefore that the
direction of the whole force on the moving particle is the
same as that of the resultant of § and N; and its magnitude
s T times the magnitude of this resultant.
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Or, by taking aneg,iiﬁ
uestion
?“ — W4, catenary.

in the differential equation of § 578, we have

d’x d*y dz
A —TG’X, Et—a":'—To'Y: — TU‘Z!

dt’
which proves the same conclusion.

When o is constant, and the forces belong to a conservative
system, if ¥ be the potential at any point of the cord, we have,
by § 578 (2), T=cV+C.

Hence, if U=3(a¥V + () these equations become
ad’x dU  d% dU d’z alu

¢ dx’ df  dy’ df  dz

The integrals of these equations which agree with the catenary,
are those only for which the energy constant is such that $*=2U.

982. Thus we see how, from the more familiar problems Exampies.

of the kinetics of a particle, we may immediately derive curious
cases of catenaries. For instance: a particle under the in-
fluence of a constant force in parallel lines moves (Chap, VIIL)
1n a parabola with its axis vertical, with velocity at each point
equal to that generated by the force acting through a space
equal to 1ts distance from the directrix. Hence, if 2z denote
this distance, and f the constant force,

T=J3F

in the allied parabolic catenary; and the force on the catenary

18 parallel to the axis, and is equal in amount per unit of
length, to

Hence if the force on the catenary be that of gravity, it must
have its axis vertical (its vertex downwards of course for stable
equilibrium) and its mass per unit length at any point must be
inversely as the square root of the distance of this point above
the directrix. From this it follows that the whole weight of
any arc of it i1s proportional to its horizontal projection. Or,
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Examples. again, as will be proved later with reference to the motions of
comets, a particle moves in a parabola under the influence of a
force towards a fixed point varying inversely as the square of
the distance from this point, if its velocity be that due to falling
2p
| r’
distance 7, it follows, according to § 581, that a cord will hang
in the same parabola, under the influence of a force towards

the same centre, and equal to

2 2

If however, the length of the cord be varied between two
fixed points, the central force still following the same law, the
altered catenary will no longer be parabolic: but it will be
the path of a particle under the influence of a central force

equal to )
l"

since (§ 581) we should have,
. ch+C—-—-a'f,\/ dr + C= o 2’u'+0'

instead of \/

Catenary. 583. Or if the question be, to find what force towards a
probleon. given fixed point, will cause a cord to hang in any given plane
curve with this point in its plane; it may be answered im-
mediately from the solution of the corresponding problem in

“ central forces

But the genera,l equa,tlons § 578, are a,lwa,ys easily ap-
plicable; as, for instance, to the following curious and interest-
ing, but not practically useful, inverse case of the gravitation
catenary :—

Cutenaryof  Find the section, at each point, of a chain of umiform

srength.  material, so that when its ends are fiwed the tension at each pount

may be proportional to its section at that pont. Find also the
form of the Curve, called the Catenary of Umiform Strength, wn
whach 1t unll hang.

from rest at an infinite distance. This velocity being , at
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Here, as the only external force 18 gravity, the chain is in a Catenary of

vertical plane—in which we may assume the horizontal axis of = é‘:?i-}.fﬁ;?h

to lie. If u be the weight of the chain at the point (x, 2)
reckoned per unit of length ; our equations [§ 578 (1)] become

d (, d d [, d2\
#(T%) =0 c‘z‘s(chs)""“

But, by hypothesis 77 p. Let it be bp. Hence, by the first
equation, if x, be the value of u at the lowest point

ds
F"‘_‘FGE".E.;

whence, by the second equation,

; d’z 1 dz\*
i H - d—x'i—g[l-l- —E)].

Integrating we find

dz
t ].'1--l — T e
VT
no constant being required if we take the axis of x 5o as to touch
the curve at its lowest point. Integrating again we have

l m
~ log cos —,

V]

no constant being added, if the origin be taken at the lowest
point. We may write the equation in the form

x £

SecC 3 = b,
From this form of the equation we see that the curve has vertical
agymptotes at a horizontal distance #b from each other. Hence
wb i8 the greatest possible span, if the ends are on the same
level, or the horizontal projection of the greatest possible span
if they be not on the same level; b denoting the length of a
uniform rod or wire of the material equal in weight to the
tenslon of the catenary at any point, and equal in sectional area
to the sectional area of the catenary at the same point. The

greatest possible value of b is the ‘length modulus of rupture”
(8§ 687, 688 below).
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684. When a perfectly flexible string is stretched over a
smooth surface, and acted on by no other force throughout its
length than the resistance of this surface, it will, when in
stable equilibrium, lie along a line of minimum length on the
surface, between any two of its points. For (§ 564) its equili-
brium can be neither disturbed nor rendered unstable by
placing staples over it, through which it is free to slip, at any
two points where 1t rests on the surface: and for the inter-
mediate part the energy criterion of stable equilibrium is that
just stated.

There being no tangential force on the string in this case,
and the normal force upon it being along the normal to the
surface, 1ts osculating plane (§ 576) must cut the surface every-
where at right angles, These considerations, easily translated
into pure geometry, establish the fundamental property of the
geodetic lines on any surface. The analytical investigations
of §& 578, 579, when adapted to the case of a chain of not given
length, stretched between two given points on a given smooth
surface, constitute the direct analytical demonstration of this

property.
In this case it is obvious that the tension of the string is
the same at every point, and the pressure of the surface

upon it is [§ 576 (3)] at each point proportional to vhe curvature
of the string.

585. No real surface being perfectly smooth, a cord or chain
may rest upon it when stretched over so great a length of a
geodetic on a convex rigid body as to be not of minimum length
between its extreme points: but practicaily, as in tying a cord

round a ball, for permanent security 1t 18 necessary, by staples
or otherwise, to constrain it from lateral shpping at successive

points near enough to one another to make each free portion a
true minimum on the surface.

686. A very important practical case is supplied by the
consideration of a rope wound round a rough cylinder. We
may suppose it to lie in a plane perpendicular to the axis, as we
thus simplify the question very considerably without sensibly
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injuring the utility of the solution. To simplify still further, we Rope ooiled
. about ro
shall suppose that no forces act on the rope, but tensions and cylinder.

the reaction of the cylinder. In practice this is equivalent to
the supposition that the tensions and reactions are very large
compared with the weight of the rope or chain; which, how-
ever, 1s 1nadmissible 1n some important cases; especially such
as occur 1n the application of the principle to brakes for laying
submarine cables, to dynamometers, and to windlasses (or
capstans with horizontal axes).

If Rbe the normal reaction of the cylinder per unit of length
of the cord, at any point; 7 and T + 87 the tensions at the
extremities of an arc ds; 66 the inclination of these lines; we
have, as in § 576,

140 = Ros.

And the friction called into play is evidently equal to o7.
When the rope is about to slip, the friction has its greatest
value, and then

0T = uRos = uT40.
This gives, by integration,
T= Te",

showing that, for equal successive amounts of 1ntegral curva-
ture (§ 10), the tension of the rope augments in geometrical
progression. To give an idea of the magnitudes 1involved,
suppose u = 025, = 2, then

T= T, = 481T, approximately.

Hence if the rope be wound three times round the post or
cylinder the ratio of the tensions of its ends, when motion is
about to commence, 1s

(4'81)°: 1 or about 111 : 1.

Thus we see how, by the aid of friction, one man may easily
check the motion of a large ship, by the simple expedient of
coiling a rope a few times round a post. This application of
friction 1s of great importance in many other uses, especially
for dynamometers.

VOL. II. 9
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_ _ _ _ o 990. The geometrical composition of curvatures with one Compos-
Rope colled  587.  With the aid of the preceding investigations, the another, or with rates of twist, is obvious from the definition solution of

about rough

eylinder. student may easily work out for himself the formuls expressing curvatures

and principles regarding curvature given above in §§ 5—13 in & curved

Elastic wire.

the solution of the general problem of a cord under the action
of any forces, and constrained by a rough surface; they are
not of sufficient importance or interest to find a place here.

588. An elongated body of elastic material, which for
brevity we shall generally call a Wire, bent or twisted to any

and twist in §§ 119—123, and from the composition of angular
velocities explained in § 96. Thus if one line, T, of a rigid
body be always held parallel to the tangent, PT, at a point P
moving with unit velocity along a curve, whether plane or
tortuous, it will have, round an axis perpendicular to ¢(BT and

Foatio vire, degree, subject only to the condition that the radius of curva- to the :E'a,diu*s of curvature (that 1s -to Say, pe}'pendicula.r to the
;?.“m‘“g‘“ ture and the reciprocal of the twist (§ 119) are everywhere osculating plane), an angular velocity numerically equal to the

very great in comparison with the greatest transverse dimen-
sion, presents a case in which, as we shall see, the solution of
the general equations for the equilibrium of an elastic solid 1s
either obtainable in finite terms, or is reducible to compara-
tively easy questions agreeing in mathematical conditions with
some of the most elementary problems of hydrokinetics, elec-
tricity, and thermal conduction. And it is only for the deter-
mination of certain constants depending on the section of the
wire and the elastic quality of its substance, which measure its
flexural and torsional rigidity, that the solutions of these pro-
blems are required. When the constants of flexure and torsion
are known, as we shall now suppose them to be, whether from
theoretical calculation or experiment, the investigation of the
form and twist of any length of the wire, under the influence
of any forces which do not produce a violation of the condition
stated above, becomes a subject of mathematical analysis in-
volving only such principles and formule as those that con-
stitute the theory of curvature (§§ 5—13) and twist (§§ 119—
123) in geometry or kinematics.

689. Before entering on the general theory of elastic solids,
we shall therefore, according to the plan proposed in § 573,
examine the dynamic properties and investigate the conditions
of equilibrium of a perfectly elastic wire, without admitting
any other condition or limitation of the circumstances than
what 1s stated 1 § 588, and without assuming any special
quality of isotropy, or of crystalline, fibrous or laminated struc-
ture in the substance. The following short geometrical digres-
sion 18 a convenient preliminary :—

curvature. The body may besides be made to rotate with any
angular velocity round @B@. Thus, for instance, if a line of it,
MDA, be kept always parallel to a transverse (§ 120) PA, the
component angular velocity of the rigid body round €T will
at every instant be equal to the * rate of twist ” (§ 120) of the
transverse round the tangent to the curve. Again, the angular
velocity round DA may be resolved into components round
two lines (B3R, A, perpendicular to one another and to O ;
and the whole curvature of the curve may be resolved accord-
ingly into two component curvatures in planes perpendicular
to those two lines respectively. The amounts of these com-
ponent curvatures are of course equal to the whole curvature
multiplied by the cosines of the respective inclinations of the
osculating plane to these planes. And 1t 1s clear that each
component curvature is simply the curvature of the projection
of the actual curve on its plane¥*.

591. Besides showing how the constants of flexural and
torsional rigidity are to be determined theoretically from the
form of the transverse section of the wire, and the proper data.
as to the elastic qualities of 1its substance, the complete theory
simply indicates that, provided the conditional limit (§ 588)
of deformation 1s not exceeded, the following laws will be
obeyed by the wire under stress :—-

* The curvature of the projection of a curve on a plane inclined at an
angle a to the osculating plane, 18 {1/p) cosa if the plane be parallel to the
tangent; and 1/pcos?a if it be parallel to the principal normal (or radius of
absolute curvature). There is no difficulty in proving either of these expres-
gions,

9—2
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Let the whole mutual action between the parts of the
wire on the two sides of the cross section at any point (being of
course the action of the matter infinitely near this plane on one
side, upon the matter infinitely near it on the other side), be
reduced to a single force through any point of the section and a
single couple. Then—

I. The twist and curvature of the wire in the neighbourhood
of this section are independent of the force, and depend solely
on the couple.

II. The curvatures and rates of twist producible by any
several couples separately, constitute, if geometrically com-
pounded, the curvature and rate of twist which are actually
produced by a mutual action equal to the resultant of those
couples.

592. It may be added, although not necessary for our
present purpose, that there is one determinate point In the
cross section such that if it be chosen as the point to which
the forces are transferred, a higher order of approximation is
obtained for the fulfilment of these laws than if any other
point of the section be taken. That point, which in the case
of a wire of substance uniform through its cross section 1s the
centre of inertia of the area of the section, we shall generally
call the elastic centre, or the centre of elasticity, of the section.
It has also the following important property:—The line of
elastic centres, or, as we shall call it, the elastic central line,
remains sensibly unchanged in length to whatever stress within
our conditional limits (§ 588) the wire be subjected. The elon-
gation or contraction produced by the neglected resultant force,
if this is in such a direction as to produce any, will cause the
line of rigorously no elongation to deviate only infinitesimally
from the elastic central line, in any part of the wire finitely
curved. It will, however, clearly cause there to be no line of
rgorously unchanged length, 1n any straight part of the wire:
but as the whole elongation would be infinitesimal in compari-
sion with the effective actions with which we are concerned,
this case constitutes no exception to the preceding statement.
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593. Considering now a wire of uniform constitution and wurping of
figure throughout, and naturally straight; let any two planes fionbvy .
of reference perpendicular to one another through its elastic ftﬂ?ﬁ:ﬁg—d
central line when straight, cut the normal section through fimitesimal.
P in the lines PK and PL. These two lines (supposed to
belong to the substance, and move with 1t) will remain in-
finitely nearly at right angles to one another, and to the tan-
gent, PT, to the central line, however the wire may be bent Rotations

: -y O b .
or twisted within the conditional limits. Let x and A be the imgto

component curvatures (§ 590) in the two planes perpendicular torsion.
to PK and PL through PT, and let T be the twist (§ 120) of
the wire at . 'We have just seen (§ 590) that if P be moved
at a unit rate along the curve, a rigid body with three rectan-

gular axes of reference MR, L, AT kept always parallel to
PK, PL, PT, will have angular velocities #, A, 7 round those

axes respectively. Hence if the point P and the lines PT,
PK, PL be at rest while the wire is bent and twisted from 1its
unstrained to its actual condition, the lines of reference P'K’,
P'L', P'T’ through any point P’ infinitely near P, will ex-
perience a rotation compounded of «.PP’ round P'K’, ». PF
round P’L’, and r. PP’ round P'T".

594. Considering now the elastic forces called into action, Potential
. . . energy of
we see that if these constitute a conservative system, the work elastic force

) ] ¥ in bent and
required to bend and twist any part of the wire from its un- twisted
strained to its actual condition, depends solely on its figure in
these two conditions. Hence if w. PP’ denote the amount of

this work, for the infinitely small length PP’ of the rod, w

must be a function of x, A, 7; and therefore if K, L, T denote

the components of the couple-resultant of all the forces which

must act on the section through P’ to hold the part PP’ in 1its

strained state, it follows, from §§ 240, 272, 274, that
Kdx = 8w, LoX = 0w, ToT = d,w

where S,w, d,w, 6,w denote the augmentations of w due respec-
tively to infinitely small augmentations d«, oA, o7, of &, A, 7.

595. Now however much the shape of any finite length of
the wire may be changed, the condition of § 588 requires
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fggggyﬁg; clearly that the changes of shape in each infinitely small part,

elastio force that iy to say, the strain (§ 154) of the substance, shall be

twisted  gverywhere very small (infinitely small in order that the theory
may berigorously applicable). Hence the principle of super-
position [§ 591, i1.] shows that if &, A, 7 be each increased or
diminished in one ratio, K, L, T will be each increased or
diminished in the same ratio: and consequently w in the
duplicate ratio, since the angle through which each couple acts
is altered in the same ratio as the amount of the couple; or, in
algebraic language, w is a homogeneous quadratic function of

K, N, T.

Thus if 4, B, C, a, b, ¢ denote six constants, we have

w= (A&’ + BX* + O7% + 2aAt + 2bvx + 2ekA) ...........(2).
Hence, by § 594 (1), '
Compo- K=Ax+ e\ +br
restituent L=ck +Br+ar\............... (3).
couple. T=0bk +al +Cr | |

By the known reduction of the homogeneous quadratic function,
these expressions may of course be reduced to the following

simple forms :—
w=3%(4 3"+ 4,5+ 4,9, } (4)
leAS' .LﬂzAES’B,'LEZAHSB veas s 3

171?

where 9,, J,, 3, are linear functions of x, A, . And if these
functions are restricted to being the expressions for the com-
ponents round three rectangular axes, of the rotations «, A, 7
viewed as angular velocities round the axes PA, PL, PT, the
positions of the new axes, PQ., P¢,, P@,, and the values of 4,,
4,, A, are determinate ; the latter being the roots of the deter-
minant cubic: [§ 181 (11)] founded on (4, B, C, a, b, ¢). Hence
we conclude that

Threeprin. 596, There are in general three determinate rectangula:
cipal or nor-

malazes directions, P@Q, PQ,, P, through any point P of the middle

of torsion , . . , T

and flexure. line of a wire, such that if opposite couples be applied to any
two parts of the wire in planes perpendicular to any one of
them, every intermediate part will experience rotation in a

Three

principsl  Plane parallel to those of the balanced couples. The moments
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597. If the rigid body imagined in § 593 have moments of
1nertia equal to 4, 4,, A, round three principal axes through
@ kept always parallel to the principal torsion-flexure axes
through P, while P moves at unit rate along the wire, its
moment of momentum round any axis (§§ 281, 236) will be
equal to the moment of the component torsion-flexure couple
round the parallel axis through 2.

Let / be the length of the wire from one end, Z, held fixed, to
the other end, £’, where a couple, L, is applied in a plane per-
pendicular to the principal axis P§), through any point of the

wire. The rotation being [§ 595 (4)] at the rate -:f—, per unit
1
of length, amouncs on the whole to / % This therefore 1s the

1
~angular space occupied by the helix on the cylinder on which it

lies. Hence if r denote the radius of this cylinder, and i, the
inclination of the helix to its axis (being the inclination of P@),

to the length of the wire), we have

Li .
r— ={8ine,;

4,

whence P e v ienes 5
_ . (5)

of the couples required to produce unit rate of rotation round torsion-
these three axes are called the principal torsion-flexure rigidities
of the wire. They are the elements denoted by 4, 4., 4, in
the preceding analysis. '

flexure
rigidities.

698. The form assumed by the wire when balanced under Tiree prin-
the influence of couples round one of the three principal axes
is of course a uniform helix having a line parallel to it for axis,
and lying on a cylinder whose radius is determined by the
condition that the whole rotation of one end of the wire from
its unstrained position, the other end being held fixed, is equal
to the amount due to the couple applied.

cipal or nor-
mal spirals.
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599. In the most important practical cases, as we shall
see later, those namely in which the substance 1s either “1so-
tropic,” as is the case sensibly with common metallic wires,
or, as in rods or beams of fibrous or crystalline structure, with
an axis of elastic symmetry along the length of the piece, one
of the three normal axes of torsion and flexure coincides
with the length of the wire, and the two others are perpend:i-
cular to it; the first being an axis of pure torsion, and the two
others axes of pure flexure. Thus opposing couples round the
axis of the wire twist it simply without bending it; and op-
posing couples in either of the two principal planes of flexure,
bend it into a circle. The unbent straight line of the wire,
and the circular ares into which it is bent by couples in the
two principal planes of flexure, are what the three principal
spirals of the general problem become 1n this case.

A simple proof that the twist must be uniform (§ 123) 18
found by supposing the whole wire to turn round its curved
axis; and remarking that the work done by a couple at one
end must be equal to that undone at the other.

600. In the more particular case in which two principal
rigidities against flexure are equal, every plane through the
length of the wire is a principal plane of flexure, and the
rigidity against flexure is equal in all. This is clearly the case
with a common round wire, or rod: or with one of square
section. It will be shown later to be the case for a rod of
isotropic material and of any form of normal section which 1s
“kinetically symmetrical,” § 285, round all axes in 1ts plane
through its centre of inertia.

