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PREFACE.

‘THE original design of the Authors in commencing this work
about twenty years ago has not been carried out beyond the
production of the first of a series of volumes, in which it was
intended that the various branches of mathematical and experi-
mental physics should be successively treated. The intention
of proceeding with the other volumes is now definitely aban-
doned ; but much new matter has been added to the first
volume, and it has been divided into two parts, in the second
edition now completed in this second part. The original first
volume contained many references to the intended future
volumes; and these references have bren allowed to remain in
the present completion of the new. edition of the first volume,
because ‘the plan of treatment followed depended on the
expectation of carrying out the original design.

Throughout the latter part of the book extensive use has,

accordmg to Prof Stokes’ revival of this wvaluable notation,

been made of the “solidus” to replace the horizontal stroke in
a
b
illustrated by the spacing between these lines) advantageous for
the introduction of isolated analytical expressions in the midst
of the text, and its use in printing complex fractional and
exponential expressions permits the printer to dispense with
much of the troublesome process known as “justification,” and

18 printed a/b. This notation is (as is

effects & considerable saving in space and expense.
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An index to the whole of the first volume has been prepared

by Mr BURNSIDE, and is placed at the end.

A schedule is also given below of all the amendments and
additions (excepting purely verbal changes and corrections)
made in the present edition of the first volume.

Inspection of the schedules on pages xxii. to xxv. will shew
that much new matter has been imported into the present
edition, both in Part I. and Part II. These additions are
indicated by the word “new.”

The most important part of the labour of editing Part II.
has been borne by Mr G. H. DARWIN, and it will be seen from

the schedule below that he has made valuable contributions to
the work.

NOTE TO NEW IMPRESSION, 1912

A few slight additions and corrections have been made by
Sir GEORGE DARWIN and Prof, H. LAuMB, but, substantially, the
work remains as last passed by the authors. The additions can

be identified by the initials attached in brackets.
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DIVISION IL

ABSTRACT DYNAMICS.

CHAPTER V.

INTRODUCTORY.

438, UNTIL we know thoroughly the nature of matter and Approxi-

the forces which produce its motions, 1t will be utterly im- E:eﬁ?
possible to submit to math ematical reasoning the exact con- questions.
ditions of any physical question. It has been long understood,
however, that approximate solutions of problems in the ordinary
branches of Natural Philosophy may be obtained by a species
of abstraction, or rather limitation of the data, such as enables
us easily to solve the modified form of the question, while we
are well assured that the circumstances (so modified) affect the

yesult only in a superficial manner.

- 4389. Take, for instance, the very simple case of a crowbar
employed to move a heavy mass. The accurate mathematical
mvestigation of the action would involve the simultaneous
treatment of the motions of every part of bar, fulerum, and
mass raised ; but our ignorance of the mature of matter and
molecular forces, precludes any such complete treatment of the
problem.

It is a result of observation that the particles of the bar,
fulerum, and mass, separately, retain throughout the process

nearly the same relative positions, Hence the idea of solving,
VOL. 1L 1
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with no change of temperature. By introducing such considera- Purther
approxima-

approxi-  instead of the complete but infinitely transcendent problem,
tions, we reach, without great difliculty, wha,t may be called tions.

ope i o another, in reality quite different, but which, while amply simple,

Gusstions. obviously leads to practically the same results so far as con- a third approximation to the solution of the physical problem
cerns the equilibrium and motions of the bodies as a whole. considered.

440, The new form is given at once by the experimental 444, We might next introduce the conduction of the heat,
result of the trial. Imagine the masses involved to be perfectly 80 produced from point to point of the solid, with its accom-
rigid, that is, incapable of changing form or dimensions. Then panying modifications of elasticity, and so on; and we might
the infinite series of forces, really acting, may be left out of then consider the production of thermo- electrlc currents, -WhICh
consideration; so that the mathematical investigation deals (as we s-ha,'ll see) are always developed by unequal heating in
with a finite (and generally small) number of forces instead of g mass 1f 113. be not perfectly homogen.eous. Enough, however,
a practically infinite number. Our warrant for such a substi- has been said to show, first, our utter ignorance as to the true
tution is to be established thus. and complete solution of any physical question by the only

perfect method, that of the consideration of the circumstances

441. The effects of the itermolecular forces could be ex- which affect the motion of every portion, separately, of each
hibited only in alterations of the form or volume of the masses body concerned; and, second, the practically sufficient manner
involved. But as these (practically) remain almost unchanged, 1in which practical questions may be attacked by limiting their
the forces which produce, or tend to produce, them may be left generality, the limitations wntroduced being themselves deduced
out of consideration. Thus we are enabled to investigate the from experience, and being therefore Nature’s own solution (to
action of machinery supposed to consist of separate portions a less or greater degree of accuracy) of the infinite additional
whose form and dimensions are unalterable. number of equations by which we should otherwise have besn

Further 442, If we go a little further into the question, we find that éncumbered.
tome " the lever bends, some parts of it are extended and others com- 445. To take another case: in the consideration of the pro-

pressed. This would lead us into a very serious and difficult
inquiry if we had to take account of the whole circumstances.
But (by experience) we find that a sufficiently accurate solution
of this more formidable case of the problem may be obtained
by supposing (what can never be realized in practice) the mass
to be homogeneous, and the forces consequent on a dilatation,
compression, or distortion, to be proportional in magnitude, and
opposed in direction, to these deformations respectively. By
this further assumption, close approximations may be made to
the vibrations of rods, plates, etc., as well as to the statical

effect of springs, etc.

443. We may pursue the process further. Compression, in
general, produces heat, and extension, cold. The elastic forces
of the material are thus rendered sensibly different from what
they would be with the same changes of bulk and shape, but

pagation of waves at the surface of a fluid, it is impossible,
not only on account of mathematical difficulties, but on account
of our ignorance of what matter is, and what forces its particles
exert on each other,.to form the equations which would give
us the separate motion of each. Our first approximation to
a solution, and one sufficient for most practical purposes, is de-
ﬁ‘?ed from the consideration of the motion of a homogeneous,
iimompressible, and perfectly plastic mass; a hypothetical sub-
stance which may have no existence in nature.

446. Looking a little more closely, we find that the actual
motion differs considerably from that given by the analytical
solution of the restricted problem, and we introduce further
considerations, such as the compressibility of fluids, their inter-
el friction, the heat generated by the latter, and its effects 1n
-dllatmg the mass, etc. etc. By such sucecessive corrections we

1—2
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E;;trggm_ attain, at length, to a ma,the?natical refsult which (at 3:11 ?vents ‘the nature of the bodies; (2) upon their polish, or the species and Laws of
tions. in the present state of experimental sc1en?e) agrees, within the quantity of lubricant which may have been applied ; (3) upon the friction.
limits of experimental error, with observation. normal pressure between them, to which it is in general directly
447. It would be easy to give many more Instances sub- proportional. It does not (except in some extreme cases where
stantiating what has just been advanced, but it seems scarcely scratching or excessive abrasion takes place) depend sensibly
necessary to do so. We may therefore at once say that there upon the area of the surfaces in contact. When two bodies are
is no question in physical science which can be completely and pressed togef:her without being caused to slide one on another,
accurately investigated by mathematical reasoning, but that the force which prevents sliding is called Statical Friction. It
there are different degrees of approximation, involving assump- is capable of opposing a tangential resistance to motion which
tions more and more nearly coincident with observation, which may be of any amount less than or at most equal to p&2; where
may be arrived at in the solution of any particular question. R is the whole normal pressure between the bodies; and u
: . . . (which depend ! - :
Qbject of 448. The object of the present division of this volume 1s to deal ( Hen Gopenas 1:_11am1y upon the nature of t.h ° surfaces_ -
the present - Y . contact) is what is commonly called the coefficient of Statical
thepresent . 'th the first and second of these approximations. In 1t we shall e . _ : _ _
the work ] . . . Friction. This coefficient varies greatly with the circumstances,
suppose all solids either RIGID, 7.¢., unchangeable in form and .. . :
: being 1n some cases as low as 003, in others as high as 0°80.
volume, or ELASTIC; but in the latter case, we shall assume the - , : )
g . . .. . _ Later, we shall give a table of its values. When the applied
law, connecting a compression or a distortion with the force , _ _
. _ . . forces are insufficient to produce motion, the whole amount of
which causes it, to have a particular form deduced from experi- e ... , , _
. statical friction is not called into play; its amount then just
ment. And we shall in the latter case neglect the thermal or | . . .
_ : . : ; reaches what is sufficient to equilibrate the other forces, and
electric effects which compression or distortion generally cause. e ome e : : . :
. -y its direction is the opposite of that in which their resultant
We shall also suppose fluids, whether liquids or gases, to be tonds t 3 Ry
either INCOMPRESSIBLE or compressible according to certain FoRaS 1O produace motion.
known laws; and we shall omit considerations of fluid friction, 462. When the statical friction has been ovrercome, and
although we admit the consideration of friction between solids. sliding is produced, experiment shows that a force of friction
Fluids will therefore be supposed perfect, 1.e., such that any par- ,@ntinue to act, opposing the motion ; that this force of Kinetrc
ticle may be moved amongst the others by the slightest force. Friction is in most cases considerably less than the extreme
. - . force of static fricti hich h
449. When we come to Properties of Matter and the various alidine o oo WEE a,d to b.e OVELEOmS before the
T . sliding commenced ; that it too is sensibly proportional to the
forms of Energy, we shall give in detail, as far as they are yet . . - .
PR .. C L normal pressure; and that it is approximately the same what-
known, the modifications which further approximations have vorar T : g,
_ _ > ever be the velocity of the sliding.
introduced into the previous results.
Laws of 450. The laws of friction between solids were very ably in- 453. In the fO!IOng Chapters on Ab&:,tra.ct Dynamics we con- o i]neg:feol}l
ot O fine ourselves mainly to the general principles, and the fundamen- ourions

vestigated by Coulomb ; and, as we shall require them in the
succeeding chapters, we give a brief summary of them here;
reserving the more careful scrutiny of experimental results to
our chapter on Properties of Matter.

tal formulas and equations of the mathematics of this extensive tlons.
subject; and, neither seeking nor avoiding mathematical exer-
E}'tations, we enter on special problems solely with a view to pos-
sible usefulness for physical science, whether in the way of the
:'m?teﬁal of experimental investigation, or for illustrating physical
Prinaiples, or for aiding in speculations of Natural Philosophy.

451. To produce and to maintain sliding of one solid body
on another requires a tangential force which depends—(1) upon
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CHAPTER VL

STATICS OF A PARTICLE.—ATTRACTION.

454. WE naturally divide Statics into two parts—the equi-
librium of a particle, and that of a rigid or elastic body or
system of particles whether solid or flmid. In a very few sec-
tions we shall dispose of the first of these parts, and the rest of
this chapter will be devoted to a digression on the important

subject of Attraction.

455. By § 255, forces acting at the same point, or on the
same material particle, are to be compounded by the same laws
as velocities. Hence, evidently, the sum of their components
in any direction must vanish if there is equilibrium ; and there
is equilibrium if the sums of the components in each of three
lines not in one plane are each zero. And thence the necessary
and sufficient mathematical equations of equilibrium.

Thus, for the equilibrium of a material particle, it 18 necessary,
and sufficient, that the (algebraic) sums of the components of
the applied forces, resolved in any three rectangular directions,
should vanish.

If P be one of the forces, I, m, n its direction-cosines, we
have
SIP=0, ImP=0, 3nP=0.

If there be not equilibrium, suppose R, with direction-cosines
A, 1, v, to be the resultant force. If reversed in direction, it
will, with the other forces, produce equilibrium. Hence

SIP-AR=0, 3mP-pR=0, ZnlP-vR=0.

455.) STATICS. 1

And R? = (3IP)* + (EmP)* + (ZnP)’,
: A p v
while SIP~ SmP 3nP’

456. We may take one or two particular cases as examples
of the general results above. Thus,

(1) If the particle rest on a frictionless curve, the com-
ponent force along the curve must van ish.

If 2, y, z be the co-ordinates of the point of the curve at which
the particle rests, we have evidently

doc dy  dz\
EP(Z?ES--PTEEE-F%&—; = ().

When P, I, m, n are given in terms of &, ¥, 2, this, with the fwo
equations to the curve, determines the position of equilibrum.

(2) If the curve be frictional, the resultant force along 1t
must be balanced by the friction.

If 7 be the friction, the condition 18

SP(Z -d—:f:-'-m@+n—d—z

This gives the amount of friction which will be called into play ;

and equilibrium will subsist until, as a limit, the friction 1s x times
the normal pressure on the curve. But the normal pressure 1s

dz  dy\’ de dz\” dy da\*?)
Hence, the limiting positions, between which equilibrium 18 pos-
sible, are given by the two equations to the curve, combined with

. ' )\ 2 2 | 2
H(l%+m@+nd—z)ﬂzuEPi(md—z—n£) +(nd-§—1@ +(l§y—m§—x %%=0-

ds ds ds ds ds ds ds ds

(3) If the particle rest on a smooth surtace, the resultant
qf ' fhe applied forces must evidently be perpendicular to the
If ¢(x, 9, z) =0 be the equation of the surface, we must there-

fore have

de dep dg
_Ei_a:; dy dz
SIP~ SmP Zalb’

and these three equations determine the position of equilibrium.

-
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(4) If it rest on a rough surface, friction will be called into
play, resisting motion along the surface; and there will be
equilibrium at any point within a certain boundary, determined
by the condition that at ¢/ the friction 18 x times the normal
pressure on the surface, while within it the friction bears a less

ratio to the normal pressure. When the only applied force is
gravity, we have a very simple result, which 1s often practically
useful. Let @ be the angle between the normal to the surface
and the vertical at any point ; the normal pressure on the sur-
face 1s evidently W cos@, where W is the weight of the particle;
and the resolved part of the weight parallel to the surface,

which must of course be balanced by the friction, 1s W siné.
In the limiting position, when sliding is just about to com-
mence, the greatest possible amount of statical friction 1s called

into play, and we have
Wsin@=uW cosé,
or tand = p.
The value of @ thus found is called the Angle of Repose.

Let ¢(x, ¥, 2)=0 be the surface: P, with direction-cosines
!, m, n, the resultant of the applied forces, The normal pressure is

_qf’.. ap . %P
+m +%£

T ‘”’) @)
The resolved part of P pa.rallel to the surface is
E D D (5T
z) * () + ()

Hence, for the boundary of the portion of the surface within
which equilibrium 1s possible, we have the additional equ&tiﬂn

) (8 (ot

467. A most important case of the composition of forces
acting at one point is furnished by the consideration of the

attraction of a body of any form upon a material particle any-

457.] STATICS. | 9

where sitnated. Experiment has shown that the attraction Attraction.

exerted by any portion of matter upon another is not modified
by the proximity, or even by the interposition, of other
matter; and thus the attraction of a body on a particle is the
resultant of the attractions exerted by its several parts. To
treatises on applied mathematics we must refer for the examina-
tion of the consequences, often very curious, of various laws of
attraction ; but, dealing with Natural Philosophy, we confine
ourselves mainly, (and except where we give the mathematics of
Laplace’s beautiful and instructive and physically important,
though unreal, theory of capillary attraction,) to the law of the
inverse square of the distance which Newton discovered for oTa-
vitation. This, indeed, furnishes us with an ample supply
of most interesting as well as useful results.

458. The law, which (as a property of matter) is to be care- Universal
fully considered 1n the next proposed Division of this Treatise,

may be thus enunciated.
Every particle of matter in the universe attracts every other

particle, with a force whose direction is that of the line joining

the two, and whose magnitude is directly as the product of their
masses, and nversely as the square of their distance from each
other.

Experiment shows (as will be seen further on) that the same

law holds for electric and magnetic attractions under properly
defined conditions.

459. For the special applications of Statical principles to s Spe
which we proceed, it will be convenient to use a special unit of of
mass, or quantity of matter, and corresponding units for the
measurement of electricity and magnetism.,

Thus if, in accordance with the physical law enunciated in

§ 458, we take as the expression for the forces exerted on each

other by masses M and m, at distance D,
Mm

I

it is obvious that our unst force is the mutual attraction of two
units of mass placed at unit of distance from each other.

law of
attraction.

cial unit
quantity
matter.
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Linear, . 460. It is convenient for many applications to speak of the
surface, and

volume,  density of a distribution of maitter, electricity, etc., along a line,

densities. |
over a surface, or through a volume.
Here line-density = quantity of matter per unit of length.
surface-density = s 'y ’ area.
volume-density = s . s volume.

Eleotricand 461, In applying the succeeding investigations to electricity
magnetic

fonings or magnetism, 1t 1s only necessary to premise that M/ and m stand
of manti®- tor quantities of free electricity or magnetism, whatever these
may be, and that here the idea of mass as depending on inertia

is not necessarily invoived. The formula J%T’ will still repre-

sent the mutual action, if we take as unit of imaginary electric
or magnetic matter, such a quantity as exerts unit force on an
Positiveand equal quantity at unit distance. Here, however, one or both

et ad- of M, m may be negative; and, as in these applications like

ot kinds repel each other, the mutual action will be attraction
Attraction. OF repulsion, accbrding as its sign 1s negative or positive. With
these provisos, the following theory is applicable to any of the
above-mentioned classes of forces. We commence with a few

simple cases which can be completely treated by means of ele-
mentary geometry.

Uniform 462. If the different points of a spherical surface attract
:ggﬁfmit- equally with forces varying inversely as the squares of the dis-

imtemal . tances, a particle placed within the surface vs not attracted in any

potnt direction. |
Let HIKL be the spherical surface, and P the particle

within it. Let two lines HK, IL, intercepting very small arcs
HI, KL, be drawn through P; then,

on account of the similar triangles
HPI, KPL, those arcs will be propor-
tional to the distances HP, LP; and
any small elements of the spherical
surface at HI and KL, each bounded
all round by straight lines passing
- - through P [and very nearly coincid-
ing with HK], will be in the duplicate ratio of those lines.

KL
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- Hence the forces exercised by the matter of thesé elements Uniform

on the particle P are equal; for they are as the quantities shell, At-
traction on

of matter directly, and the squares of the distances, inversely ; ;ﬁﬁ?“a
and these two ratios compounded give that of equality.

The attractions therefore, being equal and opposite, balance one
another : and a similar proof shows that the attractions due to

all parts of the whole spherical surface are balanced by contrary
attractions. Hence the particle P is not urged in any direc-

tion by these attractions.

463. The division of a spherical surface into infinitely small Digression
O6n uiieg aivi-

elements will frequently occur in the investigations which sion of sur-
follow : and Newton’s method, described in the preceding de- elements.
monstration, in which the division is effected in such a manner

that all the parts may be taken together in pawrs of opposite
elements with reference to an internal pownt; besides other
methods deduced from it, suitable to the special problems to be
examined ; will be repeatedly employed. The present digres-

sion, in which some definitions and elementary geometrical
propositions regarding this subject are laid down, will simphfy

the subsequen} demonstrations, both by enabling us, through

the use of convenient terms, to avoid circumlocution, and by

affording us convenient means of reference for elementary
principles, regarding which repeated explanations might other-

‘wise be necessary.

464. If a straight line which constantly passes through a Explana.

tions and

fixed point be moved in any manner, it is said to describe, or definitions

regarding

generate, a conical surface of which the fixed point 1is the cones.

vertex.
If the generating line be carried from a given position con-

tinuously through any series of positions, no two of which

@incide, till it is brought back to the first, the entire line on
the two sides of the fixed point will generate a complete conical
surface, consisting of two sheets, which are called wertical or

Opposite cones. Thus the elements HI and KL, described in
Newton’s demonstration given above, may be considered as being

~eut from the spherical surface by two opposite cones having P
for their common vertex.
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466. If any number of spheres be described from the ver-
tex of a cone as centre, the segments cut from the concentric
spherical surfaces will be similar, and their areas will be as the
squares of the radn. The quotient obtained by dividing the
area of one of these segments by the square of the radius of the
spherical surface from which 1t 1s cut, is taken as the measure
of the solid angle of the come. The segments of the same
spherical surfaces made by the opposite cone, are respectively
equal and similar to the former (but “ perverted”). Hence the
sohid angles of two vertical or opposite cones are equal : either
may be taken as the solid angle of the complete conical surface,
of which the opposite cones are the two sheets.

466. Since the area of a spherical surface is equal to the

square of its radius multiplied by 4, it follows that the sum of

the solid angles of all the distinct cones which can be described
with a given point as vertex, 18 equal to 4.

467. The solid angles of vertical or opposite cones being
equal, we may infer from what precedes that the sum of the

solid angles of all the complete conical surfaces which can be
described without mutual intersection, with a given point as
vertex, 1s equal to 2.

