NATURAL PHILOSOPHY.



TREATISH

ON

NATURAL PHILOSOPHY

BY

CAMBRIDGE UNIVERSITY PRESS
A ondon : FETTER LANE, E.C. LORD KELVI-N, LL.D, D.C..L., F.R.S.

C. F. CLAY, MAaNAGER

AND

PETER GUTHRIE TAIT, MA.

Ehinburgh: ¥0, PRINCES STREET
Perlin: A. ASHER AND CO.

Lapig: F. A. BROCKHAUS
f2eiy Pork: G. P. PUTNAM’'S SONS
Bombay and Lalcutta: MACMILLAN AND Co., Lrp,

CAMBRIDGE:
AT THE UNIVERSITY PRESS.
1912

All rights reserved



Firgt Edition, 1879.

Reprinted 1886, 1888, 1890, 1896, 1903, 1912.

PREFACE.

Les causes primordiales ne nous sont point connues; mais elles sont assu-
jetties & des lois simples et constantes, que ’on peut déecouvrir par 1’obser-
vation, et dont I’étude est 1’objet de la philosophie naturelle.—Fourigr.

THE term Natural Philosophy was used by NEWTON, and is
still used in British Universities, to denote the investigation of
laws in the material world, and the deduction of results not
directly observed. Observation, classification, and description
of phenomena necessarily precede Natural Philosophy in every -
department of natural science. The earlier stage is, in some
branches, commonly called Natural History; and it might with
equal propriety be so called in all others.

Our object is twofold: to give a tolerably complete account
of what is now known of ‘Natwral Philosophy, in language
adapted to the non-mathematical reader; and to furnish, to
those who have the privilege which high mathematical acquire-~
ments coufer, a connected outline of the analytical processes by
which the greater part of that knowledge has been extended
Into regions as yet unexplored by experiment.

We commence with a chapter on Motion, a subject totally
independent of the existence of Matter and Force. In this
Wwe are naturally led to the consideration of the curvature and
tortuosity of curves, the curvature of surfaces, distortions or
Btrains, and various other purely geometrical subjects.
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The Laws of Motion, the Law of Gravitation and of Electric
and Magnetic Attractions, Hooke's Law, and other fundamental
principles derived directly from experiment, lead by mathe-
matical processes to interesting and useful results, for the full
testing of which our most delicate experimental methods are as
yet totally insufficient. A large part of the present volume is
devoted to these deductions; which, though not immediately
proved by experiment, are as certainly true as the elementary
laws from which mathematical analysis has evolved them.

The analytical processes which we have employed are, as a
rule, such as lead most directly to the results aimed at, and are
therefore in great part unsuited to the general reader.

We adopt the suggestion of AMPRRE, and use the term
Kinematics for the purely geometrical science of motion in
the abstract. Keeping in view the proprieties of language, and
following the example of the most logical writers, we employ
the term Dynamics in its true sense as the science which treats
of the action of force, whether it maintains relative rest, or pro-
duces acceleration of relative motion. The two corresponding
divisions of Dynamics are thus conveniently entitled Statics and
Kunetucs,

One object which we have constantly kept in view is the
grand principle of the Conservation of Energy. According to
modern experimental results, especially those of JOULE, Energy
1s as real and as indestructible as Matter. It is satisfactory to
find that NEWTON anticipated, so far as the state of experi-
mental science in his time permitted him, this magnificent
modern generalization.

We desire it to be remarked that in much of our work,
where we may appear to have rashly and needlessly interfered
with methods and systems of proof in the present day generally
accepted, we take the position of Restorers, and not of Inno-
vators.

in our introductory chapter on Kinematics, the consideration
of Harmonic Motion naturally leads us to Fourier's Theorem,
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one of the most important of all analytical results as regards
usefulness in physical science. In the Appendices to that chapter
we have Introduced an extension of Green’s Theorem, and a
treatise on the remarkable functions known as Laplace’s Co-
efficients. There can be but one opinion as to the beauty and
utility of this analysis of Laplace; but the manner in which it
has been hitherto presented has seemed repulsive to the ablest
mathematicians, and difficult to ordinary mathematical students.
In the simplified and symmetrical form 1n which we give 1t, it
will be found quite within the reach of readers moderately
familiar with modern mathematical methods.

In the second chapter we give NEWTON'S Laws of Motion 1n
his own words, and with some of his own comments—every
attempt that has yet been made to supersede them having
ended in utter faillure. Perhaps nothing so simple, and at
the same time so comprehensive, has ever been given as the
foundation of a system in any of the sciences. The dynamical
use of the (eneralized Cdordinates of LAGRANGE, and the Vary-
tng Action of HAMILTON, with kindred matter, complete the
chapter.

The third chapter, Expenence 7 treats briefly of Observa-
tion and Experiment as the basis of Natural Philosophy.

The fourth chapter deals with the fundamental Units, and
the chief Instruments used for the measurement of Time, Space,
and Force. '

Thus closes the First Division of the work, which is strictly

preliminary, and to which we have limited the present issue.

This new edition has been thoroughly revised, and very

-considerably extended. The more important additions are to
'be found in the Appendices to the first chapter, especially that
devoted to Laplace’s Coefficients ; also at the end of the second

chapter, where a very full investigation of the “cycloidal
motion” of systems is now given; and in Appendix B’, which
describes a number of continuous calculating machines invented
and constructed since the publication of our first edition. A
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great improvement has been made in the treatment of La-
grange’s Generalized Equations of Motion.

We believe that the mathematical reader will especially
profit by a perusal of the large type portion of this volume; as
he will thus be forced to think out for himself what he has
been too often accustomed to reach by a mere iechanical
application of analysis. Nothing can be more fatal to progress
than a too confident reliance on mathematical symbols; for the
student 1s only too apt to take the easier course, and consider the
formula and not the fact as the physical reality.