601. In this case, if one end of the rod or wire be held
fixed, and a couple be applied in any plane to the other end,
a uniform spiral (or helical) form will be produced round an
axis perpendicular to the plane of the couple. 'The lines of the
substance parallel to the axis of the spiral are not, however,
parallel to their original positions, as (§ 598) i each of the
three principal spirals of the general problem: and lines
traced along the surface of the wire parallel to its length
when straight, become as it were secondary spirals, circling
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round the main spiral formed by the central line of the Cagglof |

deformed wire; instead of being all spirals of equal step, as in bility ﬁign:ll

each one of the principal spirals of the general problem. Lastly,
in the present case, if we suppose the normal section of the
wire to be circular, and trace uniform spirals along its surface
when deformed in the manner supposed (two of which, for
instance, are the lines along which it 1is touched by the in-
scribed and the circumscribed cylinder), these lines do not
become straight, but become spirals laid on as 1t were round
the wire, when it is allowed to take its natural straight and
untwisted condition. '

Let, in § 595, PQ, coincide with the central line of the wire,
and let 4, =4, and 4,= A4, =B ; so that 4 measures the rigidity
of torsion and B that of flexure. One end of the wire being
held fixed, let a couple & be applied to the other end, round an
axis inclined at an angle @ to the length. The rates of twist and
of flexure each per unit of length, according to (4) of § 595,
will be

| G cos 6 and G sin 6

4 7 B’

respectively, The latter being (§ 9) the same thing as the
curvature, and the inclination of the SPira,l to its axis being 6, 1t

follows (§ 126, or § 590, footnote) that - s;n 9

curvature of its projection on a plane perpendicular to this line,
that is to say, the radius of the cylinder on which the spiral lies.

is the radius of

602. A wire of equal flexibility in all directions may clearly Wi
be held in any specified spiral form, and twisted to any stated E.n?mver;
degree, by a determinate force and couple applied at one end, twist.

the other end being held fixed. The direction of the force
must be parallel to the axis of the spiral, and, with the couple,
must constitute a system of which this line i1s (§ 559) the
central axis: since otherwise there could not be the same
system of balancing forces in every normal section of the
spiral. All this may be seen clearly by supposing the wire to
be first brought by any means to the specified condition of
strain; then to have rigid planes rigidly attached to its two
ends perpendicular to its axis, and these planes to be ngidly
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Wire connected by a bar lying in this line. The spiral wire now 603. A wire of equal flexibility in all directions may be Twistde-
?fn?l%lﬁena left to itself cannot but be in equilibrium: although if it be held in any stated spiral form by a simple force along its axis reducingihe
bwist. too long (according to its form and degree of twist) the equib- between rigid pieces rigidly attached to its two ends, provided single force.

brium may be unstable. The force along the central axis, and
the couple, are to be determined by the condition that, when
the force is transferred after Poinsot’s manner to the elastic

centre of any normal section, they give two couples together
equivalent to the elastic couples of flexure and torsion.

Let a be the inclination of the spiral to the plane perpendicular
to its axis ;  the radius of the cylinder on which it lies; = the
rate of twist given to the wire in its spiral form. The curvature
- cos’ a.
is (§ 126) equal to -
spiral, being the plane of the tangent to the spiral and the
diameter of the cylinder through that point, is inclined at the
angle a to the plane perpendicular to the axis. Heuce the com-
ponents in this plane, and in the plane through the axis of the

cylinder of the flexural couple, are respectively

B cos®a Becos®a .
cos a, and " sin a,
s

; and its plane, at any point of the

Also, the components of the torsional couple, in the same planes,

are Arsina, and — 4rcos o.
Hence, for equilibrium, 2ot
cos® a i
G = cosa + Arsina

r cevreenena(B),

Bcos®a .
sina — AT cOS a
?I

— Rr=

which give explicitly the values, @ and R, of the couple and force
required, the latter being reckoned as positive when its direction
is such a8 to pull out the spiral, or when the ends of the rigidr bar
‘supposed above are pressed inwards by the plates attached to the
~ ends of the spiral.
If we make & =0, we fall back on the case considered previ-
ously (§ 601). If, on the other hand, we make G =0, we have

1 B cos®a

ol e e -

r 4d sina’

and = =

from which we conclude that

that, along with its spiral form, a certain degree of twist be
given to 1t. The force 1s determined by the condition that its
moment round the perpendicular through any point of the
spiral to its osculating plane at that point, must be equal
and opposite to the elastic unbending couple. The degree of
twist is that due (by the simple equation of torsion) to the
moment of the force thus determined, round the tangent at
any point of the spiral. The direction of the force being,
according to the preceding condition, such as to press together
the ends of the spiral, the direction of the twist in the wire 1s
opposite to that of the tortuosity (§ 9) of its central curve.

604. The principles and formuléa &8 598, 603) with which spiral

gprings,

we have just been occupied are immediately applicable to the
theory of spiral springs; and we shall therefore make a short
digression on this curious and important practical subject before
completing our investigation of elastic curves.

A common spiral spring consists of a uniform wire shaped
permanently to have, when unstrained, the form of a regular
helix, with the principal axes of flexure and torsion everywhere
similarly situated relatively to the curve. When used in the
proper manner, it is acted on, through arms or plates rigidly at-
tached to its ends, by forces such that 1ts form as altered by them
is still a regular helix. This condition is obviously fulfilled if
(one terminal being held fixed) an infinitely small force and
infinitely small couple be applied to the other terminal along
the axis and in a plane perpendicular to it, and if the force and
couple be increased to any degree, and always kept along and
in the plane perpendicular to the axis of the altered spiral. It
would, however, introduce useless complication to work out the
details of the problem except for the case (§ 599) in which one
of the principal axes coincides with the tangent to the central
line, and is therefore an axis of pure torsion; as spiral springs
in practice always belong to this case. On the other hand, a very
interesting complication occurs if we suppose (a thing easily
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realized 1n practice, though to be avoided if merely a good
spring 1s desired) the normal section of the wire to be of such a
figure, and so situated relatively to the spiral, that the planes
of greatest and least flexural rigidity are oblique to the tangent
plane of the cylinder. Such a spring when acted on in the
regular manner at 1ts ends must experience a certain degree of
turning through its whole length round its elastic central curve
In order that the flexural couple developed may be, as we shall
immediately see it must be, precisely in the osculating plane of
the altered spiral. But all that 1s interesting in this very
curious effect will be illustrated later (§ 624) in full detail in the
case of an open circular arc altered by a couple in its own plane,
into a circular arc of greater or less radius; and for brevity
and simplicity we shall confine the detailed investigation of
spiral springs on which we now enter, to the cases in which
either the wire 1s of equal flexural rigidity in all directions, or
the two principal planes of (greatest and least or least and
greatest) flexural rigidity coincide respectively with the tangent
plane to the cylinder,and the normal plane touching the central
curve of the wire, at any point.

605. The axial force, on the moveable terminal of the spring,
transferred according to Poinsot’s method (§ 555) to any point
1n the elastic central curve, gives a couple in the plane through
that point and the axis of the spiral. The resultant of this and
the couple which we suppose applied to the terminal in the
plane perpendicular to the axis of the spiral is the effective
bending and twisting couple : and as it is in a plane perpen-
dicular to the tangent plane to the cylinder, the component of
1t to which bending is due must be also perpendicular to this
plane, and therefore is in the osculating plane of the spiral.
This component couple therefore simply maintains a curvature
different from the natural curvature of the wire, and the other,
that is, the couple in the plane normal to the central curve,
pure torsion. The equations of equilibrium merely express
this in mathematical language.

Resolving as before (§ 602) the flexural and the torsional
couples each into components in the planes through the axis ot

By i 4
R=-GWE-) ¢~ Y-8} | 1P+ Lag-a) s

605.] STATICS. 141

the spiral, and perpendicular to it, we have

ﬁ

3 g

COS a COS5" a .

G=2RB - 0) cos &'+ A7 8in o, |
T ’ru

4 2

cosa cos®a) . L

—R?':B( - 'r_ﬂ sin @'~ Ar coga’, $--(7),
G

cosaslia coOSa. Sina
and, by § 126, = 0 0

r To

)

-

where 4 denotes the torsional rigidity of the wire, and B its
flexural rigidity in the osculating plane of the spiral; a, the in-
clination, and 7, the radius of the cylinder, of the spiral when
unstrained ; a and r the same parameters of the spiral when
under the influence of the axial force B and couple & ; and = the

degree of twist in the change from the unstrained to the strained
condition. |

These equations give explicitly the force and couple required
to produce any stated change in the spiral ; or if the force and

couple are given they determine o, #' the parameters of the
altered curve,

As 1t is chiefly the external action of the spring that we are
concerned with in practical applications, let the parameters a,
of the spiral be eliminated by the following assumptions :—

. [ cosa -
¥ =ZSlﬂa, tf) = -
’ 8
7 cos \ e (8),
. 4 A
z,={sma, ¢ = " “J

o
where [ denotes the length of the wire, ¢ the angle between
planes through the two ends of the spiral, and its axis, and x the
distance between planes through the ends and perpendicular to
the axis in the strained condition ; and, similarly, ¢, x, for the
unstrained condition ; so that we may regard (¢, ) and (¢,, z,)
a8 the co-ordinates of the movable terminal relatively to the

fixed in the two conditions of the spring. Thus the preceding
equations become

B
L= 3 {J0=2)$ = (- 22) ) (= )+ 5 (2~ 29) 2
(9).

Spiral
sSprings.
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Here we see that Ld¢ + Rdx is the differential of a function of
the two independent variables, z, ¢ Thus if we denote this

function by Z, we have

E-—-‘_— %%{\/(lﬂ_ wa) ‘#_ J(lﬂ_ a:ui) ¢u}i+% % (m‘#_mn‘#a)i‘l

,_dE o _dE r (10
Tde’ T dx )

a conclusion which might have been inferred at once from the
genera.l principle of energy, thus :—

606. The potential energy of the strained sprmcr 18 easily
seen from § 595 (4), above, to be

4 [B{w— )" +AT],

if A denote the torsional rigidity, B the flexural rigidity in the
plane of curvature, = and =, the strained and unstrained cur-
vatures, and 7 the torsion of the wire in the strained condition,
the torsion being reckoned as zero in the unstrained condition.
The axial force, and the couple, required to hold the spring to
any given length reckoned along the axis of the spiral, and to
any given angle between planes through its ends and the axes,
are of course (§ 272) equal to the rates of varation of the
potential energy, per unit of variation of these co-ordinates
respectively. It must be carefully remarked, however, that, if
the terminal rigidly attached to one end of the spring be
held fast so as to fix the tangent at this end, and the motion of
the other terminal be so regulated as to keep the figure of the
intermediate spring always truly spiral, this motion will be
somewhat complicated ; as the radius of the cylinder, the in-
clination of the axis of the spiral to the fixed direction of the
tangent at the fixed end, and the position of the point in the
axis in which it is cut by the plane perpendicular to it through
the fixed end of the spring, all vary as the spring changes in
figure. The effective components of any infinitely small motion
of the moveable terminal are its component translation along,
and rotation round, the instantaneous position of the axis of
the spiral (two degrees of freedom), along with which it will
generally have an infinitely small translation in some direction
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and rotation round some line, each perpendicular to this axis, spiral
to be determined from the two degrees of arbitrary motion, by Springs

the condition that the curve remains a true spiral.

607. In the practical use of spiral springs, this condition is
not rigorously fulfilled: but, instead, either of two plans is
generally followed:—(1) Force, without any couple, is applied
pulling out or pressing together two definite points of the two
terminals, each as nearly as may be in the axis of the unstrained
spiral ; or (2) One terminal being held fixed, the other is
allowed to slide, without any turning, in a fixed direction, being
as nearly as may be the direction of the axis of the spiral when
unstrained. The preceding investigation 1s applicable to the
infinitely small dlsplacement In either case: the couple being
put equal to zero for case (1), and the instantaneous rotatory
motion round the axis of the spiral equal to zero for case (2).

For infinitely small displacements let ¢=¢ + 8¢, and
x=ux,+ox, in (10), so that now

dF dLE
L=ie T=am

Then, retaining only terms of the lowest degree relative to 8w

and 8¢ in each formula, and wutmg z and ¢ instead of x, and
¢,, we have

f= 2133 { (Bﬂ +A)¢”8x’+2(A—B)m¢8m3¢+[B(Z’—m )+Am’]é¢’}
R = Zla{(B 72 icg + A) ¢*ox + (4 ~ B) a:¢8<;b} (11).

zla{(A — B) xpdx + [ B (I — =°) + A="] 8} I

-

Example 1,—For a spiral of 45° inclination we have

=} and ¢'=} 5

and the formule become

R=§?:ﬁ [(4 + B)oxe+ (4 —B)r&;b]ﬂ

1 SRR (12).
L=}5[(4~B)ds+(4+B)rd¢] |
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8piral A careful study of this case, illustrated if necessary by a model force, R, in a given line, AB, and a couple, G, in a pla.ne per-
Springs. easily made out of ordinary iron or steel wire, will be found very pendicular to this line, The form and twist it will have when
s structive. in equilibrium are determined by the condition that the torsion kKlirchhoifa
. . d flexure at any point, P, of its length are those due to th inetic oom-
Spi 2. —Let all. Neglecting, therefore, its an y point, L, 08¢ due to the parison.
;ﬂ?ﬁ% of Example 2.—Let ) be very sm » °8 1 ° ) couple G compounded with the couple obtained by bringing R
infinitely s s | i
sma it square, we have q!>=£, and L= -l—Bq!:»:-BS; ; and RB=ro ox. to . It follows that the rigid body of § 597 will move

The first of these is simply the equation of direct flexure (§ 595).
The interpretation of the second is as follows :—

608. In a spiral spring of infinitely small inclination to the
plane perpendicular to its axis, the displacement produced in
the moveable terminal by a force applied to it in the axis of the
spiral is a simple rectilineal translation in the direction of the
axis, and is equal to the length of the circular arc through
which an equal force carries vne end of a rigid arm or crank
equal in length to the radius of the cylinder, attached per-
pendicularly to one end of the wire of the spring supposed
straightened and held with the other end absolutely fixed, and
the end which bears the crank free to turn in a collar. This

exactly as there specified if 1t be set in motion with the proper
angular velocity, and, €D being held fixed, a force equal and
parallel to 2 be applied at a point @R, fixed relatively to the
body at unit distance from €D, in the line (B T.

This beautiful theorem was discovered by Kirchhoff ; to whom
also the first thoroughly general investigation of the equations
of equilibrium and motion of an elastic wire is due ¥,

To prove the theorem, it is only necessary to remark that
the rate of change of the moment of B round any line through
P, kept parallel to itself as P moves along the curve, in the
elastic problem, is equal simply to the moment round the parallel

line through &, of R at @B in the kinetic analogue. It may be

added that G of the elastic problem corresponds to the constant

statement is due to J. Thomson¥*, who showed that in pulling
out a spiral spring of infinitely small inclination the action
exercised and the elastic quality used are the same as in a
virtually s torsion-balance with the same wire straightened (§ 433). This
baiance. theory is, as he proved experimentally, sufficiently approximate

for most practical applications; spiral springs, as commonly
made and used, being of very small inclination. There 1s no

difficulty in finding the requisite correction, for the actual 1uch-
nation in any case, from the preceding formule. The funda-
mental principle that spiral springs act chiefly by torsion seems
to have been first discovered by Binet in 1814,

moment of momentum round the line through @) parallel to
the constant direction of K in the kinetic analogue.

610. The comparison thus established between the static
problem of the bending and twisting of a wire, and the kinetic
problem of the rotation of a rigid body, affords highly interest-
ing illustrations, and, as it were, graphic representations, of the
circumstances of either by aid of the other; the usefulness of
which in promoting a thorough mental appropriation of both
must be felt by every student who values rather the physical
subject than the mechanical process of working through mathe-
matical expressions, to which so many minds able for better

Elastic 609. In continuation of §§ 590, 593, 597, we now return things in science have unhappily been devoted of late years.
curvo traus* +o the case of a uniform wire straight and untwisted (that 1s, When particularly occupied with the kinetic problem in
couple. cylindrical or prismatic) when free from stress. Let us suppose chap. 1X., we shall have occasion to examine the rotations

one end to be held fixed in a given direction, and no force
£ om without to influence the wire except that transmitted to 1t
by a rigid frame attached to its other end and acted on by a

* Camb. and Dub, Math, Jour. 1848,
+ St Venant, Comptes Rendus. Bept. 1864.

corresponding to the spirals of §§ 601—603, and to point out
also the general character of the elastic curves corresponding
to some of the less simple cases of rotatory motion,

* Crelle’s Journal, 1859, Ueber das Gleichgewicht und die Bewegung einesn
unendlich diinnen elastischen Stabes.

VOL. 1L 10
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Common, 611, For the present we confine ourselves to one example, parts of it cross one another. The mode of application of the Bquation of
andplane  which, so far as the comparison between the static and kinetic | force is sufficiently explained by the indications 1n the elastic
curve. problems is concerned, is the simplest of all—the Elastic Curve diagram. '

of James Bernoulli, and the common pendulum. A uniform
straight wire, either equally flexible in all planes through its
length, or having its directions of maximum and minimum
flexural rigidity in two planes through its whole length, is acted
on by a force and ‘couple in one of these planes, applied either
directly to one end, or by means of an arm rigidly attached to
it, the other end being held fast. The force and couple may,
of course (§ 558), be reduced to a single force, the extreme case
of a couple being mathematically included as an infinitely small
force at an infinitely great distance. To avoid any restriction
of the problem, we must suppose this force applhied to an arm
rigidly attached to the wire, although in any case in which the
line of the force cuts the wire, the force may be applied directly
at the point of intersection, without altering the circumstances
of the wire between this point and the fixed end. The wire
will, in these circumstances, be bent into a curve lying through-
out in the plane through its fixed end and the line of the force,
and (§ 599) its curvatures at different points will, as was first
shown by James Bernoulli, be simply as their distances from
this line. The curve fulfilling this condition has clearly just
two independent parameters, of which one is conveniently re-
garded as the mean proportional, @, between the radius of
curvature at any point and its distance from the line of force,
and the other, the maximum distance, b, of the wire from the

Let the line of force be the axis of , and let p be the radius
of curvature at any point (z, y) of the curve. The dynamical
condition stated above becomes

Py=T=a “es ....”..-.uuu...........(1),

where B denotes the flexural rigidiiﬁy, T the tension of the cord,
and @ a linear parameter of the curve depending on these
elemeuts. Hence, by the ordinary formula for p™,

Multiplying by 2dy and integrating, we have |
y'=C __.._2"';_'5_.
2

dux’®

and finally,

e f G =0y . (),
(4a* — C% + 20y* — )2

which is the equation of the curve expressed in terms of an
elliptic integral.

line of force. By choosing any value for each of these para- If, in the first integral, (3), we put g?j =0, we find
Grapnic  Meters 1t 18 easy to trace the corresponding curve with a very &z
tion of elas- high approximation to accuracy, by commencing with a small ' Y= (02205 ciiiieiiieeeecnnerannaa(B),
tic curve . . . v . g
transmit-  circular arc touching at one extremity a straight line at the the upper sign within the bracket giving points of maximum, and

ting force in . . . ‘ . .
one plane. given maximum distance from the line of force, and continuing

by small circular arcs, with the proper increasing radii, accord-
ing to the diminishing distances of their middle points from
the line of force. The annexed diagrams are, however, not
80 drawn; but are simply traced from the forms actually
assumea by a flat steel spring, of small enough breadth not to
be much disturbed by tortuosity in the cases in which different

the lower, points, if any real, of minimum distance from the axis.

~ Hence there are points of equal maximum distance from the line of

force on its two sides, but no real minima when ¢ < 2a4*; which
therefore comprehends the cases of diagrams1...5. But there are
real minima as well as maxima when C > 2a°, which is therefore
the case of diagram 7. In this case it may be remarked that

the analytical equations comprehend two equal and similar de-
10—2
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Eguation of tached curves symmetrically situated on the two sides of the line eqmtion of
the plane the plane
elastic of force; of which one only is shown in the diagram. elastia
curve. cuive.

The intermediate case, C'= 24, is that of diagram 6. For it
the final integral degrades into a logarithmic form, as follows:

[ ydy j 2a'dy
(40’ 3")*  Jy(da'- g7’

or, with the integrations effected, and the constant assigned to
make the axis of y be that of symmetry,

B T A A g i T o e O

Fia, 2.
Fia. 5.
F1a. 7.

2a + (4a® - o)}

"_""_y__"—'* 1-liiliillil-(6)l
This equation, when the radical is taken with the sign indicated,
represents the branch proceeding from the vertex, first to the
negative side of the axis of y, crossing it at the double point, and
going to infinity towards the positive axis of  as an asymptote.