468. The solid angle subtended at a point by a superficial
area of any kind, is the solid angle of the cone generated by a
straight line passing through the point, and carried entirely
round the boundary of the area.

469. A very small cone, that 1s, a cone such that any two
positions of the generating line contain but a very small angle,
is said to be cut at right angles, or orthogonally, by a spherical
surface described from 1ts vertex as centre, or by any surface,
whether plane or curved, which touches the spherical surface at

the part where the cone 1s cut by 1t.

A very small cone is said to be cut obliquely, when the section
is inclined at any finite angle to an orthogonal section ; and this
angle of inclination is called the obliquity of the section.

The area of an orthogonal section of a very small cone is equal

another described from P as centre, with

tween the radin, £P and EC, of the two
spheres. Hence, by considering the iso-
sceles triangle KCFL', we find that the cosine of the obliquity

469.] STATICS. 13

to the area of an oblique section in the same position; multiplied Orthogonal
and oblique

by the cosine of the obliquity. sections of a

: . : small cone.
Hence the area of an oblique section of a small cone is equal

to the quotient obtained by dividing the product of the square
of its distance from the vertex, into the solid angle, by the
cosine of the obliquity. '

470. Let £ denote the area of a very small element of a Ares, of seg-
ments cu

spherical surface at the point A (that is to say, an element from spher-
ical surface

every part of which 1s very near the point £), let w denote by small
the solid angle subtended by E at any point P, and let PE,
produced if necessary, meet the surface again in £': then, o

denoting the radius of the spherical surface, we have

For, the obliquity of the element F, considered as a section
of the cone of which P is the vertex and
the element &' a section; being the angle
between the given spherical surface and

PLE asradius; i1s equal to the angle be-

\EE EE'

18 equal to w0 O to 5 - and we arrive at the preceding

expression for L.

471. The attraction of a uniform spherical surface on an ynitorn

external point 1s the same as if the whole mass were collected at SEoFm A,
the centre*. trachogz or|

point.

* This theorem, which is more comprehensive than that of Newton in his
first proposition regarding attraction on an external point (Prop. LXX1.)), is
hully established as a corollary to a subsequent proposition (Prop. LXXIIL,
cor. 2), If we had considered the proportion of the forces exerted upon two
ext&mal points at different distances, instead of, as in the text, investigating
the absolute force on one point, and if besides we had taken together all the
pairs of elements which would constitute two narrow annular portions of the
Burface, in planes perpendicular to PC, the theorem and its demonstration
wourld have coincided precisely with Prop, LXXI. of the Principia.
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Let P be the external point, C the centre of the sphere, and
CAP a straight line cutting
the spherical surface in A.

Take I in CP, so that CP,

' » !, | Cd, CI may be continual pro-

P portionals, and let the whole
’ spherical surface be divided
into pairs of opposiie elements

with reference to the point 1.

Let H and FF denote the magnitudes of a pair of such
elements, situated respectively at the extremities of a chord
HH’; and let o denote the magnitude of the solid angle sub-

tended by either of these elements at the point 1.

We have (§ 469),

w.lH? , w.IH"?
H=oom 42 = omT1

Hence, if p denote the density of the surface, the attractions of
the two elements H and H’ on P are respectively
@ IH* w IH™
P cosCHI " PH*’ and P eosCH'I  PH™*

Now the two triangles PCH, HCI have a common angle at C,
and, since PC : CH :: CH : CI, the sides about this angle are

proportional. Hence the triangles are similar; so that the
angles CPH and CHI are equal, and

IH CH «a

HP CP (P’
In the same way it may be proved, by considering the triangles
PCH’, H'CI, that the angles CPH’ and CH'I are equal, and

that

1" CH _ a
HP CP CP
Hence the expressions for the attractions of the elements H
and H’ on P become
@ a’ a’

_ W
cos CHI " 0P ™ P o5 OHT * 0P

which are equal, since the triangle HCH’ is isosceles ; and, for
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the same reason, the angles CPH, CPH’, which have been Unitorm

proved to be respectively equal to the angles CHI, CH'I, are s e At

equal. We infer that the resultant of the forces due to the g?:ﬁiﬂzm

two elements is in the direction PC, and is equal to point.

ai.’

CP?
To find the total force on P, we must take the sum of all the
forces along PC due to the pairs of opposite elements; and,

20.p.

since the multiplier of w is the same for each pair, we must
add all the values of w, and we therefore obtain (§ 467), for the
required resultant,

4arpa®

| P
The numerator of this expression; being the product of the
density, into the area of the spherical surface; is equal to the
whole mass ; and therefore the force on P is the same as if the
whole mass were collected at C.

Cor.  The force on an external point, infinitely near the surface,
18 equal to 4mp, and is in the direction of a normal at the point,

The force on an internal point, however near the surface, is, by a
preceding proposition, nl.

472. Let o be the area of an infinitely small element of the Attraction
surface at any point P, and at any other ment of the
point H of the surface let a small element 4 surface.
subtending a solid angle w, at P, be taken.

The area of this element will be equal to

w.PH*® C P
_ cos CHP’ |
and therefore the attraction along HP,

_w.hieh.it exerts on the element ¢ at 2, will
be equal to

po.ps
cosCHP’ " cos CHPFP <

NOW the total attraction on the element at P is in the direction
CP,; the component in this direction of the attraction due to

the element H , 18

®.p0;



16 ABSTRACT DYNAMICS. [472.

Attraction and, since all the cones corresponding to the different elements
8- . . .
ment of the of the spherical surface lie on the same side of the tangent

surface. ‘
plane at P, we deduce, for the resultant attraction on the
element o,

2mpo.

From the corollary to the preceding proposition, it foliows tha
this attraction is half the force which would be exerted on an
external point, possessing the same quantity of matter as the
element o, and placed infinitely near the surface.

473. In some of the most important elementary problems
of the theory of electricity, spherical surfaces with densities
varying inversely as the cubes of distances from eccentric points
occur : and 1t is of fundamental importance to find the attrac-
tion of such a shell on an internal or external point. This may
be done synthetically as follows; the investigation being, as we
shall see below, virtually the same as that of § 462, or § 471.

Altraction 474. Let us first consider the case in which the given point
of & n

spherical § and the attracted point P are separated by the spherical sur-

witich the face. The two figures represent the varieties of this case in
onsl

variesin-  which, the point § being without the sphere, P is within; and,

ersely as . . 7 . .
the cube of S being within, the attracted point is external. The same de-

the distance

from >8ven monstration 18 applicable literally with reference to the two
higures; but, to avoid the consideration of negative quan-
tities, some of the expressions may be conveniently modified to
suit the second figure. In such instances the two expressions
are given in a double line, the upper being that which is most
convenient for the first figure, and the lower for the second.

Let the radius of the sphere be denoted by a, and let f be

the distance of S from C, the centre of the sphere (not repre-
sented in the figures).

Join SP and take 7' in this line (or its continuation) so that
(hg.1) SP.8T=f*-d’
(ig. 2) SP.TS =ad’—f"

Through 7' draw any line cutting the spherical surface at K, K’.

Join SK, SK', and let the lines so drawn cut the spherical
surface again in &, £,

474.] STATICS. 17

Let the whole spherical surface be divided into pairs of Atiraction

opposite elements with reference to the point 7° Let K and ;’;ﬁerml

' ‘ . urf: f
K’ be a pair of such elements situated at the extremities of the Evhi;l? the
 density

chord KK’, and subtending the solid angle & at the point 7'; varies in-

]
and let elements £ and /' be taken subtending at § the same tho oube of

. . the dista
solid angles respectively as the elements K and K’ By this f;g?gl; given
means we may divide the whole spherical surface into pairs of
conjugate elements, £, £”, since it is easily seen that when we

have taken every pair of elements, X, K’, the whole surface

K’

will have been exhausted, without repetition, by the deduced
elements, %, K. Hence the attraction on P will be the
final resultant of the attractions of all the pairs of elements,
B K |

Now if p be the surface density at E, and if # denote the
attraction of the element £ on P, we have

_p L&
F=%5;.
According to the given law of density we shall have
A
P~ SE*

where A\ i3 a constant. Again, since SEK is equally inclined
to the spherical surface at the two points of intersection, we

ha _SE* , SE* 2aw.TK*
ve =g K=gi- g
and hence
A 8B 0. TK’
F__SEE-".SK” KK’ N 2a TK?
T D T — e TS =« @)
LD KK 'SE SK*.EP*'“

VOL. 11, 9
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Astraction Now, by considering the great circle in which the sphere 1s cut
Spherical by a plane through the line SK, we find that

surface of | — {3 2
gehggil;;hﬁ (fig. 1) SK .SE=f"—a/,
vaTaely 2z (fig. 2) KS.SE =a’ — f?,

the cube of

mi;;’!ggg and hence SK.SE =SP.ST, tfrom which we infer that the t:i-

point. angles KST, PSE are similar; so that 7K : SK :: PE : SP.

T Tk* 1
SHee SK*.PE*~ SP?
and the expression for # becomes
2a 1

F=\%x 3E.8P*

Modifying this by preceding expressions we have

2a @
(fig. 1) F=)L.KK, F=a SP"SK’

2a 0,
(ﬁg 2) F=7\..—K—.K—, (C!rg—fg) SPgKS.

Similarly, if # denote the attraction of £’ on P, we have

2a W

KK " (fi=a") 8

, 2a @ ,
(ﬁg. 2)F = A\ -EI'—{'; (Cbg _fg)SPz.KS
Now 1n the triangles which have been shown to be similar, the
angles TKS, EPS are equal; and the same may be proved of
the angles T7K'S, £'"PS. Hence the two sides SK, SK’ of the
triangle KSK' are inclined to the third at the same angles
as those between the line PS and directions PE, PE’ of the two

forces on the point P; and the sides SK, SK' are to one

(fig. 1) F' = ;. DK,

another as the forces, ', F', in the directions PE, PE' 1t

follows, by * the triangle of forces,” that the resultant of #* and
F' is along PS, and that it bears to the component forces the
same ratios as the side KX of the triangle bears to the other
two sides. Hence the resultant force due to the two elements
£ and £’ on the point P, is towards 8, and is equal to

2a @ AN 20.w

KK " (f*~a’. ;S"T’T"KKI’ or (f*~a")SP*

AL
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The total resultant force will consequently be towards §; and Attraction
we find, by summation (§ 467) for its magnitude, . _gflgerical
A dra }:ﬁﬁ}ﬁﬁ
(fz__ a) SpPe . :mvués
Hence we infer that the resultant force at any point P, the Hi‘s*%gﬁée
separated from S by the spherical surface, is the same as if a pownt. &

. AL 4 |
quantity of matter equal to 7 __7;? were concentrated at the

point S.

475. To find the attraction when S and P are either both
without or both within the spherical surface.

Take in OF, or in U8 produced through S, a point S, such
that -~ C8.08, =a

Then, by a well-known geometrical theorem, if % be any point
on the spherical surface, we have

SE _f
SE= ¢
Hence we have
A _ Aa’
SE*  f*, S E*

Hence, p being the surface-density at £, we have

Hence, by the investigation in the preceding section, the

attraction on P is towards S, and is the same as if a quantity

2—2
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of matter equal to ?}};j:f were concentrated at that point;
1

f, being taken to denote CS,. If for f, and A, we substitute

2 3
] 'a* la n ]
their values, — and —5; , we have the modified expression

S

)t.c—z'.éqm

w;"f’

for the quantity of matter which we must conceive to be col-

lected at S,.

476. If a spherical surface be electrified in such a way
that the electrical density varies inversely as the cube of the
distance from an internal point S, or from the corresponding
external point 8, it will attract any external point, as if its
whole electricity were concentrated at S, and any internal point,
as if a quantity of electricity greater than 1ts own in the ratio

of a to f were concentrated at S,.
A

Let the density at £ be denoted, as before, by g Then,

if we consider two opposite elements at £ and £’, which sub-
tend a solid angle w at the point S, the areas of these

. w.2a SE? w.2a.8K"”
elements being } ) and T

tricity which they possess will be

h.2a.mi 1)
EE' (

or?"" 20 . w
SE.SE’

SE T SE

Now SE.SE’ 1s constant (Euc. 1II. 35) and its value 1s a&* — f*.
Hence, by summation, we find for the total quantity of elec-

tricity on the spherical surface
A . dra

aa_fn'

Hence, 1f this be denoted by m, the expressions in the preced-
ing paragraphs, for the quantities of electricity which we must
suppose to be concentrated at the point S or S, according as P
18 without or within the spherical surface, become respectively

m, and

}-.m.

, the quantity of elec-
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477. The direct analytical solution of such problems con-

sists In the expression, by § 455, of. the three components of

the whole attraction as the sums of its separate parts due to the
several particles of the attracting body; the transformation, by
the usual methods, of these sums into definite integrals; and the
evaluation of the latter. This is, in general, inferior in elegance
and simplicity to the less direct mode of solution depending
upon the determination of the potential energy of the attracted
particle with reference to the forces exerted upon it by the
attracting body, a method which we shall presently develop
with peculiar care, as being of incalculable value in the theories
of Electricity and Magnetism as well as in that of Gravitation.
But before we proceed to it, we give some instances of the
direct method, beginning with the case of a spherical shell.

Direct ana-
lytical cal-
culation of
attractions.

(@) Let P be the attracted point, O the centre of the shell. Uniform

Let any plane perpendicular to OP cut it in &, and the sphere
in the small circle QR.
Let QOP =0, 0¢Q=a,
OFP =D. Then as the
whole attraction is evi-
dently along PO, we
may ab once resolve
the parts of it in that
direction. The circular
band corresponding to
6, 6 +df has for area

2na’ sin @d6. Hence if M be the mass of the shell, the component
attraction of the band on P, along PO, is

M . PN
5 8in 6do . _P@T; and PQ°’=a® + D® — 2aD cos 6.

Hence if PQ =z, xdx = al sin 6d0.

x'—a'+ D*
2D ’

Also PN=D~qcosf=

hence the attraction of the band is

M & ~a®+ D"

4D ax a.

spherical
shell.
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This divides itself, on integration, into two cases,
(1) P external, t.e.,, D >a. Here the limits of x are D —a

. . Mz D'-a'|Pte M
and D + a, and the atiraction 1s 1D [E T @ |pea DV as
before.
(2) P internal, tw.e., D <a. Here the limits are a — D and
' _ at+.D
a + D, and the attraction is -y— T4+2 L = (.
4D\ a alr a—-D

(b) A useful case is that of the attraction of a circular plate
of uniform surface density on a point in a line through its centre,
and perpendicular to its plane,

If @ be the radius of the plate, 2 the distance of the point from
it, and M its mass, the attraction (which is evidently in a direc-

tion perpendicular to the plate) is easily seen to be
M (o 2hrdr g-{]——{{l— h }
JBE+at)

@ o it @
If p denote the surface density of the plate, this becomes

2
2 (1 __n );
“F At + o’

which, for an infinite plate, becomes
2mp.

From the preceding formula many useful results may easily
be deduced : thus,

(¢) A uniform cylinder of length /, and diameter a, attracts
a point in 1ts axis at a distance x from the nearest end with a
force

x+i
pr[ (1 __t )dla=2wp{Z—J(x+l)'+a’+Ja:’+a’}.
x I+ a

When the cylinder is of infinite length (in one direction) the
attraction is therefore

2mp (Jz* +&° ~ @)

and, when the attracted particle is in contact with the centre of
the end of the infinite cylinder, this is

2mrpa.
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(d) A right cone, of semivertical angle a, and length /, 'Bigllbﬂopo:ia
attracts a particle at its vertex. Here we have at once for the ::;l e

attraction, the expression
2npl (1 — cos a),
which is simply proportional to the length of the axis.

It is of course easy, when required, to find the necessarily less
simple expression for the attraction on any point of the axis.

(¢) For magnetic and electro-magnetic applications a very Positive
useful case is that of two equal discs, each perpendicular to the ;';Eg‘am
line joining their centres, on any point in that line—their masses discs.

(§ 461) being of opposite sign—that is, one repelling and the
other attracting.

Let @ be the radius, p the mass of a superficial unit, of either,

¢ their distance, x the distance of the attracted point from the
 mnearest disc. The whole action is evidently

T+ C x
(o + c)2+a“— JE + a’} |

In the particular case when ¢ is diminished without limit, this
‘becomes

2 wf

aﬂ

(@* + a*)t

478. Let P and P’ be two points infinitely near one another Variation of
Orce 1n

on two sides of a surface over which matter is distributed ; and crossing an
attracting

let p be the density of this distribution on the surface in the surface.

2mpc

neighbourhood of these points. Then whatever be the resultant
attraction, £, at P, due to all the attracting matter, whether
lodging on this surface, or elsewhere, the resultant force, R’, on

P is the resultant of a force equal and parallel to R, and a
force equal to 4mp, in the direction from P’ perpendicularly

towards the surface. For, suppose PP to be perpendicular to

the surface, which will not limit the generality of the pro-
position, and consider a circular disc, of the surface, having its
centre in PP, and radius infinitely small in comparison with

the radii of curvature of the surface but infinitely great in com-
parison with PP'. This disc will [§ 477, (b)] attract P and P
with forces, each equal to 27p and opposite to one another in
the line PP, Whence the proposition. It is one of much im-
Portance in the theory of electricity.



Uniform
hemisphere
attracting
particle at
odge.

Alteration
of latitude;
by hemi-
spherical
hill or
cavity.

ABSTRACT DYNAMICS. [478.

(a) As a further example of the direct analytical process, let
us find the components of the

attraction exerted by a uni-
form hemasphere on a particle

at its edge. l.et 4 be the
particle, AB a diameter of
the base, AC the tangent to
the base at 4 ; and 4D per-
pendicular to AC, and AB.

C Let BRQA4 be a section by a
plane passing through AC; 4@ any radius-vector of this section ;
P apoint in 4Q. Let AP=r, (AQ=0, RAB=¢. The volume
of an element at P 1s

rd@ . rsin 6dd . dr = r* sin Odd dfdr.

D

The resultant attraction on unit of matter at 4 has zero com-
ponent along AC. Along 4B the component is |

p[ /[ sin 6d¢pdbdr cos ¢ sin 6,

between proper limits. The limits of » are 0 and 2a sin @ cos ¢,
w
2
Attraction along 4B = §mpa.

those of ¢ are 0 and ;, and those of  are 0 and =. Hence,

Along AD the component 1s

+7 E‘ 2a sin 8 cos ¢ _ _ _
pj; j; j;' sin 6d0d¢dr sin ¢ sin 6 = 4pa.

(b) Hence at the southern base of a hemispherical hill of

radius a and density p, the true latitude (as measured by the
aid of the plumb-line, or by reflection of starlight in a trough of
mercury) is diminished by the attraction of the mountain by the
angle
37PY
G - 50

where @G is the attraction of the earth, estimated in the same
units. Hence, if & be the radius and o the mean density of the
earth, the angle is

TP pa :
%Wﬁ? —1a O } —5 approximately.
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Hence the latitudes of stations at the base of the hill, north and Alteration .

9 by bom ="
south of it, differ by % (2 + g) ; instead of by -—Rg, as they would ;gﬁaiﬁ
111 OF
cavity,

do if the hill were removed.
In the same way the latitude of a place at the southern edge
of a hemispherical cavity is increased on account of the cavity

by 4 :% where p 1s the density of the superficial strata.

(¢) For mutual attraction between two segments of a homo-
geneous solid sphere, investigated indirectly on a hydrostatic
principle, see § 753 below.

479. As a curious additional example of the class of ques- by crevasse.
tions considered i § 478 (a) (b),a deep crevasse, extending east
and west, increases the latitude of places at its southern edge

by (approximately) the angle § 5—% where p 1s the density of

the crust of the earth, and a 1s the width of the crevasse. Thus
the north edge of the crevasse will have a lower latitude than

the south edge if %E_‘} 1, which might be the case, as there

are rocks of density 2 x 5'5 or 3-67 times that of water. At a
considerable depth in the crevasse, this change of latitudes is
nearly doubled, and then the southern side has the greater
latitude 1f the density of the crust be not less than 1:83 times
that of water. The reader may exercise himself by drawing
lines of equal latitude in the neighbourhood of the crevasse in
this case : and by drawing meridians for the corresponding case
of a erevasse running north and south.