In issuing this new edition, of a work which has been for
several years out of print, we recognise with legitimate satis-
faction the very great improvement which has recently taken
place in the more elementary works on Dynamics published in
this country, and which we cannot but attribute, in great
part, to our having effectually recalled to its deserved posi-
tion Newton’s system of elementary definitions, and Laws of
Motion.

We are much indebted to Mr BURNSIDE and Prof. CHRYSTAL
for the pains they have taken in reading proofs and verifying
formulas; and we confidently hope that few erratums of serious
consequence will now be found in the work.

W. THOMSON.
P. G. TAIT.

NOTE TO NEW IMPRESSION, 1912

A few slight additions and corrections have been made by
Sir GEORGE DARWIN and Prof. H. LaMB, but, substantially, the
work remains as last passed by the authors. The additions can
be 1dentified by the inifials attached in brackets,
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DIVISION 1

*

PRELIMINARY.

CHAPTER I.-KINEMATICS.

1. THERE are many properties of motion, displacement, and
deformation, which may be considered altogether independently
of such physical 1deas as force, mass, elasticity, temperature,
magnetism, electricity. The preliminary consideration of such
properties in the abstract is of very great use for Natural Philo-
sophy, and we devote to 1t, accordingly, the whole of this our
first chapter; which will form, as it were, the Geometry of our
subject, embracing what can be observed or concluded with re-
gard to actual motions, as long as the cause is not sought.

2. In this category we shall take up first the free motion of
a point, then the motion of a point attached to an inextensible
cord, then the motions and displacements of rigid systems—and
inally, the deformations of surfaces and of solid or fluid bodies.
[ncidentally, we shall be led to introduce a good deal of ele-

mentary geometrical matter connected with the curvature of
lines and surfaces.

3. When a point moves from one position to another it must Motion of &
evidently describe a contsnuous line, which may be curved or s
straight, or even made up of portions of curved and straight
lines meeting each other at any angles. If the motion be that
of a materiul particle, however, there cannot generally be any
such abrupt changes of direction, since (as we shall afterwards
see) this would imply the action of an infintte force, except iIn
the case in which the velocity becomes zero at the angle. It

1s useful to consider at the outset various theorems connected
VOI. L. 1
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Motionof with the geometrical notion of the path described by a moving axes 0, 0Y, according to the Cartesian method, and if § denote Corvafure

point. point, and these we shall now take up, deferring the considera- the inclination of its tangent, at any point z, y, to OX. Hence curve
tion of Velocity to a future section, as being more closely con- 0 tan— .

nected with physical 1deas. T ?

and, by differentiation with reference to any independent variable

4 The direction of motion of a moving point is at each t, we have

instant the tangent drawn to its path, if the path be a curve, or . ( dy
the path itself if a straight line: 2 dw) _ dudly-dyd
(dy ) doe* +dy*
1+ {2
dx

Curvature 5. If the path be not straight the direction of motion
of a plane

curve. changes from point to poin;,é and the rate of this change, per Also, ds = (da? + dy*)h,
unit of length of the curve (% according to the notation helow) ’ Hence, if p denote the radius of curvature, so that
is called the curvature. To exemplify this, suppose two tangents LT (1),
drawn to a circle, and radii to the points of contact. The angle 1 p 2 ds 2
between the tangents is the change of direction re‘qmred, and we conclude 1 dxdy -dyn ﬂ; z (2).
the rate of change is to be measured by the relation between P (de’+ dy”)

this angle and the length of the circular arc. Let I be the
angle, ¢ the arc, and p the radius. We see at once that (as

the angle between the radii is equal to the angle between

the tangents)
ol =c,
I 1

and therefore ===, Hence the curvature of a circle 18 1n-
c P
versely as its radius, and, measured in.terms of the proper unit

of curvature, is simply the reciprocal of the radius.

6. Any small portion of a curve may be approximately
taken as a circular arc, the approximation being closer and
closer to the truth, as the assumed arc is smaller. The curva-
ture is then the reciprocal of the radius of this circle.

If 80 be the angle between two tangents at points of a curve
distant by an arc 3s, the definition of curvature gives us at once

o0

- Although 1t 1s generally convenient, in kinematical and
kinetic formulee, to regard time as the independent variable, and

all the changing geometrical elements as functions of it, there
are cases In which it is useful to regard the length of the are or

path described by a point as the independent variable. On this
supposition we have |

0 =d(ds’) =d (dz® + dy’) = 2 (dx d 2 + dy d By),
where we denote by the suffix to the letter d, the independent
variable understood in the differentiation. Hence
de _ dy (da® + dy®)? _
WY DT {(dy) + ()
and using these, with ds’=dz’+ dy®, to eliminate dz and dy
from (2), we have

1 _{(d7y) + (dj=)

p ds’? ’
or, according to the usual short, although not quite complete,

as its measure, the limit of o when ds is diminished without notation,
limit ; or, according to the notation of the differential calculus, 1_ { (%g:)* N (g_;f)z }1} .
| P 8
0 . But we have | . |
“ dy . If all points of the curve lie in one plaue, it is called a Tortuone
. ve,
tanb=—, plane curve, and in the same way we speak of a plane polygon

01;' broken line. If various points of the line do not lie in one
plane, we have in one case what is called a curve of double

1--2

if, the curve being a plane curve, we refer it to two rectangular
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curvature, in the other a gauche polygon. The term ‘curve of
double curvature’ is very bad, and, though in very general use,
is, we hope, not incradicable. The fact is, that there are not
two curvatures, but only a curvature (as above defined), ot which
the plane is continuously changing, or twisting, round the
tangent line; thus exhibiting a torsion. The course of such
a curve is, in common language, well called ¢tortuous:’ and
the measure of the corresponding property is conveniently

called Tortuosity.