The other branch is represented by the same equation with the
sign of the radical reversed in each place.

. . . 2=~ (40"~ y*) + alog

It may be remarked that in (3) the sign of (1 + dy’)

C>]‘</\J only change, for a point moving continuously along the curve,

when ?:: becomes infinite. The interpretation is facilitated by
putting

Fia. 4.

ay
dx

which reduces (3) to

d.

= tan 6, or(l-!-dm, = — 08 0,

) yi= 207C08 0 + C.vernvinninreniennnnens (7)-

Here, when ('> 24’ (the case in which, as we have seen above,
there are minimum as well as maximum values of % on one side
of the line of force), there is no limit to the value of 8. It in-
creases, of course, continuously for a point moving continuously

along the curve; the augmentation being 2w for one complete
_ period (diagram 7).

FI‘G’- ll'
Fia. 6.

Fia. 3.

When C < 2a°, 0 has equal positive and negative values at the
points in which the curve cuts the line of force. These values
being given by the equation
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s : : d d Je' 3 . Rowsli
tﬂﬂ%uam% of are obtuse when C is positive (diagram 3)’. ?Jn_d acute 'u;hzn .O’ li' or ﬁ_ﬁ _ _5 (1 N 166a’ _ 161  cos %’_’3) : Bowalightly
elastic negative (diagram 1). The extreme negative value of U 18 0 - ¢ =¥ -
ourve. .

| course — 2a’. from which, by integration,
If we take C=-2a"+0,
. | £ g
+ b will be the maximum positive or negative value of‘ Y, a8 _WE cos—'Z =% (1 1. I?JTS* — 3'?; . 8in 2z
see by (7); and if we suppose b to be small in comparison with ¢ a a 24 @
a, we have the case of a uniform spring bent, as a bow, but . 3,3 9,0 . O
slightly, by a string stretched between 1ts equ. and . 1 = € COS {& (] +1 Gaﬂ)} + g5y S0 - sin =
Bowstightly 612. An important particular case 1s that of figure 1, which .
oent corresponds to a bent bow having thé same flexural rigidity 613. As we choose particularly the common pendulum for Plane
throughout. If the amount of bending be small, the equation the corresponding kinetic problem, the force acting on the indcom- =
is easily integrated to any requisite degree of approximation. rigid body in the comparison must be that of gravity in dulum.
We will mérely sketch the process of investigation. the vertical through its centre of gravity. It is convenient,
: : | dingly, not to take wmity as the velocity of the point
| i i from the axis, correspond accor -k ) - _ Y N P
Let e be the maximum djmce om ¥ ponfiig travelling along the bent wire, but the velocity gravity would
to z=0. Then y=e gives d—i: 0, and (3) becomes generate in a body falling through a height equal to half the
. constant, @, of § 611: and this constant, @, will then be the
& —yf=2af1— . \; length of the isochronous simple pendulum. Thus if an elastic
_ J 1 +i‘l_-'§"_2 | curve be held with its line of force vertical, and if a point, P,
a be moved along it with a constant.velocity equal to Vaga, (a

dy JE- A=ty 5 denoting the mean proportional between the radius of curvature

whence Fobe 0 —& + 1 eneneeenen(9) at any point and its distance from the line of force,) the tangent

at P will keep always parallel to a simple pendulum, of length
a, placed at any instant parallel to it, and projected with the
same angular velocity., Diagrams 1...5 correspond to vibra-

For a first approximation, omit ¢’— " In comparison % ith a
where they occur in the same factors, and we have

dy NE-Y tions of the pendulum. Diagram 6 corresponds to the case in

de @ which the pendulum would just reach its position of unstable

or, since ¥ =¢ when z =0, ’equilibrium in an infinite time. Diagram 7 corresponds to
oz cases in which the pendulum flies round continuously in one

Y= OOOR g e e +++-(10) direction, with periodically increasing and diminishing velocity.

‘the harmonic curve, or curve of sines, which 18 the simplest form The extreme case, of the circular elastic curve, corresponds to
assumed by a vibrating cord or pianoforte-wire, a pendulum ﬂying round_witl:} inﬁnite-angul‘gr .ﬁelo?ity., which of
For a closer approximation we may substitute for g, in those course experiences only 1nﬁn1.tely small variation m'the course
factors where it was omitted, the value given by (10); and so on. of the revolution. A conclusion worthy of remark 1s, that the

rectification of the elastic curve is the same analytical problem
as finding the time occupied by a pendulum in describing any

Y g -
* ‘C% = Ve a_ A (Jl + ggﬂ sin® g) , nearly, -given angle.

Thus we have
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Wire of any 614. Hitherto we have confined our investigation of the
18-

tur

fom and

by form and twist of a wire under stress to a portion of the whole
wire not itself acted on by force from without, but merely

ﬁﬁrou ghits engaged in transmitting force between two equilibrating systems

hngth

applied to the wire beyond this portion; andewe have, thus,
not included the very important practical cases of a curve
deformed by its own weight or centrifugal force, or fulfilling
such conditions of equilibrium as we shall have to use after-
wards in finding its equations of motion according to D'Alem-
bert’s principle. We therefore proceed now to a perfectly
general investigation of the equilibrium of a curve, uniform or
not uniform throughout its length; either straight, or bent and
twisted in any way, when free from stress; and mot restricted
by any condition as to the positions of the three principal
flexure-torsion axes (§ 596); under the influence of any dis-
tribution whatever of force and couple through its whole

length.

Let a, B, y be the components of the mutual force, and &, 9, £
those of the mutual couple, acting between the matter on the
two sides of the normal section through (x, y, 2). Those for the
normal section through (x +8x, y + 8y, z+ 8z) will be

da ds .
a'+d_338’ B+d303, 7+ds ) 88,

£+$,n 381.‘+C

Hence, if X8s, Yds, Zds, and Lds, M3, Nds be the components
of the applied force, and applied couple, on the portion ds of the
wire between those two normal sections, we have (§ 651) for the

equilibrium of this part of the wire

_X_d_a _y_dp dy

= = ¥=0, 2= i),

and (neglecting, of course, infinitely small terms of the second
order, as 0y0s)
dé

-LSB——Ss-l-'ySJ — 3oz, ete.;

dé dy ,dz d'q dz  dx C ﬁc_i_a:_a y -(2),

Er ARl S TAr A & L
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We may eliminate a, 8, ¥ from these six equations by means of
the following convenient assumption—

T meaning the component of the force acting across the normal
section, along the tangent to the middle line, From this, and
the second and third of (2), we have

dx L 4\ & do\ dy
—Tds_(M da)ds (N+Z:? ds*

This, and the symmetrical expressions for 8 and ¥, used in (1),

r-d e (e D) g ()2

r=-€%{fjf (N+d5)__+(z;+ )jj} ...... ().

Z=_%{T—-- L+ 5) (M d")d“}

We Lave besides, from (2),

0=%(L ; jf) ‘Z(M+j;’) + %(N+%) eereenea(B).

To complete the mathematical expression of the circumstances,
1t only remains to introduce the equations of torsion-flexure.
For this purpose, let any two lines of reference for the substance
of the wire, PX, PL, be chosen at right angles to one another in
the normal section through P. Let «,, A, be the components of
the curvature (§ 589) in the planes perpendicular to these lines,
and through the tangent, P7, when the wire is unstrained; and
k, A what they become under the actual stress. Let 7, denote
the rate of twist (§ 119) of either line of reference round the
tangent from point to point along the wire in the unstrained
condition, and 7 in the strained, so that = — 7, is the rate of twist
produced at 2 by the actual stress. Thus [§ 595 (3)] we have

fl+ qm+ {n=A(x~x) +c(A=X) +b(r-1,)

Equati
G+ b =ole—r) +BO-N) wole-rd | (q), S
dw dy lllll ’
¢+ L+ LT b= k) +a (A=) +CO(r—1)
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Equations
of torsion-
flexure.

Torsion,
and two
components
of curvature,
of wire (or
component

velocities
of rotating
solid).
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: , ' d . ]
where (4, m, n), (I, m', n’), Z—j, %, Eg) denote the directions

of PK, PL, PT; so that

dx dy - dz__ o dx , dy ’iz_ -
ZE}+mE+nE—-O, l'-d*;.-i"m E-l"nds_o (7)

i+ mm'+nn'=0 | > e e .
F+m?+ n'=1, P2 8y = 1 |

Now if lines O K, O,L, O,T, each of unit length, be drawn, as in
§ 593, always parallel to PI{ . PL, PT, and if P be carried at
unit velocity along the curve, the component velocity of L
parallel to 0,7, or that of 7" parallel to O K with its sign changed,
is (§ 593) equal to «; and similar statements apply to A and .
Hence, |

B {,d_dw N , d dy+,i dz))
=" ds(ds) " ds (E) " ds @}

(d de\  d (dy\ 4 (d

/. dl cdm  ,dnr\
1'=+(l —+m —+n -——) J

ds ds ds

Equations (7) reduce ({, m, n), (I, m/, n) to one variable element,
being the co-ordinate by which the position of the substance of
the wire, round the tangent at any point of the central curve, is
specified : and (8) express «, A, 7 in terms of this co-ordinate,
and the three Cartesian co-ordinates z, y, 2 of . The specifi-
cation of the unstrained condition of the wire gives «,, A,, 7, as
functions of s. Thus (6) gives & 7, { each in terms of s, and
the four co-ordinates, and their differential coefficients relatively
to s.. Substituting these in (4) and (5) we have four differential
.equations which, with | |

constitute the five equations by which the five unknown functions
(the four co-ordinates, and the tension, 7 ) are to be determined
in terms of 8 or by means of which, with ¢ and 7' eliminated,
the two equations of the curve may be found, and the co-ordinate
for the pbsition of the normal section round the tangent deter-
mined in terms of «, ¥, .
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The terminal conditions for any specified circumstances are Terminal
easily expressed in the proper mathematical terms, by aid of conditions.
equations (2). Thus, for instance, if a given force and a given
couple be directly applied to a free end, or if the problem be
limited to a portion of the wire terminated in one direction at
point @, and if, in virtue of actions on the wire beyond, we have
a given force (a,, 8,, v,) and a given couple (§,, 7,, {,) acting on
the normal section through ¢ of the portion under consideration,
and if s, is the length of the wire from the zero of reckoning for
s up to the point @, and L , M , N, the values of L, M, V at this

point, the equations expressing the terminal conditions will be

- dé d dz\ | when g=s
t=by - =L (5 Bog) ]
d dz dx '
1)="?0, dZ—Mo—I-(aiﬂgS-_YU "c_g;) iiiii (10)- |
d{ dx d
=ty ~ 3= N+ (B~ o)

From these we see, by taking L, =0, M,=0, ¥,=0, a,=0,
Bn=0! Yo = 0: §0=O: ﬂ0=0, Cu= O, that

815. For the simple and important case of a naturally
straight wire, acted on by a distribution of force, but not of
couple, through its length, the condition fulfilled at a perfectly
free end, acted on by neither force nor couple, is that the curva-
ture is zero at the end, and its rate of varation from zero, per
unit of length from the end, is, at the end, zero. In other words,
the curvatures at points infinitely near the end are as the
squares of their distances from the end in general (or, as some
higher power of these distances, in singular cases). The same
statements hold for the change of curvature produced by the
stress, if the unstrained wire is not straight, but the other
circumstances the same as those just specified.

616. As a very simple example of the equilibrium of a gggignt
wire subject to forces through its length, let us suppose the jitely httle
natural form to be straight, and the applied forces to be in pent.
lines, and the couples to have their axes all perpendicular to
its length, and to be not great enough to produce more than

an infinitely small deviation from the straight line. Further,




Straight
beam infl-
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in order that these forces and couples may produce no twist,

nitely little Jet, the three flexure-torsion axes be perpendicular to and

bent,

along the wire. But we shall not limit the problem further
by supposing the section of the wire to be uniform, as we
should thus exclude some of the most important practical
applications, as to beams of balances, levers i1n machinery,
beams in architecture and engineering. It is more instructive
to investigate the equations of equilibrium directly for this
case than to deduce them from the equations worked out above
for the much more comprehensive general problem. The par-
ticular principle for the present case is simply that the rate of
variation of the rate of variation, per unit of length along the
wire, of the bending couple in any plane through the length, is
equal, at any point, to the applied force per unit of length, with
the simple rate of variation of the applied couple subtracted.
This, together with the direct equations (§ 599) between the
component bending couples, gives the required equations of
equilibrium.
The diagram representing a section of the wire in the plane
xy, let OP=2, PP'=6x. l.et ¥ and N be the components

Y A
Yor
| I TB
(>
4

in the plane of the diagram, of the applied force and couple,
each reckoned per unit of length of the wire; so that Yéx
and Nox will be the amounts of force and couple in this

plane, actually applied to the portions of the wire between P
and 7,

Let, as before (§ 614), 8 and y denote the components parallel
to OY and 0Z of the mutual force*, and { and » the components

* These forces, being each in the plane of gection of the solid separating the

portions of matter between which they act, are of the kind called shearing forces.
See below, § 662.
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in the plane XOY, X0Z, of the mutual couple, between the Straight

. ‘ . beam infi-
portions of matter on the two sides of the normal section through nitely Jittie
P; and B, ¥ and {, 7 the same for P, The matter between bent.
these two sections 1s balanced under these actions from the
matter contiguous to i1t beyond them, and the force and couple
applied to it from without. These last have, in the plane XO7Y,
components respectively equal to Ydx and Ndz: and hence for

the equilibrium of the portion PP,

- B+ Yox + 8’ =0, by forces parallel to 07,
and —{+Néx+ ¢ +B8x=0, by couples in plane XO07,

the term Box in this second equation being the moment of the
couple formed by the infinitely nearly equal forces 8, 8’ in the
dissimilar parallel directions through P and 7, Now

aps i
’— = ——— "_.. —_——
g -8 T ox, and ¢’ —¢ dx&n,
Hence the preceding equations give
w__y
dx
&y g
de )
and these, by the elimination of S,
L AN i
o Rl i ) TSP ¢ }
Similarly, by forces and couples in the plane X0Z,
dn dM
= 72 3),
du’ dx +Z (%)

couples in this plane being reckoned positive when they tend to
turn from the direction of OX to that of 0Z; which is opposite

to the convention (551) generally adopted as being proper when
the three axes are dealt with symmetrically.
Since the wire deviates infinitely little from the straight line

0X, the component curvatures are

dy . .
Eﬂg in the plane XOY,

d*z

a.nd a?c'g 1)

. X0z
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Hence the equations of flexure are

d2 d¥z
A S — (4),

y &

nN=a d—x'i'l'otzgg

where B and C are the flexural rigidities (§ 596) in the planes
zy and az, and @ the coefficient expressing the couple in either
produced by unit curvature in the other ; three quantities which
are to be regarded, in general, as given functions of .  Substi-

tuting these expressions for { and 7, in (2) and (3), we have
the required equations of equilibrium,

617. If the directions of maximum and minimum flexural
rigidity lie throughout the wire in two planes, the equations
of equilibrium become simplified by these planes being chosen
as planes of reference, X0Y, X0Z. The flexure in either plane
then depends simply on the forces in it, and thus the problem
divides itself into the two quite independent problems of in-
tegrating the equations of flexure in the two principal planes,
and so finding the projections of the curve on two fixed planes
agreeing with their position when the rod 1s straight.

In this case, and with X0Y, X0Z so chosen, we have a=0.
Hence the equations of flexure (4) become simply
d’z

d*y .
z_B'_ ﬂ_odwﬁi

dﬂjﬂ,

and the differential equations of the curve, found by using these
in (2) and (3),

d’ d°y\ d’ a’z\ 3
a (_BEE)_Q,@, < (Ozm——@)—%............(a),

N
where §=-(é—~+ Y, %=_fii[} )/ (6).

47

Here I and % are to be generally regarded as known functions
of x, given explicitly by (6), being the amounts of component
simple forces perpendicular to the wire, reckoned per unit of its
length, that would produce the same figure as the distribution of
force and couple we have supposed actually applied throughouat
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the length. Later, when occupied with the theory of magnetism, Case of in-
we shall meet with a curious instance of the relation expressed Rerure n
by (6). In the meantime it may be remarked that although the o planes
figure of the wire does not sensibly differ when the simple distri-
bution of force is substituted for any given distribution of force
and couple, the shearing forces in normal sections become
thoroughly altered by this change of circumstances, as is shown
by (1). When the wire is uniform, B and C' are constant, and

the equations of equilibrium become

c_{‘:_y___i? d'z &
TA=B TA= G I PIITPORE (7).

The simplest example is obtained by taking 3 and % each Plank bent
cor}stant, a very Interesting and useful case, being that of a E{Ziﬁﬁ i
uniform beam influenced only by its own weight, except where

held or pressed by its supports. Confining our attention to

‘tlexure in the one principal plane, X0Y, and supposing this to

be vertical, so that )= gw, if w be the mass per unit of length ;
we have, for the complete integral, of course

w
Y =% (2" + K2+ K’ + K’z + K)............. (8),

where X, K', etc., denote constants of integration. These, four
In number, are determined by the terminal conditions; which,
dy
da
each end. Or, as for instance in the case of a plank simply
resting with its ends on two edges or trestles, and free to turn
round either, the condition may be that the curvature vanishes
at each end: so that if OX be taken as the line through the
points of support, we have o

for instance, may be that the value of y and of -2 is given for

y=0 |

d’y . ¢ when =0 and when z =/, Plank sup-

= Its ends.”
{ being the length of the plank. The solution then is

w
R N ) (9).
. 51

Hence, by putting « = 4/, we find y = g;v 16 x 94 for the distance
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by which the middle point is deflected from the straight line
joining the points of support.

Or, as in the case of a plank balanced on a trestle at its middle
(taken as zero of x), or hung by a rope tied round it there, we
may have

and T
> when x = 4/ [see above, § 614 (10)].

The solution in this case is, for the positive half of the plank,
y=27 . J (@ = 20 + 300).ciennnnn (10,

30
By putting £ =11/, we find y = g;ﬂ 76 94" Hence

618. When a uniform bar, beam, or plank is balanced on a
single trestle at its middle, the droop of its ends is only § of the
droop which its middle has when the bar is supported on trestles
at its ends. From this it follows that the former is § and the
latter & of the droop or elevation produced by a force equal to
half the weight of the bar, applied vertically downwards or
upwards to one end of it, if the middle is held fast in a hori-
zontal position. For let us first suppose the whole to rest on a
trestle under its middle, and let two trestles be placed under
its ends and gradually raised till the pressure is entirely taken
off from the middle. During this operation the middle remains
fixed and horizontal, while a force increasing to half the weight,
applied vertically upwards on each end, raises it through a
height equal to the sum of the droops in the two cases above
referred to. This result is of course proved directly by com-
paring the absolute values of the droop in those two cases as
found above, with the deflection from the tangent at the end ot
the cord in the elastic curve, figure 2, of § 611, which 1s
cut by the cord at right angles. It may be stated otherwise
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thus: the droop of the middle of a uniform beam resting on Plank sup-
trestles at 1ts ends is increased in the ratio of 5 to 13 by laying-gz‘:ﬁ?gxp yits
a mass equal in weight to itself on its middle: and, if the madle:
beam 18 hung by its middle, the droop of the ends is increased
in the ratio of 3 to 11 by hanging on each of them a mass

equal to half the weight of the beam.

619. The mmportant practical problem of finding the distri- by threeor
bution of the weight of a solid on points supporting it, when oo ot
more than two of these are in omne vertical plane, or when
there are more than three altogether, which (§ 568) is indeter-
minate* if the solid is perfectly rigid, may be completely solved
for a uniform elastic beam, naturally straight, resting on three
or more points 1n rigorously fixed positions all nearly in one
horizontal line, by means of the preceding results.

If there are ¢ points of support, the ¢ —1 parts of the rod
between them in order and the two end parts will form 7+ 1
curves expressed by distinct algebraic equations [§ 617 (8)], each
involving four arbitrary constants. For determining these con-
stants we have 40 + 4 equations In all, expressing the following
conditions :(—

I. The ordinates of the inner ends of the projecting parts of
the rod, and of the two ends of each intermediate part, are
respectively equal to the given ordinates of the corresponding
points of support |22 equations].

- IL The curves on the two sides of each support have co-
incident tangents and equal curvatures at the point of transi-
tion from one to the other [2s equations].