480. It 1s interesting, and will be useful later, to consider Attraction

: ' . Oof a sphere
as a particular case, the attraction of a sphere whose mass is composed of
> » . ﬁﬂnﬁﬁn
eomposed of concentric layers, each of uniform density. shells of
rm

Let B be the radius, » that of any layer, p = F (r) its density. density.
Then, if o be the mean density,

B
swoR’ = 4n [ pridr,
0

from which o may be found.
The surface attraction is 4w R, = @, suppose.

r
At a distance 7 from the centre the attraction is iq;-r f prdr.
0
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Attraction If it is to be the same for all points inside the sphere
of a sphere
composed of r (s
concentric f P?'gd’r == e P
shells of B 44
uniform
density. 1 G o ‘
Hence p=F (r) = 5o i3 the requisite law of density.
If the density of the upper crust be r, the attraction at a
depth %, small compared with the radius, is
%ﬂ-ﬁ'l (R — ;3') = Gl:
where o, is the mean density of nucleus when a shell of thick-
ness / is removed from the sphere. Also, evidently,
%‘?‘I‘U‘l (R — ]L)E + 4t (R — h)gh = % ra'ﬁa,
or Gl (R — h)? + 47T (R - }L)Eh = G.RE,
27
whence G, =G (1 + -—}—g) — 4xth.
The attraction is therefore unaltered at a depth A 1f
% = 70 = 27T.
481. Some other simple cases may be added here, as their
results will be of use to us subsequently.
Attraction (¢) The attraction of a circular arc, 4.8, of uniform density,
gﬁ:ﬁfﬁﬁ on a particle at the centre, C, of the

circle, lies evidently in the line CD

bisecting the arc. Also the resolved

part parallel to CD of the attraction

of an element at P 1s
mass of element at

CD?
Now suppose the density of the chord 45
to be the same as that of the arc. Then

<<
for (mass of element at P x cos PCD)
we may put mass of projection of element

< <
on AB at @ since, if PT be the tangent at P, PT¢) = PCUD.

_ Sum of projected elements
Hence attraction along 0D = P '3:, 7

>l
cos . PCD.

oA B

T
B

.0”
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if p be the density of the given arc, Attraction
of a uniform
< circular are,
2psin ACD

CD

It is therefore the same as the attraction of a mass equal to the
chord, with the arc’s density, concentrated at the point 0.

(b) Again a limited straight line of uniform density attracts straight
any external point in the same direction and with the same Hne.
force as the corre-
sponding arc of a
circle of the same
density, which has
the point for cen-
tre, and touches the
straight line. /

For if CpP be A

drawn cutting the circle in p and the line in P; Element at
p :elementat P :: Cp : OP %% ; that is, as Cp® : OF°., Hence
the attractions of these elements on C are equal and in the same
line. Thus the arc ab attracts ¢ as the line 4B does; and, by

the last proposition, the attraction of 428 bisects the angle ACB,
and is equal to

2p
D

=
sin 40 B.

(¢) This may
be put into other
useful forms —
thus, let CKF
bisect the angle
ACB, and let
de, Bb, EF, he
drawn perpen -
dicular to CF
from the ends
and middle point
of AB. We

AB (D

< KB . % i
have sin KCB = p Mo CKD = AC+ CB CK~
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Henece the attraction, which is along CX, is
2p4AB - __ pdB L

(AC+CB)CK  8(AC+CB)(AC + OB — AR

For, evidently,
bK : Ka :: BK : K4 :: BC : CA :: bC : Ca,
t.e., ab 13 divided, externally in C, and internally in X, in the
same ratio. Hence, by geometry,
KC.CF=aC.Cb=1{AC+CB — AP,

which gives the transformation in (1).

CF. (1)

(d) CF is obviously the tangent at C' to a hyperbola, passing
through that point, and having 4 and B as foci. Hence, if in
any plane through 4B any hyperbola be described, with foci 4
and B, it will be a line of force as regards the attraction of the
ine AB ; that is, as will be more fully explained later, a curve
which at every point indicates the direction of attraction.

(¢) Similarly, if a prolate spheroid be described with foci 4
and B, and passing through C, C'F will evidently be the normal
at (' ; thus the force on a particle at ' will be perpendicular to
the spheroid ; and the particle would evidently rest in equilibrium
on the surface, even if it were smooth. This is an instance of
(what we shall presently develop at some length) a surface of
equilibrium, a level surface, or an equipotential surface.

(f) We may further prove, by a simple application of the
preceding theorem, that the lines of force due to the attraction
of two infinitely long rods in the line 4.5 produced, one of which
is attractive and the other repulsive, are the series of ellipses
described from the extremities, 4 and B, as foci, while the
surfaces of equilibrium are generated by the revolution of the
confocal hyperbolas.

482. As of immense importance, in the theory not only of
gravitation but of electricity, of magnetism, of fluid motion, of
the conduction of heat, etc., we give here an investigation of the
most important properties of the Potential.

483. This function was introduced for gravitation by Laplace,
but the name was first given to it by Green, who may almost
be said to have in 1828 created the theory, as we now have it.
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Green’s work was neglected till 1846, and before that time most Potensial.

of 1ts 1mportant theorems had been re-discovered by Gauss,
Chasles, Sturm, and Thomson.

In § 273, the potential energy of a conservative system in any
configuration was defined. When the forces concerned are
forces acting, either really or apparently, at a distance, as
attraction of gravitation, or attractions or repulsions of electric
or magnetic origin, 1t is in general most convenient to choose,
for the zero configuration, infinite distance between the bodies
concerned. We have thus the following definition :—

484. The mutual potential energy of two bodies in any
relative position is the amount of work obtainable from their
mutual repulsion, by allowing them to separate to an infinite
distance asunder. When the bodies attract mutually, as for
instance when no other force than gravitation is operative, their
mutual potential energy, according to the convention for zero
now adopted, i1s negative, or (§ 547 below) their exhaustion of

potential energy is positive.

485. The Potential at any point, due to any attracting or
repelling body, or distribution of matter, is the mutual potential
energy between 1t and a unit of matter placed at that point.
But in the case of gravitation, to avoid defining the potential
as a negative quantity, it is convenient to change the sign.
Thus the gravitation potential, at any point, due to any mass,
1§ the quantity of work required to remove a unit of matter
from that point to an infinite distance.

2

that at a proximate point Q, it evidently follows from the above
definition that V' — V, is the work required to remove an inde-
pendent unit of matter from P to Q; and it is useful to note
that this is altogether independent of the form of the path
chosen between these two points, as it gives us a preliminary

486. Hence if V be the potential at any point P, and V,

idea of the power we acquire by the introduction of this mode

of representation.

Suppose @ to be so near to P that the attractive forces
¢xerted on unit of matter at these points, and therefore at any



30 ABSTRACT DYNAMICS. [486.

Potentisl, point in the line P ¢, may be assumed to be equal and parallel.
Then if F represent the resolved part of this force along P,
F.PQ 18 the work required to transfer unit of matter from P
to . Hence

V—V.=F.PQ
_V-=V
~ o

Forcein  that is, the attraction on unit of matter at P in any direction

potential. . PQ, is the rate at which the potential at P increases per unit

of length of P ¢).

or | F

quipoten- 487, A surface, at every point of which the potential has the

tial surface. same value, and which is therefore called an Equipotential Sur-
face, is such that the attraction is everywhere in the direction
of its normal. For in no direction along the surface does the
potential change in value, and therefore there is no force in
any such direction. Hence if the attracted particle be placed
on such a surface (supposed smooth and rigid), it will rest in
any position, and the surface 1s therefore sometimes called a
Surface of Equilibrium. We shall see later, that the force
on a particle of a liquid at the free surface 1s always in the
direction of the normal, hence the term Level Surface, which
is often used for the other terms above.

pelative in-  388. If a series of equipotential surfaces be constructed for

tensities of values of the potential increasing by equal small amounts, it is

;‘,if;{:‘:.‘} evident from § 486 that the attraction at any point is inversely

botontial proportional to the normal distance between two successive
surface-  surfaces close to that point; since the numerator of the ex-

pression for F 1s, in this case, constant.

Line of 489. A line drawn from any origin, so that at every point of

foree its length its tangent 1s the direction of the attraction at that
point, is called a Lane of Force; and 1t obviously cuts at right
angles every equipotential surface which it meets.

These three last sections are true whatever be the law of
attraction ; in the next we are restricted to the law of the

inverse square of the distance.
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490. If, through every point of the boundary of an infinitely
small portion of an equipotential surface, the corresponding
lines of force be drawn, we shall evidently have a tubular
surface of infinitely small section. The force in any direction,
at any point within such a tube, so long as 1t does not cut
through attracting matter, is inversely as the section of the
tube made by a plane passing through the point and perpen-

‘dicular to the given direction. Or, more simply, the whole

force 18 at every point tangential to the direction of the tube,
and inversely as its transverse section: from which the more
general statement above 1s easily seen to follow.

This 1s an immediate consequence of a most important
theorem, which will be proved later, § 492. The surface in-
tegral of the attraction exerted by any distribution of matter in
the direction of the normal at every pownt of any closed surface
8 4w M ; where M s the amount of matter within the surface,
while the attraction 1s considered positive or megative according
as it 18 tnwards or outwards at any povnt of the surface.

For in the present case the force perpendicular to the tubular
part of the surface vanishes, and we need consider the ends
only., When none of the attracting mass is within the portion
of the tube considered, we have at once

Fo —Fw' =0,
F being the force at any point of the section whose area 1s =.
This is equivalent to the celebrated equation of Laplace—

App. B (a); and below, § 491 (¢).

When the attracting body is symmetrical about a point, the
lines of force are  obviously straight lines drawn from this
point. Hence the tube is in this case a cone, and, by § 469,
& 18 proportional to the square of the distance from the vertex.
Hence F is inversely as the square of the distance for points

‘external to the attracting mass.

When the mass is symmetrically disposed about an axis in

‘nfinitely long cylindrical shells, the lines of force are evidently

perpendicular to the axis. Hence the tube becomes a wedge,
whose section is proportional to the distance from the axis,

and the attraction is therefore inversely as the distance from
.tfhe axis.

Variation of
intensi
along a line
of force,
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Varistionof When the mass is arranged in infinite parallel planes, each
ﬁo?ﬁ?’ﬁna of uniform density, the lines of force are obviously perpen-
orce.

Potential
due to an
nt-iiracting

dicular to these planes; the tube becomes a cylinder; and,
since its section is constant, the force is the same at all dis-
tances.

If an infinitely small length I of the portion of the tube
considered pass through matter of density p, and if @ be the
area of the section of the tube in this part, we have

Fo — F'a’ = 4errlwp.

This is equivalent to Poisson’s extension of Laplace’s equation

[§ 491 (c)].

49). In estimating work done against a force which vares
inversely as the square of the distance from a fixed point, the
mean force is to be reckoned as the geometrical mean between
the forces at the beginning and end of the path: and, what-
ever may be the path followed, the effective space is to be
reckoned as the difference of distances from the attracting point.
Thus the work done in any course is equal to the product of
the difference of distances of the extremities from the attract-
ing point, into the -geometrical mean of the forces at these
distances; or, if O be the attracting point, and m its force
or a unit mass at unit distance, the work done in moving
a particle, of unit mass, from any position P to any other
position P, 1s

, m? m m
(OP —OP),\/OP,OP,E, or 55— %

To prove this it is only necessary to remark, that for any
infinitely small step of the motion, the effective space is clearly
the difference of distances from the centre, and the working
force may be taken as the force at either end, or of any inter-
mediate value, the geometrical mean for instance: and the
preceding expression applied to each infinitely small step shows
that the same rule holds for the sum making up the whole work
done through any finite range, and by any path.

Hence, by § 485, it is obvious that the potential at P, of a

mass m situated at O, 18 gz_ . and thus that the potential of any
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mass at a pomnt P 1s to be found by adding the quotients of every potential

. . . ‘ . . d
portion of the mass, each divided by its distance from P. aﬁ;{&ﬂg
polnt.

a. For the analytical proof of these propositions, consider, Analytical
' . - ' - iﬂ?ﬁﬂt- -
first, a pair of particles, O and P, whose masses are m and unity, tion of the

and co-ordinates abe, xyz. If D be their distance Eﬁgt?;fhﬂ

D'=(x—a)’+(y —b)* +(2—¢)"

‘The components of the mutual attraction are

x— 0 - b 2—¢
X =m F2ERE Y:myj)d y Z=mD3;
and therefore the work required to remove P to infinity is

. f(:n —a) dx + (y _j);,,) Ay + (2 — ¢)dz

"D

which, since the superior limit is D = oo, is equal to

m

E
The mutual potential energy is therefore, in this case, the
product of the masses divided by their mutual distance; and

therefore the potential at z, y, 2, due to m, is % ..

Again, if there be more than one fixed particle m, the same
investigation shows us that the potential at xyz is

m
Eﬁ'

And if the particles form a coutinuous mass, whose density.at
@, b, ¢ is p, we have of course for the potential the expression

ffj‘ dradbdc
P D’

the limits depending on the boundaries of the mass,

If we call V the potentisl at any point P (x, g, z), it is Force at
-ﬁ?ident (from the way in which we have obtained its value) MY point
that the components of the attraction on unit of matter at P are

V 7
X @y AV g _d¥

dy’ dz *
VOL. II. 3
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Hence the force, resolved along any curve of which s is the are,

_ di dy dz2  (dVdx dVdy dVdz
- X?zfyc‘?;’“za“‘(dx da+dyRs+szs)
14
-——

All this 1s evidently independent of the question whether P lies
within the attracting mass or not.

b. If the attracting mass be a sphere of density p, and centre
a, b, ¢, and if P be within its surface, we have, since the exterior
shell has no effect,

~ay 4 L x—a
4
=§1rp(a‘:—a).
Hence dj: da?—-{j‘
' & =" d&F =3
¢. Now if
d? d* df

1
we have V’—B =0, as was proved before, App. B g (14) as a

particular case of g. The proof for this case alone is as follows:

dl z-a a*1 1 3(@x-a)
D" D*’ d@ED DT D5

and from this, and the similar expressions for the second differ-
entials in y and 2, the theorem follows by summation,

g

and p does not 1involve x, ¥, 2, we see that as long as D does not
vanish within the limits of integration, 4.e., as long as P is not a
point of the attracting mass

ViV =0;

or, in terms of the components of the force,

Hence as
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If P be within the attracting mass, suppose a small sphere Laplace’s
to be described so as to contain P. Divide the potential into equation,
two parts, V| that of the sphere, V, that of the rest of the body.

The expression above shows that

ViV, =0.
: azv : |
Also the expressious for o etc., in the case of a sphere (b)
give V'V, = — 4mp,
where p is the density of the sphere.
Hence as V=V + 7, Poisson’s
VIV =~ dmp, Taplace's
equation,

which is the general equation of the potential, and includes the

~ case of P being wholly external to the attracting mass, since

there p=0. In terms of the components of the force, this
equation becomes

d. We have already, in these most important equations,
the means of verifying various former results, and also of adding
new ones,

Thus, to find the attraction of a hollow sphere composed of potential
concentric shells, each of uniform density, on an external point Ef.r'::gﬁrm

(by which we mean a point not part of the mass). In this case conoentrio

symmetry shows that ¥V must depend upon the distance from e n of

the centre of the sphere alone. Let the centre of the sphere be density-

- origin, and let

r=x"+ 3y + 2
Then ¥ is a function of = alone, and consequently

dV_dVdr wadV
de dr de  r dr’

de® rdr rdr dr®’
2dV d*V
and =2 """
_ vy rdr T AP
Hence, when P is outside the sphere, or in the hollow space
within it, 2dV @&V _ 0
rar drt T

3-—2
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A first integral of this is #° Cfi-—-rz C.

For a point outside the shell ¢ has a finite value, which is easily
seen to be — M, where M is the mass of the shell.

For a point in the internal cavity (' =0, because evidently at

: : : av
the centre there is no attraction—z.e., there r=0, ot 0 together.
Hence there is no attraction on any point 1n the cavity.
We need not be surprised at the apparent discontinuity of this
solution. It is owing to the discontinuity of the given distribution
of matter. Thus it appears, by § 491 ¢, that the true general

equation of the potential is not what we have taken above, but
av 2dv
ag T 5= 47rp,
where p, the density of the matter at distance 7 from the centre,
i8 zero when r < a the radius of the cavity : has a finite value o,
which for simplicity we may consider constant, when » > « and
< a’ the radius of the outer bounding surface : and is zero, again,
for all values of » exceeding a’. Hence, integrating from » = 0,

to r =7, any value, we have (since 7* %E = 0 when r=0),
fcg=— 41:'] pridr=—M ,

if M, denote the whole amount of matter within the spherical

surface of radius =; which 1s the discontinuous function of »
specified as follows :— |

From r=0tor=a, r=ator=ad r=a tor=oo,

M=o, M= ), M= (@),

The corresponding values of V are, in order,

; dro (34 -7 a° 7o , o
V=2n0(a” - a’), V=—3—( 5 —-—;), V= 3. (@™ - a’).
We have entered thus into detail in this case, because such
apparent anomalies are very common in the analytical solution
of physical questions. To make this still more clear, we sub-

2
join a graphic representation of the values of V, Cz_r , and %—;
for this case. A4L5QC, the curve for V, is partly a straight line,
and has a point of inflection at @ : but there is no discontinuity
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adv Potential

and no abrupt change of direction. OQEFD, that for ——, is of matter
- dr arrangi:rt[ n
continuous, but its direction twice changes abruptly. That for EOEEF?G?;G
dEV - Bnelis o
g consists of three detached portions, OF, G, KL. 32&2‘%?

I
X

¢. For a mass disposed in infinitely long concentric cylin- Coaxal right

drical shells, each of uniform density, if the axis of the cylinders cylinders of

be : : densit
be 2, we must evidently have ¥ a function of 2 + y* only. i:ﬁﬁjﬁ. and
ength,

- ay ..
Hence 4z = U or the attraction is wholly perpendicular to the

Also, %ﬂg =0; and therefore by (d)
Hence r jr-_ C —4r f ordr,

from which conclusions similar to the above may be drawn.

J. If, ﬁnally, the mass be arranged in infinite parallel

Planes, each of uniform density, and perpendicular to the axis
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Matter ar- of 2 ; the resultant force must be parallel to this direction : that
i is to say, ¥=0, Z=0, and thercfore
llel
planes of dX _,
1 —_— =
density. de ~ P
which, if p is known in terms of «, is completely integrable.
Qutside the mass, p= 0, and therefore
X =0,
or the attraction is the same at all distances, a result easily
verified by the direct methods.
If within the mass the density is constant, we have
X =0+ 4mpx;
and if the origin be in the middle of the lamina, we have,
obviously, C'=0. Hence if ¢ denote the thickness, the values of
X at the two sides and in the spaces beyond are respectively
— 2mwpt and + 2wpt. The difference of these is 4mpt (§ 478).
: V.
Equi- g. Slnce 1n any case % 1s the component of the attrac-
potentiul |
surfuce. tion in the direction of the tangent to the arc s, the attraction
will be perpendicular to that arc if
av
@Y
or V=70.

This is the equation of an equipotential surface.

If n be the normal to such a surface, measured outwards, the
whole force at any point is evidently

av
dn’

and 1ts direction 18 that 1n which ¥V increases.

Integralot ~ 492. Let S be any closed surface, and let O be a point, either

normal  external or internal, where a mass, m, of matter is collected.

o reosed Tet N be the component of the attraction of m in the direction
of the normal drawn inwards from any point P, of S. Then, if
do denotes an element of S, and [f integration over the whole

of 1t,

according as O 18 internal or external.
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Case 1, O internal. Let OP,P,P.,... be a straight line drawn Integral of

. . . ‘ : norntal
in any direction from O, cutting S in P, P,, P,, etc., and there- attraction

. . . . . overaclosed
fore passing out at £, in at F,, out again at £, in again at P,, surface.
and so on. Let a conical surface be described by lines through Ef%iﬂ"ii];;ﬁa

O, all infinitely near OPP,..., and let  be its solid angle Taeheon of
(§ 465). The portions of [fNdo corresponding to the ele- 2uation,
ments cut from § by this case will be clearly each equal in
absolute magnitude to wm, but will be alternately positive and
negative. Hence as there is an odd number of them their

sum 18 +m. And the sum of these, for all solid angles round

O 18 (3 466) equal to 4mrm ; that is to say, [[Nda = 47m.

Case 2, O external. Let OP,P,P,... be a line drawn from O Equivalent
passing across S, inwards at P,, outwards at P,, and so on. cquationy
Drawing, as before, a conical surface of infinitely small solid " °
angle, w, we have still @m for the absolute value of each of the
portions of [[Ndo corresponding to the elements which it cuts
from §; but their signs are alternately negative and positive :
and therefore as their number is even, their sum is zero.

Hence [[Ndo = 0. |

From these results it follows immediately that if there be

any distribution of matter, partly within and partly without a

closed surface S, and N and do be still used with the same
signification, we have

JINde =47 M...covverearrnn, 2)

lf M denote the whole amount of matter within S.