8 The nature of this will be best understood by consider-
ing the curve as a polygon whose sides are indefinitely small.
Any two consecutive sides, of course, lie in a plane—and In
that plane the curvature is measured as above, but in a curve
which is not plane the third side of the polygon will not be In
the same plane with the first two, and, therefore, the new plane
: which the curvature is to be measured is different from the
old one. The plane of the curvature on each side of any point
of a tortuous curve is sometimes called the Osculating Plane of
the curve at that point. As two successive positions of 1t con-
tain the second side of the polygon above mentioned, 1t 1s
evident that the osculating plane passes from one position to
the next by revolving about the tangent to the curve.

9. Thus, as we proceed along such a curve, the curvature
in general varies ; and, at the same time, the plane in which the
curvature lies is turning about the tangent to the curve. The
tortuosity is therefore to be measured by the rate at which the
osculating plane turns about the tangent, per unit length of the

curve.

To express the radius of curvature, the direction cosines of
the osculating plane, and the tortuosity, of a curve not in one
plane, in terms of Cartesian triple co-ordinates, let, as before,
30 be the angle between the tangents at two points at a distance
Se from one another along the curve, and let 8¢ be the angle
between the osculating planes at these points. Thus, denoting
by p the radius of curvature, and 7 the tortuosity, we have

1_4
p ds’
e

KINEMATICS. .4
- . . 80
according to the regular notation for the limiting values of 5 » and torta-
3
and %i) , when &8s is diminished without limit. Let OL, OL’
8

be lines drawn through any fixed point O parallel to any two
successive positions of a moving hine P7, each in the directions
indicated by the order of the letters. Draw OS perpendicular
to their plane in the direction from O, such that OL, OL', OS
lie in the same relative order in space as the positive axes of
co-ordinates, 0X, 0Y, 0Z. Let 0@ bisect LOL’, and let OR
bisect the angle between OL" and L0 produced through O.

Let the direction cosines of

OL be a,b,c;
oL ay b, ¢;
0¢ ’9 {, m, n;
Ok 23 a, B! Y s
o8 ,, Apv:

and let 66 denote the angle LOL'. We have, by the elements of
analytical geometry, |

cos 00 =aa’ +bb'+ec/.oeovniniiiiiiiil, (3) ;

_d(a+a) 3 (b+0) - 2(c+¢)
= cos 2 06 ° "= cos 4 66’ "= cos$ 86 T (4);
o a,’—.g o b —b - ¢—-c 5) -
2sin 4 06’ “9smiss’ 2sin 30" ()

be' — be ca’ —c'a ab — a’b

A.-: — —_—

sined ° 7 sined ’ T sinef T (6)

Now let the two successive positions of P7" be tangents to a
curve at points separated by an arc of length ds. We have

1_§ﬁ_ 2sin%36_sin89

Piat > 5 Sy et e (7)
whnen 8s is infinitely small ; and in the same limit
dx dy dz
1= 2% = 7 =
ds’ ds’ T ds’
: dx : d , dz
f!;—(f&:da;, b—b=d£, G—C-_—da—@ ...... (8),

b g, Gy ,de dzo,dy ,
be' - b _ZS(ZIS_O—Z—E Ez;,tu. ............. (9),

Curvature

03ity.
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W&"ﬁe and a, B, y become the direction cosines of the normal, 2C,
ggity? drawn towards the centre of curvature, (' ; and A, p, v those of
the perpendicular to the osculating plane drawn in the direc-
tion relatively to P7T and PC, corresponding to that of 0Z
relatively to OX and OY. Then, using (8) and (9), with (7),
in (5) and (6) respectively, we have
d —c@ d @ d d_z
- s _ ds _ ds (10)
ﬂ.—-—p__ids, '—_:l-d-s, 7—p_1d3 .......... 3
dy ,dz dz ,dy dz .dxe dx ,dz de ,dy dy ,de
AP R B 0% , 48 dx ,dz il A AP Bt
ds ds ds (s dsdds dsdds dsdds dsdds
A.z -1 3 P':—ﬁ_ Uz—'—_'_'r"_(].].).
p-ds p~ ds p~ ds

The simplest expression for the curvature, with choice of inde-
pendent variable left arbitrary, is the following, taken from (10) :
dx\* dy\’ dz\*
V%) +(12) + (4%))

1
E =——-—————;:-z-';_——_l—: .......... (12).

This, modified by differentiation, and application of the formula
ds d’s =dxed’x + dyd’y +dzd’z ............ (13),

L () + @)+ (@) = (@)

becomes

—_l

p ds’

Another formula for ! 1s obtained immediately from equations

p
(11) ; but these equations may be put into the following simpler

form, by differentiation, &c.,
dyd’z - dzd’y dzd’xc — dxd’z
0~ s’ y =~ ;)_1 e ’
from which we find
- {(dyd'z - dadly)® + (ded’s — dad’2)® + (ded®y — dyd®z)?
P = - dsﬂ —— (l 6) .
Each of these several expressions for the curvature, and for the

directions of the relative lines, we shall find has its own special

significance 1n the kinetics of a particle, and the statics of
flexible cord.