JII. The curvature and its rate of variation per unit of
length along the rod, vanish at each end [4 equations].

Thus the equation of each part of the curve i1s completely
determined: and then, by § 616, we find the shearing force
1in any normal section. The difference between these in the

* It need scarcely be remarked that indeterminateness does not exist in
nature. How it may occur in the problems of abstract dynamics, and is obvi-
ated by taking something more of the properties of matter into account, is

Jnstructively illustrated by the circumstances referred to in the text.

VOL. 1I. 11
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neighbouring portions of the rod on the two sides of a point
of support, 1s of course equal to the pressure on this point.

Plank sup- ~ 620. The solution for the case of this problem in which

ported byits . S

endsand  two of the points of support are at the ends, and the third
midway between them either exactly in the line joining them,
or at any given very small distance above or below it, is found
at. once, without analytical work, from the particular results
stated in § 618. Thus if we suppose the beam, after being
first supported wholly by trestles at its ends, to be gradually
pressed up by a trestle under its middle, it will bear a force
simply proportional to the space through which it is raised

from the zero point, until all the weight is taken off the ends,

and borne by the middle. The whole distance through which

gw, 8l
''B 16.24°
and this whole elevation is § of the droop of the middle in the
first position. If therefore, for instance, the middle trestle be
fixed exactly in the line joining those under the ends, it will
bear § of the whole weight, and leave & to be borne by each
end. And if the middle trestle be lowered from the line join-
ing the end ones by % of the space through which it would
ha,ve to be lowered to relieve itself of all pressure, it will bear

Just 3 of the whole weight, and leave the other two thirds to
be equally borne by the two ends.

the middle rises during this process is, as we found

Rotationof ~ 621. A wire of equal flexibility in all directions, and

its clastic  straight when freed from stress, offers, when bent and twisted
In any manner whatever, not the slightest resistance to being
turned round its elastic central curve, as its conditions of
evee uni- gquilibrium are in no way affected by turning the whole wire
foxare 1sp, thus equally throughout its length. The useful application of
this principle, to the maintenance of equal angular motion in
two bodies rotating round different axes, is rendered somewhat
difficult in practice by the necessity of a perfect attachment
and adjustment of each end of the wire, so as to have the tan-
gent to 1ts elastic central curve exactly in line with the axis
of rotation. But if this condition is rigorously fulfilled, and

the wire is of exactly equal flexibility in every direction, and
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exactly straight when free from stress, it will give, against any Equable
e1astlc ro-
constant resistance, an accurately uniform motion from one to tating joint.

another of two bodies rotating round axes which may be in-
clined to one another at any angle, and need not be in one
plane. If they are in one plane, if there is no resistance to
the rotatory motion, and if the action of gravity on the wire
1s insensible, it will take some of the varieties of form (§ 612)
of the plane elastic curve of James Bernoulli. But however
much 1t is altered from this; whether by the axes not being in
one plane; or by the torsion accompanying the transmission of
a couple from one shaft to the other, and necessarily, when the
axes are 1n one plane, twisting the wire out of it; or by gravity;
the elastic central curve will remain at rest, the wire in every
normal section rotating round it with uniform angular velocity,
equal to that of each of the two bodies which it connects.
Under Properties of Matter, we shall see, as indeed may be
Judged at once from the performances of the vibrating spring
of a chronometer for twenty years, that imperfection in the
elasticity of a metal wire does not exist to any such degree as
to prevent the practical application of this principle, even in
mechanism required to be durable.

It is right to remark, however, that if the rotation be too
rapid, the equilibrium of the wire rotating round its unchanged
elastic central curve may become unstable, as 1s immediately dis-
covered by experiments (leading to very curious phenomena),
when, as 1s often done 1n illustrating the kinetics of ordinary
rotation, a rigid body 1s hung by a steel wire, the upper end of
which is kept turning rapidly.

622. 1If the wire is not of rigorously equal flexibility in all D e
directions, there will be a periodic inequality in the communi-
cated angular motion, having for period a half turn of either
body: or if the wire, when unstressed, is not exactly straight,
there will be a periodic inequality, having the whole turn for
its period. In other words, if ¢ and ¢’ be angles simultane-
ously turned through by the two bodies, with a constant work-
ing couple transmitted from one to the other through the wire,

$—¢ will not be zero, as in the proper elastic universal
11—2
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flexure joint, but will be a function of sin 2¢ and cos 2¢ if the
first defect alone exists; or it will be a function of sin ¢ and
cos ¢ if there is the second defect whether alone or along with
the first. It is probable that, if the bend in the wire when
unstressed is not greater than can be easily provided against
in actual construction, the inequality of action caused by 1t
may be sufficiently remedied without much difficulty in
practice, by setting it at one or at each end, somewhat inclined
to the axis of the rotating body to which it is attached. DBut
these considerations lead us to a subject of much greater interest
in itself than any it can have from the possibility of usefulness
in practical applications. The simple cases we shall choose
illustrate three kinds of action which may exist, each either
alone or with one or both the others, in the equilibrium of a
wire not equally flexible in all directions, and straight when

unstressed.

623. A uniform wire, straight when unstressed, i1s bent till
its two ends meet, which are then attached to one another, with
the elastic central curve through each touching one straight
line: so that whatever be the form of the normal section, and
the quality, crystalline or non-crystalline, of the substance, the
whole wire must become, when in equilibrium, an exact circle
(gravity being not allowed to produce any disturbance). It 1s
required to find what must be done to turn the whole wire
uniformly through any angle round 1its elastic central circle.

If the wire is of exactly equal flexibility in all directions¥, it
will, as we have seen (§ 621), offer no resistance at all to this
action, except of course by its own inertia; and if 1t 1s once
get to rotate thus uniformly with any angular velocity, great or
small, it would continue so for ever were the elasticity perfect,
and were there no resistance from the air or other matter

touching the axis.
To avoid restricting the problem by any limitation, we must

suppose the wire to be such that, if twisted and bent in any
way, the potential energy of the elastic action developed, per

* Tn this case, clearly it might have been twisted before its ends were put
together, without altering the circular form taken when left with its ends joined.
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unit of length, 1s a quadratic function of the twist, and two com- Rotation
ponents of the curvature (§§ 590, 595), with six arbitrarily given ﬂtﬁ%ﬁn-
coefficients. But as the wire has no twist¥*, three terms of this E‘P’i :ﬁg}i?ht
function disappear in the case before us, and there remain only into & hoop.
three terms,—those involving the squares and the product of

the components of curvature in planes perpendicular to two
rectangular lines of reference in the normal section through

any point. The position of these lines of reference may be
convenlently chosen so as to make the product of the com-
ponents of curvature disappear: and the planes perpendicular

to them will then be the planes of maximum and minimum

flexural ngidity when the wire 1s kept free from twist}. There

1s no difficulty in applying the general equations of § 614 to

express these circumstances and answer the proposed question.
Leaving this as an analytical exercise to the student, we take a

shorter way to the conclusion by a direct application of the

principle of energy.

Let the potential energy per unit of length be }(B«*+ CA®),
when « and A are the component curvatures in the planes of
maximum and minimum flexural rigidity: so that, as in § 617,
B and C are the measures of the flexural rigidities in these
planes. Now if the wire be held in any way at rest with these
planes through each point of it inclined at the angles ¢ and
4a — ¢ to the plane of its elastic central circle, the radius of this

circle being 7, we should have n=?1_ COS ¢, }L=9-17 sin ¢. Hence,
since 277 is the whole length,
B , C..
L= (; Cos ¢p + — sin c;‘)) PPN  § *

* Which we have supposed, in order that it may take a circular form;
although in the important case of equal flexibility in all directions this condition
would obviously be fulfilled, even with {wist.

+ When, as in ordinary cases, the wire is either of isotropic material (see § 677
below), or has 8 normal axis (§ 596) in the direction of its elastic central line,
flexure will produce no tendency to twist: in other words, the products of twist
info the components of curvature will disappear from the quadratic expressing
the potential energy: or the elastic central line is an axis of pure torsion.
But, as shown in the texf, the case under consideration gains no simplicity
from this restriction.
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Rotation Let us now suppose every infinitely small part of the wire to
Eﬁ%ﬂn. be acted on by a couple in the normal plane, and let L be the
E?al :Err%;ht ~ amount of this couple per unit of length, which must be unitorm
into a ] ﬂogp. - all round the ring in order that the circular form may be re-

tained, and let this couple be varied so that, rotation being once

commenced, ¢ may increase at any uniform angular velocity.
The equation of work done per unit of time (§§ 240, 287) is

- . dE dE .
27T?'L¢i_= 'gt' = d_(,f_) tf.).
And therefore, by (1), '
B-C . B-C . ,
~ L= ~¢— Sin ¢ COs ¢ = —y SN 2,

which shows that the couple required in the normal plane
through every point of the ring, to hold 1t with the planes of
oreatest flexural rigidity touching a cone inclined at any angle,
¢, to the plane of the circle, is proportional to sin 2¢; 1s 1n the
direction to prevent ¢ from increasing; and when ¢ =1,

amounts to BQ_;.,O per unit length of the circumference. From
this we see that there are two positions of stable equilibrium,
—being those in which the plane of least flexural rigidity hes
in the plane of the ring; and two positions of unstable equili-
brium,—being those in which the plane of greatest flexural

rigidity 1s in the plane of the ring.

Rotation 624. A wire of uniform flexibility in all directions, so shaped

round its _ as to be a circular arc of radius @ when free from stress, is bent

B toont till its ends meet, and these are joined as in § 623, so that the

' ] .. : : . .
fexibleinall whole becomes a circular ring of radius ». It is required to

directions,

but circuiar find the couple which will hold this ring turned round the
ciraimed. central curve through any angle ¢ in every normal section,
from the position of stable equilibrium (which 1s of course that
in which the naturally concave side of the wire is en the
concave side of the ring, the natural curvature being either
increased or diminished, but not reversed, when the wire is
bent into the ring). Applying the principle of energy exactly
as in the preceding section, we find that in this case the couple
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is proportional to sin ¢, and that when ¢ = 4, its amount per Rotation
| round its
unit of length of the circumference is 5 , 1 B denote the tral cirole,
ar of a hoop {11'
« . oy wIir
flexural rgidity. | foxibia in *
. all direc-
For in this case we have the potential energy e an?
1 1 2 1 2 1 2 1 ;ﬁ‘la{u}ll:l;lt{l -
E: mrhB {(E = COoS qb) +- (; s1n qS) }= wrB (c? - Cos ¢ + F)(2)’
1 dE B . |
g.nd L_Qi'r?:dtﬁ =E~Em¢'"'7 ................ (3).

If every part of the ring 1s turned half round, so as to bring
the naturally concave side of the wire to the convex side of the
ring, we have of course a position of unstable equilibrium.

625. A wire of unequal flexibility in different directions is Wire un.

. : . flex-
formed so that, when free from stress, it constitutes a circular ibléaigydiﬂ'ﬁ-
. . | . e ent direc-
arc of radius @, with the plane of greatest flexural rigidity at tions, and
each point touching a cone inclined to its plane at an angle a. when un-
Its ends are then brought together and joined, as in §§ 623, 624, Bfﬁlgrtgiiti'e
so that the whole becomes a closed circular ring, of any given by balanc-
radius 7. It is required to find the changed inclination, ¢, to appiied to

the plane of the ring, which the plane of greatest flexural
rigidity assumes, and the couple, }, in the plane of the ring,
which acts between the portions of matter on each side of any
normal section.

The two equations between the components of the couple
and the components of the curvature in the planes of greatest
and least flexural rigidity determine the two unknown quantities
of the problem.

These equations are

1 1
B(—?—. cos¢>—;cos a)=G'cos¢»1
1 . 1 . . * 0l I'II.I'..I--(4),
C (; sin ¢ ——sina =@ 8in ¢
: 1 1 . |
gince p cos a and - sin a are the components of natural curva-
o 1
ture in the principal planes, and therefore ;1; coS ¢ — 4 cosa, and
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Wire un- 1 1

?qlua_lly flex- — sin ¢p — - sin a, are the changes from the natural to the actual
ibleindiffer- r a o

ent direc-

tions, and curvatures in these planes maintained by the corresponding com-

when un. ponents & cos ¢ and @ sin ¢ of the couple G.
strained,
bent to an-

other circle ', - . N .
by Do The problem, so far as the position into which the wire turns

e e round its elastic central curve, may be solved by an application
lisends.  of the principle of energy, comprehending those of §§ 623, 624
as particular cases.

Let L be the amount, per unit of length of the ring, of the
couple which must be applied from without, in each normal
gection, to hold it with the plane of maximum flexural rigidity
at each point inclined at any given angle, ¢, to the plane of the
ring. We have, as before (§§ 623, 624), for the potential energy
of the elastic action in the ring when held so,

E=xr {B (""3 P _ 008 “‘)2+ C (E’fli“” _ 3‘3—‘5‘)’} ...... (5).

r @ 7 a
Hence
1 d& cos¢ cosa\sin ¢ singy sin a.) cos ¢
L_.‘Z;-EZE"{_B( " ) 7 +C( r @ r } (6)-

This equated to zero is the same as (4) with & eliminated, and
determines the relation between ¢ and #, in order that the ring
when altered to radius » instead of ¢ may be in equilibrium in
itself (that is, without any application of couple in the normal
section), The present method has the advantage of facilitating
the distinction between the solutions, as regards stability or insta-
bility of the equilibrium, since (§ 291) for stable equilibrium
£ 1s a minimum, and for unstable equilibrium a maximum.

As a particular case, let € = o, which simplifies the problem

very much. The terms involving ¢ as a factor in (5) and (6)
become nugatory in this case, and require of course that

sin ¢ sia
7 a

= ().

But the former method is clearer and better for the present case;
as this result is at once given by the second of equations (4); and
then the value of @, if required, is found from the first. We
conclude what is slated in the following section:—
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626. Let a uniform hoop, possessing flexibility only in one
tangent plane to its elastic central line at each point, be given,
so shaped that when under no stress (for instance, when cut
through in any normal section and uninfluenced by force from
other bodies) 1t rests in the form of a circle of radius a, with
its planes of inflexibility all round touching & cone inclined
to the plane of this circle. This 1s very nearly the case with
a common hoop of thin sheet-iron fitted upon a conical vat,
or on either end of a barrel of ordinary shape. Let such a
hoop be shortened (or lengthened), made into a circle of radius
a by riveting its ends together (§ 623) in the usual way, and
left with no force acting on it from without. It will rest with
its plane of inflexibility inclined at the angle ¢ = sin™ (rsin a/a)
to the plane of its circular form, and the elastic couple acting
in this plane between the portions of matter on the two sides
of any normal section will be

_ B (cosq[:_cosa)_

T a

These results we see at once, by remarking that the component
curvature m the plane of inflexibility at each point must be
invariably of the same value, sin a/a, as in the given unstressed
condition of the hoop: and that the component couple, G cos ¢,
in the plane perpendicular to that of inflexibility at each
point, must be such as to change the component curvature in
this plane from cos a/a to cos ¢/r.

The greatest circle to which such a hoop can be changed is
of course that whose radius is a/sin a: and for this ¢ = 17, or the
surface of 1nflexibility at each point (the surface of the sheet-
metal in the practical case) becomes the plane of the circle:
and therefore G =, showing that if a hoop approaching
infinitely nearly to this condition be made, in the manner ex-
plained, the internal couple acting across each normal section
will be mfinitely great, which is obviously true.

627. Another very important and interesting case readily
dealt with by a method similar to that which we have applied
to the elastic wire, is the equilibrium of a plane elastic plate

Conical
bendings of
developable
surface.
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Flexure of a bent to a shape differing infinitely little from the plane, by any

Diate, ""° forces subject to certain conditions stated below (§ 632). Some
definitions and preliminary considerations may be conveniently
taken first.

Definitions. (1) A surface of a solid is a surface passmcr through always
the same particles of the solid, however it is strained.

(2) The middle surface of a plate is the surface passing
through all those of its particles which, when it is free from
stress, lie in a plane midway between its two plane sides.

(3) A normal section of a plate, or a surface normal to a
plate, is a surface which, when the plate i1s free from stress,
cuts its sides and all planes parallel to them at right angles,
being therefore, when unstrained, necessarily either a single
plane or a cylindrical (or prismatic) surface.

(4) The deflection of any point or small part of the plate, is
the distance of its middle surface there from the tangent plane
to the middle surface at any convemently chosen point of
reference 1n 1t.

(5) The inclination of the plate, at any point, is the inclina-
tion of the tangent plane of the middle surface there to the
tangent plane at the point of reference.

(6) The curvature of a plate at any point, or in any part, 18
the curvature of its middle surface there.

(7) In a surface infinitely nearly plane the curvature 1s said
to be uniform, if the curvatures in every two parallel normal
sections are equal.

(8) Any diameter of a plate, or distance in a plate infinitely
nearly plane, is called finite, unless it is an infinitely great mul-
tiple of the least radius of curva,ture multiplied by the greatest

inclination.
Greometrical Choosing XOY as the tangent plane at the point of reference,
arios. let (x, ¥, ) be any point of its middle surface, ¢ its inclination
1. : .
there, and - its curvature in a normal section through that
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point, inclined at an angle ¢ to ZOX. We have Eﬁeﬂlri:g;;rical

. | dz dz 118T1€8.
ta,n*a,-----\/<dm dy>(1)’

and, if ¢ be infinitely small,

1 d°z d’z dz ., 5
— = ——, COS ¢+2dmdysm¢cos¢+3?smqb.......(..;).

r  dx

To prove these, let £, %, ¢ be the co-ordinates of any point of the
surface infinitely near (z, %, 2). Then, by the elements of the
differential calculus,

cdy ,  dz %2 d’z d’z
—_ — —_— L 2 —
¢ da:$+d S ( $+2d.x:djgn+dy’n)

Y
Let §=pcos ¢, mn=psing,
so that we have
dz dz
= 1 Bp® = '
{=Ap + 1 Bp°, where 4 = pom cos¢+dy sin (f)] 5
dﬂz . - dﬂz . dﬂ ....... Jfa

and B__d—:n—ﬂcos:;b + dedysmq’:cos b+ —— o §in” ¢ j
Then by the formula for the curvature of a plane curve (§ 9),

1__ 5 , or, as A4 is infinitely small, L B,

r (1+ A*)% r

and thus (2) is proved.
It follows that the surface represented by
% =% (4% + 2cxy + BY*)...oovniiiirinnnnn(4),

is a surface of uniform curvature if 4, B, ¢ be constant through-
out the admitted range of values of (x, v); these being limited
by the condition that dx+ cy, and cx + By must be everywhere
infinitely small.

628. When a plane surface is bent to any other shape than
a developable surface (§ 139), it must experience some degree
of stretching or contraction. But an essential condition for the
theory of elastic plates on which we are about to enter, is that
the amount of the stretching or contraction thus necessary in
the middle surface 1s at most incomparably smaller than the

“stretching and contraction of the two sides (§ 141) due to cur-
vature., It will be shown in § 629 that this condition, if we
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exclude the case of bending into a surface differing infinitely
little from a developable surface, is equivalent to the fol-

lowing :—

Limitatim  The deflection [§ 627 Def. (4)] 18, at all places ﬁmtely

Bot to imply [§ 627 Def. (8)] distant from the point of reference, tncom-

8 stretchm;,

of middle ~ parably smaller than the thickness.

surface

-comparable  And if we extend the signification of “deflection” from that
cither side. - Jefined in (4) of § 627, to distance from some true developable sur-

face, the excluded case is of course brought under the statement.

Although the truth of this is obvious, 1t 1s satisfactory to
prove it by investigating the actual degrees of stretching and
contraction referred to.

Stretching ~ 629. Let us suppose a given plane surface to be bent to

of a planeby . . .
synclastic  some curved form without any stretching or contracting of

gfcaﬁlet;;l:es ~ lines radiating from some particular point of it, O; and let it
be required to find the stretching or contraction in the cir-
cumference of a circle described from O as centre, with any
radius a, on the unstrained plane. If the stretching in each
part of the circumference, and not merely on the whole, is to be
found, something more as to the mode of the bending must be
specified ; which, for simplicity, in the first place, we shall
suppose to be, that any point P of the given surface moves in

a plane perpendicular to the tangent plane through O, during
the straining.