- This, with M eliminated from it by Poisson’s theorem, § 491 c,
i the particular case of the analytical theorem of Chap. 1. App.
A (a), found by taking a=1, and U’ =1, by which it becomes

0= [[dodU - [[[V*Udadyda............... (3).

For let U be the potential at (z, 3, 2), due to the distribution
of matter in question. Then, according to the meaning of g,
we have 9U =~ N, Also, let p be the density of the matter at
(%, ¥, 2). Then [§ 491 (¢)] we have

VU =—- 47rp.
Hence (3) gives

[ Ndo=A4x[[[pdedyds = 4w M.
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493. If in crossing any surface K we find an abrupt change

follows from (2) that there must be a condensation of matter
on K, and that the surface-density of this distribution is N /4,
if N be the difference of the values of the normal component on
the two sides of K ; as we see by taking for our closed surface
S an infinitely small rectangular parallelepiped with two of its
faces parallel to A and on opposite sides of it. This result was
found in § 478, 1n a thoroughly synthetical manner. The same
result 1s found by the proper analytical interpretation of
Poisson’s equation

CE_X_ 4 é_}{ +iZ = 4
dr ' dy dz i
It 1s to be remarked that in travelling across K abrupt change

in the value of the component force along any line parallel to
K is forbidden by the Conservation of Energy.

494. The theorem of Laplace and Poisson, § 492, for the
present application most conveniently taken (§ 491¢) in its
differential form

__ L@V v vy
=" 4 (d.c“ dy T dz’

is explicitly the solution of the inverse problem,—given the
potential at every point of space, or, which is virtually the same,
given the direction and magnitude of the resultant force at every

point of space,—t 18 required to find the distribution of matter
by which 1t is produced.

494 o. Example. Let the potential be given equal to zero
for all space external to a given closed surface S, and let

for all space within this surface; ¢ (x, y, 2) being any arbitrary
function subject to no other condition than that its value is
zero at S, and that it has no abrupt changes of value within 3.
Abrupt changes in the values of differential coefficients,

dp db d¢

dz’ dy’ dz’

are not excluded, but are subject to interpretations, as in § 493,
if they occur.
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434 5. The required distribution of matier must include a inverse
surface distribution on S, because there is abrupt change in the problem.
value of the normal component force from

at the inside of § to zero at the outside. Thus, by § 493, and
by § 494 (1), we have for our complete solution (compare §§ 501,

505, 506, 507 below),

p = (), for space external to §

N 1 dq&ﬂ d(fjﬂ CZ¢E é
U“E(d?"' dy® EE) on &,

1 /d’¢ d’¢d d’¢
4#(3&?_‘- cTy_ﬂ+ dz*
l

for space enclosed by S. )

e(2).

——_v_
L]
L ]

and p =

494c¢. From § 492 (2), remembering that IV =0 outside of S,
we infer that the total mass on and within § is zero, and
therefore the quantity of matter condensed on § 1s equal and

of opposite sign to the quantity enclosed by it.

494 d. Sub-Example. Let the potential be given equal to
zero for all space external to the ellipsoidal surface

2t 73 T _221:
a b ¢
and equal to
x’ 2°
%(1-9-%;-?) .................... (3),

for the space enclosed by it: in other words let the potential be
zero wherever the value of (3)is negative, and equal to the value
of (3) wherever it is positive.

494 e¢. The solution (2) becomes

_ xﬂ yﬂ zﬂ ‘]
P——-O, wherever &§+ 'b—ﬂ'l' &—23’1,
Gz_f;ﬁ’ at the surface §ﬂ+-y—:+§:=1; .o (4);
1,1 1 1 x oy &
and p = — * ~ —+4L 4+ < L.
nae= (ag tmt cﬂ) wherever Gt pt < 1
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p denoting the perpendicular from the centre to the tangent

plane of the ellipsoidal surface.

494 f. Let g be an infinitely small quantity. The equation

2 a 2
aﬂ_g-"'bg_q'l'cg_q:l .................. (5)

represents an ellipsoidal surface confocal with the given one,
and infinitely near it. The distance between the two surfaces
infinitely near any point (x, y, 2) of either is easily proved to
be equal to £ g/p. Calling this ¢, we have, from (4),

12

GZ_E g ........................ (6).

We conclude from (6) and (4) and the theorem (§ 494 c¢) of
masses that

494 g. The attraction of a homogeneous solid ellipsoid
1s the same through all external space as the attraction of a
homogeneous focaloild* of equal mass coinciding with its
surface.

* To avoid complexity of diction we now propose to introduce two new
words,  focaloid ” and * homoeoid,” according to the following definitions :—

(1) A homoeoid is an infinitely thin shell bounded by two similar surfaces
similarly oriented.

The one point which is situated similarly relatively to the two similar
surfaces of a homoeoid is called the homoeoidal centre. SBupposing the homoeoid
to be a finite closed surface, the homoeoidal centre may be any internal or
external point. In the extreme case of two equal surfaces, the homoeoidal centre
is at an infinite distance. The homoeoid in this extreme case (which is interest-
ing as representing the surface-distribution of ideal magnetic matter constituting
the free polarity of a body magnetized uniformly in parallel lines) may be called
& homoeoidal couple. In every case the thickness of the homoeoid is directly
proportional to the perpendicular from the centre to the tangent plane at any
point. When (the surface being still supposed to be finite and closed) the centre
is external, the thickness is essentially negative in some places, and positive in
others.

The bulk of a homoeoid is the excess of the bulk of the part where the
thickness is positive above that where the thickness is negative. The bulk of
& homoeoldal couple is essentially zero. Its moment and its axis are important
qualities, obvious in their geometric definition, and useful in magnetism asg
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494 h. Take now a homogeneous solid ellipsoid and divide Proofof
it into an infinite number of focaloids, numbered 1, 2, 3, ... Theorem.
from the surface inwards. Take the mass of No.1 and dis-
tribute 1t uniformly through the space enclosed by its inner
boundary. This makes no difference in the attraction through
space external to the original ellipsoid. Take the infinitesimally
increased mass of No. 2 and distribute 1t uniformly through the
space enclosed by i¢s inner boundary. And so on with Nos. 3, 4,

&ec., till instead of the given homogeneous ellipsoid we have

another of the same mass and correspondingly greater density

enclosed by any smaller confocal ellipsoidal surface.

494.;. We conclude that

Any two confocal homogeneous solvd ellipsoids of equal Maclaurin’s
masses produce equal attraction through all space external to

both.

This is Maclaurin’s splendid theorem. It is tantamount to
the following, which presents it in a form specially interesting
1n some respects :

Any two thick or thin confocal focalovds of equal masses, gquivalent

lis of
sfwh homogeneous, produce equal attraction through all space ¥aomurin's

érnal to both. Theorem.

4945, Maclaurin’s theorem reduces the problem of finding pigression
the attraction of an ellipsoid* on any point in external space, %Eﬁ%ﬁf

(which when attempted by direct integration presents diffi- an ellipsold.
culties not hitherto directly surmounted,) to the problem of

representing the magnetic moment and the magnetic axig of a plece of matter

uniformly magnetized in parallel lines.

(2) An elliptic homoeoid is an infinitely thin shell bounded by two con-
eenfrie similar ellipsoidal surfaces.

(3) A foealoid is an infinitely thin shell bounded by two confocal ellipsoidal
surfaces.

(4) The terms * thick bhomoeoid ¥ and ¢‘thick focaloid” may be used in
the comparatively rare cases (see for example §§ 4341, 519, 522) when forms
Batisfying the definitions (1) and (38) except that they are not infinitely thin,
are considered,

* Mo avoid circumlocutions we call simply ““an ellipsoid ” a homogeneous
#olid ellipsoid,
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Digression A0AIng the attraction of an ellipsoid on a point at its surface

omction ot Which, as the limiting case of the attraction of an ellipsoid on

ui .d. w » L] L L] ] N
HOTPIT an internal point, is easily solved by direct integration, thus:
]T)'g find the 494 k. Divide the whole solid into pairs of vertically opposite
iRl O . . ; . . .
an ellipsoid infinitesimal cones or pyramids, having the attracted point P for
au an
rior poin. comron vertex.

Let E'PE be any straight line throngh P, cut by the surface

at £ and Z, and let do be the solid angle of the pair of cones

lying along 1t. The potentials at P of the two are easily shown
to be + PE®do and £ PE"” do, and therefore the whole contribu-

tion of potential at P by the pair is 3 (PE* + PE®) do.

Hence, if 7 denote the potential at P of the whole ellipsoid,
the density being taken as unity, we have

V=[[}(PE*+ PE?) do................... (7),

where [[ denotes integration over a hemisphere of spherical
surface of unit radius.

Now if z, y, 2 be the co-ordinates of P relative to the
principal axes of the ellipsoid; and 7, m, n the direction
cosines of PE, we have, by the equation of the ellipsoid,

(x+IPE)" (y+mPE) (2+mPEY
2 g —

a b ¢ L;
whence
P m* . le my nz VO
(E’+?+E§)PE +2(a—,+? +;,—,)21’E'—(1-E,i,--5.5.-.{.;E =0.

When (x, y, 2) is within the ellipsoid this equation, viewed as
a quadratic in L%, has its roots of opposite signs; the positive
one is PZE, the negative is — PF’,

Now if r,, r, be the two roots of gr* + 2fr —e= 0, we have

3 (r7+7.7)=(2f+ ge)/g".

%(PE'+PE”)=£(?§+8)+ ?_:(2_6%’*'3) * g(%§+ e)+ ¢

Hence

(___I_m n ?
a’ 'Fn"" P
3 2 - --(8).
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Now in the [[ integration of (7), as we see readily by taking Digression

for example one of the hemispheres into which the whole sphelze E’ﬁ“‘éﬁij",ﬂ, o

round P is cut by the plane through P perpendicular to 2, 1t 18
clear that

jfle—'ﬁ'_';,:O,(g)J

2 3 2 Z cﬂ
V=]jd0a - JE:' m:  n®\® (10);
(52*?*?)
! ' d®
or V =ed +x2 d(?+y d¢+z — irereeneee (11),

d .
 where o = [ f AU (12).

494 /. A symmetrical evaluation of ® not being obvious,
we may be content to take

[=cosf, m=sinfcos¢, =n=sinlsindg,
and do = sin 6 df dd.

Using these, replacing /, and putting

1 /1 1 1 /1 1\,
- (ji—3)0-H, and - (G-3)0-K

| . ldl 21 dq!,
we find (p:j; _[0 Hcos®p+ Ksin® ¢’

o do “4fm dt 2w
0 HCOSEQ&-I- KSiIlg(fJ 0 H+ K& IJ(HK).

Hence

L dl
@:27}"[ ____—._-_'—1-—:-#_'.(13)_
o |1 I 1y ,1%2]1 1 1) 3]
2= lm—=)f = ({=m—=)!
| b° (Eﬁ a“) | ¢ (c @

By (12) we know that ® is a symmetrical function of «, b, .
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Digression To bring (12) to this form, take . 494 n. These formulas, (17) and (20), are, we believe, due Digression
g;;gg:’g% . to Lejeune Dirichlet¥, whoproves them (Crelle’s Journal, 1846, tmetion of
an elipsoic. | { = J@rw) (14), Vol. xxx11.) by showing that they satisfy the equation an ellipsoid.
which reduces (13) to Q + v + v __ 4
0 du dx” dy’  df a
& = rabe f Pt saree SN (15). E .
0 (a® +u)? (b +u)* (¢ + ) when gz"‘%:"‘—g‘f-l:
: C
The expression (11) for V, with (15) for @, is worth preserv:mg E E
for its own sake and for some applications; but the following, and %;]:-i- céT: 1 fzz 0,
derived from it by performing the indicated differentiations, 18 € J, 2
simpler and is generally preferable : when §+ %:+ j——:::- 1;
o0 7? yﬂ zﬂ da (1 6) )
V:"H’ﬁrbC[ (l— a bg L ) - A % é” ’ dV dv dV
+u c+u/(,2 2 : d that ——, - L
0 a + U (1 (‘__& + u)ﬂ (b -+ 'u,) (G +u.) an a dz dy Y
or, if M denote the mass of the ellipsoid, bave equal values at points infinitely near the surface
oo 2 : 2 2
V~—3'M (1 mﬁ—— 4 —:j ) du . (17). §:+,'y_2+2:1’
4 Jo \ a'+u b+u c+u (@34‘%)‘5(62'}'%)%(624"%)% @ b e

~outside and inside it. His first step towards this proof (the
completion of which we leave as an exercise to our readers)

- 18 the evaluation of dV/dx, dV/dy, dV/dz. In this it is neces-
sary to remark that, for the external point, terms depending

This, or (16), expresses the potential at any point (z, ¥, 2)
within the ellipsoid (a, b, ¢) or on its surface.

494 m. The potential at any external point is deduced

from (17) through Maclaurin’s theorem [§§ 494 1] simply by
substituting for @, b, ¢ the semi-axes of the ellipsoid confocal
with (e, b, ¢), and passing through =, y, #z: these geml-axes
are (@' +q), J(b°+q), ¥ (¢"+¢), where ¢ denotes the positive
root of the equation
x” o* 2’
3 + 73 * 3
a°+qg b +q ¢ +¢q

which is a cubic in ¢. Thus, for an external point, we find

SHM [ d J 2 a -
V:—"- 1"" 2 —bﬂ Y kWY 9 % 2 % 2 k
4 Jq a’+q+u b+q+u c’+q (@°+q+u)? (D +g+u)*(’+g+u)

which may be written shorter as follows:

3M [°f. o' _ji) au ..(20).
V= i/ (1 a+u b +u ¢ +u (a”+u)%(b“+u);"(c“+u)% (20)

on the variation of ¢ as it appears in (20) vanish because of
(18): and taking the results which we then get instantly by
plain differentiation, and remembering that X =—dV/dx, &e.,
we have, for the principal components of the resultant force,

X ﬁflf_‘?]m du ]
2 Jg (@’ + u)’g (6 + u)’}‘ (¢ + u)é
Y—-Sﬂ;y 7 du — b (21),
¢ (a® + u)% (O + u)a (c* + u)%
7 SMz (% du
2 Jg (0® +u)? (0% + u,)-;k (c” + u)g .

where ¢=0 when (z, ¥, z) is internal, and ¢ is the positive root
of the cubic (18), when (%, ¥, 2) is external.

Using (21) in (20) and (17), we see that
L
4 J; (a® + u)% (b* + u)?-’ (" +u

[An equivalent formula appears to have been given by Plana in 1840,

)is -3 (X + Yy + Zz)...(22).

ﬁrﬂdhunter, Hist. of Th. of Attractions, Yol. 11., p, 483.) H. L.]
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494 o. For the case of an internal point or a point on
the surface, by putting ¢ =0, we fall back on the original ex-
pressions (16) for V, and the proper differential coefficients
of it for X, Y, Z.

These results may be written as follows:

47 44 4o h
9. . .(23),
V= - 5 (Ax® + By* + €2°)

where ®, A, B, € are constants, of which & is given by (12),
or (13), or (15), and the others by (21) with ¢=0; all
expressed 1n terms of elliptic integrals.

I't follows that the internal equipotential surfaces are concen-

tric similar ellipsoids with axes proportional to a: Bt et
and that the internal surfaces of equal resultant force are con-
centric similar ellipsoids with axes proportional to @', ™', €7,

The external equipotentials are transcendental plinthoids * of
an interesting character. So are the equipotentials partly
internal (where they are ellipsoidal) and external (where they
are not ellipsoidal).

It is interesting, and useful in helping to draw the external
equipotentials, to remark the following relations between the
internal equipotentials, the external equipotentials, and the
surface of the attracting ellipsoid.

(1) The external equipotential V = C 1s the envelope of
the series of ellipsoidal surfaces obtained by giving an infinite
number of constant values to g in the equation

du 4(

2 2

F(l— ;E - ? - ;Z——) _ 1 = ...(2).
) a’+u b+u ctu (aﬂ+u}é((,ﬂ+u)ﬂ(cﬂ+u)& 3M

(2) This envelope is cut by the ellipsoidal surface

x Y 2
Fratirgtarg s e (B),

* From wm\wbloeidys, brick-like. Plinthoid, as we now use the term, denotes as
it were a sea-worn brick; any figure with three rectangular axes, and surfaces
everywhere convex, such as an ellipsoid, or a perfectly symmetrical bale of
cotton with slightly rounded sides and rounded edges and corners. One exireme
of plinthoidal figure is a rectangular parallelepiped; another extreme, just not
excluded by our definition, is a figure eomposed of two equal and similar right
rectangular pyramids fixed together base to base, that is & ‘‘ regular octohedron,”
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for any particular value of ¢ in the line along which it is i

igression
touched by the particular one of the series of consecutive Erna:ﬁ;x?t&g
ellipsoidal surfaces (8) corresponding to this value of 4. an ellipsoid.

(3) M the ellipsoidal surface (8) be filled with homogeneous
matter, the complete equipotential for any particular value of
U 18 composed of an interior ellipsoidal surface passing tan-

gentially to the external plinthoidal (but not ellipsoidal) surface
across the transitional line defined in (2).

It 1s easy to make graphic illustrations for the case of ellip-
soids of revolution, by aid of § 527 below.

494 p. In the case of an elliptic cylinder, which is im- Attraction

portant in many physical investigations, replace M by 4wabc/3, gtltagilyullfng
and put c=. ﬁ?%&“&‘ér.
Thus we find
| X =%uabs f % du _ 4mab [,\ﬂ/(a“-:q)— Nﬂ/(b“+gf)].ﬂ:
¢ (@ +u)t (7 +u)b (a® - %) V(a® +qg)

dmabx

-~ J(@+9) [J (@ +g)+ /(0% 9)]

Y =2waby f ) u ~ 4““5[{(@’:: 9)~/ (5" +9)]y |
o (@ + )t @4y @-OWE+a) |
_ 4waby o ‘
N(6%+9) [V(a*+g)+/(6°+9)]
Y _
where g =0, when&—,+-b—ﬂ-=:1; |
and ¢ 1s the positive root of the quadratic |
,xﬂ—-l- ,yg =1, ;ﬁhen*—-x—:& g--m:.-.--- 1,
a+q b +¢q a’ b ]

For the case of ¢=0, that is to say, the case of an internal
point, (24) becomes

B dmadb x

dmwab y
X = - — =
a+db o’ and ¥ a+b b

494 9. For the magnitude of the resultant force we deduce Internal

isodynamic

R- X+ )= [(ZL8) 26), the bound-

VOL. II. 4
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Attraction and it is remarkable that this is constant for all points on
ooty Ton B o
E‘m%ﬁe"““ the surface of the elliptic cylinder — + %;=1, and on each
cylinder. - Qa b

similar internal surface, and that its values on different ones
of these surfaces are as their linear magmtudes. |

Potential in 498 a. At any point of zero force, the potential 18 a mazvmum

free space . o . . ‘
canmot have OT 8 minimum, or a “mimmax.” Now from § 492 (2) 1t follows

orminimum that the potential cannot be a maximum or a minimum
e at a point in free space. For if it were so, a closed
surface could be described about the point, and indefinitely
near it, so that at every point of it the value of the potential
would be less than, or greater than, that at the point ; so that
N would be negative or positive all over the surface, and there-

fore [[Ndo would be finite, which is impossible, as the surtace
encloses none of the attracting mass.

comini. 499D, Consider, now, a point of zero force in free space :—
el the potential, if it varies at all in the neighbourhood, must be
zero force 5, minimax at the point, because, as has just been proved, it
SPAce. cannot be a maximum or a minimum. Hence a material parti-

Earnshaw’s cle placed at a point of zero force under the action of any

theorem of . . . .

unstable  attracting bodies, and free from all constraint, is in unstable
ul- L - »

libriom.  gquilibrium, a result due to Earnshaw*.

495 ¢c. If the potential be constant over a closed surface which
contains none of the attracting mass, it has the same constant

value throughout the interior. For if not, 1t must bhave a
maximum or & minimum value somewhere within the surface,

which (§ 495, a) is 1mpossible.