To find the tortuosity, 4% we have only to apply the general

ds’
] & » 1 dﬁ-
equation above, with A, p, v substituted for 4, m, n, and - Te
T

. . 2
1dp 1dv for o, 8, y. Thus we have r’= (@) + (dp' + (dp) ,

rda’ 1ds s ds ol

_ded’y —dyd’x

A=
P L ]s3

V

(15);
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dv du\® dA dv\* du dA\ )3 durvatuﬁi
or T:{(p.is-*v—d-g) +(V$—h$) +(}'E9—ME‘;, }, g:i[gytorbu

where A, u, v, denote the direction cosines of the osculating
plane, given by the preceding formulee.

- 10. The wntegral curvature, or whole change of direction of Integral

curvature

an arc of a plane curve, is the angle through which the tangent of a curve
has turned as we pass from one extremity to the other. The §13%.
average curvature of any portion 1s 1ts whole curvature divided

by its length. Suppose a line, drawn from a fixed point, to
move so as always to be parallel to the direction of motion of

a point describing the curve: the angle through which this
turns during the motion of the point exhibits what we have
thus defined as the integral curvature. In estimating this, we
must of course take the enlarged modern meaning of an angle,
including angles greater than two right angles, and also nega-

tive angles. Thus the integral curvature of any closed curve,
whether everywhere concave to the interior or not, is four right

angles, provided it does not cut itself. That of a Lemniscate, or
figure of 8, is zero. That of the Epicycloid @ 1s eight right
angles; and so on.

11. The definition in last section may evidently be extended
to a plane polygon, and the integral change of direction, or the
angle between the first and last sides, 1s then the sum of its
exterior angles, all the sides being produced each in the direc-
tion in which the moving point describes it while passing round
the figure. This is true whether the polygon be closed or not.
If closed, then, as long as it is not crossed, this sum is four
nght angles—an extension of the result in Euclid, where all
re-entrant polygons are excluded. In the case of the star-shaped

figure 'ﬁ, it is ten right angles, wanting the sum of the five
acute angles of the figure; that 1s, eight right angles.

12. The <ntegral curvature and the average curvature of a
curve which is not plane, may be defined as follows :—Let suc-

cessive lines be drawn from a fixed point, parallel to tangents
at successive points of the curve. These lines will form a

conical surface. Suppose this to be cut by a sphere of unit

radius having its centre at the fixed point. The length of the
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Infinite tortuosity will be easily understood, by considering Integral

Integral  curve of Intersection measures the integral curvature of the curvature

curvature

ofacurve given curve. The average curvature is, as in the case of a

(compare
§ 1346).

plane curve, the integral curvature divided by the length of the
curve. For a tortuous curve approximately plane, the integral
curvature thus defined, approximates (not to the integral cur-
vature according to the proper definition, § 10, for a plane
curve, but) to the sum of the integral curvatures of all the
parts of an approximately coincident plane curve, each taken as
positive. Consider, for examples, varieties of James Bernouilli’s
plane elastic curve, § 611, and approximately coincident tor-
tuous curves of fine steel piano-forte wire. Take particularly
the plane lemniscate and an approximately coincident tortuous
closed curve.

18. Two consecutive tangents lie in the osculating plane.
This plane is therefore parallel to the tangent plane to the cone
described m the preceding section. Thus the tortuosity may
be measured by the help of the spherical curve which we have
Just used for defining integral curvature. We cannot as yet
complete the explanation, as it depends on the theory of rolling,
which will be treated afterwards (§§ 110—187). But it is enough
at present to remark, that if a plane roll on the sphere, along
the spherical curve, turning always round an instantaneous axis
tangential to the sphere, the integral curvature of the curve of
contact or trace of the rolling on the plane, is a proper measure
of the whole torsion, or integral of tortuosity. From this and
§ 12 it follows that the curvature of this plane curve at any
point, or, which 1s the same, the projection of the curvature of
the spherical curve on a tangent plane of the spherical surface,
18 equal to the tortuosity divided by the curvature of the given

curve.

_ 1 '
Let — be the curvature and r the tortuosity of the given

P .
curve, and de an element of its length. Then f @ and | rds, each
p

integral extended over any stated length, /, of the curve, are
respectively the integral curvature and the integral tortuosity.

The mean curvature and the mean tortuosity are respectively

1 {ds 1
Z‘ -[T and 'z rd8s.

+ helix, of inclination a, described on a right circular cylinder of &fﬂ; curve

1 8 136).

radius #. The curvature in a circular section being — that of

cos’® a . SIn a cos a

the helix is,of course, - The tortuosity is - - , OT
tan o x curvature, Hence, if a =§ the curvature and tortuosity
are equal.
1 7
Let the curvature be denoted by —, so that cos’a = 5 Let p
P

vemain finite, and let » diminish without limit. The step of the

helix being 2wr tan o =2x ~/ + (1 - %)Jf is, in the limit, 27 V/pr,
which is infinitely small. Thus the motion of a point in the
curve, though infinitely nearly in a straight line (the path being
always at the infinitely small distance » from the fixed straight

1
line, the axis of the cylinder), will have finite curvature o The
: .1 1 ™NE L. .
tortuosity, being —tana or —— (1 — —) , will in the limit be a
p Npr\ p

mean proportional between the curvature of the circular section
of the cylinder and the finite curvature of the curve.

The acceleration (or force) required to produce such a motion
of a point (or- material particle) will be afterwards investi-
gated (§354d.).

14. A chain, cord, or fine wire, or a fine fibre, ilament, or Flexibls

hair, may suggest what is not to be found among natural or
artificial productions, a perfectly flextble and inextensible line.
The elementary kinematics of this subject require no investiga-
tion. The mathematical condition to be expressed 1n any case
of it 1s simply that the distance measured along the line from
any one point to any other, remains constant, however the line
be bent.