Let a, 6 be polar co-ordinates of P in its primitive position,
and 7, 6 those of the projection on the tangent plane through 0,
of its position in the bent surface, and let 2 be the distance of
this position from the tangent plane through 0. An element,
adf, of the unstrained circle, becomes

(r°d6® + dr* + d2°)}

on the bent surface; and, therefore, for the stretching¥* of this
element we have

P drt dy? \B
£=(E,E+aﬂd9i +agd62) ""‘"]. ---lllnnnlt--.--.-(l)-

* Ratio of the elongation to the unstretched length.
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Hence if e denote the ratio of the elon gation of the whole cir- Stretchm%

cumference to its unstretched len gth, or the mean stretching of synclastic

or anticlas-
the circumference, tic flexurs.

1 2 r  dr? dz" \}
=3 I dﬁ{( T agdeg) -1} ............ (2),

where we must suppose z and #» known functions of 6. Confining

ourselves now to distances from O within which the curvature
of the surface is sensibly uniform, we have

@ . & o '
z=2—p, and r=p51u-f;=a(l—%-;ﬂ+etc.) ......... (3),

if p be the radius of curvature of the normal section through O
and P: and, if we take as the zero line for @ that in which the
tangent plane is cut by one of the principal normal planes (§ 130),

1 1 1
Z == ¢08°0 + — sin?f = .\ ( ) )
p R - b %(p 00850 ... (4)

where p , p. are the principal radii of curvature. Hence the
term dr'ja’d6® under the radical sign disappears if we include no
terms involving higher powers than the first, of the small fraction
a’lp® ; and, to this degree of approximation

2 a *
t.—={1 — %%+aﬁ(ﬁl —1) sin’g cosﬂﬁ}&—- 1 =— g} (P - — sm”@cosﬂﬁ
P g P ’
or, by (4), and reductions, finally
1 1 1 1 1\?
ez—la”{(-—+ ———-) cos 20 + 3 (p ——) 00349}...5.
5 W\op, o TR “\o, p, ©)
Using this in (2) we find

3:—1 Be M e oene mranm 2ew 6-
® pp, ©)

The whole amount of stretching thus expressed will, it follows
from (5), be distributed uniformly through the circumference, if,
instead of compelling each point P to remain in the plane through
O, perpendicular to X0, we allow it to yield in the direction
of the circumference through a space equal to

ji {(-l- — -l) sin 20 + & (—1- — _1_>n sin 49} ........... (7).

Py Py Pr Py
Erom (6) we conclude that
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630. If a plane area be bent to a uniformn degree of curva-
ture throughout, without any stretching in any radius through
a certain point of it, and with uniform stretching or contraction
over the circumference of every circle described from the same
point as centre, the amount of this contraction (reckoned
negative where the actual effect is stretching) is equal to the
ratio of one-sixth of the square of the radius of the circle, to
the rectangle under the maximum and minimum radii of cur-
vature of normal sections of the surface; or which 1s the same
thing, the ratio of two-thirds of the rectangle under the maxi-
mum and minimum deflections of the circumference from the
tangent plane of the surface at the centre, to the square
of the radius; or, which is the same, the ratio one-third of
the maximum deflection to the maximum radius of curva-
ture.

If the surface thus bent be the middle surface of a plate of
uniform thickness, and if each line of particles perpendiecular
to this surface in the unstrained plate remain perpendicular to
it when bent, the stretching on the convex side, and the con-
traction on the concave side, in any normal section, is obviously
equal to the ratio of half the thickness, to the radius of curva-
ture. The comparison of this, with the last form of the pre-
ceding statement, proves that the second of the two conditions
stated in § 628 secures the fulfilment of the first.

631. If a surface already bent as specified, be again bent to
a different shape still fulfilling the prescribed conditions, or if
a surface given curved be altered to any other shape by bend-
ing according to the same conditions, the contraction pro-
duced in the circumferences of the concentric circles by this
bending, will of course be equal to the increment in the value
of the ratio stated in the preceding section. Hence if a curved
surface be bent to any other figure, without stretching in any
pa,rt of it, the rectangle under the two prmc1pal radil of curva-
ture at every point remains unchanged. This 1s Gauss’s cele-

brated theorem regarding the bending of curved surfaces, of

which we gave a more elementary demonstration in our intro-
ductory Chapter (see §§ 138, 150).
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632. Without further preface we now commence the theory Limitations

of the flexure of a plane elastic plate with the promised (§ 627) forces and
statement of restricting conditions. bgmffed
111 elemen-

(1) Of the forces applied from without to any part of the of tary theory

plate, bounded by a normal surface [§ 627 (3)], the components pite
parallel to any line in the plane of the plate are either evan-
escent or are reductble to couples. In other words the algebraic

sum of such components, for any part of the plate bounded by
a normal surface, is zero.

(2) The principal radii of curvature of the middle surface are

everywhere infinitely great multiples of the thickness of the
plate.

(3) The deflection is nowhere, within finite distance from the
point of reference, more than an infinitely small fraction .of the
thickness. This condition has a.definite meaning for an infi-
nitely large plate, which may be explained thus :—it would be

necessary to go to a distance equal to a large multiple of the
product of the least radius of curvature into the greatest incli-

nation, to reach a place where the deflection is more than a
very small fraction of the thickness of the plate. The conside-
ration of this condition, is of great importance in connection
with the theory of the propagation of waves through an infi

nite plane elastic plate, but scarcely belongs to our present
subject.

(4) Neither the thickness of the plate nor the moduluses of
elasticity of its substance need be uniform throughout, but if
they vary at all they must vary continuously from place to
place; and must not any of them be incomparably greater in
one place than in another within any finite area of the plate.

633. 'The general theory of elastic solids investigated later mesults of

shows that when these conditions are fulfilled the distribution tﬁgggl

of strain through the plate possesses the following properties, advance.

the statement of which at present, although not necessary for
the particular problem on which we are entering, will promote

a thorough understanding and appreciation of the principles
involved.
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Resultsof (1) The stretching of any part of the middle surface is in-
general

theory  finitely small in comparison with that of either side, in every
stated In

advance.  part of the plate where the curvature 1s finite.

(2) The particles in any straight line perpendicular to the
plate when plane, remain in a straight line perpendicular to
the curved surfaces into which 1its sides, and parallel planes of
the substance between them, become distorted when it is bent.
And hence the curves in which these surfaces are cut by any
plane through that line, have one point in 1t for centre of curva-
ture of them all.

(3) The whole thickness of the plate remains unchanged, at
every point; but the half thickness on one side (which when
the curvature 1s synclastic 1s the convex side) of the middle
surface becomes diminished and on the other side increased, by
equal amounts comparable with the elongations and shorten-
ings of lengths equal to the half thickness, measured on the
two side surfaces of the plate.

634. The conclusions from the general theory on which we
shall found the equations of equilibrium and motion of an
elastic plate are as follows :—

Laws for Let a naturally plane plate be bent to any surface of uni-
exure o

elastic plate form curvature [§ 627 (7)] throughout, the applied forces and

advance.  the extents of displacement fulfilling the conditions and restric-

tions of § 632: Then—

(1) The force across any section of the plate is, at each

point of 1t, in a line parallel to the tangent plane to the middle
surface 1n the neighbourhood.

(2) The forces across any set of parallel normal sections are
equally inclined to the directions of the normal sections at all
points (that 1s to say, are in directions which would be parallel
if the plate were bent, and which deviate actually from parallel-

ism only by the infinitely small deviations produced in the
normal sections of the flexure).

(3) The amounts of force across one normal section, or any
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set of parallel normal sections, on equal infinitely small areas; Laws for

are simply proportional to the distances of these areas from the Aoxure plate

middle surface of the plate. assumed in

(4) The component forces in the tangent planes of the nor-
mal sections are equal and in dissimilar directions in sections
which are perpendicular to one an-

other. For proof, see § 661. The
meaning of “dissimilar directions”
In this expression is explained by
the diagram; where the arrow-heads
indicate the directions in which
the portions of matter on the two
sides of each normal section would
yield if the substance were actually

divided, half way through the plate from one side, by each of
the normal sections indicated by dotted lines.

(5) By the law of superposition, we see that if the applied
forces be all doubled, or altered in any other ratio, the curva-

ture 1 every normal section, und all the internal forces specified
in (1), (2), (3), (4), are changed in the same ratio; and the
potential energy of the internal forces becomes changed accord-
ing to the square of the same ratio.

635. From § 634 (3) it follows immediately that the forces

experienced by any portion of the plate bounded by a normal
section through the circumference of a closed polygon or curve

of the middle surface, from the action of the contiguous matter

of the plate all round it, may be reduced to a set of couples giress.
by taking them in groups over infinitely small rectangles D ot
into which the bounding normal section may be imagined as %ol
divided by normal lines. From § 634 (2) it follows that the
distribution of couple thus obtained is uniform along each
straight portion, if any there is, of the boundary, and equal

per equal lengths in all parallel parts of the boundary.

. Twisting
636. From § 634 (4) it follows that the component couples SImpopents
round axes perpendicular to the boundary are equal in parts 2%‘;“#3‘;;3

of the boundary at right angles to one another, and are in Rehdicular
VOIL. 1I. 12
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directions related to one another
in the manner indicated by the
circular arrows in the diagram;
that is to say, in such directions
that if the axis 1is, according to
the rule of § 234, drawn outwards
from the portion of the plate
under consideration, for one point
of the boundary it must be drawn
tnwards for every point where the boundary 1s perpendicular to
its direction at that point.

637. We may now prove that there are two normal sections,
at right angles to one another, in which the component couples
round axes perpendicular to them vanish, and that in these
sections the component couples round axes coincident with the
sections are of maximum and minimum values.

Let OA B be a right-angled triangle of the plate. Let A and I

) 4 be the two com-

5 ponent couples
acting on the
side 04 ; K and
I those on the
side OB; and @
and H those on
the side AB;
the amount of
each couple be-
ing reckoned per
unit of length
of the side on which it acts, and the axes and directions of the
several couples being as indicated by the circular arrows when
each 18 reckoned as positive. Then, if AB=a, and B4AO = ¢, the
whole amounts of the couples on the three sides are respectively

Aa cos ¢, Ilacos ¢,
Kasin ¢, Ilasin ¢,
Ga, Ha,
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Resolving the two latter round OX and OY, we havo

Ga cos p — Ha sin ¢ round 00X,
and Gasingd+ Hacosgdp ,, OY,

But if the portion in question, of the plate, were to become rigid,
its equilibrium would not be disturbed (§ 564); and therefore
we must have

Gacos ¢ — Hasin ¢ = Aa cos ¢ + Ila sin ¢ by couples round OX
and (1),
Gasin ¢ + Hacos ¢ = Kasin ¢ + Ila cos ¢ . 1’ 0Y
From these we find immediately
G = A cos’¢ + 211 sin ¢ cos ¢ + K sin’ ¢, o
H= (K~ A)sin ¢ cos ¢ + II(cos*¢ —sin” ¢) } rerenene (2):

Hence the values of ¢, which make A vanish, give to @ its
maximum and minimum values, and being determined by the

equa.tinn
II
% (K= R e, (3),

differ from one another by 2.

tan 2¢ = —

A modification of these formulse, which we shall find valuable,

is obtained by putting
S=1(K+A), O=3(K-A)ccseririanncnon.(4).

This reduces (2) to

G’=§‘.+Ilsin2¢—®cos2¢}
H=  Tlcos2¢ +Osin 2¢

which again become

G=3+Qcos2(¢p—a)
PARRPAPYLIN] PR )

where a [being a value of ¢ given by (3)], and Q2 are taken so

that II = sin 2a, = — {2 cos 2a, } (7)

so that, of course, Q=(II"+ @)

Principal
AXE8 O
bending
stress 1ne-
vestigated.

This analysis demonstrates the following convenient synthesis of

the whole system of internal force in question:—

12—2
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synolastic ~ 638. The action experienced by each part of the plate, in
and anti- . : ‘ .
clastio  virtue of the internal forces between it and the surrounding
fined. contiguous matter of the plate, being called a stress [in accord-
ance with the general use of this term defined below (§ 658)],
may be regarded as made up of two distinct elements—(1) a
synclastic stress, and (2) an anticlastic stress; as we shall call

them.

(1) Spynclastic stress consists of equal direct bending action
round every straight line in the plane of the plate. Its amount

may be conveniently regarded as measured by the amount, 3,
of the mutual couple between the portions of matter on the two
sides of any straight normal section of unit length. Its effect
would be to produce equal curvature in all normal sections
(that 1s to say, a spherical figure) if the plate were equally
flexible in all directions.

Anticlastic  (2) Anticlastic stress consists of two simple bending stresses
stress re-

farved to it of equal amounts in opposite directions round two sets of
Axes; parallel straight lines perpendicular to one another in the
plane of the plate. Its effect would be uniform anticlastic
curvature, with equal convexities and concavities, if the plate

were equally flexible in all directions. Its amount is reckoned

as the amount, (2, of the mutual couple between the portions

of matter on the two sides of a straight normal section of unit

length, parallel to either of these two sets of lines. It gives

11se to couples of the same amount, £}, between the portions of

referred to Matter on each side of a normal section of unit length parallel
cinedto  to either of the sets of lines bisecting the right angles between
them at 45" : those; but the couples now referred
to are wn the plane of the normal

C-:;nﬁ section instead Pof perpendicular to

| it. This 1s proved and illustrated

A
Q} 0 by the annexed diagram, represent-
Vi ing [a particular case of the diagram
qi, Qvs and equations (1) of § 637] the equi-
«Gnmmmmnnemnen D
V3

Librium of an isosceles right-angled
triangle under the influence of couples,
each equal*to Q4/%, applied to it round axes coinciding with
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its legs, and a third couple, 3 round an axis perpendicular to
its hypotenuse.

If two pairs of rectangular axes, each bisecting the right Octantul re-
solutionand

angles formed by the other, be chosen as axes of reference, an composition
anticlastic stress having any third pair of rectangular lines for bio stress.
its axes may, as the preceding formul®e [§ 637 (5)] show, be
resolved into two having their axes coincident with the two

pairs of axes of reference respectively, by the ordinary cosine

formula with each angle doubled. Hence it follows that any

two anticlastic stresses may be compounded into omne by the Construe-
same geometrical construction as the parallelogram of forces, ratlolgram.
made upon lines inclined to one another at an angle equal to

twice that between the corresponding axes of the two given
stresses; and the position of the axes of the resultant stress

will be indicated by the angles of this diagram each halved.

639. Precisely the same set of statements are of course geometrical
applicable to the curvature of a surface. Thus the proposition analogucs.
proved in § 637 (3) for bending stresses has, for its analogue
in curvature, Euler’s theorem proved formerly in § 130; and
analogues to the series of definitions and propositions founded
on it and derived from it may be at once understood without

more words or proof.

Let o = %‘(Kxg -+ 2‘33'3:3/ -+- Ayg) e (].) Two eylin-

_ i _ drical cur-
be the equation of a curved surface infinitely near a point O at :g;?laﬁger_
which it is touched by the plane YOX. Its curvature may be pendicular
regarded as compounded of a cylindrical curvature, A, with axis ﬂ‘ﬂ&‘;,lfﬁ;“
parallel to OX, a cylindrical curvature, x, with axis parallel to round g;is
0Y, and an anticlastic curvature, =, with axis bisecting the their right

’ angles ;

angles X0Y, YOX'. Thus,if w and A each vanished, the surface
would be cylindrical, with 1/« for radius of curvature and gene-
rating lines parallel to OF. Or, if « and A each vanished, there
would be anticlastic curvature, with sections of equal maximum
curvature in the two directions, bisecting the angles XOY and
YO0X'’, and radius of curvature in those sections equal to 1/w=.

1f now we put
a'=%(x+)l), 3=%(,{_)\)(2),
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E‘.;I‘B&'%;ﬂ' the equation of the surface becomes
re an

mt’i‘gf:lﬁr. z=4{o(@+ )+ 3 (@ —9°) + 2wy} ..once... (3);
vatures; or,if g=rcos¢, y=rsing, ) £);

. 5= {0+ cos % + wain 2}y e (D
I ol smdlrsecnd(6-a)lrl) )
g&:;{;htgﬁle? | S = w cos 2% me=wsin Qq | .

In these formul® ¢ measures the spherical curvature; and $ and
w two components of anticlastic curvature, referred to the pair
of axes X'X, Y'Y, and the other pair bisecting their angles. The
resultant of ¥ and = is an anticlastic curvature o, with axes in-
clined, in the angle XOY at angle a to 0X, and in YOX' at

angle a to 07,

 pend e 640. The notation of §§ 637, 639 being retained, the work
done on any area A of the plate experiencing a change of cur-

vature (8«, OA, 0w) under the action of a stress (K, A, II), is
(K8k + ASA + 20I8) A ..o e (1);
or (2380 + 2089 + 2[3@) L ..oovvirieerrennen, o (2),
if, as before, .

S=3(K+A), ®=}(K—A), o=} (x+]), 9=3 (k=A)...(3).

Let PQLP'Q)’ be a rectangular portion of the plate with its
centre at 0, and its sides ¢'P, P'Q parallel to O0X, and @' P, P@
parallel to OY, 1If

z=1% (kx® + 2wxy + Ay°)
be the equation of the curved surface, we have

and therefore the tangent plane at (x, y) deviates in direction
from XOY by an infinitely small rotation

- xx + =@y round OY, .
and wT+Ay OII( ).

Hence the rotation from XOY to the mean tangent plane for all
- points of the side P¢ or @' is

+3 P, x round 0Y,
and 23 QP.w , OX.
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Hence if the tangent plane, XOY, at O remains fixed, while the werk done
curvature changes from (k, @, A) to (k + 8k, @ + 8w, A+ S), the ™ Pendine.
work done by the couples P@.K round O, and PQ. II round

0X, distributed over the side L¢), will be

1 Q'P. PQ. (Kdk + Idw),

and an equal amount will be done by tho equal and opposite
couples distributed over the side ¢'P’ undergoing an equal and
opposite rotation. Similarly, we find for the whole work done
on. the sides P and ¢'P,

PQ.Q'P. (18w + Ad)).

Hence the whole work done on all the four sides of t_he rectangle
is | P@Q. Q' P.(Kdk + 2ILdw + ADA):

whence the proposition to be proved, since any given area of the
plate may be conceived as divided into infinitely small rectangles.
It is an instructive exercise to verify the result by beginning
with the consideration of a portion of plate bounded by any
given curve, and using the expressions (1) of § 637, by which
we find, for the couples on any infinitely short portion, ds, of its
boundary, specified in position by (z, ¥),

dx dy -
( A£+]Ids)ds round ox]

|
and (K%— i—?)ds 5 0Y|

" But, as we have just seen in (4), the rotation experienced by the
tangent plane to the plate at (x, y), when the curvature changes
from (k, @, A) to (k+ 8k, @ + 8w, A +0X), is

xdw + yOoA round OX }
~ and xdk +yom ,, OF

the tangent plane to the plate at O being supposed to remain un-
changed in position; and therefore the work done on the portion

ds of the edge is
{(K — -1 ) (20 + yow) + (I[ c;'?: %) (xdw + ySA)} ds

The required work, being the integral of this over the whole
~ of the bounding curve, is therefore

(Kdx + 2010w + AdX) 4 ;
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. dy da
nhending, S0 Jeggds==Jygide=4,

da dy
and fmc—is—ds=0, fy-g‘;ds=0,

each integral being round the whole closed curve.

partin dit- 641. Considering now the elastic forces called into action

gce;rfal.ltgfi}s by the flexure («, =, A) reckoned from the unstressed condition

:djotfng%k of the plate (plane, or infinitely nearly plane), and denoting by
anelastio 1 the whole amount of their potential energy, per unit area of

e the plate, we have, as in the case of the wire treated in § 594,
Kéx =8 w, ASA=0,w, 2110w = Ogw......... (7) ;

or, according to the other notation,
2380 = 8 w, 200% = oyw, 211dw = & w........ 8);

where, as above explained, K and A denote the simple bending
stresses (measured by the amount of bending couple, per umt
of length) round lines parallel to OY and OX respectively: 1l
the anticlastic stress with axes at 45° to OX and OY: and X
and @ the synclastic stress and the anticlastic stress with 0X
and OY for axes, together equivalent to K and A. Also, as In
§ 595, we see that whatever be the character, eolotropic or 1so-
tropic, § 677, of the substance of the plate, it must be a homo-
Potential  gemeous quadratic function of the three components of curva-
claotis plate ture, whether (k, A, w) or (o, Y, =). From this and (7), or (8),
neld bent. - 1t follows that the coefficients in the linear functions of the
three components of curvature which express the components
of the stress required to maintain it, must fulfil the ordinary
conservative relations of equality in three pairs, reducing the

whole number from nine to six.