Mean po- 496. The mean potential over any spherical surface, due to

. 2])1'191'?;?- matter entirely without it, is equal to the potential at 1ts centre;

‘qualto & theorem apparently first given by Gauss. See also Cambridge

ihat at its

centre.  Mathematical Jowrnal, Feb. 1845 (Vol. 1v. p. 225). It 18 one of
the most elementary propositions of spherical harmonic analysis,

applied to potentials, found by applying App. B. (16) to the
formule of § 539, below. But the following proof taken from
the paper now referred to is noticeable as independent of the

harmonic expansion.
* Cambridge Phil. Trans., March, 1839.
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Let, m Chap. 1. App. A. (@), § be a spherical surface, of Mean po-

radius @ ; and let U be the potential at (z, y, z), due to matter ;E:;Iixaélr?gaﬂlr

altogether external to it; let U’ be the potential of a unit 2};"&“&,
of matter uniformly distributed through a smaller concentric oyt It8

spherical surface ;. so that, outside § and to some distance within

1

it, U ’=,?—_ ; and lastly, let a=1. The middle member of App. A

(@) (1) becomes
> [foUde - [0V Ududyds,

‘which is equal to zero, since V*U=0 for the whole internal
space, and (§ 492) [[o0Udo=0. Equating therefore the third
- member to zero we have |
[JdoeUaU’ = [[fUV*U'dxdyd=.
1

Now at the surface, S, 90U’ = — 3 ; and for all points external

to the sphere of matter to which U’ is due, V*U’ = 0, and for all

internal points VU’ =—4mp, if p’ be the density of the matter.
Hence the preceding equation becomes

al-ﬂ-fod0'= da ([ [p' Udxdydz.

Let now the density p’ increase without limit, and the spherical

space within which the triple integral extends, therefore become
infinitely small. - If we denote by U, the value of U at its centre,
which ig also the centre of S, we shall have

[[JeUdxdydz= U, [[[p'dedyds=U,.

Hence the equation becomes

JJUdo
dma®
which was to be proved.

7o

07

.-. The following more elementary proof is preferable :—
lmagine any quantity of matter to be uniformly distributed
over the spherical surface. The mutual potential (§ 547 below)
of this and the external mass is the same as if the matter were
¢ondensed from the spherical surface to its centre.

497. If the potential of any masses has a constant value, V, Theorem of
%hfough any finite portion, K, of space, unoccupied by matter, Gauss
it 18 equal to V through every part of space which can be reached

4—2
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Theorem of 1IN any way without passing through any of those masses: a

(Gauss,
proved.

Green's
problem.

very remarkable proposition, due to Gauss, proved thus:—If
the potential differ from V in space contiguous to X, we may,

from any point C within K, as centre, in the neighbourhood of
a place where the potential differs from V, describe a spherical
surtace not large enough to contain any part of any of the
attracting masses, nor to 1nclude any of the space external
to K except such as has potential all greater than V, or all
less than V. But this 1s 1mpossible, since we have just seen
(§ 496) that the mean potential over the spherical surface
must be V. Hence the supposition that the potential differs
from V in any place contiguous to K and not including masses,

18 false.

408. Similarly we see that in any case of symmetry round
an axis, 1f the potential 1s constant through a certain finite
distance, however short, along the axis, it 1s constant through-
out the whole space that can be reached from this portion of
the axis, without crossing any of the masses. (See § 546, below.)

499. Let S be any finite portion of a surface, or a complete
closed surface, or an infinite surface; and let &£ be any point
on S. (a) It 1s possible to distribute matter over § so as to
produce, over the whole of §, potential equal to F (%), any

arbitrary function of the position of E. (b) There is only
one whole quantity of matter, and one distribution of it, which

can do this.

In Chap. 1. App. A, (b) (e),ete., let a=1. By (¢) we see that
there is one, and that there 1s only one, solution of the equation

ViU =0
for all points not belonging to 5, subject to the condition that U
shall have a value arbitrarily given over the whole of §. Con-
tinuing to denote by U the solution of this problem, and con-
sidering first the case of § an open shell, that is to say, a finite
portion of curved surface (including a plane, of course, as a par-
ticular case), let, in Chap. 1. App. A. (a), U’ be the potential at
(z, y, 2) due to a distribution of matter, having =@ (@) for density
at any point, (. Let the triple integration extend throughout
infinite space, exclusive of the infinitely thin shell S. Although
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in the investigation referred to [App. A. (@)] the triple integral Green’s
extended only through the finite space contained within a closed "™ ™
surface, the same process shows that we have now, instead of

the second and third members of (1) of that investigation, the
following equated expressions :—

JJdeU" {[3U] - (80)} - [[[dxdydzU'V*U

= [[do U {[0U"] - (30")} — [[[dxdydzU VU’
where [0U| denotes the rate of variation of U on either side of
S, infinitely near &, reckoned per unit of length from S; and
(0U) denotes the rate of variation of U infinitely near Z, on the
other side of S, reckoned per unit of length fowards §; and
[0U"], (3U") denote the same for U’. Now we shall suppose the

matter of which U’ is the potential not to be condensed in finite
quantities on any finite areas of S, which will make

[a U ’] = (8 74 f) »
and the conditions defining U and U’ give, throughout the space
of the triple integral,

ViU =0, and VU’ = — 4rw;
w denoting the value of = (§) when @ is the point (z, g, 2).
Hence the preceding equation becomes

[fdoeU'{[0U] —(8U)} =4n ([ [dxdydzwU............ (1).

Let now the matter of which U’ is the potential be equal in
amount to unity and be confined to an infinitely small space

round a point ¢. We shall have

JfdxdydzaU=U (Q) [[[wdedyds= U (Q),
1f we denote the value of U at (@) by U (@) :

A |
also U’ = 70
Hence (1) becomes
[2U] - (37)
[/ ——q-]w—- do=47U (@)............... (2).
Hence a distribution of matter over .S, having reduced to
1 | the prciper
genera
i (801 -@U) .o (3) ﬁ;ﬂg,;’f
equation.

for density at the point E, gives U as its potential at (w, y, 2).
We conclude, therefore, that it is possible to find one, but only

one, distribution of matter over .§ which shall produce an arbi-
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trarily given potential, # (£), over the whole of §; and in (2)
we have the solution of this problem, when the problem of find-
ing U to fulfil the conditions stated above, has been solved.

If § is any finite closed surface, any group of surfaces, open or
closed, or an infinite surface, the same conclusions clearly hold.
The triple integration used in the investigation must then be
separately carried out through all the portions of space separated
from one another by §, or by portions of .

If the solution, p, of the problem has been obtained for the case
in which the arbitrary function is the potential at any point of S,

due to a unit of matter at any point P not belonging to S, that

1
is to say, for the case of # (&) = 7P’ the solution of the general

problem was shown by Green to be deducible from it thus :—

U= [[pF(EYdo ..................... (4).

The proof is obvious : For let, for a moment, p denote the super-
ficial density required to produce U, then p’ denoting the value
of p for any other element, £’ of S, we have

J"d ’
F(E) = %;

Hence the preceding double integral hecomes
d JPF T P
[[dop[[dea 775 OF ffdd’ p ffdo'E,,E,.

But, by the definition of p,
1

P _ | .
ff O G = P e (9);

and therefore
JJpF (B)do = [[do’ 75 coooonve (6).

The second member of this is equal to U, according to the
definition of p.
The expression (46) of App. B., from which the spherical har-

monic expansion of an arbitrary function was derived, is a cage
of the general result (4) now proved.

Isolationof  §00. It 1s important to remark that, if S consist, in part, of

effect by

closed por- g closed surface, @, the determination of U within it will be

tion of

surfic, . independent of those portions of 8§, if any, which lie without
it; and, vice versa, the determination of U through external
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space will be independent of those portions of S, if ‘any, which 1solation of

. « 3 . . . effect b
lie within ). Or if S consist, in part, of a surface ), ex- closed or-

tending infinitely in all directions, the determination of [ surtace.
through all space on either side of ¢, 1s independent of those
portions of S, if any, which lie on the other side. This follows
from the preceding investigation, modified by confining the
triple integration to one of the two portions of space separated

completely from one another by Q.

501. Another remark of extreme importance is this:—If Groen’s
prooiem ;

F () be the potential at & of any distribution, M, of matter, applied toa

given dis-

and 1f § be such as to separate perfectly anv portion or portions tribution of
P P J yP po tions electricity,

of space, H, from all of this matter; that is to say, such that A, influenc-
ing a con-

it is impossible to pass into H from any part of M without ducting sur-
crossing S; then, throughout Z, the value of U will be the ’

potential of M.

For if V denote this potential, we have, throughout H, v*V =0;
and at every point of the boundary of H, V =F(Z). Hence,
considering the theorem of Chap. 1. App. A. (¢), for the space H
alone, and its boundary alone, instead of S, we see that, through
this space, V satisfies the conditions prescribed for U, and there-
fore, through this space, U= V.

Solved Examples. (1) Let M be a homogeneous solid ellip-
soid ; and let S be the bounding surface, or any of the external
ellipsoidal surfaces confocal with it. The required surface-
density is proved in § 494 g to be inversely proportional to
the perpendicular from the centre to the tangent-plane; or,

~which is the same, directly proportional to the distance between

S and another confocal ellipsoid surface infinitely near it. In
other words, the attraction of a focaloid (§ 494 g, foot-note) of virtually

AR . . Maclaurin®
homogeneous matter is, for all points external to it, the same theorem,

a8 that of a homogeneous solid of equal mass bounded by any "’ " "
confocal ellipsoid interior to it.

- (2) Let M be an elliptic homoeoid (§ 494 ¢, foot-note) of Euiptic

homogeneous matter; and let S be any external confocal Eﬁnéiiﬁgie
ellipsoidal surface. The required surface-density is proved the redueic.
in § 319 below to be directly proportional to the perpen- 5 505, of

dicvlar from the centre to the tangent-plane; and, which is problem.
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Gree's  the same, directly proportional to the distance between S and H, the remainder of all space, and if F(E) be the potential

probiem. - <milar concentric ellipsoidal surface infinitely near 1t. In of masses m,, m,, m,, lying in the spaces H,, H, H ']ihe r;r ry nfinitly
other words, the attractions of confocal infinitely thin elliptic tions of U due to S, §,, S,, respectively WiliI ,th;;ug]s;out HP bé E‘Ex cing sur-
homoeoids of homogeneous matter are the same for all external equal respectively to the potentials of m,, m,, m,, separatel ces.
points, if their masses are equal. For as we have just seen, it is possible to ﬁ‘;d ;ne, but onlj;

Complex 502. To illustrate more complicated applications of § 501,
application 1t § consist of three detached surfaces, §;, §,, §,, as in the
diagram, of which 8,, S, are closed, and 5, 18 an open shell, and 1f

F (E) be the potential due to M, at any pont, E, of any of these
portions of §; then throughout

H,, and H,, the spaces within

19
S, and without S,, the value of
U is simply the potential of M.
The value of U through K, the

remainder of space, depends, of one, distribution of matter over S, which shall produce the
course, on the character of the potential of m., throughout all the space H » H, H  etc., and
composite surface S, and 1s a one, but only one, distribution . o

case of the general problem of which the solution was proved over S, which shall produce the

to be possible and single in Chap. 1. App. A. potential of m, throughout H,
H1! H;, etc.; and so on. But

Eﬁiﬁ. y 50_3. From § 500 follows ‘the grand Propom.tmn .— It 18 these distributions on S, S
Mectric | possible to find one, but no other than one, distributton of matter etc., jointly constitute a ':fl]l t -
ﬁ%ﬁ:ﬁg over a surface S which shall produce over S, and throughout all but::idn pro du’ cing the po telrf ti:i
an eLer- . s .
minate. .;ﬁa;z H ;;gaa:;fzf 3}/ S from every part of M, the same potential 7 ( E) over every part, of §, and _
Thyg. N . N . . . e g th?refore the sum of the potentials due to them all, at any
us, in the preceding diagram, 1t 1s possible 1o fnd one, pownt, fulfils the conditions presented for U. This is therefore
and but one, distribution of matter over S, §,, S, which shall (§ 508) the solution of the problem.
produce over S, and through H, and H, the same potential
as M. | - | ._ 605. Considering still the case in which F(E) is prescribed Reducible
The statement of this proposition most commonly made 1s: tO be the potential of a given mass, M: let § be an equipotential case of
It is possible to distribute matter over any surface, S, completely surface enclosing M, or a group of isolated surfaces enclosing problem:
enclosing @ mass M, so as to produce the same potential as M a,l] the parts of M, and each equipotential for the whole of M.
through all space outside S: which, though seemingly more ihe potential due to the supposed distribution over S will be
limited, is, when interpreted with proper mathematical com- the same as that of N, through all external space, and will
prehensiveness, equivalent to the foregoing. be constant (§ 497) through each enclosed portion of space. Its
resultant, at : '
Simultane 504. If S consist of several closed or infinite surfaces, S, §,, 5,, all ext3m21t;i§:;n&tﬂl ;;ilerefore 1?8' t:ne saime _a,ststha,ils{ of M on
o#s;n v . . « e : Iy ro on all imternai points. ence we
influences  respectively separating certain isolated spaces H,, H,, H,, from 8¢ at once that the density of the matter distributed over it,

in spaces
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| : R its interior. Thus, an example which Green himself gives, let Reducible
gfs?:fgmlﬁ to produce £ (k), - equal to der waere [ denotes the resultant M be a uniform bar of matter, 4 A’. The equipotentialgsurfa,ces(éarﬁ:egf*s
Er’c?t?féi.-__ force of M, at the point £. round 1t are, as we have seen above (§ 481 ¢), prolate ellipsoids Eiﬁ’ﬁiﬁﬁéf
We have [8U]=—R and (9U)=0. Using this in § 500 (2), of revolution, each having A and A’ for its foci; and the re-
we find the preceding formula for the required surface-density. sultant force at any point P was found to be
applied o §06, Considering still the case of § 501, 505, let S be the Z(Z:??aﬂ) :
tionof equipotential not of M alone, as in § 505, but of M and another | |
prodlems  mass m completely separated by it from M; so that V+v=C the whole mass of the bar being denoted by m, and its length
nfluence.  at §, if V and v denote the potentials of M and m respectively. by 2a; AP+ AP by 2[; and the perpendicular from the
The potential of the supposed distribution of matter on S, centre to the tangent plane at P of the ellipsoid, by p. We
which, (§ 501), 1s equal to ¥ through all space separated from M conclude that a distribution of matter over the surface of the
by 8, is equal to C—wv at S, and therefore equal to C—v ellipsoid, having
throughout the space separated from m by 8. 1 mp
Thus, passing from potentials to attractions, we see that the [ (F—a’)
resultant attraction of S alone, on all points on one side of it for density at P, produces on all external space the same re-
18 the same as that of M ; and on the other side is equal and sultant force as the bar, and zero force or a constant potential
opposite to that of m. The most direct and simple complete through the internal space. This is a particular case of the
statement of this result is as follows :— Example (2) § 501 above, founded on the general result regard-
If masses m, m’, in portions of space, H, H’, completely ing ellipsoidal homoeoids proved below, in & 519, 520, 521.
separated .from} one another by one continuous sunfa.ce S, whether 508. Asa second example, let M consist of two equal par-
closefi or infinite, are k.nown to prodflce tangential forces equal ticles, at points I, 7. If we take the mass of each as unity,
and 1n the same direction at each point of S, one and the same _ 1 1
distribution of matter over S will produce the force of m the potential at P is 72t rp and therefore
throughout H’, and that of m" throughout H. The density of . . |
this distribution 1s equal to ZI_}:- , if B denote the resultant force 7T TP~ ¢
due to one of the masses, and the other with its sign changed. 18 the equation of an equipotential surface ; it being understood
And 1t is to be remarked that the direction of this resultant thut negative values of 7P and I’P are inadmissible, and that
force 1s, at every point, £, of S, perpendicular to S, since the any constant value, from o to 0, may be given to C. The
potential due to one mass, and the other with its sign changed, curves in the annexed diagram have been drawn, from this
is constant over the whole of 8. equation, for the cases of €' equal respectively to 10, 9, 8, 7, 6,
Examples.  §07. Green, 1n first publishing his discovery of the result % 45, 43, 42, 41, 4, 39, 38, 37, 35, 3, 25, 2; the value of

stated 1n § 505, remarked that it shows a way to find an in-
finite variety of closed surfaces for any one of which we can
solve the problem of determining the distribution of matter
over it which shall produce a given uniform potential at each
noiut of 1ts surface, and consequently the same also throughout

I being unity.

The corresponding equipotential surfaces are the surfaces
traced by these curves, if the whole diagram is made to rotate
round JI” as axis. Thus we see that for any values of O less
than 4 the equipotential surface is one closed surface. Choosing
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Reducible 2Ny one of these surfaces, let B denote the resultant of forces

§10. As an example of exceedingly great importance in the Rleotric

bpoci's pro- 1 1 . : : : theory of electricity, let M consist of a positive mass, m, con- =
blem —ex- equal to 7P and s N the lines PI and PI'. Then if centrated at a point 7, and a

matter be distributed over this surface, with density at P equal
R

to yynt 1ts attraction on any internal point will be zero; and on

any external point, will be the same as that of 7and I’

909. For each value of C greater than 4, the equipotential
surface consists of two detached ovals approximating (the last

three or four in the diagram, very closely) to spherical surfaces,
with centres lying between the points I and I’, but approxi-

mating more and more closely to these points, for larger and
larger values of C.

Considering one of these ovals alone, one of the series en-

closing I’, for instance, and distributing matter over 1t according
R

E )
which exerts (§ 507) on external points the same force as I'; and
on internal points a force equal and opposite to that of 1.

to the same law of density, we have a shell of matter

negative mass, —m/’, at /'; and
let S be a spherical surface
cutting II', and I’ produced
in points 4, A, such that
JTA: Al .:IA,: I'A,:: m:m.
Then, by a well-known geo-
metrical proposition, we shall have IE : I'E :: m : m’; and
therefore

’

7 _ m
1E=TE

Hence, by what we have just seen, one and the same distribu-

tion of matter over § will produce the same force as m’ through

all external space, and the same as m through all the space

within 8. And, finding the resultant of the forces I% in EI
and I’%ﬁ in I'E produced, which, as these forces are inversely
as IE to I'E,1s (§ 256) equal to
m , m*ll’ 1
et O T e

we conclude that the density in the shell at % is

w1

dmrm’ " TE®
That the shell thus constituted does attract external points as

if its mass were collected at I, and internal points as a certain
mass collected at I, was proved geometrically in § 474 above.

511. 1If the spherical surface is given, and one of the points,
I, I', for instance I, the other is found by taking CI'= CA

o1’
and for the mass to be placed at it we have

w=mid 04 _, O
-—mAI =m OI—-m 0 .