15. The use of a cord in mechanism presents us with many
practical applications of this theory, which are in general ex-
tremely simple; although curious, and not always very easy,
geometrical problems occur in connexion with 1it. We shall
82y nothing here about the theory of knots, knitting, weaving,
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plaiting, etc., but we intend to return to the subject, under
vortex-motion in Hydrokinetics.

16. In the mechanical tracing of curves, a flexible and
inextensible cord is often supposed. Thus, in drawing an
ellipse, the focal property of the curve shows us that by fixing
the ends of such a cord to the foci and keeping it stretched by
a pencil, the pencil will trace the curve.

By a ruler moveable about one focus, and a string attached
to a point in the ruler and to the other focus, the hyperbola
may be described by the help of its analogous focal property ;
and so on.

17. But the consideration of evolutes is of some 1mportance
in Natural Philosophy, especially in certain dynamical and
optical questions, and we shall therefore devote a section or
two to this application of kinematics. |

Def. If a flexible and inextensible string be fixed at one
point of a plane curve, and stretched along the curve, and be
then unwound in the plane of the curve, its extremity will
describe an [Inwvolute of the curve. The original curve, con-
sidered with reference to the other, is called the Evolute.

18. It will be observed that we speak of an involute, and
of the evolute, of a curve. In fact, as will be easily seen, a curve
can have but one evolute, but it has an infinite number of
involutes. For all that we have to do to vary an involute, is
to change the point of the curve from which the tracing point
starts, or consider the involutes described by different points of
the string, and these will, in general, be different curves. The
following section shows that there is but one evolute.

19. Let AB be any curve, PQ a portion of an involute,
pP, ¢ @ positions of the free part of the string. 1t will be seen
at once that these must be tangents
to the arc AB at p and ¢g. Also (see
P § 90), the string at any stage, as
pP, revolves about p. Hence pP is
normal to the curve PQ. And thus
the evolute of P 1s a definite curve,
viz., the envelope of the normals drawn at every point of P,

19.] KINEMATICS. 11

or, which 1s the same thing, the locus of the centres of curva- Evolute.
ture of the curve PQ. And we may merely mention, as an
obvious result of the mode of tracing, that the arc pg is equal to
the difference of ¢ @ and pP, or that the arc pA is equal to pP.

90. The rate of motion of a point, or its rate of change of Velocity.
position, is called its Velocity. It is greater or less as the space
passed over in a given time is greater or less: and it may be
uniform, t.e., the same at every instant; or it may be varwable.

Uniform velocity is measured by the space passed over n
anit of time, and is, in general, expressed in feet per second;
if very great, as in the case of light, it is sometimes popularly
reckoned in miles per second. It is to be observed, that time

i3 here used in the abstract sense of a uniformly increasing
qu'a,ntity—-—what in the differential calculus is called an inde-
pendent variable. Its physical definition is given in the next

chapter.

21. Thus a point, which moves uniformly with velocity v,
describes a space of v feet each second, and therefore vt feet in

t seconds, ¢ being any number whatever. Putting s for the
space described in ¢ seconds, we have
s = vi.

Thus with unit velocity a point describes unit of space in unit
of time.

22. It is well to observe here, that since, by our formula,
we have generally

fU:

)

o | O

and since nothing has been said as to the magnitudes of s and ¢,
we may take these as small as we choose. Thus we get the
same result whether we derive v from the space described . a
millton seconds, or from that described in a millionth of a second.
This idea is very useful, as it makes our results intelligible
when a variable velocity has to be measured, and we find our-
selves obliged to approximate to its value by considering the
space described in an interval so short, that during its lapse the
velceity does not sensibly alter in value.
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23. When the point does not move uniformly, the velocity
is variable, or different at different successive instants; but we
define the average velocity during any time as the space de-
scribed in that time, divided by the time, and, the less the
interval is, the more nearly does the average velocity coincide
with the actual velocity at any instant of the interval. Or
again, we define the exact velocity at any instant as the space
which the point would have described in one second, 1f for one
second its velocity remained unchanged. That there 1s at every
instant a definite value of the velocity of any moving body, 1s
evident to all, and is matter of everyday conversation. Thus, a
railway train, after starting, gradually increases its speed, and
every one understands what 1s meant by saylng that at a par-
ticular instant it moves at the rate of ten or of fifty miles an
hour,—although, in the course of an hour, it may not have
moved a mile altogether. Indeed, we may imagine, at any
instant during the motion, the steam to be so adjusted as to
keep the train running for some time at a perfectly uniform
velocity. This would be the velocity which the train had at
the instant in question. Without supposing any such definite
adjustment of the driving power to be made, we can evidently
obtain an approximation to this instantaneous velocity by con-
sidering the motion for so short a time, that during 1t the actual
variation of speed may be small enough to be neglected.

24, In fact, if » be the velocity at either beginning or
end, or at any instant of the interval, and s the space actually

1 i s : S .
described in time Z, the equation v = 1s more and more nearly

true, as the velocity is more nearly uniform during the interval
t; so that if we take the interval small enough the equation

may be made as nearly exact as we choose. Thus the set of

values—

Space described 1n one second,
Ten times the space described 1n the first tenth of a second,

A hundred ’s ’s ’s hundredth ’e

and so on, give nearer and nearer approximations to the velocity
at the beginning of the first second. The whole foundation of

924, KINEMATICS. 15

Y

the differential calculus is, in fact, contained in this simple velooity
question, “What is the rate at which the space described in-
creases ?”  1.e., What is the velocity of the moving point ?
Newton’s notation for the velocity, ¢.e. the rate at which s
increases, or the fluzion of s, is s. This notation is very con-
venient, as it saves the introduction of a second letter.