Thus 4, B, C, a, b, ¢ denoting six constants depending on the
quality of the solid substance and the thickness of the plate, we
have w=%4(4«*+ BN +0%" + 2adw + 2bwk + 2¢x).......(9);
and hence, by (7), |

K=A4x+cA + bw
A=ck+BA+am } ........ eeseressarnass (10).
WM =bx + a\+ Cw_
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Transforming these by § 640 (3) we have, in terms of o, 3, =, Potential
energy of an

w=}{(4+B+2)0"+(4 +B—2)3+ (s held bent
+20b-a)dz+2(b+a)ocw+2(4d-B)o}......(11),

and 23=(4+B+2)c+(4d-B)3+(b+a)w

20=(4-B)o+(4+B-2¢)5+(b-a)@ ¢ ceeue....(12).

2II= (b+a)o+ (b—a)3+ (w;J

These second forms are chiefly useful as showing immediately the

relations which must be fulfilled among the coefficients for the
important case considered in the following section.

642. If the plate be equally flexible in all directions, a caseof
synclastic stress must produce spherical curvature: an anti- g‘fﬁ?}?ﬁfﬁ
clastic stress having any pair of rectangular lines in the plate directions
for its axes must produce anticlastic curvature having these
lines for sections of equal greatest curvature on the opposite

sides of the tangent plane: and in either action the amount of
the curvature is simply proportional to the amount of thc
stress. Hence if § and R denote two coefficients depending on synclustic
the bulk-modulus and rigidity of the substance if isotropic (see Clastio 1

% 677, 680, below), and on the thickness of the plate, we have Slate. o1

2 =10, O=RY, r=%m............. (13).
And therefore [§ 640 (2)]
w=P"+R O+ %) . v, (14)

Hence the coefficients in the general expressions of § 641 fulfil,
in the case of equal flexibility in all directions, the followin:

conditions :i—

a=0, b=0, A=B, 2(4d -¢)=C ............. .(15);
and the newly-introduced coefficients h and ¥ are related to them
thus :— Ad+c=D, 40=A4—-c=%k................... (16).

643. Let us now consider the equilibrium of an infinite piate bers
plate, disturbed from its natural plane by forces applied to it foroes,
In any way, subject only to the conditions of § 632. The sub-
stance may be of any possible quality as regards elasticity in
different directions: and the plate itself need not be homo-
geneous either as to this quality, or as to its thickness, in

different parts; provided only that round every point it is in

both respects sensibly homogeneous [§ 632 Def. (4)] to distances
_great 1n comparison with the thickness at that point.
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644. Let OX, OY be rectangular axes of reference in the
plane of the undisturbed plate; and let z be the infinitely small
displacement from this plane, of the point (z, y) of tlz.le plate,
when disturbed by any forces, specified in their effective com-
ponents as follows:—Take a portion, L, of the plate bounded by
a normal surface cutting the middle surface in a line en-
closing an infinitely small area o in the neighbourhood of the
point (%, ), and let Zo denote the sum of the component
forces perpendicular to XOY on all the matter of £ in the
neighbourhood of the point (, y): and Lo, Mo the component
couples round OX and OY obtained by transferring, according
to Poinsot, the forces from all points of the portion £, supposed
for the moment rigid, to one point of it which it is convenient
to take at the centre of inertia of the area, o, of the part of the
middle surface belonging to it. This force and these couples,
along with the internal forces of elasticity exerted on the
matter of E, across its boundary, by the matter surrounding
it, must (§ 564) fulfil the conditions of equilibrium for & treated
as a rigid body. And E, being not really rigid, must have the
curvature due, according to § 641, to the bending stress con-
stituted by the last-mentioned forces. These conditions ex-
pressed mathematically supply five equations from which, four
elements specifying the internal forces being eliminated, we
have a single partial differential equation for 2z in terms of
and 7, which is the required equation of equilibrium.

Let o be a rectangle PQP'Q’, with sides dx parallel to OX
| and Oy parallel to OY.

Y Let ady, o'dy be the in-

finitely nearly equal shear-

NG 7 ing forces perpendicular

oyil . L to the plate in the normal

| 1 S surfaces through P@Q’ and

| OH%; QP respectively : and let

B, B’ be the corresponding

O -————— - -X notation for PO, P'Q

We shall have, of course,

o’ —a=%:8x, and B’—B=%8y.

644.)

The results of these
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actions on the portion, Z, of the plate, con- Equations

sidered as rigid, are forces a'dy, 8'8x through the middle points of brivin of
QF, @'P, in the direction of 2z positive, and forces ady, Pz late bent

through the middle

y any
points of ¢, P¢, in the direction of z if?;ﬁ;’a%g&.

negative, Hence, towards the equilibrium of Z as a rigid body,

they contribute

da df

(o'~ )8y +(B8'~B) 8z, or (EE + @) 828y, component force parallel to 0.7,

ady . 8z couple round O,
and Bdx .oy ,, y 00X _
(1n these last two expressions the difference between o and o

and between 8 and [’ are of course neglected). Again, if K,
A, II specify, according to the system of § 637, the bending

stress at (x, y), we

shall have couples infinitely nearly equal

and opposite, on the pairs of opposite sides, of which, estimated
in components round OX and OY, the differences, representing

the residual turning

tendencies on # as a rigid body, are as

follows ;— -
. i | |
[ from sides P¢), @' P, A 0y . 8,
round 0X, < | d]?[ |
'} 9 -PQ!: QP’: EZ:; o . 83’:
)
from sides PQ, Q'P, “X &y . o,
ay
round 0Y, < JK
no o D@, QP, =8 .8y;
) rdA dIT
or in all, round OX, (c?y_ + -d—m) oY,
dlI dK
and

, OF, (G + =) dady.

The equations of equilibrium, therefore, between these and the Equations
applied forces on £ treated as a rigid body give, if we remove Eﬁg bent

the common factor, 8x3y,

y any
forces.

de dy |
dA dII

L+Bldy +a_a;‘=0>‘ ----------------------- (1)-
dll dK
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Fquations The first of these, with « and B replaced in it by their values
;Htg beub. from the second and third, becomes
by any . L |
e AL P L S S - Y )
de®  dedy dy de dy
Now «, A, = denoting component curvatures of the plate, accord-
ing to the system of § 639, we have of course
d’z d’z d'z 3
K= ‘-—i?, A_dyﬂ,, 'E"—dmdy'-.......u-uu”u( ),
and hence (10) of § 641 give
A d*z d’z |
' K=4-5+c55+0b |
%‘“ﬁhﬁ‘é’i‘;} dz T °ap ¥ dwdy
curvatur dz pd% d% |
st =¢g+B e seeneennenens (4),
A_cdm”-l-de”-l-adxdy _ (4)
dz  d’z d’z
Using these in (2) we find the required differential equation of
the disturbed surface. On the general supposition (§ 643) we
must regard 4, B, C, a, b, ¢ as given functions of x and .
In the important practical case of a homogeneous plate they are
constants ; and the required equation becomes the linear partial
differential equation of the fourth order with constant coefli-
 cients, as follows:— |
d'z a’z d*z d'z P d'z _ 7 dM dL 5
4 dux* +26 dm“d§+ (C'+20) dx”dy’+ 2a dady’ ¥ dy* de dy ),
For the case of equal flexibility in all directions, a,ccprding to
§ 642 (13), this becomes
3 dz d'z dM dL)
-~ - Ny 4 —
al d 4 (@ Yy * d-"’*) de dy | .. (6)
forential (L )ﬂz_____ ; M _dL
o iz * dy® dz ~ dy
surface.

645. To investigate the boundary conditions for a plate of

limited dimensions, we may first consider it as forming part of

Boundary an infinite plate bounded by a normal surface drawn through a
conditions; | ced curve traced on its middle surface. The preceding 1n-
vestigation leads immediately to expressions for the force and

couple on any portion of the normal bounding surface. 1f then

645. ] STATICS. 189

the portion in question be actually cut out from the surround- Boundary
Ing sheet, and 1if a distribution of force and couple identical """
with that so found be applied to its edge, its elastic condition

will remain absolutely unchanged throughout up to the very
normal edge. To fulfil this condition requires three equations,
expressing (1) that the shearing force applied to the edge (that Poissons
18, the applied tangential force in the normal surface constitut- Hhroes
ing the edge), which is necessarily in the direction of the
normal line to the plate, must be equal to the required amount,

and (2) and (3) that the couple applied to any small part of the

edge must have components of the proper amounts round any

two lines in the plane of the plate. These three equations

were given by Poisson as necessary for the full expression of

the boundary condition; but Kirchhoff has demonstrated that two suff-

wo &
they express too much, and has shown that two equations provéd by

suffice. This we shall prove by showing that when a finite e
plate is given In any condition of stress, or free from stress, we
may apply, round axes everywhere perpendicular to its normal
surface-edge, any arbitrary distribution of couple without pro-
ducing any change except at infinitely small distances from
the edge, provided a certain distribution of force also, calcu-
lated from the distribution of couple, be applied to the edge,
perpendicularly to the plate.
Let XY, =0s, be an infinitely small element at a point (x, %)
of a curve traced on the middle surface of an
infinite plate; and, PX and PY being parallel
to the axes of z and v, let YXP=¢. Then,
if {63 denote the shearing force in the normal
surface to the plate through ds, and, as before
(§ 644), a. PY and B. PX be those in normal
surfaces through PY and PX, we must bave,
for the equilibrium of the triangle YPX
supposed rigid (§ 564),
Bs=a.PY+B.PX, whence {=asin ¢+ cos ¢.
Using here for ¢ and § their values by (1) of § 644, we have
o
{=— (M + ddl; + %I—;) SIn ¢ — (L + -E% + fixﬂ—) coS o...... (1). E'Efggéiﬁ"m
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Kirehhot’s Next, if G8s and H8s denote the components round XY, and
boundary | 4 _ T
equations round an axis perpendicular to it in the plane of the plate, of
gated. the couple acting across the normal surface through ds, we have
[(2) of § 637],
G=Acos’d +2Msinpcosdp+ Ksin®..eurnnnnnn. (2),
H=(K~A)sin ¢ cos ¢ + II (cos’ ¢ —sin’)........... (3).

If (¢, @, H) denoted the action experienced by the edge in virtue
of applied forces, all the plate outside a closed curve, of which ds
is an element, being removed, these three equations would ex-
press the same as the three boundary equations given by Poisson.
Lastly, let %0s, Gds, #)ds denote the force perpendicular to the

plate, and the components of couple, actually applied at any
point (z, y) of a free edge on the length ds of the middle curve.

As we shall immediately see (§ 648), if

L, a -
%—Z+ag(ﬂ?—1{)=0 ........... Ceesnasans (4:),

the plate will be in the same condition of stress throughout, ex-
cept infinitely near the edge, as with ({, &, H) for the action on
the edge.  Hence, eliminating { and X between these four equa-
tions, there remain to us (2) unchanged and another, or in all

these two—
G = A cos’p + 2T sin ¢ cos p + K sin’ ¢, and

Z-]—%: = (M“*‘%'l‘%) 8in¢ - (L+ %-I— % coa¢+%[(K—A) Bin¢cna¢+ﬂ(coaf¢-sinﬂ¢)]} ),

which are Kirchhoff’s boundary equations.

Distribu- 646. The proposition stated at the end of last section 1s
hearin equivalent to this:—That a certain distribution of normal
E{hﬁgf " shearing force on the bounding edge of a finite plate may be
witlc

produces  determined which shall produce the same effect as any given

same flexure .., . . .
asagiven distribution of ceuple, round axes everywhere perpendicular to

Sfooupls . the normal surface supposed to constitute the edge. To prove
round axes . . ‘ . . . . pp—
perpen-  this let equal forces act in opposite directions in lines £F, 'K
boundary. on each side of the middle line and parallel to it, constituting

the supposed distribution of couple. It must be understood
that the forces are actually distributed along their lines of
action, and not, as in the abstract dynamics of 1deal rigid bodies,
applied indifferently at any points of these lines; but the
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“amount of the force per unit of length, though equal in the pistripy-

neighbouring parts of the two lines, must differ from point to skearag
point along the edge, to constitute any other than a uniform f-?{ﬁeedd,ﬂter"
distribution of couple. Lastly, | produces
we may suppose the forces in 7 :;I:.Eg?g}]m
the opposite directions to be not 2%"’3&2‘%3"“
confined to two lines, as shown porpen.
in the diagram, but to be diffused gﬂ}ﬁ;f;

over the two halves of the edge
on the two sides of its middle
line; and further, the amount of
them 1n equal infinitely small
breadths at different distances
from the middle line must be
proportional to these distances,
as stated 1n § 634 (3), if the given
distribution of couple is to be thoroughly such as H of § 645,

Let now the whole edge be divided into infinitely small
rectangles, such as ABCD in the diagram, by lines drawn per-
pendicularly across it. In one of these rectangles apply a
balancing system of couples consisting of a diffused couple
equal and opposite to the part of the given distribution of
couple belonging to the area of the rectangle, and a couple
of single forces in the lines AD, OB, of equal and opposite
moment. This balancing system obviously cannot cause any
sensible disturbance (stress or strain) in the plate, except
within a distance comparable with the sides of the rectangle ;
and, therefore, when the same thing is done in all the rectangles
Into which the edge is divided, the plate is only disturbed to
an nfinitely small distance from the edge inwards all round.
But the given distribution of couple is thus removed (being
directly balarce! by a system of diffused force equal and
opposite everywhere to that constituting it), and there remains
only the set of forces applied in the cross lines. Of these there
are two in each cross line, derived from the operations per-
fﬂrmed In the two rectangles of which it is a common side, and
their difference alone remains effective. Thus we see that if

the given distribution of couple be uniform along the edge, it
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may be removed without disturbing the condition of the plate
except infinitely near the edge: 1n other words,

Uniform 647. A uniform distribution of couple along the whole edge

distribution : | .

of bwisting of a finite plate, everywhere round axes in the plane of the plate,

332%51% and perpendicular to the edge, produces distortion, spreading to
" only infinitely small distances inwards from the edge all round,

and. no stress or distortion of the plate as a whole. The truth of
this remarkable proposition is also obvious when we consider
that the tendency of such a distribution of couple can only be
to drag the two sides of the edge infinitesimally in opposite
directions round the area of the plate. Later (§ 728) we shall

investigate strictly the strain, in the neighbourhood of the edge,
produced by it, and we shall find (§ 729) that it diminishes with
extreme rapidity inwards from the edge, becoming practically 1n-
sensible at distances exceeding twice the thickness of the plate.

e disti- | 648. A distribution of couple on the edge of a plate, round

bution of ] :
e awes everywhere in the plane of the plate, and perpendicular to

oesaces  the edge, of any gien amount per unit of length of the edge, may
same flexure . L . :

as from dis he removed, and, instead, & distribution of force perpendicular to
ripuricn ¢ . .

twisting  the plate, equal tn amount per unw length of the edge, to the rate

le. L. . .
O of variation per unit length of the amount of the couple, wnthout
altering the flexure of the plate as a whole, or producing any dis-

turbance in its stress or strain except infinitely near the edge.

In the diagram of § 646 let 4B=38s. Then if H be the
amount of the given couple per unit length along the edge, be-
tween AD, BC, the amount of it on the rectangle ABCD is Hos,
-nd therefore A must be the amount of the forces introduced along
AD, CB, in order that they may constitute a couple of the requi-
site moment. Similarly, if H'8s denote the amount of the couple
in the contiguous rectangle on the other side of BC, the force in
BC derived from it will be H’ in the direction opposite to H.
There remains effective in BC a single force equal to the differ-

ence, H'—H.

If from 4 to B be the direction in which we suppose s a length
measured along the edge from any zero point, to increase, we have

H’-—H-—-dES&
ds
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‘Thus we are left with single forces, eqﬁal‘to EZ-ESS applied in The distri-
' | . ds ppiled 1n bution of
lines perpendicularly across the edge, at consecutive distances ?‘?Te‘?ﬂr}ﬁnhgt
6s from one another; and for this we may substitute, with- Eg&uﬂtﬁﬂrﬂ
out causing disturbance except infinitely near the edge, a con- ?ﬁimﬁgﬁ

tinuous distribution of transverse force, amounting to dff /ds per Egli;iiﬁlg

u-nit length ; which 1s the proposition to be proved. The direc-
tion of this force, when d /ds is positive, is that of 2 negative :
whence 1mmediately the form of it expressed in (4) of § 645.

| 649. As a first example of the application of these equa~ Case of cir-
tions, we shall consider the very simple case of a uniform et Stren
plate of finite or infinite extent, symmetrically influenced in
concentric circles by a load distributed symmetrically, and by

proper boundary appliances if required.

Let the origin of co-ordinates be chosen at the centre of Sym-
metry, and let r, 6 be polar co-ordinates of any point P, so that

©=rcosl, y=rsinf.

The second member of (6), § 644, will be a function of #, which
for brevity we may now denote simply by Z (being the amount
of load per unit area when the applied forces on each small part
are reducible to a single normal force through some point of it).
Since z is now a function of », and, as we have seen before

[§ 491 ()],
. 1 d 7 du
Ve =5 d—r‘({rﬁ)

when « is any function of #, equation (6) of § 644 becomes

4 d T_ci 1 d /7 dz\"
rdr{ dr F@(TE‘)

Hence

1 (dr

&= __

dr
Y ?—[ Tf—;ffchfﬂ-%C(logr—l)rg—ki(;”?u " logr+C"...(2),

which is the complete integral, with the four arbitrary constants
explicitly shown. The following expressions, founded on inter-
mediate integrals, deserve attention now, as promoting a thorough
comprehension of the solution ; and some of them will be required
later for expressing the boundary conditions.. The notation of
(7) will be explained in § 650 :—

VOL. II. 13




194 ABSTRACT DYNAMICS. [649.
Plate inclination, divided by radius ; or curvature in) “
:%rrgﬂﬂy normal section perpendicular to radius (3)
OH J e Y

TE

% 3—i=zl-7—;,frdrf£?[erlr+ 1C(logr—%)+30" +

(curvature in radial section)

IAYEY 4)
oy (%)s
3_2;: ~ ;Ffrdr fd{erdr+}4firfr2dr+%0(logw+12~)+%C’—;2—
(sum of curvatures in rectangular sections)
1 (dr{ . Y e (d),
By — o | — '] /
vz Aj’rfferr+6 ogr +0C }
Fz  dz 3 ‘l
A 52 4 C ‘l‘d’;" G

=—i_:frdrjc—?fr3dr+ f%zj?'ZdT+%0{(A+") logr+3(4d-c)} ¢ -..(6),
7

7 1 1
+30"(4+0)=C"(4~0)

H=0 )
d*% dz | _
L=G'&;§+A@ .................... (7),
d /1 dz d@ d )
(A_c)dr(rd?:)-l-@_'da}v%*—g} (8)
~=1 T.Z(Z?"+0—4
rl " ” )

Of these (6) and (8) express, according to the notation of § 645,
the couple and the shearing force acting on the normal surface
cutting the middle surface of the plate in the circle of radius 7.
They are derivable analytically from our solution (2) by means of
(2), (3), and (1) of § 645, with (4) of § 644, and (15) of § 642.
The work is of course much shortened by taking =0, and
x=r, and using (3) and (4) of the present section. The student
may go through this process, with or without the abbreviation, as
an analytical exercise ; but it is more instructive, as well as more
direct, to investigate ab wnifio the equilibrium of a plate sym-
metrically strained in concentric circles, and so, in the course
of an independent demonstration of (6) § 644, for this case,
or (1) § 649, to find expressions for the flexural and shearing

stresses.
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660. It is clear that, in every part of the plate, the normal Indepen-
dent Invess

sections (§ 637) of maximum and minimum, or minimum and tigation for
circular

maximum, bending couples are those through and perpen- strain.
dicular to the radius drawn from O the centre of symmetry.