Hence if we have any number of particles m,, m,, etc., at points
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mﬁc I ., 1,, etc., situated without S, we may find 1n the same way of the latter from the origin, to the same powers of the distances ppus.
~ corresponding internal points I, I, etc., and masses m,, m,, of the former from the same. Hence the lengths, areas, and ﬁ}’?ﬂiﬁ%_
etc.; and, by adding the expressions for the density at £ given volumes in the transformed diagram, corresponding to a set e radius-
for each pair by the preceding formula, we get a spherical shell - of given equal infinitely small lengths, areas, and volumes, how-
of matter which has the property of acting on all external space ‘ever situated, at different distances from the origin, are in-
with the same force as —m/, —m/, etc., and on all internal versely as the squares, the fourth powers and the sixth POWeErS
points with a force equal and opposite to that of m,, m,, etc. of these distances. Further, it is easily proved that a straight
512. An infinite number of such particles may be given, line and & plane tra,nsform-intf) a citcle and a spherical sm:face,
constituting a continuous mass M; when of course the corre- each passing through t e OHSit; and that, generally, circles
sponding 1nternal particles will constitute a continuous mass, and spheres transform into circles and spheres.
— M’, of the opposite kind of matter; and the same conclusion 514. In the theory of attraction, the transformation of
will hold. If S 1s the surface of a solid or hollow metal ball masses, densities, and potentia,ls has also to be considered.
connected with the earth by a fine wire, and M an external Thus, according to the foundation of the method (§ 512), equal
inﬂuencmg body’ the shell of matter we have determined 1is masses, of mﬁmtely small dimensions at different distances
precisely the distribution of electricity on § called out by the from the origin, transform into masses inversely as these dis-
influence of M: and the mass — M’, determined as above, is tances, or directly as the transformed distances: and, therefore,
called the Electric Image of M in the ball, since the electric equal densities of lines, of surfaces, and of solids, given at any
action through the whole space external to the ball would be stated distances from the origin, transform into densities directly
unchanged if the ball were removed and — M’ properly placed as the first, the third, and the fifth powers of those distances;
in the space left vacant. We intend to return to this subject or 1nversely as the same powers of the distances, from the
under Electricity. origin, of the corresponding points in the transformed system.
Trous 513. Irrespectively of the special electric application, this 5151'.1:' The 1sta,tements of thj last two tsectmns, 50 far as Euﬂﬁnr:}?
by recipro- method of images gives a remarkable kind of transformation proportions alone are concerned, are mos conveniently ex- of ratios.
cal radiuse pressed thus :—

vectors.  which 1s often useful. It suggests for mere geometry what
has been called the transformation by reciprocal radius-vectors;
that is to say, the substitution for any set of points, or for any
diagram of lines or surfaces, another obtained by drawing radii
to them from a certain fixed point or origin, and measuring off
lengths inversely proportional to these radu along their direc-
tions. We see in a moment by elementary geometry that any

Let P be any point whatever of a geometrical diagram, or
of ‘a distribution of matter, O one particular point (*the
origin ”), and @ one particular length (the radius of the “ reflect-
ing sphere”). In OP take a point P’, corresponding to P, and
for any mass m, in any infinitely small part of the given dis-
tribution, place a mass m’; fulfilling the conditions

line thus obtained cuts the radius-vector through any point of OF — 4 , _a  OF

. : , M = = —— M.
it at the same angle and in the same plane as the line from OP OF a
which it is derived. Hence any two lines or surfaces that cut Then if L, A4, V, p (L), p(4), p(V) denote an infinitely small
one another give two transformed lines or surfaces cutting at length, area, volume, linear-density, surface-density, volume-
the same angle: and 1nfinitely small lengths, areas, and volumes density in the given distribution, infinitely near to P, or
transform into others whose magnitudes are altered respectively anywhere at the same distance, r, from O as P, and if the

in the ratios of the first, second, and third powers of the distances - Corresponding elements in the transformed diagram or dis-
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General tribution be denoted in the same way with the addition of

of ratios.  gccents, we have

: 2 4 4 6 '8
L=SL=DL A=2A=54; V=5V=57,
7 a - a = -

’ _CL _7‘ ‘ , __E'_?: _13 |
P(L)—;P(L)-—&-p(l;), p(A)_T,Bp(A)_asp(A),
- 5

o (Vy==zp(V)=2p(V)

The usefulness of this transformation in the theory of electricity,
and of attraction in general, depends entirely on the following

theorem :—

Application 516, (Theorem.)—Let ¢ denote the potential at P due to
potential.  the given distribution, and ¢  the potential at P° due to the

transformed distribution ;: then shall
T ¢
$="9=56

Let a mass m collected at I be any part of the given dis-
tribution, and let m at I’

be the corresponding part
in the transformed distri-
bution. We have

=0I".0[=0F, OP,

and therefore

o7 I or:0P :: OP : OI
which shows that the triangles 7P O, P'I’0O are similar, so that
IP . PI :: JOI.OP : . /JOP.OI :: OI.OP:a’

We have besides

!

m:m :: O : a,
and therefore

m  m
2-}3 . -'Z‘.T)', M / OP.

Hence each term of ¢ bears to the corresponding term of ¢’
the same ratio; and therefore the sum, ¢, must be to the sum,

¢’, in that ratio, as was to be proved.
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517. As an example, let the given distribution be con- Any distri-
fined to a spherical surface, and let O be its centre and @ its sphesen ™

radius. The transformed distribution is the same. But the etk

space within 1t becomes transformed into the space without
it. Hence if ¢ be the potential due to any spherical shell at
a point £, within it, the potential due to the same shell at the

aﬂ

point P’ in OP produced till OP'=",, is equal to (;F &
(which 1s an elementary proposition in the spherical harmonic
treatment of potentials, as we shall see presently). Thus, for
instance, let the distribution be uniform. Then, as we know
there 1s no force on an interior point, ¢ must be constant; and
therefore the potential at P’, any external point, is Inversely

proportional to its distance from the centre.

Or let the given distribution be a uniform shell, S, and let O vniform

be any eccentric or any external point. The transformed dis- ?Eiiﬂl?fg

tribution becomes (§§ 513, 514) a spherical shell S’, with fecte
density varying inversely as the cube of the distance from O.
It O 1s within §, it is also enclosed by &, and the whole space
within § transforms into the whole space without &. Hence
(§ 516) the potential of 8’ at any point without it is inversely
as the distance from O, and is therefore that of a certain quan-
tity of matter collected at 0. Or if O is external to S, and
consequently also external to S, the space within 8 transforms
into the space within S’. Hence the potential of S’ at an
point within it is the same as that of a certain quantity of
matter collected at O, which is now a point external to it.
Thus, without taking advautage of the general theorems
(83 499, 506), we fall back on the same results as we inferred

from them in § 510, and as we proved synthetically earlier
(8§ 471, 474, 475). Tt may be remarked that those synthetical

demonstrations consist merely of transformations of Newton'’s

demonstration, that attractions balance on a point within a
uniform shell. Thus the first of them (§471) is the Image of
Fewton’s in a concentric spherical surface; and the second is
lts Image in a spherical surface having its centre external to
the shell, or internal but eccentric, according as the first or the
8econd diagram is used.

VOL. II. 2
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518. We shall give just one other application of the theorem
of § 516 at present, but much use of it will be made later, in
the theory of Electricity.

Let the given distribution of matter be a uniform solid
sphere, B, and let O be external to it. The transformed system
will be a solid sphere, B, with density varying inversely as
the fifth power of the distance from 0, a point external to 1it.
The potential of B is the same throughout external space as
that due to its mass, m, collected at its centre, . Hence the
potential of B" through space external to it is the same as that
of the corresponding quantity of matter collected at (', the
transformed position of C. This quantity i3 of course equal
to the mass of B. And it is easily proved that C 1s the posi-
tion of the image of O in the spherical surface of B. We
conclude that a solid sphere with density varying inversely
as the fifth power of the distance from an external point, O,
attracts any external point as if its mass were condensed at
the image of O in its external surface. It is easy to verify
this for points of the axis by direct integration, and thence the
general conclusion follows according to § 490.

519. One other application of Green’s great theorem of
§ 503, showing us a way to find the potential and the resultant
force at any point within or without an elliptic homoeoid, from
which we are led to a second very interesting solution of the
problem of finding the attraction of an ellipsoid differing
greatly from that of § 494, we shall now give.

An elliptic homoeoid exercises no force on internal points.

To prove this, let the infinitely thir spherical shell of § 462,
imagined as bounded by concentric spherical surfaces, be dis-
torted (88 158, 160) by simple extensions and compressions
in three rectangular directions, so as to become an elliptic
homoeoid. In this distorted form, the volumes of all parts are
diminished or increased in the proportion of the volume of the
ellipsoid to the volume of the sphere; and (§ 158) the ratio of
the lines HP, PK is unaltered. Hence the elements 1H, KL,
still attract P equally ; and therefore, as in § 462, we conclude
tbat the resultant force on an internal point 18 zero.
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It follows immediately that the attraction on any point theorem
. .y s . . . . . due to
in the hollow space within a homoecoid not infinitely thin is Newton.

zero. This proposition is due originally to Newton.

620. In passing it may be remarked that the distribution of bistribu-

electricity on an ellipsoidal conductor, undisturbed by electric Elggtgicity

. ‘ : . . ellip-
influence, i3 thus proved to be in simple proportion to the g%t_igrgon-
thickness of a homoeoid coincident with i1ts surface, and there- |
fore (§ 494, foot-note) directly proportional to the perpendicular

from the centre to the tangent plane.

621. From § 519 and § 478 1t follows that the resultant Force

. ST . y external to
force on an external point anywhere infinitely near the homoeoid an ehiptic

1s perpendicular to the surface, and is equal to 47¢, if ¢ denote found.
the thickness of the shell in that neighbourhood (its density
being taken as unity). It follows also from § 519 that the
potential 1s constant throughout the interior of the homoeoid
and over its surface. Hence the distance from this surface
to another equipotential infinitely near 1t outside is inversely
proportional to ¢: and therefore (§ 494) this second surface
is ellipsoidal and confocal with the first. By supposing the
proper distribution of matter (§ 505) placed on this second
surface to produce over it, and through 1ts interior, its uniform

potential, we see in the same way that the third equipotential
infinitely near 1t outside 1s ellipsoidal and confocal with 1t ;

and similarly again that a fourth equiputential 1s an ellipsoidal

gurface confocal with the third, and so on. Thus we conclude
that the equipotentials external to the original homoecoid are
the whole series of external confocal ellipsoidal surfaces.

622 From this theorem it follows immediately that any pigression.

. Second
two confocal homoeoids of equal masses produce the same proof of

attraction on all points external to both. And from this (as theorem.

pointed out by Chasles, Journal de ! Ecole Polytechnique, 25™

Cahier, Paris, 1837) follows immediately Maclaurin’s theorem
thus :—Consider two thick homoeoids having the outer surfaces
confocal, and also their inner surfaces confocal. Divide one
of them into an infinite number of similar homoeoids: and
-di?ide the other in a corresponding manner, so that each of
8 homoeoidal parts shall be confucal with the corresponding

D — 2
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one of the first. These two thick homoeoids produce the same
force on any point external to both. Now let the hollow of
one of them, and therefore also the hollow of the other, hecome
infinitely small ; we have two solid confocal ellipsoids, and it is
proved that they exert the same force on all points external

to both.

523. A beautiful geometric proof of the theorem of § 521
due to Chasles, is given below, § 532. The proof given in
§ 521 is from Thomson’s * Electrostatics and Magnetism ”
(§ 812, reprinted from Camb. Math. Jour, Feb. 1842).
The theorem itself is due to Poisson, who proved (in the Con-
nasssance des Temps for 1837, published in 1834 %) that the
resultant force of a homoeoid on an external point is in the
direction of the interior axis of the tangential elliptic cone
through the attracted point circumscribed about the homoeoid ;
for 1t 1s a known geometrical proposition, easily proved, that
the three axes of the tangential cone are normal to the three
confocal surfaces, ellipsoid, hyperboloid of one sheet, and hyper-
boloid of two sheets, through its vertex.

524. The magnitude of the resultant force is equal to 47,
where 7 denotes the thickness of the confocal homoeoid equal in
bulk to the given homoeoid.

To express the magnitude and direction symbolically, let
abc be the semi-axes of the given homoeoid, and afy those of the
confocal one through P the attracted point ; and let p, ¢ and
w, T be the perpendiculars from the centre to the tangent planes,

and the thicknesses, at any point of the given homoeoid, and at
the point P of the other. The volumes of the two homoeoids
are respectively

drabet/p, and 4wafyr/w ;

hence
be ¢
4t =47 ao%¢ ¢ > A 1
oSy p (1)
annd therefore the resultant force is
4 _ab_c ¢ = )
ﬂﬁyp llllllllllllllllllllllllllll (-‘)-

* S8ee Todhunter’s History of the Mathematical Theories of Attraction und
the Figure of the Eurth, Vol, 11, Articlcs 1391—1413,
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Supposing the rectangular co-ordinates of the attracted point Magnitude

zyz given ; to find afy we have ?ﬁ%i%m'
. . . . attraction
o' =a +A; B=0"+X; YP=c"+A.......... (3), §felliptic
where A 1s the positive root of the equation | Egigfee?;]-al
. | pressed
. 2 oF analytically.
Y y
- + — =1 . (4)
a-+A b*+X fF+ A 2

these equations expressing the condition that the two ellipsoidal
surfaces are confocal.

To complete the analytical expression remark that

wTE WY W

T g (5)

are the direction-cosines of the line of the resultant force.

525. - To find the potential at any point remark that the Potential of

difference of potentials at two of the external equipotential sur- pomorniy

faces infinitely little distant from one another is (§ 486) equal to Eitt‘;ﬁa‘i“;?“

the product of the resultant force at any point into the distance }Eﬁﬁal
between the two equipotentials in its neighbourhood. Hence,
taking the potential as zero at an infinite distance (§ 4185), we

find by summation (a single integration) the potential at any

~ point external to the given homoeoid. Now let

=+ ydz, y=idy, =z=+idz

be the co-ordinates of the two points infinitely near one another,

~ on two confocal surfaces. The distance between the two surfaces

in the neighbourhood of this point is

e , wY
T Bt s

W2
d;?/ + CE Jdﬁ ............. (6).

Let now the squares of the semi-axes of these surfaces be
o' +AxLdh; BP+A=1dh; A= sdA,
Now by differentiation of (4) we have

| ax 4y 2z
o % yvy | ez
(a}’+)L+ B 1 A +c’+)t)

_{_ = v 2° dA
{(a” + )L)ﬂ T (bﬂ 4 ,\')9 + (GE + A)E} AN T E e (7) ,

Hence (6) becomes —@i .
2w
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Potentinlo  Hence, and by § 525 above, and by (2) of § 524 we have where  is introduced as the variable of the definite integration, Synthesis of
homoeoid . : : : concentrie
at any point Jo—_ 9 abe ¢ n (8) because A is presently to be made a function of 6. Hence if I homoeods.
%‘fgﬁlﬂ or T aByp T ' denote the potential of the whole ellipsoid, we have
un Hence, and by (3} of § 524 . 1 A
;a,bct , d\ V=- 211'&60[ &pdd ; % g (11),
v=— 2 & f é é R (9), o o (0% + O} (60 + O} (76 + )}
P Juo(a®+A)? (B°+2)* (¢ + M) : : : .
where A is a function of @ given by the equation
where oo denotes that the constant is so assigned as to render " ¥ .
the value of the integral zero when A= PN T A TFEIN 1., eee(12).

Synthesis of

coneentric
homoeoids.

526. Having now found the potential of an elliptic homoeoid,
and its resultant force at any point external or internal, we
can, by simple integration, find ithe potential and the resultant
force of a homogeneous ellipsoid, or of a heterogeneous ellipsoid
with, for its surfaces of equal density, similar concentric ellip-
soidal surfaces. To do this we have only to divide the ellipsoid
into elliptic homoeoids, and find the potential of each by (9),
and the potential of the whole by summation; and again find
the rectangular components of the force of each by (2) and (5);
and from this by summation* the rectangular components of
the required resultant.

Let abc be the semi-axes of the whole ellipsoid. Let fa, 63, @e,
be the semi-axes of the middle surface of one of the interior

homoeoids; and
(0=1df)a, (6=1dO)b, (0=1idf)c

those of its outer and Inner bounding surfaces. From the
general definition of a homoeoid, elliptic or not, it follows imme-
diately that ¢/p =d6/6. Let now p, a given function of 6, be the
density of the ellipsoid in the homoeoidal stratumn corresponding
to . Hence by (9) remembering that the density there was
taken as unity, and putting 6a, 66, 6c in place of a, b, ¢, we find
for the potential of the homoeoid 6= 3d6 the following expres-

sion,
A d
— 2w abe 6 pdb f "y ¢ P —
o(6%a’+ £)* (670" + {)* (6°¢c" + {)
# (Chasles, ‘ Nouvelle solution dn probldme de l'atiraction d'un ellipsoide
hétérogéne sur un point extérieur” (Liouville'’s Journal, Dec. 1840). Alzo W.
Thomson, * On the Uniform Motion of Heat in Solid Bodies, and its connection

with the Mathematical Theory of Electricity, Electrostatics and Magnetism,”
§ 21—24. (Reprinted from Cambridge Mathematical Journal, Feb. 1842.)

The expression (11) ix simplified by introducing, instead of @
or A, another variable A/6®. Calling this u, so that

A2 0%U iviiiiieei e, (13),
we have by (12)
x’ v 2
= YT T g (14).
By differentiation of (12) we have Potential
of hetero-
dA ' y* . z° a’xz’ . by N c*z’ geneous
—_— - == — — - . 1
d(6%) | (&’ +u)" v (®+u)®  (c° +u)’] I:(.cf,’+u,)B (6" +u) (a’+u)“] P

1§ 4dA
And from (13) du = g3 [d ) u:l d (6°).

Whence, on using (14), we find
- 2 2

x J, 2 .
- 20d0 = -~ du.
b |:(¢:.'.rE + u)’ N (6% + u)* " (c® + u)‘] “
Then changing the variable of integration in the function under
the second integral sign in (11) from £ to {/¢", and writing u for
¢/6°, we find by means of these transformations,

Vﬂmbc]qdu{ z + y + 2 }f __ou
unP (@®+u)” (b +u)’ (¢ +u) m(a“+u)%(b”+u)&(c“+u)!'

where ¢ is the positive root of the equation

mﬂ ?/2 4 zﬂ —1 ............... (16)'

a”+q+b’+q c"+q—

For the case of uniform density in which we may put p=1,
this becomes simplified by integration by parts, thus:

f:d” (Ciu)ﬁ' Lf (u) du = - Ci 7 f:f (u) du + j: Gdfu f(x)
[ reau- [ s

" C+q. q O+%
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Putting for C successively o, b° ¢® using the result properly in
(15), and taking account of (16), and putting

drabe=M ...l (17),
we find
33 (7 x” Y 2" du
V=— (1 g — 72 - 3 ) ‘
4 J, w+u O +u c (a,“+u)i (6 +u)t (c“+u)*

which agrees with § 494 above.

Just as we have found (15), we find from (2), (5), (13), and (14),
the following expression for the wx-components of the resultant
force and the symnetricals for the y- and z-components:

SMx (% pdi
X= 9 ), (a”-i-u)a (b’+u)% (c’+u)i ............... (19),

where p, a function of 6, is reduced to a function of u by (14).

For the case of a homogeneous ellipsoid (p = 1), these results
become (20) and (21) of § 494. As there they were for external
points deduced by aid of Maclaurin’s theorem from the attraction
of an ellipsoid on a point at its surface, so now when proved other-
wise they contain a proof of Maclanrin’s theorem. This we see

in a moment by putting % = w + ¢ 1n the integrals, whith makes
the limits w=0 and w=o00.

'527. In the case of a homogeneous ellipsoid of revolution
the integrals expressing the potential and the force-components
(which for a homogeneous ellipsoid, in general, are elliptic inte-
grals) are reduced to algebraic and trigonometrical forms, thus:
let b=cand z=0.

We have
31‘[ ® du
V: —r - X.’I: + Y ......... 20
t Jo 3 +uw) (f:.s’+*z,q:,)é 2 | Y) 0
¥ SM du

x
2 Jo (0" +u) (a®+ w)t
M [ du
Y= 92 J 2 2 /8 %
¢ (0" +u)*(a’+ u)
To reduce these put

b* — a?

O U= e, 22):
L (22
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which reduces the three integrals to 2/ (62_@2)%_ fclff (1-¢&° )‘:

9/ (5 - a*)}. fé”df}(l—gg)i, and 2/ (5° = )} . ﬁ;mg/ (1)} ; and

makes the limits in each of them

b —a
g=0t0t= /070

We thus find Poéen&al
2 .2 ana atlrac-
V= L t%ta.n""\/bﬂ i -3 ( X+ Yy) i (23), E;‘;gf
2 (bE — aF) ¢ +q geneous
ellipsoid of

2 2 revolution:
¥ 3 M { b* —a - \/0 —a’
(bﬂ_a‘.?)% a’+ g a’ +q
¥ 3.My {tan'l \/bﬂ — - (° — a,ﬂ)% (a® + ¢) %} ‘oee :
2(6”—@2)§ a’+q b* + q |

where, for any external point, ¢ 1s the positive root of the
equation

nm’ + ﬂyﬂ =1
a+q b'+gq

x and y denoting the co-ordinates of the attracted point respec-
tively along and perpendicular to the axis of revolution, and
for any internal point or for points on the surface g = 0.

Formulas (23) and (24) realized for the case of & > b become

M V(@ =8 + ] (& +q)
V= 2({3 bﬂ)#l \/(bE’FQ) ? %(Xm-{-I'y) """ (26)? prolate,
_ 3Mx J(a@® = 8°) + J(a® + g) -0 )
g (a® - )% { V' +9) \/aﬂ + 9}
__ 3y {(a 0 rg)? | @) (@ -w}
2 (a°— )} b*+ ¢ V(6" +g) J

The structure of these expressions (23), (24), (26), (27), i

elucidated, and calculation of results from them is facilitated
by taking

L (27).

b* —a’ d /(B — o 5
£ \/a ST UG B, (28),
_a.nd again e= Jai—b , and N/(aﬂ-Z)ﬂ)=8...............(29);

a +q
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prolate.  which reduces them to the following alternative forms :—

1 | .
V_%t&n—:lf %(X$+YJ)—3M10g iﬁ._%(‘l’m+1’y)...(30),

2r 1—e
(f tan“f)—st 6—10g\/1+6

3MJ o ¥ My e \/14—6)
Y="5p (m f_1+f”)_ 257 (1—62 log \/ 1 J

Then, for determining f or ¢, in the case of an external point,
(25) becomes

y Y
1 (::c’ +3 _i_fﬂ):-r”, and ¢° (m“+ - e”) =& (32).

In the case of an internal point we have

bg . a’ aﬂ _ bﬂ
f— /\/ a y € = \/ a,ﬁ ................. (33)-

528. The investigation of the attraction of an ellipsoid
which was most popular in England 40 to 50 years ago re-
sembled that of § 494 above, in finding the attraction of an
internal point by direct integration, substantially the same as
that of § 494, and deducing from the result the attraction of
an external point by a special theorem.