Let a point which has described a space s in time ¢ proceed
to describe an additional space 6s in time &¢, and let v, be the
greatest, and v, the least, velocity which 1t has during the in-

terval 8. Then, evidently,
0s < v 0¢, 98> v 0L,

. 08 oS
t-e-, —""":'vl, "_:"'1?:;.

ol ot

But as 8¢ diminishes, the values of v and », become more and
more nearly equal, and in the limit, each is equal to the velocity

at time . Hence
ds

dt

25. The preceding definition of velocity 1s equally applica- Resolution
ble whether the point move in a straight or curved line; but,
since in the latter case the direction of motion continually
changes, the mere amount of the velocity is not suffictent com-
pletely to describe the motion, and we must have 1n every such
case additional data to remove the uncertainty.

In such cases as this the method commonly employed,
whether we deal with velocities, or as we shall do farther on
with accelerations and forces, consists mainly in studying, not
the velocity, acceleration, or force, directly, but its components
parallel to any three assumed directions at right angles to each
other, Thus, for a train moving up an incline 1n a NE direc-
tion, we may have given the whole velocity and the steepness
of the incline, or we may express the same 1deas thus—-the train
is moving simultaneously northward, eastward, and upward—
and the motion as to amount and direction will be completely
known if we know separately the northward, eastward, and up-
ward velocities—these being called the components of the whole
velocity in the three mutually perpendicular directions N, K,

and up.

’E_'!
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In general the velocity of a point at z, y, ¢, is (as we have

seen)gi-s , or, which 1is the same, { (%3)2 + (%t—)g + (;E) }4.

Now denoting by « the rate at which 2 increases, or the velo-

city parallel to the axis of x, and so by », w, for the other two ;
da dy dz

we have u=-—, v=—, w=-.

Hence, calling a, 8, y the

dt dt dt
angles which the direction of motion makes with the axes, and
: ds
putting g = 70 e have
dx
COS a = iﬂ? = zz = ?—&
ds ds ¢q°
dt

Hence % = ¢ cos a, and therefore

26. A velocity in any direction may be resolved in, and
perpendicular to, any other direction. The first component is
tound by multiplying the velocity by the cosine of the angle
between the two directions—the second by using as factor the
sine of the same angle. Or, it may be resolved into components
In any three rectangular directions, each component being
formed by multiplying the whole velocity by the cosine of the
angle between its direction and that of the component.

1t 18 useful to remark that if the axes of x, y, 2 are not rect-

de dy dz . : -
angular, r A L will still be the velocities parallel to the

axes, but we shall no longer have

i{:)“__ da "’+ dy 2+ dz\°
(dc '(?l‘c) EE) (3?)

We leave as an exercise for the student the determination of the
correct expression for the whole velocity in terms of its com-
ponents.

If we resolve the velocity along a line whose inclinations to
the axes are A, p, v, and which makes an angle 6 with the di-
rection of motion, we find the two expressions below (which
must of course be equal) according as we resolve ¢ directly or
by its components, u, v, v,

g cosSf =wCOo8BA+ VCOSB M + W COB v.

26. | KINEMATICS. 15

Substitute in this equation the values of u, v, w already given,
§ 25, and we have the well-known geometrical theorem for the
angle between two straight lines which make given angles with

the axes,
cos @ = cos a cos A + cos B cos p + oS y o8 v.

From the above expression we see at once that

27. The velocity resolved in any direction is the sum of the
components (in that direction) of the three rectangular com-
ponents of the whole velocity. And, if we consider motion in
one plane, this is still true, only we have but two rectangular
components. These propositions are virtually equivalent to the

following obvious geometrical construction :—

To compound any two velocities as O4, OB in the figure;
from A draw AC parallel and equal

g — C to'OB. Join OC:—then OC is the
resultant velocity in magnitude and
 direction.

0 is evidently the diagonal of the
parallelogram two of whose sides are

04, O0B.
Hence the resultant of velocities represented by the sides of

0 A

any closed polygon whatever, whether in one plane or not, taken

all in the same order, 1s zero.

Hence also the resultant of velocities represented by all the
gsides of a polygon but one, taken in order, is represented by

that one taken in the opposite direction.

When there are two velocities or three velocities in two or
in three rectangular directions, the resultant is the square root
of the sum of their squares—and the cosines of the inclination
of its direction to the given directions are the ratios of the com-

ponents to the resultant.

It is easy to see that as 88 in the limit may be resolved into or
and 730, where » and 6 are polar co-ordinates of a plane curve,

% and 7 gg— are the resolved parts of the velocity along, and

perpendicular to, the radius vector. We may oblain the same
result thus, r=7rcos 0, y=rsind.

Besolution
of velocity.

Composi-
tion of
velocities.
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de dr . gd8 dy  dr . db
Hence EZ:‘;:E'ECQSQ ?smédt, 7 &3511154-?{:0393;—
But by § 26 the whole velocity along » is j—:'cos 0 + j‘{ sin 0,

odr

i.e., by the above values, — PR Similarly the transverse velocity is

dy dx . do
7 cos 0 — -Eﬁsm@ or 7 —.

28. The velocity of a point is said to be accelerated or re-
tarded according as it increases or diminishes, but the word
acceleration 1s generally used in either sense, on the understand-
ing that we may regard its quantity as either positive or nega-
tive. Acceleration of velocity may of course be either uniform
or variable. I% is said to be uniform when the velocity receives
equal Increments in equal times, and 1s then measured by the
actual increase of velocity per unit of time. If we choose as the
unit of acceleration that which adds & unit of velocity per unit
of time to the velocity of a point, an acceleration measured by «
will add « units of velocity 1n unit of time—and, therefore, at
units of velocity in ¢ units of time. Hence if V" be the change
in the velocity during the interval ¢,

V=at, or a= Z

'29. Acceleration is variable when the point's velocity does
not receive equal increments in successive equal periods of time.
It is then measured by the increment of velocity, which would
have been generated in a unit of time had the acceleration re-
mained throughout that interval the same as at its commence-
ment. The average acceleration during any time is the whole
velocity gained during that time, divided by the time. In
Newton’s notation # is used to express the acceleration in the
direction of motion ; and, if v =&, as in § 24, we have

a='?)=3.