At distance  from O, let L and G be the bending couples in
the section through the radius, and in the section perpen-
dicular to it; so that, if A and « be the curvatures in these
sections, we have, by (10) of § 641 and (15) of § 642,

L=AN+ ck
G=c\ +Ax }

Let also & be the shearing force (§ 616, footnote) in the
circular normal section of radius », The symmetry requires
that there be no shearing force in radial normal sections.

Considering now an element, £, bounded by two radii
making an infinitely small angle 86 with one another, and
two concentric circles of radii r—18r and r+18r; we see
that the equal couples Lé&r on its radial normal sections, round
axes falling short of direct opposition by the infinitely small
angle o0, have a resultant equal to L8380 round an axis per-
pendicular to the middle radius, in the negative direction when
L 1s positive; and the infinitely nearly equal couples on its
outer and inner circular edges have a resultant round the same

: d . :
axis, equal to I (Grod) or, being the difference of the values taken

by Gréf when » — 18r and r + 13r are put for ». There is also
the couple of the shearing forces on the outer and inner edges,
each infinitely nearly equal to &ré6: of which the moment is

grofor. Hence, for the equilibrium of % under the action of
these couples,

~ L3r86 + - (Gr) 8780 + £r368r =0,
or -—L+£(Gr)+§r—0 10
= =0 rrieiiiininnnn. (10),

if, as we may now conveniently do, we suppose no couples to

be a,p]?hed from without to any part of the plate except its

bounding edges. Again, considering normal forces on F, we
13 -2




Indepen-
dent inves-
tigation for
circular
sirain,

Interpre-
tation of
terms in

integral.
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have é—z- (&r80) 8r for the sum of those acting on it from the con-
tiguous matter of the plate, and Zréfor from external matter
if, as above, Z denote the amount of applied normal force per
unit area of the plate. Hence, for the equilibrium of these

forces,

a%(g,r.)_l_.zlﬂ:()....f...‘.-.. ........ (11)'

Substituting for ¢in (11) by (10); for L and & in the result
by (9); and, in the result of this, for A and « their expressions
by the differential calculus, which are dz/rdr and d’z/dr’, since
the plate is a surface of revolution differing infinitely little from
a plane perpendicular to the axis, we arrive finally at (1) the
differential equation of the problem. Of the other formul® of
§ 649, (6), (7), (8) follow immediately from (9) and (10) now
proved : except H =0, which follows from the fact that the
radial and circular normal sections are the sections of maximum
and minimum, or minimum and maximum, curvature.

651. We are now able to perceive the meaning of each of
the four arbitrary constants. |

(1) O” is of course merely a displacement of the plate
without strain. ' |

(2) € logr is a displacement which produces anticlastie
curvature throughout, with + C”/r® for the curvatures 1n the two
principal sections: corresponding to which the bending couples,
L, G, are equal to + (4 —¢) C"/r". An infinite plane plate, with
a circular aperture,and a uniform distribution of bending couple
applied to the edge all round, m each part round the tangent as
axis, would experience this effect; as we see from the fact that
the stress in the plate, due to C”, diminishes according to the
inverse square of the distance from the centre of symmetry.
It is remarkable that although the absolute value of the defiec-
tion, C” log r, is infinite for infinite values of r, the restrictive
condition (3) of § 632 is not viclated provided ¢" is infinitely
small in comparison with the thickness: and it may be readily
proved that the law (1) of § 633 is, in point of fact, fulfilled by
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this deflection, even if the whole displacement has rigorously Interpre-
3 . ' . . . . . O fation of
this value, C”log 7, and 1s precisely in the direction perpen- termsin
dicular to the undisturbed plane. For this case {=0, or there el

1s no shear.

(83) 1C'r* is a displacement corresponding to spherical
curvature : and therefore involving simply a uniform syuclastic
stress [§ 638 (1)], of which the amount is of course [§ 641
(10) or (11)] equal to 4 +c¢ divided by the radius of curva-
ture, or (4 +c¢) x 1, agreeing with the equal values given
for L and G by (6) and (7) of § 649. In this case also £=0, or
there 1s no shearing force. A finite plate of any shape. acted

on by a uniform bending couple all round 1ts edge, becomes
bent thus spherically.

(4) 3Cdog r—1)r*is a deflection involving a shearing force
equal to — AC/r, and a bending couple,

_%_O'{(A + c) log‘r+ %(A "'C)}:

in the circle of distance r from the centre of symmetry. -

652. It is now a problem of the merest algebra to find Symmetri-
the flexure of a flat ring, or portion of plane plate bounded by of flat i
two concentric circles, when acted on by any given bending
couples and transverse forces applied uniformly round its
outer and inner edges. For equilibrium, the forces on the
outer and inner edges must be in contrary directions, and of
equal amounts. Thus we have three arbitrary data: the
amounts of the couple applied to the two edges, each reckoned
per unit of length, and the whole amount, #, of the force on

either edge. By (4), § 651, or (8) of § 649, we see that

— C=-——If- ................... PP (12);

and there remain unknown the two constants, C' and C”, to be
determined from the two equations given by putting the ex-

pression for G [(6) of § 649] equal to the equal values for the
values of  at the outer and inner edges respectively.

Ezxample—A circular table (of isvtropic material), with a

‘concentric circular aperture, i1s supported by its outer edge,
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symmetri- which rests simply on a horizontal circle; and is deflected by

cal flexure . “ . e . ) . |
of fat ring. 2 load uniformly distributed over its inner edge (or vice versd,

inner for outer). To find the deflection due to this load (w;hich
of course is simply added to'the deflection due to the weight,
determined below). Here @ must vanish at each edge.

The radii of the outer and inner edges being @ and o', the

equations are
1
1C{(4+c)log a + §(Ad—c)}+ 3C'(4 +¢) - C"(4d—c) = 0,

and the same with ¢’ for «. Hence

Flexure of , 1 1 ) L0(A a
* ! —_ — = — + C 10 —

33&‘&%%1;&& ¢"(4-c) «? o 20(4 +0) leg a’
by forces nd |
symmetri- a
%iutgdﬁ:ﬂg 10 (Ad+c)(a?-a?) = -} C[(4 +c) (a®loga—-a? loga)+3 (4 —c) (a* —-a™)]s
its edges; .. . :

and thus, using for O its value (12), we find [(2) § 649]

| a
a?e log —,
F a?loga—-a?loga’ ,A-c A+c a ,,,]
*=ord [i(—-logfr+1+ gm"’—-a'ﬂ +%:1_-|—_E ’3+%A—c a®—a? log 7+ C™ |

Putting the factor of 7° into a more convenient form, and assign-
ing " so that the deflection may be reckoned from the level of

the inner edge, we have finally

F (. P o _a 3A+c){r,
ztm{z(nloga’+a’—a'310"a'+% A+ec
A_i_ca’a’“logg; 7 a’a” a ,34+c¢ ,

+%A—*c at—-a? log&?-%a’—a'“ logc?—'g-ﬁq—_l-_c“a }“(13)'

Towards showing the distribution of stress through the breadth
of the ring, we have from this, by § 649 (6),

7 2 a r oo’ a 1
G=-—.%(4 +c)(&;,ia,, log E-lﬂgg ————nrl0g o p)--(“):

2ma a’—a

which, as it ought to do, vanishes when r =&/, and when r=a.
Further, by § 649 (8),

ORI 4 1)

Qmr

which shows that, as is obviously true, the whole amount of the
transverse force in any concentric circle of the ring is equal to £,

653.] STATICS. 199

663. The problem of § 652, extended to admit a load dis-
tributed in any symmetrical manner over the surface of the

and with
load sym-
metrically
spread over

ring 1nstead of merely confined to one edge, is solved itsarea.

algebraically in precisely the same manner, when the terms
dependent on 4, and exhibited in the several expressions of
§ 649, are found by integration. One important remark we
have to make however: that much needless labour is avoided
by treating Z as a discontinuous function in these integrations
In cases 1n which one continuous algebraic or transcendental
function does not express the distribution of load over the
whole portion of plate considered. Unless this plan were
followed, the expression for z, dz/dr, G, and ¢ would have to be
worked out separately for each annular portion of plate through
which Z is continuous, and their values equated on each side
of each separating circle. Hence if there were ¢ annular
portions to be thus treated separately there would be 44
arbitrary constants, to be determined by the 4 (¢ —1) equations
8o obtained, and the 4 equations expressing that at the outer
and inner bounding circular edges G has the prescribed values
(whether zero or not) of the applied bending couples, and that
z and ¢ have each a prescribed value at one or other of these
circles. But by the more artful method (due to Fourier and
Poisson), the complication of detail required in virtue of the
discontinuity of Z is confined to the successive integrations:;
and the arbitrary constants, of which there are now but four,
are determined by the conditions for the two extreme bounding
edges.

Ezample—~A. circular table (of isotropic ‘material), with a
concentric circular aperture, is borne by its outer or inner edge
which rests simply on a horizontal circular support, and is
loaded by matter uniformly distributed over an annular area of
its surface, extending from its inner edge outwards to a con-
centric circle of given radius, ¢. It is required to find the
flexure.

First, supposing the aperture filled up, and the plate uniform
from outer edge to centre, let the whole circle of radius ¢ be
uniformly loaded at the rate w, a constant, per unit of its area,




Kl

1 N

ﬁCI'w

>C| 0

Circular
table of
isotropie
mateérial,
Euppori;;ld
symmetri-
cally on its
edge, and
tirained
only by its
own weiglt.

Reduction
of general

case of no
load over
fLI'eR.

ABSTRACT DYNAMICS, [653.

We have
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Of these results, v. used in (2) gives the general solution; and
1v., 1L, and 1L in (6) and (8) give the corresponding expressions
for & and 4 If, first, we suppose the value of & thus found to
have any given value for each of two values, #, 7, of 7, and { to

~ have a given value for one of these values of 7, we have three

simple a.lgebrmc equations to find C, ¢/, C"; and we solve a more
general problem than that proposed ; to which we descend by

‘making the prescribed values of G and { zero.. The power of

mathematical expression and analysis in dealing with discon-
tinuous functions, is strikingly exemplified in the applicability
of the result not only to the contemplated case, in which ¢ is in-
termediate between ' and 75 but. also to cases in which ¢ is less
than either (when we fall back on the previous case, of § 652);

or ¢ greater than either (when we have a solution meore dlrectly.

- obtainable by taking Z = w for all values of 7).

If the plate is in reality continuous to 1ts centre, and mniformly

loaded over the whole area of the circle of radius ¢, we must
have (=0 and O =0 to avoid infinite values of ¢ and G at the
centre : and the equation G'=0 for the outer boundary of the
disc gives (' at once, completing the determination. If, lastly,
we suppose ¢ to be not less than the vadius of the dise, we have
the solution for a uniform circular disc uniformly supported
round its edge, and strained only by its own weight.

664. If now we consider the general problem,—to deter-
Sroolem to mine the flexure of a plate of any form, with an arbitrary
distribution  of load over it, and with arbitrary boundary
appliances, subject of course to the condition that all the
applied forces, when the data are entirely of force, must con-

. - | ;
%wcﬂ(ﬁ log E-i-l) e (49-'3 log E +c’) Tatc’ (21.*_'E log E— r2 4 c? log st 3¢

)
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stitute an equilibrating system; we may 1mmed1ately reduce Rpiguction

this problem to the simpler one in which there is no load 3L&mersl

distributed over the area, but arbitrary boundary appliances ioad over

only., We shall merely sketch the mathematical mvestlgatmn .

First it is easﬂy proved, as for a corresponding explessmn for
three independent variables in § 491 (¢), that

@ d e
(35*.{__ )ffp 10g_Dd.’de 21rp.;.-..-......-....(1),

where p’ is any function of two mdependent vaﬁables, x, o3
p the same function of z, y; D denotes J{(m ')+ (y— y’ )}

and f [ denotes mtegratlon over an area comprehending all v&lues
of z', ', for which p’ does not vanish. Hence

| dz dz 2 Z -
{dﬂ}g + d—ya) (/=1 7 S Prederirasenenas (2),
if u:ﬁffdmdy log D [ [da"dy"Z" log D' .......... (3),

- where D'= f{(z"-a)*+ (" —4)"}; and if Z” and Z denote
the values for (z”, ") and (x, ) of any arbitrary function of two
independent variables. Let this function denote the amount of
load per unit of area, which we may suppose to vanish for all
values of the co-ordinates not included i 1n the plate; and to avoid
trouble regarding limits, let all the mtegrals be supposed to
extend from —o to +0w. We thus have,.in z= =, a solution
of our equation (2): and therefore z — w must satisfy the same

- equation with the second member replaced by zero: or, if 3
denote a general solution of

& By R
((ﬁ; + d—y_> =0 L (4),
t]lEBIl O =U + 5 ........................... tnewses (5“)

18 the general solution of (2). The boundary conditions for 3 are

of course had by substituting u+3 for 2 in the directly prescribed
boundary equations, whatever. they may be.

66b. Mathematicians have not hitherto succeeded in solving Fiat circu-

this problem with complete generality, for any other form of o o rlgagu:he

plate than the circular ring (or circular disc with concentric Eéf?gﬁto

circular aperture), Having given (8§ 640, 653) a detailed
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solution of the problem for this case, subject to the restriction of
symmetry, we shall merely indicate the extension of the analysis
to include any possible non-symmetrical distribution of strain.
The same analysis, under much simpler conditions, will occur to
us again and again, and will be on some points more minutely
detailed, when we shall be occupied with important practical
problems regarding electric influence, fluid motion, and electric
and thermal conduction, through cylindrical spaces.

Taking the centre of the circular bounding edges as origin for

i=0 (7:12)2-1*

§==10 .
}:Z { 1 _TE(A‘ 00353-}'3‘ sin i@) E(i+2)3.}

-1 ) i |
{.52_ (‘r_2)2(a‘ COS tﬂ'l"aﬁi Blﬂie) € (¢ 2)3'} _% (/al COS 9+B1 sin 6) 363-_1_9,

v’ being any solution of (11), which may be conveniently té,ken
as given by (12) with accented letters A4, etc., to denote four
new constants. If now the arbitrary periodic functions of 6,
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readily find (and the result of course is verified also by diffe- Flat eircu-
. lar ring the
ZI'L'BIl".'ali‘:'.tntl‘.'}!Il):|I only oase
hitherto
solved.

polar co-ordinates, let
x=7rcosf, y=rsinb,

We easily find by transformation

d3 d3 1d ( ds 1 d%
d"—a—;.g'l'&?—;a;(?'% +;§d92 ................. (6)
If we put logr="3, O =€ rirerrvereririiecniranenss (7),
. dﬂi dﬂi T d22 dgi
this becomes Tt + -d?—- € a'ga + CW) ................. - (8).
Hence if, as before, y° denote d + 4
CNC ’ y 72 v 7
dw dyi!
dﬂ dﬂ 2 dﬂ
49 _ (% TN LT
o= (dsg + dﬁﬂ)s (d&“ ; dgg); .............. (9).
This equated to zerv gives
d’3 o
S L R —— (10),
if v denote any solution of
d’v dv
E? +- d_-(fﬂ (11)

We shall see, when occupied with the electric and other problems
referred to above, that a general solution of this equation, appro-
priate for our present problem as for all involving the expression
of arbitrary functions of @ for particular values of 3, is

Y = E{(A‘ cos 16 + B,sin 10) €~ + (&, cos 6 + B;sin i6)e*3}...(12),
0

where 4,, B,, 4,, B, are constants. That this 1s a solution, is
of course verified in & moment by differentiation. From it we

with 2z for period, given as the values whether of displacement,
or shearing force, or couple, for the outer and inner cireular
edges, be expressed by Fourier’s theorem [§ 77 (14)] in simple
harmonic series; the two equations [§ 645 (5)] for each edge,
applied separately to the coefficients of cos:f and sin<f in the
expressions thus obtained, give eight equations for determining
the eight constants 4,, 4,, B, 8,, 4,, 4/, B/, 1,.

6566. Although the problem of fulfilling arbitrary boundary Rectangu-
., o lar plate,
conditions has not yet been solved for rectangular plates, there held and

o . . . . loaded by
is one remarkable case of it which deserves particular notice ; diagonal

. , . . pairs of
not only as iInteresting in itself, and i1mportant in practical corners.
application, but as curiously illustrating one of the most
difficult  points
[§8 646, 648] of the P
general theory. A
rectangular plate
acted on perpen-
dicularly by a
balancing system
of four equal pa-
rallel forces ap-
plied at its four
corners, becomes strained to a condition of uniform anti-
clastic curvature throughout, with the sections of no-flexure
parallel to ite sides, and therefore with sections of equal oppo-
site maximum curvature in the normal planes inclined to the
sides at 45°. This follows immediately from § 648, if we
suppose the corners rounded off ever so little, and the forces
diffused over them.
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Or, in each of an infinite number of normal lines in the edgo
AB, let a pair of opposite forces each equal to £P be applied;
which cannot disturb the plate, These, with halves-of the single
forces P in the dissimilar directions at the corners 4 and B, con-
stitute a diffused couple over the whole edge 4B, amounting in
moment per unit of length to %P round axes perpendicular
to the plane of the edge. Similarly, the other halves of the
forces P at the corners A, B, with halves of those at (' and
D and introduced balancing forces, constitute diffused couples
over the edges C4 and DB ; and the remaining halves of the
corner forces at € and D, with introduced balancing forces, con-
stitute a diffused couple over CD; each having 3P for the
amount of moment: per unit length of the edge over which it is

“diffused, Their directions are mutually related in the manner

spemﬁed in § 638 (2), and thus taken all together, they constitute
an anticlastic stress of value @ =4P. Hence (§ 642) the result
is uniform anticlastic strain amounting to 4 P/k, and having its

axes inclined at 45° to the edges ; that is to say (§ 639), a flexure

with maximum curvatures on the two sides of the tangent
plane each equal to 4 P/k, and in normal sections in the positions
stated.

Transition 657 Few problems of physical mathematics are more

to finite

flexures in- curious than that presented by the transition from this solu-

dicated.

tion, founded on the supposition that the greatest deflection

is but a small fraction of the thickness of the plate, to the
solution for larger flexures, in which corner portions will bend
approximately as developable surfaces (eylindrical, in fact), and
a central quadrilateral part will remain infinitely nearly plane;
and thence to the extreme case of an infinitely thin perfectly
flexible rectangle of inextensible fabric. Thisextreme case may
be easily observed and experimented on by taking a carefully
cut rectangle of paper (§ 145), supporting it by fine threads
attached to two opposite corners, and kept parallel, while two
equal weights are hung by threads from the other corners.

Transmis=  658. The definitions and investigations regarding strain of

sion of force

through an 88 154—190 constitute a kinematical introduction to the theory

elastic solid

" of elastic solids.  We must now, in commencing the elementary

dynamics of the subject, consider the forces called into play
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through the interior of a solid when brou ght 1nto a condition of Trans}n;s
strain. We adopt, from Rankine*, the term stress to designate Efr%gghoﬂl:ge

| . e . . elastic solid,
such forces, as distinguished from strain defined (§ 154) to ex-

press the merely geometrical idea of a change of volume or
figure.

609. When tbhrough any space in a body under the action Homogene-
of force, the mutual force between the portions of matter on the
two sides of any plane area is equal and parallel to the mutual
force across any equal, similar, and parallel plane area, the stress
is said to be homogeneous through that space. In other words,
the stress experienced by the matter is homogeneous through
any space 1if all equal similar and similarly turned portions of
matter within this space are similarly and equally influenced by
force. '

660. To be able to find the distribution of force over the Force trans-

surface of any portion of matter homogeneously stressed, we across any
- surface in

must know the direction, and the amount per unit area, of the elasticsolid.
force across a plane area cutting through it in any direction.
Now if we know this for any three planes, in three different
directions, we can find it for a plane in any direction, as we see
in & moment by considering what is necessary for the equili-
brium of a tetrahedron of the substance. The resultant force on

one of its faces must be equal and opposite to the resultant of
the forces on the three others, which is known if these faces are

parallel to the three planes for each of which the force is given.

661. Hence the stress, in a body homogeneously stressed, is Specifica.
10N OI &

-.completely specified when the direction, and the amount per unit stress;
‘area, of the force on each of three distinct planes is given. It.is,

in the analytical treatment of the subject, generally convenient

to take these planes of reference at right angles to one another.