Thivd in- But the theorem then popularly used for the purpose was
vestikation ) .t Maclaurin’s theorem, which was little known, strange
attraction  t, gav in England at that time; it was Ivory’s theorem, much
ellipsoid.

less beautiful and simple and directly suitable for the purpose
than Maclaurin’s, but still a very remarkable theorem, curiously
different from Maclaurin’s, and in one respect more important
and comprehensive, because, as was shown by Poisson, 1t 1s
not confined to the Newtonian Law of Attraction, but holds
for force varying as any function of the distance. Before enun-
ciating Ivory’s theorem, take his following definition :—

Correspond-  529.  Corresponding points on two confocal ellipsoids are

ing poins1 any two points which coincide when either ellipsoid is deformed

Setbned. by a pure strain so as to coincide with the other.

D ggiggl' In connection with this definition, it is interesting to remark

tealectory  that each point on the surface of the changing ellipsoid de-
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scribes an orthogonal trajectory of the intermediate series of ellipsoids is

confocal ellipsoids if the distortion specified in the definition any poink of

. . ' a confocally
is produced continuously in such a manner that the surface distorted

. e q . . . solid ellip-
of the ellipsoid is always confocal with its original figure. soid:

To prove this proposition, which however is not necessary for proot.
our present purpose, let abc be the semi-axes of the ellipsoid in
one configuration, and ./(a® + &), \/(b* + %), /(¢ + &) in another.
If xyz be the co-ordinates of any point P on the surface in the

first configuration, its co-ordinates in the second configuration
will be

x “—/-(C:-I-h) y Y 5-/—%—4:—@ , R (e : B *..(32).

When h is infinitely small the differences of the co-ordinates of
these points are

2

%’h n: ‘%hbﬂ: %]?’"ﬂ'

C

Hence the direction-cosines of the line joining them are propor-

tional to x/a’, y/b% s/c®, and therefore it coincides with the
normal to the two infinitely nearly coincident surfaces.

530. The property of corresponding points (essential for Ivory's

Lemma on

Ivory’s theorem, and for Chasles’, § 532 below) 1s this (— corresponds

ing pointis.
If P, P’ be any two points on one ellipsoid, and @, @ the

corresponding points on any confocal ellipsoid, PQ’ 1s equal
to PQ).

To prove this, let xyz be the co-ordinates of P, and «'y’2
those of P’. Taking (32) as the co-ordinates of ¢, we find

o / "l"h bﬂ'{‘] E-]-,
P’Q‘=(w —m\/aaﬂ y y\/ b z«z\/cﬂ:2 b)
= —293:1*:\/& +h+m ( )+ &e.

Now because (z, ¥, 2) is on the ellipsoidal surface (a, b, c), we
have

| 8

AN
T ’1

nw

Hence the precedinn‘ becomes

2
;P’Q =& +y " +27 =2 xx \/a; +h \/6 +h+zz ° :k) 2"+ +2"+ h.




Ivory's
theorem,

proved.

76 ABSTRACT DYNAMICS. [530.

This is symmetrical in respect to zyz and x'y%, and so the
proposition is proved.

531. The following is Ivory’s Theorem :—Let P’ and P be
corresponding points on the surfaces of two homogeneous con-
focal ellipsoids (a, &, ¢) (¢, b, ¢'); the a-component of the
attraction of the ellipsoid abc on the point P is to the z-com-
ponent of the attraction of the ellipsoid a'd’c’ on the point F as

be is to b'c.
Let , ¥, z be the co-ordinates of P, the attracted point;
., &m & ,, coordinates of any point of the mass ;
y D ,, distance between the two points;
, F (D) dédyd{ be the attraction of the elemental mass
dédydi at (& n, £), on (x, ¥, 2);
Let X be the z-component of the attraction of the whole ellip-
soid (a, b, ¢) on (x, ¥, 2).
We have

x - [[fasanatr ()" = [[faeinac £(2) < (- G)

_ f qud{, f- 7 (D) dD.
Now F (D) being any function of D), let
fF(D') dD=-y (D);

and let Z, G be the positive and negative ends of the bar dyd{
of the ellipsoid, that is to say, the points on the positive and
negative sides of the plane yoz in which the surface of the
ellipsoid is cut by the line parallel to ox, having n{ for its other
co-ordinates. The proper limits being assigned to the D-integra-
tion in the formula for X above being assigned, we find

X — [[dnat iy (EP) -y (@P)}

Now let ZA’G" be points on a confocal ellipsoidal surface
(a, ¥, ¢') through P, corresponding to £ and G on the surface of
the given ellipsoid (g, b, ¢); and let P’ be the point on the first
cellipsoidal swiface corresponding to P on the second. The y- 2-
co-ordinates common to L’GY are respectively 8'/b. pand ¢'fe. {;
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and by lemma EP=FEP and GP=GP. Hence if we change

from %{, as variables for the double integration in the preceding
formula for X, to #'{’, we find

b
x-22 [ qu’dé’ (¥ (E'P) -y (GP)},

which is Ivory’s theorem.

932. Two confocal homoeoids of equal masses being given, Chasles’

the potential of the first at any point, P, of the surface of the between

. . the poten-

second, 18 equal to that of the second at the corresponding tials of two
. ; © confocal

point, F’, on the surface of the first. ~ homoeoids.

Let E be any element of the first and E’ the corresponding
element of the second. The mass of each element bears to the
mass_of the whole homoeoid the same ratio as the mass of the
corresponding element of a uniform spherical shell, from which
either homoeoid may be derived, bears to the whole mass of
the spherical shell. Hence the mass of & is equal to the mass
of £'; and by Ivory’s lemma (§ 530) PE =P'E. Hence the
proposition 1s true for the parts of the potential due to the

corresponding elements, and therefore it is due for the entire
shells,

This beautiful proposition 1s due to Chasles. It holds, what- proof ot
ever be the law of force. From 1it, for the case of the inverse fﬁﬂﬁi‘;‘,ﬁ“
square of the distance, and from Newton’s Theorem for this Feeriins
case that the force is zero within an elliptic homoeoid, or, which SLeliptie
1s the same, that the potential is constant through the interior,

1t follows that the external equipotential surfaces of an elliptic

homoeoid are confocal ellipsoids, and therefore that the attrac-

tion on an external point is normal to a confocal ellipsoid

passing through the point; which is the same conclusion as that
of § 521 above.

633. An ingenlous application of Ivory’s theorem, by raw ofat-

. B, . » t 'tl'
Dubamel, must not be omitted here. Concentric spheres are fﬁﬁﬂl uni-
- * . . . h’ -
& particular case of confocal ellipsoids, and therefore the at- calshell
T ‘ , : exerts no
traction of any sphere on a point on the surface of an internal actiononan

concentric sphere, is to that of the latter upon a point in the point,

surface of the former as the squares of the radii of the spheres.
Now if the law of attraction be such that a homogeneous spherical
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Law of at- shell of uniform thickness exerts no attraction on aninternal point, ing them fixed relatively to one another. We have thereifore Properties

tracti . _ . , _ : _ of centros
when a uni- the action of the larger sphere on the internal point i1s reduced found a body, 4', symmetrical about an axis, UK, relatively paric
form spheri- = _ _ , | _ ' bodies.
ol shell to that of the smaller. Hence the smaller sphere attracts to which B is nccessarily centrobaric. Now, (O being kept

&xXeres no

action on an
internal

point.

Cavendish's
theorem.

Centre of
gravity.

Jentrobaric
vodies,

proved
ossible
y Green.

Properties
of ¢centro-
baTic
bodies.

points on 1ts surface and points external to it, with forces
inversely as the squares of their distances from its centre.
Hence the law of force 1s the inverse square of the distance, as is
easlly seen by making the smaller sphere less and less till it

becomes a mere particle. This theorem is due originally to
Cavendish.

534. (Defination.) If the action of terrestrial or other gravity
on a rigid body 1s reducible to a single force in a line passing
always through one point fixed relatively to the body, whatever
be 1its position relatively to the earth or other attracting mass,
that point 1s called its centre of gravity, and the body is called
a centrobaric body.

One of the most startling results of Green’s wonderful
theory of the potential 1s 1ts establishment of the existence of
centrobaric bodies; and the discovery of their properties is
not the least curlous and interesting among its very various
applications.

534a. If a body (B) is centrobaric relatively to any one
attracting mass (4), 1t 1s centrobaric relatively to every other:
and it attracts a'l matter external to itself as if its own mass
were col'ected 1n 1ts centre of gravity ¥,

Let O be any point so distant from B that a spherical surface
described from 1t as centre, and not containing any part of B,
is large enough entirely to contain 4. Let A be placed within
any such spherical surface and made to rotate about any axis,
OK, through 0. It will always attract B in a line through G,
the centre of gravity of 5. Hence if every particle of its mass
be uniformly distributed over the circumference of the circle
that it describes i1n this rotation, the mass, thus obtained, will
also attract B in a line through ¢. And this will be the case
however this mass is rotated round O ; since beforec obtaining
it we might have rotated 4 and OK in any way round O, hold-

* Thowmson, Proc. R. S. E., Feb, 1864,

fixed, let OK, carrying A’ with it, be put successively into an
infinite number, n, of positions uniformly distributed round O;

that is to say, so that there are equal numbers of positions of
1

OK in all equal solid angles round O: and let ~ part of the
mass of A" be left in each of the positions into which 1t
was thus necessarily carried. B will experience from all this
distribution of matter, still a resultant force through &. But
this distribution, being symmetrical all round (), consists of
uniform concentric shells, and (§ 471) the mass of each of these
shells ‘might be collected at O without changing 1ts attraction
on any particle of B, and therefore without changing 1its re-
sultant attraction on B. Hence B i1s centrobaric relatively to
a mass collected at O, this being any point whatever not
nearer than within a certain limitulg distance from £ (accord-
ing to the condition stated above). That 1s to say, any point
placed beyond this distance is attracted by 5 1n a hine through
@ ; and hence, beyond this distance, the equipotential surfaces
of B are spherical with ¢ for common centre. £ therefore
attracts points beyond this distance as 1f 1ts mass were collected

at G: and it follows (§ 497) that it does so also through the

whole space external to itself. Hence 1t attracts any group

“of points, or any mass whatever, external to 1t, as 1f 1ts own

mass were collected at (.

534 b. Hence §§ 497, 492 show that—

(1) The centre of gravity of a centrobaric body necessarily lies

“en its intertor; or in other words, can only be reached from

external space by a path cutting through some of vts mass. And

(2) No centrobaric budy can consist of parts isolated from one
another, each tn space external to all: 1n other words, the outer

“boundary of every centrobaric body s a single closed surface.

Thus we see, by (1), that no symmetrical ring, or hollow

cylinder with open ends, can have a centre of gravity; for its
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centre of gravity, if it had one, would be 1n its axis, and there-
fore external to its mass.

534c. If any mass whatever, M, and any single surface, S,
completely enclosing it be given, a distribution of any given
amount, M', of matter on this surface may be found which shall
make the whole centrobaric with its centre of grawty wn any
given position (@) wrthin that surface.

The condition here to be fulfilled is to distribute M’ over S,
so as by 1t to produce the potential

M+ M
- EQ

any point, %, of S; ¥V denoting the potential of M at this
point. The possibility and singleness of the solution of this
problem were proved above (§ 499). It i1s to be remarked,
however, that if /' be not given in sufficient amount, an extra
quantity must be taken, but neutralized by an equal quantity
of negative matter, to constitute the required distribution on S.

The case in which there is no given body M to begin with
is important; and yields the following :—

—V,

534 d. A given quantity of matter may be distributed n one
way, but e only one way, over any given closed surface, so as to
constitute a centrobaric body with its centre of gravity at any
groen pornt within .

Thus we have already seen that the condition is fulfilled by
making the density inversely as the cube of the distance from
the given point, if the surface be spherical. From what was
proved in §§ 501, 506 above, it appears also that a centrobaric
shell may be made of either half of the lemniscate in the
diagram of § 508, or of any of the ovals within it, by distributing
matter with density proportional to the resultant force of m at 1
and m’ at I’; and that the one of these points which i1s within
it is its centre of gravity. And generally, by drawing the
equipotential surfaces relatively to a mass m collected at a
point I, and any other distribution of matter whatever not
surrounding this point; and by taking one of thesc surfaces
which encloses I but no other part of the mass, we learn, by
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Green’s general theorem, and the special proposition of § 506, 'ognltl.robariu
. ‘ . . . 8
how to distribute matter over it so as to make it a centrobaric

ghell with [ for centre of gravity.

534¢. Under hydrokinetics the same problem will be solved
for a cube, or a rectangular parallelepiped in general, in terms
of converging series; and under electricity (in a subsequent
volume) it will be solved in finite algebraic terms for the
surface of a lens bounded by two spherical surfaces cutting
one another at any sub-multiple of two right angles, and for
either part obtained by dividing this surface in two by a third

spherical surface cutting each of its sides at right angles.

634f. Matter may be distrbuted wn an infinite number of Centrobaric
ways throughout a given closed space, to constitute a centrobaric
body unth ts centre of gravity at any gien point within .

For by an infinite number of surfaces, each enclosing the
given point, the whole space between this peint and the given
closed surface may be divided into infinitely thin shells; and
matter may be distributed on each of these so as to make it
centrobaric with its centre of gravity at the given point. Both
the forms of these shells and the quantities of matter distributed
on them, may be arbitrarily varied in an infinite variety of

ways.

Thus, for example, if the given closed surface be the pointed Properties
oval constituted by either half of the lemniscate of the diagram baric
of § 508, and if the given point be the point I within it, a
centrobaric solid may be built up of the interior ovals with
matter distributed over them to make them centrobaric shells
as above (§ 534d). From what was proved in § 518, we see
that a solid sphere, with its density varying inversely as the
fifth power of the distance from an external point, is centro-
baric, and that its centre of gravity is the tmage (§ 512) of
this point relatively to its surface.

034 9. The centre of gravity of a centrobaric body composed The centre
. ’ - » . . Ol grav
of true gravitating matter is its centre of inertia. For a centro- (if it exist)

13 the centre

baric body, if attracted only by another infinitely distant body, of inertia.
or by matter so distributed round itself as to produce (§ 499)

VOl.. II. 0O



Trhﬁ wgge
0 vi

(if ?:ae:iat)
is the centre
of inertia.

A centro-
baric body is
kinetical

8 etrical
about its
centre of

gravity,

82 ABSTRACT DYNAMICS. [634 g.
uniform force in parallel lines throughout the space occupied
by it, experiences(§ 534a)a resultant force always through its
centre of gravity. But in this. case this force is the resultant
of parallel forces on all the particles of the body, which (see
Properties of Matter, below) are rigorously proportional to
their masses: and in § 561 it is proved that the resultant of
such a system of parallel forces passes through the point defined
in § 280, as the centre of inertia. '

535. The moments of inertia of a centrobaric body are
equal round all axes through its centre of inertia. In other
words (§ 285), all these axes are,principal axes, and the body
1s kinetically symmetrical round its centre of inertia.

Let it be placed with its centre of inertia at a point O (origin
of co-ordinates), within a closed surface having matter so dis-
tributed over 1t (§ 499) as to have zyz [ which satisfies ¢* (xyz)=0]
for potential at any point (x, g, z) within it. The resultant action
on the body is (§ 534a)the same as if it were collected at O; that
is to say, zero: or,in other words, the forces on its different parts
must balance. Hence (§ 851, 1., below) if p be the deusity of the

body at (z, ¥, 2)

j f yepdadydz = 0, f f wrpdrdydz =0, f j jxypdwdydz =0,

Hence OX, OY, OZ are principal axes; and this, however the
body is turned, only provided its centre of gravity is kept at O.

To prove this otherwise, let V denote the potential of the
given body at (x, ¥, 2); » any function of x, ¥, 2; and w the

triple integral

dudV dudV dudV
& @+ 3 4 * & &) v

extended through the interior of a spherical surface, S, enclosing
all of the given body, and having for centre its centre of gravity.
Then, as in Chap. 1. App. A, we have .

w=]fWVdo'— ﬂfv’vwxdydz
_ [ faVudo' _ f f fw’ V dedyds.
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"But if m be the whole mass of the given body, and @ the radius Properties

of S, we have, over the whole surface of ., %’.Sﬁ?"’“’
- | bodies.
V=" and aV=-—.

@ &
Also [§ 491 6] Vi — —41rp, N

vanishing of course for all points not belonging to the mass of
‘the given body. Hence from the preceding we have

dor [ [ [updmdydz -z f J' (adu +u) do — f f YV udadyds.

Let now % be any function fulfilling v® =0 through the whole
space within §; so that, by § 492, we have [ f oudo = 0, and by

§ 496, f [uaa= dra*u,, if u, denote the value of u at the centre
of S. Hence |

f [ [updxdydz = mu,.

Let, for instance, u = 2. We have u,=0, and therefore

f f yzpdzdydz = 0,

a8 we found above. Or let w = (2* + ¢°) — (2° + 2*), which gives
u,=0; and consequently proves that

[ f f (@* + #) pdwdydz = f f f (& + 37) pdasdyde,

or the moment of inertia round OY is equal to that round OX,
verifying the conclusion inferred from the other result.

036. The spherical harmonic analysis, which forms the sub-
Ject of an Appendix to Chapter 1, had its origin in the theory
of attraction, treated with a view especially to the figure of the
earth; having been first invented by Legendre and Laplace for
the sake of expressing in converging series the attraction of
2 body of nearly spherical figure. It is also perfectly appropriate
for expressing the potential, or the attraction, of an infinitely
thin spherical shell, with matter distributed over it according to
any arbitrary law. This we shall take first, being the simpler
application,

6—2

Origin of
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harmonic
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place.
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Origin of Let x, y, z be the co-ordinates of P, the point in question,
apha.]:g;?i}a reckoned from O the centre, as origin of co-ordinates: p and o’
Tegondre. the values of the density of the spherical surface at points Z and
%?nga- E', of which the former is the point in which it is cut by OF, or

this line produced: do’ an element of the surface at &', a its
radius. Then, V being the potential at P, we have

rdo_!
V= f G e (1).
But, by B (48)
rmifie 10 ()} i P
ad (2)
=l{1 + 30, (E)‘} »  n external [
7 1 \F g

where @, is the biaxal surface harmonic of (£, £'). Hence, if
pP=8+8,+8, +&c.cocciiiiiiiiiiiii.. (3)

be the harmonic expansion for p, we have, according to B (52),

V= 4#&{ O, (T)‘} when 2 is internal, ]

2 + 1
e 4ra’ S R LT ...(4)
. mwa |*° Oy E |
= - {fg % + 1 (‘7‘)} 29 T, externa.l, J
If’ for i.nsta.nce, P= S; ; W€ have
s S, .
V= 71972 1 inside,
and
4wa'*® S,
V= A 97 outside.

Thus we conclude that

Appliation  937. A spherical harmonic distribution of density on a
ﬁ:&tgxrilgd spherical surface produces a similar and similarly placed
wialys  gpherical harmonic distribution of potential over every con-
centric spherical surface through space, external and internal;
and so also consequently of radial component force. But the
amount of the latter differs, of course (§ 478), by 4rp, for points

infinitely near one another outside and inside the surface, if p

K_ac’)"_+(y_3/) oy e z/),]i=—{1+EQ,(:,)i when 7' > 7
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If R denote the radial component of the force, we have

AV 4w WS, ‘]
B =g =~ o g1 nside
and (5).

e [
T g ouElde

Hence, if » =a, we have

R (outside) — R (inside) = 4=S, = 4mp.

638. The potential is of course a solid harmonic through
gpace, both internal and external; and is of positive degree in
the internal, and of negative in the external space. The ex-
pression for the radial component of the force, in each division

of space, is reduced to the same form by multiplying it by the
distance from the centre.

539. The harmonic development gives an expression in

converging series, for the potential of any distribution of matter
through space, which 1s useful in some applications.

Let «, y, z be the co-ordinates of P, the attracted point, and
«/, i/, 2/ those of P’ any point of the given mass, Then, if p’
be the density of the matter at 7, and ¥V the potential at P, we

have . f[ f p dfc'dy’dz o
[(‘”—‘1’)""(?! y’)’+(z-z)ﬂ]% """""""" -

The most convenient view we can take as to the space through
which the integration is to be extended is to regard it as infinite
in all directions, and to suppose p’ to be a discontinuous function

~of &, ¥/, #, vanishing through all space unoccupied by matter.