Let v be the velocity at time ¢, dv its change in the interval

6¢, a, and o, the greatest and least values of the acceleration
during the 111terva,l of. Then, evidently,

ov < a.dt, ov> a b,
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ov ov
or S“t <l al y ﬁ o {I.E-

As ot is taken smaller and smaller, the values of a and a, ap-
proximate infinitely to each other, and to that of o the required
acceleration at time ¢. Hence

di ~ "

It is useful to observe that we may also write (by changing
the independent variable)

(dvds_
ds dt ~  ds
: d ; : . .
Since vzzg , we have a—-fz':, and 1t is evident from similar
reasoning that the component accelerations parallel to the axes
d*x d’y d’z d’s

a‘m&?’ dt’ det° de?

is not generally the resultant of the three component accelera-

tions, but 1s so only when either the curvature of the path, or
the velocity 1s zero; for [§ 9 (14)] we have

@_ E___ @ B dﬁz 3 1 CZSE)
(dt’ B (dt’ (ds) (EF) "'(p di*) °

The direction cosines of the tangent to the path at any point
@, ¥, % are

But it is to be carefully observed that —

1ds 1dy 1de
vdt’ vdt’ vdt’
Those of the line of resultant acceleration are
l1dw 1dy 1d%
S de’ fdé’ fdet’
where, for brevity, we denote by f the resultant acceleration.
Hence the direction cosines of the plane of these two lines are
dyd’z — dzd’y .
{(dyci’z dzd’y)’ + (ded’x — dod’z)*+ (ded’y — dydx ’}% ’
These (§ 9) show that this plane is the osculating plane of the

curve. Again, if § denote the angle between the two lines, we
have

8in 0 =

{(dyd’s — dad'y)* + (ded®s — dad’s)" + (dad’y — dyd’z)*}}
vfdt? ’
VOL. 1. 2

Accelera.
tion.
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Accelera- - or, according to the expression for the curvature (§ 9), thus measuring change of direction, and the acceleration of afllfgﬂluggg
tion. .
° g ds® _ v actual velocity along the curve. sition of ac-
pyfde’  Jp We may take another mode of resolving acceleration for a
_ ? plane curve, which is sometimes useful ; along, and perpendicular
Hence Jsin 6= o' to, the radius-vector. By a method similar to that employed in
| rdoe dP d Py ded\ dsds  d's $ 27, we easily find for the component along the radius-vector
: 4 — . y = — — . 2 2
Again, = cos§ _vf<dz: aF T di dif " dt df ) ofdt® ~ fde® dr (_d_ﬂ)
- dt’ dt)’
Hence J cos 0 = It f , and therefore | and for that perpendicular to the radius-vector
1d 7 ,d6
Resolntion ~ 30. The whole acceleration in any direction is the sum of - g;:( dt)
and compo-

sition of ac- the components (in that direction) of the accelerations parallel

- . ] iInt we have given the Dete
cclerations: 15 any three rectangular axes—each component acceleration 83. If for any case of motion of a pol 5 ton, of the
whole velocity and its direction, or simply the components of motion from

given velo-

Ing h t velocities, that .
being found by the same rule as component v ’ the velocity in three rectangular directions, at any fime, or, as city or ac-

celeration.

is, by multiplying by the cosine of the angle between the di-
rection of the acceleration and the line along which 1t 1s to
be resolved.

1. When a point moves in a curve the whole acceleration

may be resolved into two parts, one in the direction of the

motion and equal-to the acceleration of the veloeity—the other
towards the centre of curvature (perpendicular therefore to the
direetion of motion), whose magnitude is proportional to the
square of the velocity and also to the curvature of the path.
The former of these changes the velocity, the other affects ouly
the form of the path, or the direction of motion. Hence if a
moving polnt be subject to an acceleration, constant or not,
whose direction is continually perpendicular to the direction of
motion, the velocity will not be altered—and the only effect
of the acceleration will be to make the point move in a curve
whose curvature is proportional to the acceleration at each
instant.

32. In other words, if a point move in a curve, whether
with a uniform or a varying velocity, its change of direction
18 to be regarded as constituting an acceleration towards the
centre of curvature, equal in amount to the square of the
velocity divided by the radius of curvature. The whole accele-
ration will, in every case, be the resultant of the acceleration,

is most commonly the case, for any position, the determination
of the form of the path described, and of other circumstances of
the motion, is a question of pure mathematics, and in all cases
is capable, if not of an exact solution, at all events of a solution
to any degree of approximation that may be desired. _

The same is true if the total acceleration and its direction
at every instant, or simply its rectangular components, be given,
provided the velocity and direction of motion, as well as the
position, of the point at any one instant, be given.

For we have in the first case
dx

dt
three simultaneous equations which can contain oaly «, ¥, z, and
%, and which therefore suffice when integrated to determine w, v,
and z in terms of {, By eliminating ¢ among these equations, we
obtaln two equations among x, ¥, and z—each of which repre-
sents a surface on which lies the path described, and whose
intersection therefore completely determines it.

In the second case we have

d“a:_ d'y 8 d’z_ '
=GB g

to which equations the same remarks apply, except that here
each has to be twice integrated.