But we should immediately fall into error did we not remark

that the 5pe<:1ﬁca,t10n here indicated consists not of nine but in by six inde-
reality only of six independent elements. For if the equili- B nenta
brating forces on the six faces of a cube be each resolved into

three components parallel to its three edges OX, OY, OZ, we

have in all 18 forces; of which each pair acting perpendicularly

* Cambridge and Dublin Mathematical Journal, 1850,
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on a pair of opposite faces, being equal and directly opposed,
balance one another. The twelve tangential components that
remain constitute three pairs of couples having their axes in the
direction of the three edges, each

Vi of which must separately be in
equilibrium, The diagram shows

— T the pair of equilibrating couples
having OY for axis; from the
| consideration of which we infer
Ly that the forces on the faces (zy),
“:ﬁ-w- parallel to OZ, are equal to the
O~ - —X forces on the faces (yz), parallel
to OX. Similarly, we see that
the forces on the faces (yx), paral-
lel to 0Y, are equal to those of the faces (xz), parallel to 0Z;
and that the forces on (z2), parallel to 0X, are equal to those

on (zy), parallel to OY.

Z

662. Thus, any three rectangular planes of reference being

stress; by six chosen, we may take six elements thus, to specify a stress: P, @,

indepen-
dent ele-
ments:

I the normal components of the forces on these planes; and §,

threesimple 7, ' the tangential components, respectively perpendicular to

longitudinal

8 EI‘&SSEE,
and three
simple
shearing
stresses.

Simple lon-
gitudinal,
and shear-

Ing, stresses.,

Foree
aCross any
surface in
terms of
rectangular
specifica-
tion of
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OX, of the forces on the two planes meeting in OX, perpendicu-

lar to OY, of the forces on the planes meeting in 0 Y, gnd per-

pendicular to OY, of the forces on the planes meeting 1n OY; each
of the six forces being reckoned per unit of area. A normal com-
ponent will be reckoned as positive when 1t 1s a traction tending
to separate the portions of matter on the two sides of its plane.
P, @, i are sometimes called longitudinal stresses, sometimes
simple normal tractions, and S, 7, U shearing stresses.

From these data, to find in the manner explained in § 660, the
force on any plane, specified by /, m, n, the direction-cosines of
1ts normal ; let such a plane cut OX, 0Y, OZ in the three points
X, Y, Z. Then, if the area XYZ be denoted for a moment by
4, the areas Y0Z, Z0X, X0, being its projections on the three
rectangular planes, will be respectively equal to 4!, Adm, An,
Hence, for the equilibrium of the tetrahedron of matter bounded
by those four triangles, we have, if F, G, H denote the com-
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ponents of the force experienced by the first of them, XYZ, pér porca
unit of its area, - surface in
F.A=P.IA+U.md+T.nd, rectangular
apecifica-

and the two symmetrical equations for the components parallel to Ei?.ﬂs;f
OY and 0OZ. Hence, dividing by 4, we conclude

F=Pl+Um+Tn
G=Ul+@m+ Sn}y............ Cerens. (1).
H=T] + Sm + Bn

These expressions stand in the well-known relation to the
ellipsoid

Po® + Qy' + B2’ 2(Syzs + Tz + Uxy) = 1... cenven(2),
according to which, if we take
®=Ilr, y=mr, z=nr,

and if A, u, v denote the direction-cosines and p the length of the

perpendicular from the centre to the tangent plane at (x, ¥, 2) of
the ellipsoid, we have

We conclude that

663. For any fully specified state of stress in a solid, a Stress-
quadric surface may always be determined, which shall represent quadric
the stress graphically in the following manner;—

To find the direction, and the amount per unit area, of the
force acting across any plane in the solid, draw a radius per-
pendicular to this plane from the centre of the quadric to its
surtace. The required force will be equal to the reciprocal of
the product of the length of this radius into the perpendicular
from the centre to the tangent plane at the extremity of the
radius, and will be perpendicular to this tangent plane.

664. From this it follows that for any stress whatever there Principal

: : - lanes and
are three determinate planes at right angles to one another such s of s

that the force acting in the solid across each of them is precisely Slress,

‘Perpendicular to it. These planes are called the principal or

normal planes of the stress; the forces upon them, per unit area,
—Its principal or normal tractions; and the lines perpendicular
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Principal | to them,—its principal or normal axes, or simply its axes. The
planes an

axes ofa  three principal semi-diameters of the quadric surface are equal

tress. . Inci ]
e to the reciprocals .of the square roots of the principal tractions.

If, however, in any case each of the three principal tractions
is negative, it will be convenient to reckon them rather as
pressures; the reciprocals of the square roots of which will be
the semi-axes of a real stress-ellipsoid representing the distn-
bution of force in the manner explained above, with pressure
substituted throughout for traction.

Varieties 666. When the three principal tractions are all of one sign,
quadric.  the stress-quadric is an ellipsoid; the cases of an ellipsoid of
revolution and a sphere being included, as those in which two,
or all three, are equal. When one of the three 1s negative and
the two others positive, the surface 1s a hyperboloid of one sheet.
When one of the normal tractions 1s positive and the two others

negative, the surface is a hyperboloid of two sheets.

666. When one of the three principal tractions vanishes,
while the other two are finite, the stress-quadiic becomes a
cylinder, circular, elliptic, or hyperbolic, according as the other
two are equal, unequal, of oue sign, or of contrary signs. When
two of the three vanish, the quadric becomes two planes; and
the stress in this case is (§ 662) called a simple longitudinal
stress. The theory of principal planes, and principal or normal
tractions, just stated (§ 664), 1s then equivalent to saying that
any stress whatever may be regarded as made up of three

simple longitudinal stresses in three rectangular directions.
The geometrical interpretations are obvious in all these cases.

Composition 667. The composition of stresses is of course to be eflected
by adding the component tractions thus:—If (£,,Q, £,, S, T,, U)),
(P, Q, R, S, T, U,), etc., denote, according to § 662, any
given set of stresses acting simultaneously in a substance, their
joint effect is the same as that of a single resultant stress of
which the specification in corresponding terms is (P, 20, 3.,

8, 3T, SU).
Laws of 668. Each of the statements that have now been made (§§

strain and

stress com- 659, 667) regarding stresses, is applicable to wnfinitely small
. straing, if for traction perpendicular to any plane, reckoned per
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unit of its area, we substitute elongation, in the lines of the Laws of
strain and

traction, reckoned per unit of length; and for half the tangential stress com-

. L. . ., pared
tractron parallel to any direction, shear in the same direction

reckoned in the manner explained in § 175. The student will
find 1t a useful exercise to study in detail this transference of
each one of those statements, and to justify 1t by modifying in
the proper manner the results of §§ 171, 172, 173, 174, 175,
185, to adapt them to infinitely small strains. It must be re-
marked that the strain-quadric thus formed according to the
rule of § 663, which may have any of the varieties of character
mentioned in §§ 665, 666, is not the same as the strain-ellipsoid
of § 160, which is always essentially an ellipsoid, and which, for
an imnfinitely small strain, differs infinitely little from a sphere,

The comparison of § 172, with the result of § 661 regarding
tangential tractions, is particularly interesting and important.

669. The following schedule of the meaning of the elements
constituting the corresponding rectangular specifications of a,
strain and stress explained in preceding sections, will be found
convenlent:—

Planes; of which | Direction Rectangular

Con;];tzlﬁgnts relative motion, or | of rqlative elemen%s of

strain. | stress. | 2CTOSS which force | motion or strains and

' . l is reckoned. of force. siresses,

e | P JE 2
J (/ 2 Y
g | K ) 2
Y 2
' 48 J J J
{22 2
7 T { 2Y P
2 “ 7%
. 17 [ Xz T
| Nz Y

670. If a unit cube of matter, given under any stress (£, ¢, Work done
by a stress

R, S, T, U), be subjected further to such infinitesimal change withina

of this stress as shall produce an infinitely small simple longi- solid

tudinal strain e alone, the work done on it will be Pe; since, of
VOL. IL 14
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Work done the component forces P, U, T parallel to OX, Uand T do no

by & stress
within a
varying
solid.

Compare
§ 878, (20).

Work done
on the suxe
face of a
VArying
solid.

work 1n virtue of this strain. Similarly ¢f, Eg are the works
done 1f, the same stress acting, infinitesimal strams f or g are
produced, either of them alone. Again, if the cube experiences
a simple shear, a, whether we regard it (§ 172) as a differential
sliding of the planes yz, parallel to 7, or of the planes zz,
parallel to z, we see that the work done is Sa: and similarly,
T'b if the strain i1s simply a shear b, parallel to OZ, of planes 2y,
or parallel to OX, of planes #y: and Ucif the strain is a shear ¢,
parallel to OX, of planes @z, or parallel to OY, of planes yz.
Hence the whole work dore by the stress (P, @, R, S, T, U) on
a unit cube taking the additional infinitesimal strain (e f, g,
a, b, c), while the stress varies only infinitesimally, is

Pe+Qf+ Rg+ Sa+Tb+ Uk....... enraens (3).

It is to be remarked that, inasmuch as the action called a stress
18 a system of forces which balance one another if the portion
of matter experiencing it is rigid, it cannot (§ 551) do any work
when the matter moves in any way without change of shape:
and therefore no amount of translation or rotation of the cube
taking place along with the strain can render the amount of
work done different from that just found.

If the side of the cube be of any length p, instead of unity,

“each force will be p* times, and each relative displacement p

times; and therefore the work done p° times the respective
amounts reckoned above. Hence a body of any shape, and
of cubic content C, subjected throughout to a uniform stress
(P,Q R, S, T, U) while taking uniformly throughout an ad-
ditional strain (e, f, g, @, b, c), experiences an amount of work
equal to

(Pe+Qr+Rg+8Sa+ T+ Uc)C............ (4).

It i1s to be remarked that this is necessarily equal to the work
done on the bounding surface of the body by forces applied to it
from without. For the work done on any portion of matter
within the body is simply that done on its surface by the matter
touching it all round, as no force acts at a distance from without
on the interior substance. Hence if we imagine the whole body
divided into any number of parts, each of any shape, the sum

670.] STATICS. | 211

of the works done on all these parts is, by the disappearance of
equal positive and negative terms expressing the portions of the
work done on each part by the contiguous parts on all its sides,

and spent by these other parts in this action, reduced to the

integral amount of work done by force from without, applied all
round the outer surface.

The analytical verification of this is instructive with regard to
the syntax of the mathematical language in which the theory of
the transmission of force is expressed. Let x, %, 2 be the co-
ordinates of any point within the body; W the whole amount
of work done in the circumstances specified above ; and [ff in-
tegration extended throughout the space occupied by the body:
go that

W= [[[(Pe+ Qf + Rg + Sa+ Tb+ Uc) daxdydsz........(5).

If now we denote by a, 8, ¥ the component displacements of any
point of the matter infinitely near the point (%, ¥, z), experienced
when the additional strain (¢, f, g, @, 6, ¢) takes place, whether
non-rotationally (§ 182) and with some point of the body fixed,
or with any motion of translation whatever and any infinitely
small rotation, by adapting § 181 (5) to infinitely small strains
according to our present notation (§ 669), and using in it

§ 190 (e), we have
6_3.%, f dy’ g—_CTz’ 6
_dﬁ+dy b_dy+d_¢1 c-gﬁ_,_‘_ig > cesssasces ( ).
ﬂ';_c_f; Ey-’ dﬂ”} dz’ _dy de

With these, (5) becomes

da.

x dz

B da .dB _dy dg Ay, da A8 dv

Hence by integration
W=(f[(Pa+ U8+ Ty)dydz+ (UVa+ @8+ Svy)dzdx + (Ta + S8+ Ry)dxdy]......... (6),

the limits of the integrations being so taken that, if do denote
an element of the bounding surface, [[ integration all over it, and
I, m, n the direction-cosines of the normal at any point of 1t, the
expression means the same as

W= [[{(La+UB +Ty)N+(Ua+@QB+Sy)m+ (Ta+SB+ Ryyn}da...(9);
14—2
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which, with the terms grouped otherwise, becomes
W= [[{(Pl+Um+Tn)a+(Ul+@Qm+Sn) B+ (L1+Sm+ Bn)y}do...(10).

The second member of this, in virtue of (1), expresses directly

the work done by the forces applied from without to the bounding
surface. |

671. If now, we suppose the body to yield to a stress (P, @,

R, S, T, U), and to oppose this stress only with its innate resist-

ance to change of shape, the differential equation of work done
will [by (4) with de, df, etc., substituted for ¢, £, etc.] be

dw = Pde + Qdf + Bdg + Sda + Tdb+ Udc.........(11),

if w denote the whole amount of work done per unit of volume
in any part of the body while the substance in this part ex-
periences a strain (e, f, ¢, a, b, ¢) from some 1nitial state re-
oarded as a state of no strain, This equation, as we shall see
later, under Properties of Matter, expresses the work done 1n

a natural fluid, by distorting stress (or difference of pressure in

different directions) working against its innate viscosity; and
w 1s then, according to Joule's discovery, the dynamic value of
the heat generated in the process. The equation may also be
applied to express the work done in straining an imperfectly
elastic solid, or an elastic solid of which the temperature varies
during the process. In all such applications the stress will
depend partly on the speed of the straining motion, or on the
varying temperature, and not at all, or not solely, on the state

of strain at any moment, and the system will not be dynamically
conservative.

672. Definition.—A perfectly elastic body is a body which,
when brought to any one state of strain, requires at all times
the same stress to hold it in this state; however long it be
kept strained, or however rapidly its state be altered from any
other strain, or from no strain, to the strain in question. Here,
according to our plan (§§ 443, 448) for Abstract Dynamics, we
ignore variation of temperature in the body. If, however, we
add a condition of absolutely no variation of temperature, or
of recurrence to one specified temperature after changes of
strain, we have a definition of that property of perfect elasticity
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towards which highly elastic bodies in nature approximate; and Lts con-
which 1s rigorously fulfilled by all fluids, and may be so by fulfilment
some real solids, as homogeneous crystals. But inasmuch as

the elastic reaction of every kind of body against strain varies

with varying temperature, and (a thermodynamic consequence

of this, as we shall see later) any increase or diminution of
strain in an elastic body is necessarily accompanied by a
change of temperature; even a perfectly elastic body could not,

in passing through different strains, act as a rigorously conser-
vative system, but, on the contrary, must give rise to dissipation

of energy in consequence of the conduction or radiation of heat
induced by these changes of temperature.

But by making the changes of strain quickly enough to pre-
vent any sensible equalization of temperature by conduction or
radiation (as, for instance, Stokes has shown, is done in sound
of musical notes travelling through air); or by making them
slowly enough to allow the temperature to be maintained
sensibly constant* by proper appliances; any highly elastic, or

perfectly elastic body in nature may be got to act very nearly
as a conservative system.

673. In nature, therefore, the integral amount, w, of work Potential
energ

defined as above, is for a perfectly elastic body, independent an elastio

(§ 274) of the series of configurations, or states of strain, strained.
through which it may have been brought from the first to

the second of the specified conditions, provided 1t has not

been allowed to change sensibly in temperature during the
process.

The analytical statement is that the expression (11) for dw
must be the differential of a function of e, f, g, @, b, ¢, regarded
as independent variables; or, which means the same, w 1s a
function of these elements, and

dw dw dw
=% Qua}:’ RH@’ | (12)
e o g e .
823‘-&", T-_—'d—b', U-—-“d"—é- j

* «On the Thermoelastic and Thermomagnetic Properties of Matter*

(W. Thomson). Quarterly Journal of Mathematics. April, 1855 ; Mathematical
and Physical Papers, Art. xLvirr, Part vir.
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Potential ~In Appendix C, we shall return to the comprehensive analytical pendent. The mere principle of superposition (Which we have Stress-com-
energy of , £ this theory, not confining it to infinitely small strains : 2hlishine : : g poments ex-
on o astio treatment o S y, DO g _ ‘ used above in establishing the quadratic form for w) might pressed in
strained. for which alone the notation (e, f; ...), as defined in § 669, 1 have been directly applied to demonstrate linear formule for the strain.
~ convenient. In the meantime, we shall only say that when the stress-components, Thus it is that some authors have been led to

whole amount of strain is infinitely small, and the stress-com- lay down, as the foundation of the most general possible theory

ponents are therefore all altered in the same ratio as the strain- of elasticity, six equations involving 36 coefficients supposed

components if these are altered all in any one ratio; w must be a to be independent. But it is only by the principle of energy that,

homogeneous quadratic function of the six variables ./ 9,8 0, ¢, as first discovered by Green, the fifteen pairs of these coefficients

which, if we denote by (e, €), (/;.f)---(¢,f)... constants depend- are proved to be equal. | '

' th lity of ti bstance and on the directions chosen _ _ _
Ing on the quality ol the Substan The algebraic transformation of equations (14) to express the Strain-

for the axes of co-ordinates, we may write as follows:— : ) _ : components
strain-components singly, by linear functions of the stress-com- expressed
W =% {(e, €) e + (_]‘; F)fi+ (g, 9) g’ + (a, @) &+ (b, b) "+ (e, c)c® ponents, may be directly effected of course by forming the proper of ;1?11-;13]:
+2(e,f)ef + 2(e,9) eg + 2 (e, @) ea + 2 (¢, b)eb + 2 (e, c)ec l | determinants from the 36 coefficients, and taking the 36 proper
+2(£,9)f9 + 2(f, a) fa+2 (1,b) Fb+2(f,0)fe | quotients. From a known determinantal theorer?,- used also
+2(g,a)ga + 2 (g, b) gb+2 (g, ¢)ge [(13) abfwe [§ 313 (d)], it follows that there are 15 equalities between
’ ’ pairs of these 36 quotients, because of the 15 equalities in pairs

of the coefficients of ¢, £, ete., in (14). Thus, if we denote by
[P, P), (@, €], ...[£ €], --- [& P] ...

the set of 36 determinantal quotients found by that process (being,
therefore, known algebraic functions of the original coeflicients

(e, €), (f; ]), ... ete.), we have

+ 2 (a, b) ab+2(a,c)ac
+2 (b, c)bc}J

The 21 coefficients (e, €), (f,.f)...(d, ¢), in this expression con-
stitute the 21 ¢coefficients of elasticity,” which Green first

showed to be proper and essential for a complete theory of the
dynamics of an elastic solid subjected to infinitely small strains.

The only condition that can be theoretically imposed upon these e=[P, P|P+[P,Q|Q+[P,R\R+[P,S|S+[P,T|T+|P,U]U
coefficients is that they must not permit w to becore negative for S=[@, P P+[@, Q) Q+[Q, R R+[Q,S]|S+[Q, LT+ (@&, U]U ;...(16);
any values, positive or negative, of the strain-components e, Srooos etc. eto. |

Under Properties of Matter, we shall see that an untenable theory
(Boscovich’s), falsely worked out by mathematicians, has led to |
relations among the coefficients of elasticity which experiment has [P, @]=[@ P, [P, B]={&, P].ccccvrinreen. ... (17).

proved to be false.

and these new coefficienty satisfy 15 equations

By what we proved in § 313 (d) when engaged with precisely
Eliminating w from (12) by (13) we have the same algebraic transformation, we see that [P, P|,[@, €], ...,

Stress-com- P = (e, e) e+ (g,f)f-f- (e, 9) 9 + (e, @) a + (e, bYb + (e,¢) e ) [P, Q], ... are simply the coefficients of /*, €°, ..., 2@, ... in the

ponents ex- expression for 2w obtained by eliminating e, f, ... from (13), so
B Q=)+ (ENS+ o+ (haar (A0b+ o0 || P .
strain. ete. ete.
oto. eto. w=3{[P, P] P*+[Q,Q]Q*+...+2 [P, Q] PQ+2[P,R|PR+...} ...(18);
and
These equationfa express t]'ae S1X compoPents of stress (P, ¢, I_i’, “ . [dzg Pl dw  [dw
S, 7, U) as linear functions of the six components of strain “laP |’/ T |aq | I=1gm;l° (19);
........... ;

(e, /2 9, a, Z?, ¢) with 1? equali’f,ies [namely (e, f)=(f; ¢), .etc.] - o dus dus™
among their 36 coefficients, which leave only 21 of them Inde- G=| 5| b= 7l =351
L