Now by App. B. (v) we have

(7).

and {1+zQ,(:)} L r<r

denote the density of the distribution on the surface between Application
them.

spherical
harmonic
analysis.
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Hi[(z, ¥, 2) (@, ¥, %)]=— 58 1 ——~[cos'0 -

ST Hyp'dx'dy'ds’ =3{ (323 — %) [Jfp'a?da’dy'dz’ + eto. } =4 {(322 ~ r*)[4(4 + B+ C) - A]+eto.}
mdld (- 82%) + B(1r9-8y)C + (19~ 82%) } =3 {(B+ 0 -24) 2+ (C+ 4 - 2B) y*+ (4 + B—-20)a4}.
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Substituting this in (6) we have
fd ‘de’ 1 RN N,
7= () CELE L L i paayda

p'da’dy'dz’ 'yt g
WBINTE T + S UINer pasdyds) . (8),
where ( [[[) denotes integration through all the space external to
the spherical surface of radius , and [[[[] integration through
the interior space.
This formula is useful for expressing the attraction of a mass

of any figure on a distant point in a single converging series.
Thus when OP is greater than the greatest distance of any part

of the body from O, the first series disappears, and the expression

becomes a single converging series, in ascending powers of ; —

- { [[[p'detdy'dz + 2 ) [[Qa'p'de’dy'd}......... (9).
If we use the notation of B. (u) (53), this becomes

¥ = o llpasay e+ 3r 2[5 B[o 9,9), &, ¥, )] derdy ds}..(10)

and we have, by App. B. () and (w),

1.3.5...(2i- iE-1) o i(i-1)(i-2)(i-3
2.@-1) ™% tag (2;_1)(2;_T)°°3' "0 ete.] rir (11)
where cos 0 = wx + yy + 22 .

W!‘

From this we find

H =xx'+yy +2; H =3[ (0x'+ yy'+22")"- 3 (&"+ 4"+ 2°) (@ '+ +27)];
and so on.

~ Let now M denote the mass of the body; and let O be taken
at 1ts centre of gravity. We shall have

Jffpdaldyde = M ; and f[]p" H decdy’dz’ = 0.

- Further, let X, 0¥, OZ be taken as principal axes (§§ 281, 283),

so that [[fp'y/#deddy de =0, ete.,

and let 4, B, C be the moments of inertia round these axes.
This will give
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Hence neglecting terms of the third and higher orders of small Potentia?

, f distant

quantities (powers of ;-) , we have the following approximate body.
éxpreasion for the potential :—
=2t L {(B+0-24)2"+ (C+4-2B)y+ (4 +B-20)2}...(12).

As one example of the usefulness of this result, we may mention
the investigation of the disturbance in the moon’s motion pro-
duced by the non-sphericity of the earth, and of the reaction of
the same disturbing force on the earth, causing lunar nutation
and precession, which will be explained later.

Differentiating, and retaining only terms of the first and second
degrees of approximation, we have for the components of the
mutual force between the body and a unit particle at (z, ¥, 2),

=Bz BHOZRAT L2 2 B+ -24)a"+(C+ A~ 2B)y*+ (4 + B-20)2")

g : (13) ;
Y =etc., Z =¢ete,
whence
— B-4
Zy—Yz= 3(0 5)y Xz—Za:-—-S(A G)M, Yx—Xy=3( )xy...(14).
r° P | 7P

Comparing these with Chap. 1x. below, we conclude that

540. The attraction of a distant particle, P, on a rigid body Atiraction |
if transferred (according to Poinsot’s method explained below, , on & distant
§ 535) to the centre of inertia, I, of the latter, gives a couple
approximately equal and opposite to that which constitutes the .
resultant effect of centrifugal force. if the body rotates with a
certain angular velocity about JP. The square of this angular
velocity is inversely as the cube of the distance of P, irre-
spectively of its direction; being numerically equal to three
times the reciprocal of the cube of this distance, 1if the unit
of mass is such as to exercise the proper kinetic unit (§ 225)
force on another equal mass at unit distance. The genera.l
tendency of the gravitation couple 1s to bring the principal axis
of least moment of inertia into line with the attracting point.

The expressmns for its components round the principal axes
will be used in Chap. 1X. (§ 825) for the 1nvest1ga,t10n of the

phenomena of precession and nutation produced, 1n virtue of
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Attraction the earth’s non-spbericity, by the attractions of the sun and

of a particle . . .

on a distant moon. They are available to estimate the retardation produced
' by tidal friction against the earth’s rotation, according to the

principle explained above (§ 276).

9041. It appears from what we have seen that the amount
of the gravitation couple is inversely as the cube of the distance
between the centre of inertia and the external attracting point :
and therefore that the shortest distance of the line of the re-

Principle of sultant force from the centre of inertia varies inversely as the

proxima-  distance of the attracting point. We thus see how to a first
tion used in

the com- x : 'G.' - » »
the com- , approximation every rigid body 1s centrobaric relatively to a

of the distant attracting point.

of gravity.
942. The real meaning and value of the spherical harmonic

method for a solid mass will be best understood by considering
the following application :—

Let p=F(r)See...... e, (15)

where F (r) denotes any function of 7, and S, a surface spherical
harmonic function of order ¢, with coefficients independent of r-

Substituting accordingly for p’ in (8), and attending to B. (52)

and (16), we find

 dxS, {T‘. f R T p— f Jiss F(,rr)dr’} ...(16).
, 0

4 29+ 1

Potentislof  543. As an example, let it be required to find the potential
solid sphere . . . . ‘
with har- of a solid sphere of radius a, having matter distributed through

tribution of it according to solid harmonic tunction V.,

That is to say, let
p=V =728, when r <a,
and p =0 gy T

Hence in the preceding formula # (r)=7' from =0 to r=a,
and #(r)=0, when » > a; and it becomes

a’ 7’ . )
V= 4-::-1;:{2(2?:_'_ Iy 2(2:; " 3)} when P 1s internal,
"t > (17).
and = iw oV, ternal
“(@i+ 1)(%i+3) oo CXTEImAL

This result may also be ohtained by the aid of the algebraical
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formula B, (12) thus, on the same principle a- the potential of a Potential of
uniform spherical shell was found in § 491 (d). with har.
monic dis-
We bave by § 491 (c) donsity,
ViV =—4=xV,, when r < a,
" . N, } .................. (18).
But by taking m =2 in B. (12) we have
VE@V)=2(2¢+ 3)V,,
and therefore the solution of the equation
ViV =—4xV,
: r*V,
is V_—47r2(gi+-3—)+U ...................... (19),
where U is any function whatever satisfying the equation
ViU=0

through the whole interior of the sphere. By choosing U and the
external values of V so as to make the values of V equal to one
another for points infinitely near one another outside and inside

the bounding surface, to fulfil the same condition for c%’ , and
to make V vanish when »= o0, and when r =0, we find
C&E
Usidnl, 2(2i+ 1)
and obtain the expression of (17) for V external. For in the
first place, ¥V external and U must clearly be 4 ?%, and 5V,

where 4 and B are constants: and the two conditions give the
equations to determine them.

944, From App. B. (52) 1t follows immediately that any potentialof
function of =, y, 2 whatever may be expressed, through the haymonie
whole of space, in a series of surface harmonic functions, each ~
having its coefficients functions of the distance (r) from the
origin. Hence (16), with S, placed under the sign of integra-
tion for +/, gives the harmonic development of the potential

of any mass whatever; being the result of the triple integra-

tions indicated in (8) of § 539, when the mass is specified by

means of a harmonic series expressing the density.
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545. The most important application of the harmonic de-
velopment for solid spheres hitherto made is for investigating,

in the Theory of the Figure of the Earth, the attraction of a

finite mass consisting of approximately spherical layers of
matter equally dense through each, but varying I density

from layer to layer. The result of the general analytical

method explained above, when worked out in detail for this
case, is to exhibit the potential as the sum of two parts, of

which the first and chief is the potential due to a solid sphere,

A, and the second to a spherical shell, B. The sphere, 4, 1s
obtained by reducing the given spheroid to a spherical figure

by cutting away all the matter lying outside the proper mean
spherical surface, and filling the space vacant inside 1t where
the original spheroid lies within it, without altering the density

anywhere. The shell, B, is a spherical surface loaded with
equal quantities of positive and negative matter, so as to com-
pensate for the transference of matter by which the given
spheroid was changed into 4. The analytical expression of
all this may be written down immediately from the preceding
formule (§§ 536, 587); but we reserve it until, under hydro-
statics and hydrokinetics, we shall be occupied with the theory
of the Figure of the Earth, and of the vibrations of lquid

globes.

546. The analytical method of spherical harmonics 18 very
valuable for several practical problems of electricity, magnetism,
and electro-magnetism, in which distributions of force sym-
metrical round an axis occur : especially in this; that if the
force (or potential) at every point through some finite length
along the axes be given, it enables us immediately to deduce
converging series for calculating the force for points through
some finite space not in the axes. (See § 498.)

O being any conveniently chosen point of reference, in the
axis of symmetry, let us have, in series converging for a portion

A B of the axis, .
b, LI b, .
U=a,+~+ar+ 3 +a, +gete ..., ceenr(@),

where U is the potential at a point, @, in the axis, specified by
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O¢=r. Then if V be the potential at any point P, specified by
OP=r and QOP =0, and, as in App. B. (47), @,, @., ... denote
the axial surface harmonics of 6, of the successive integral orders
we must have, for all values of » for which the series converges,

?

V=a,6+ % + (alfr + 5) Q + (a;*“ + f-.—ﬁ) Q,+ete.......... (D),

7 r?

provided P can be reached from € and all points of 4B within
some finite distance from it however small, without passing
through any of the matter to which the force in question is due,

or any space for which the series does not converge. For

throughout this space (§ 498) V — V' must vanish, if ¥’ be the
value of the sum of the series; since V-V’ is [App. B. (9)]
a potential function, and it vanishes for a finite portion of the
axis containing ©).

The series (b) 1s of course convergent for all values of » which
make (a) convergent, since the ultimate ratio @, ,+ @, for in-

finitely great values of ¢, is unity, as we see from any of the
‘expressions for these functions in App. B.

In general, that is to say unless O be a singular point, the
series for U consists, according to Maclaurin’s theorem, of ascend-
ing integral powers of = only, provided » does not exceed a certain
limit. In certain classes of cases there are singular points, such
that if O be taken at one of them, U will be expressed in a series
of powers of » with fractional indices, convergent and real for
all finite positive values of 7 not exceeding a certain limit. The
expression for the potential in the neighbourhood of O in any
such case, in terms of solid spherical harmonics relatively to O

ag centre, will contain harmonics [App. B. (a)] of fractional
degrees. ‘

Lxamples—(1.) The potential of a circular ring of radius a,

and linear density p, at a point in the axis, distant by » from the
centre :—
2mwap
UO=—— ......... e e eeeriens 1).
(a” + *r“)g"-r (1)
Hence U=2wp(1-—%f+}—'—§£—-etc)whenr-::a (2)
o e . .or (2),
2mrap o° 1.3a*
ad U= (1 ~} g etc.) when 7> a ...(3),

Case of the
potential
symmetri-
cal about
an axis.

Examples.

(I.) Poten-
tial of cirou-
lar ring;

Potential
sy mmetris
cal about
An aXis.
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Potent;?
metri-
%mal'gout
an axis.

(11.) of cir-
enlar disc.

Potential in
the neigh-

bourhood of

from which we have

P 1.3 »
V=2mp (1 —%?Qﬂ+2_4 . Qi—etc.) when 7 < a..(4),
o’ 1.3a°
and V=27rp(§—%;§ ﬂ+-§-—4FQ‘-—e’w.) when 7> a.. ().

(I1.) Multiplying (1) by da, and integrating with referen-ce
to & from a =0 as lower limit, and now calling U the potential
of a circular disc of uniform surface density p, and radius @, at
a point in its axis, we find

U=2mp{(«” + ?‘2)‘i — 7},
» being positive.

Hence, expanding first in ascending, and secondly In descend-
ing powers of r, for the cases of 7 <a and r>a, we find

? 1.1 +* 1.1.37°
V= 2ﬂp{—rQl+a+%% Q"_Q.irf Q4+2-4'6aﬁ Qe— etc.} when r <a,
@ 1.1a° 1.1.34° )
and V=27rp{éc:' -2'4T3Q3+2_4'6;3Q4—etc.1 when 7 > a.

[t must be remarked that the first of these expressions is only
continuous from §=0 to §=3%=; and that from §=}7rto O=r
the first term of it must be made

+ 2mpr@,, instead of — 2mwpr@),.

(IIL.) Again, taking —?Zg of the expression for U in (IL.), and

now calling U the potential of a disc of infinitely small thickness

o

¢ with positive and negative matter of surface density S on its

two sides, we have

)
=2 {1 _- }
P (a’+r’)‘;‘

[obtainable also from § 477 (e), by integrating with reference to
z, putting » for 2, and p for pc]. Hence for this case

7 Ul 1.3 +°
V = 21rp (l—a Ql+%? QE_ 9 4 -m—ﬁQﬁ-l-EtO.) when r < @,

: 1.3 a*
and V=2mp (& %Ql -5 ;;‘QH + etc.) when 7 > a.

The first of these expressions also is discontinuous ; and when ¢
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18 > L7 and <, its first term must be taken as — 2mp instead
of 2wp.

647. If two systems, or distributions of matter, M and M,
given 1n spaces each finite, but infinitely far asunder, be allowed
to approach one another, a certain amount of work is obtained
by mutpal gravitation: and their mutual potential energy
loses, or as we may say suffers exhaustion, to this amount:
which amount will (§ 486) be the same by whatever paths the
changes of position are effected, provided the relative initial
positions and the relative final positions of all the particles are
given. Hence if m, m,,... be particles of M; w', m/,...
particles of M’; v, v,,... the potentials due to M’ at the
points occupied by m , m,,...; v,, v,,... those due to M at
the points occupied by m', m',,...; and K the exhaustion of
mutual potential energy between the two systems in any actual
configurations; we have

E =3mv = Zm'v.

This may be otherwise written, if p denote a discontinuous
function, expressing the density at any point, (z, %, 2z) of the
mass M, and vanishing at all points not occupied by matter of
this distribution, and if p’ be taken to specify similarly the other
mass M'. Thus we have

E={{[pvdedydz= [[[pvdedydz,

the integrals being extended through all space. The equality of
the second and third members here is verified by remarking that

B f_cia*diyd,z
i ‘W D

if D denote the distance between (w, y, 2) and (=, v, 2), the
latter being any point of space, and p the value of p at it. A
corresponding expression of course gives v": and thus we find one

sextuple 1ntegral to express identically the second and third
members, or the value of %, as follows:—

7 f f f f j [ pp'd xd yd zdxdy dz
- 7 z.

648. It is remarkable that it was on the consideration of
an analytical formula which, when properly interpreted with
reference to two masses, has precisely the same signification as

Exhausfion
of potential

energy.

Green’s
method.
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the preceding expressions for £, that Green founded his whole
structure of general theorems regarding attraction.

In App. A, (a) let a be constant, and let U, U’ be the
potentials at (z, v, 2) of two finite masses, M, M, finitely distant
from one another : so that if p and p’ denote the densities of M
and M’ respectively at the point (x, ¥, 2), we have [§ 491 (¢)]

ViU =—4mp, VU '=- 4up’.

It must be remembered that p vanishes at every point not form-

ing part of the mass M : and so for p’ and M’. In the present
merely abstract investigation the two masses may, in part or 1n

whole, jointly occupy'the same space: or they may be merely
imagined subdivisions of the density of one real mass. Then,
supposing S to be infinitely distant in all directions, and observ-
ing that UoU" and U’9U are small quantities of the order of the
inverse cube of the distance of any point of . from M and M,

whereas the whole area of § over which the surface integrals of

App. A. (a) (1) are taken as infinitely great, only of the order of
the square of the same distance, we have

[{dSU9U =0, and [[dSUBU’ =

Hence (a) (1) becomes

j [ f au dU’ ‘;U ay’  dU E’.E)dxaydzﬂr [1fpU'dadydz = 4 fff Udedydz ;
y dy dz

showing that the first member divided by 4= is equal to the

exhaustion of potential energy accompanying the approach of

the two masses from an infinite mutual distance to the relative

posltlon which they actually occupy.

Without supposing S infinite, we see that the second member
of (@) (1), divided by 4w, is the direct expression for the ex-
haustion of mutual energy between M’ and a distribution con-

sisting of the part of M within § and a distribution over S, of
1

density yp dU’; and the third member the corresponding ex-
pression for M and derivations from M".

549. If instead of two distributions, M and M’, two par-
ticles, m,, m, alone be given; the exhaustion of mutual
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potential energy in allowing them to come together from in- condensa-
finity, to any distance D (1, 2) asunder, 18 diffused
m,m,
D, 2)

If now a third particle m, be allowed to come into their neigh-
bourhood, there is a further exhaustion of potential energy

amounting to
mm, | mm,

DL TDE 3

By conmdermg any number of particles coming thus necessarily
into position in a group, we find for the whole exhaustion of
potential energy

mm’
FE=2>3 B

where m, m’ denote the masses of any two of the partlcles, D Exhaustion

the distance between them, and 22 the sum of the expressions energy.
for all the pairs, each pair taken only once. If v denote the

potential at the point occupied by m, of all the other masses,

the expression becomes a simple sum, with as many terms as
there are masses, which we may write thus—

E=1%3mv;

the factor 3 being necessary, because 2mv takes each such term
m,m,
% 5, 2)
tinuous mass, with density p at any point (z, y, 2), we bave only
to write the sum as an integral ; and thus we have

E=3[[f pvdadydz

as the exhaustion of potential energy of gravitation accompany-
ing the condensation of a quantity of matter from a state of

infinite diffasion (that is to say, a state in which the density
is everywhere infinitely small) to its actual condition in any

—1 % twice over. If the particles form an ultimately con-

finite body.

An important analytical transformation of this expression 1s
suggested by the preceding interpretation of App. A. (a); by



Exhaustion
of potential
energy.

methed
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which we find *

1 dv’ dv*  dv
= — — 4 e — dydz
b 81:-[[] dxz+dy’+dz’)dx JE5
]' g
or E'_-B—;[] Rdxdy dz,

if R denote the resultant force at (x, y, 2), the integration being
extended through all space.

Detailed interpretations in connexion with the theory of energy,
of the remainder of App. A., with a constant, and of its more
general propositions and formule not involving this restriction,
especially of the minimum problems with which it deals, are of
importance with reference to the dynamics of incompressible
fluids, and to the physical theory of the propagation of electric
and magnetic force through space occupied by homogeneous or
heterogeneous maftter ; and we intend to return to 1t when we
shall be specially occupied with these subjects.

550. The beautiful and 1nstructive manner in which Gauss
independently proved Green’s theorems is more immediately
and easily interpretable in terms of energy, according to the
commonly-accepted idea of forces acting simply between par-
ticles at a distance without any assistance or influence of inter-
posed matter. Thus, to prove that a given quantity, ¢, of
matter 1s distributable in one and only one way over a given
single finite surface S (whether a closed or an open shell), so as

to produce equal potential over the whole of this surface, he

shows (1) that the integral

IS

has a minimum value, subject to the condition

/Jpdo =4,

where p 18 a function of the position of a point, P, on S, p’ its
value at P’, and do and do’ elements of § at these points : and
(2) that this minimum is produced by only one determinate
distribution of values of p. By what we have just seen (§ 549)
the first of these integrals is double the potential energy of a

* Nichol's Encyclopedia, 2d Ed. 1860, Magnetism, Dynamical Relations of.
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distribution over § of an infinite number of infinitely small Gausss
mutually repelling particles: and hence this minimum problem

is (§ 292) merely an analytical statement of the problem to

find how these particles must be distributed to be in stable
equilibrium.

Similarly, Gauss’s second minimum problem, of which the Equili-
rium O

preceding is a particular case, and which 1s, to find p so as to repelling
particles

make enclosed

fGv—Q)pdo omooth

surface.
[l pda =@,
where ) is any given arbitrary function of the position of P,

‘[’/.P;da-f

is merely an analytical statement of the question :—how must
a given quantity of repelling particles confined to a surface S
be distributed so as to make the whole potential energy due to
their mutual forces, and to the forces exerted on them by a
given fixed attracting or repelling body (of which ) 1s the
potential at P), be a minimum? In other words (§ 292), to find
how the movable particles will place themselves, under the
influence of the acting forces*.

a minimum, subject to

- * (Gauss’s investigations here referred to will be found in Vol, V. of his
collected works, p. 197, in a paper entitled ¢ Allgemeine Lehrsidtze auf die im
verkehrten Verhiltnisse des Quadrats der Entfernung wirkenden Anziehungs-
und Abstossungs-Krifte;”’ originally published in 1839.
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