2—2
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Dotermina- The arbitrary constants introduced by integration are deter-
g%%gﬁ 1}B§m mined at once if we know the co-ordinates, and the components.
ity or e of the velocity, of the point at a given epoch.

celeration.

Examplesof 94 From the principles already laid down, a great many
velelly:  interesting results may be deduced, of which we enunciate a
tew of the most important.

a. 1If the velocity of a moving point be uniform, and if its
direction revolve uniformly in a plane, the path described is
a circle.

Let a be the velocity, and a the angle through which its direc-
tion turns in unit of time ; then, by properly choosing the axes,

we have
aw — @ SIn al dy__ )s al
aﬂ
whence (x— Ay +(y—B)==,.
| a

b. If a point moves in a plane, and if its component velo-
city parallel to each of two rectangular axes is proportional to
1ts distance from that axis, the path is an ellipse or hyperbola
whose principal diameters coincide with those axes; and the
acceleration is directed to or from the origin at every instant.

da dy
(?_t = M1, Et = Vir,
d'x d*y

Hence IE =V e = WY, and the whole acceleration is

tﬂ
towards or from O.

dy v : :
Also iz = 7’ from which uy®—va®=C, an ellipse or hyper-

bola referred to its principal axes. (Compare § 65.)
¢. When the velocity 1s uniform, but in direction revolving
uniformly in a right circular cone, the motion of the point is in

a circular helix whose axis is parallel to that of the coue.

ksamples of 35. a. When a point moves uniformly in a circle of radius

toera- R, with velocity ¥, the whole acceleration is directed towards
2

the centre, and has the constant value 7 - See § 31.
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b. With uniform acceleration in the direction of motion, a Examples ot
point describes spaces proportional to the squares of the times “o*

elapsed since the commencement of the motion.

In this case the space described in any interval is that
which would be described in the same time by a point moving
uniformly with a velocity equal to that at the middle of the
interval. In other words, the average velocity (when the
acceleration is uniform) 1s, during any interval, the arithmeti-
cal mean of the imitial and final velocities. This is the case of
a stone falling vertically.

For 1f the acceleration be parallel to x, we have

4
t%:: a, therefore j: =v=al, and x = 4at’.
. : dv v
And we may write the equation (§ 29) v T = % whence g = od.
If at time ¢ =0 the velocity was V, these equations become at
once
?JE VE
v=V+al, x=Vt+gat’, and 5 = 5 + o

And initial velocity = F,
final w =V +at;
Arithmetical mean = ¥V + lat,

X

— —
—

t!

whence the second part of the above statement.

¢. When there is uniform acceleration in a constant direc-
tion, the path described is a parabola, whose axis is parallel to
that direction. This is the case of a projectile moving in
vacuum.

For if the axis of y be parallel to the acceleration a, and if the
plane of zy be that of motion at any time,

d’z dz

dtg = O, *d—t == O, A O,
and therefore the motion is wholly in the plane of xy.
dx d’ |
Th —_ = —-y = a,
en 77 0, 7 it
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1 : :
Examples of and by integration
tion. e=Ut+a, y=3dat’+ Vi+b,

where U, ¥V, a, b are constants.

The elimination of ¢ gives the equation of a parabola of which the
2072

axis is parallel to y, parameter o » and vertex the point whose co-

ordinates are

. v _; &
a 2a
d. As an illustration of acceleration in a tortuous curve, we

take the case of § 13, or of § 34, ¢.

Let a point move in a circle of radius » with uniform angular
velocity o (about the centre), and let this circle move perpen-
dicular to its plane with velocity V. The point describes a
helix on a cylinder of radius 7, and the inclination « is given by

V
tan a = — .
rw

T]:l ¢ f th th i 1 7 w° ro°
e curvature of the path 1s -~ ——g— OF H—o—, and the
V* Ve |

it VP4 et

tortuosity u]; 78

The acceleration 1s rw’, directed perpendicularly towards the
axis of the cy]mder —Call this 4.

Curvature = 4 4
urvasure VE—I-A'}’__T'
V:+ —
)
. V 4 Vo
Tortuosity = —=— —, n
,J Ar V7 + Ar e, é_
t'.l]
Let 4 be finite, » indefinitely small, and therefore w indefinitely
greart.
Curvature (in the limit) = ;:2

Tortuosity ( ' ) = % :

Thus, if we have a material particle moving in the manner gpeci-
fied, and if we consider the force (see Chap. IL.) required to pro-
duce the acceleration, we find that a finite force perpendicular to
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the line of motion, in a direction revolving with an infinitely Examples
great angular velocity, maintains constant infinitely small de- tion.
flection (in a direction opposite to its own) from the line of un-

disturbed motion, fintte curvature, and infinite tortuosity.

e. When the acceleration 1s perpendicular to a given plane
and proportional to the distance from it, the path is a plane
curve, which i1s the harmonic curve if the acceleration be towards
the plane, and a more or less fore-shortened catenary (§ 580)
if from the plane.

2
As in case ¢, j;—O, %—0 and 2=0, if the axis of z be
perpendicular to the acceleration and to the direction of motion

at any instant. Also, if we choose the origin ¢n the plane,

dx dy
-(—ﬁ__ﬂ — 01 EE — f“‘y'
dx
Hence _; i const. = a (suppose),
dy_p. __ Y
and ol i

This gives, if p is negative,

m L] |
y =1 cos (-a- + ) , the harmonic curve, or curve of sines.

If 1 be positive, y=Pe + Qe 7,

and by shifting the origin along the axis of « this can be put in
the form

y=R(" +¢ ?):

which is the catenary if 2R =b; otherwise 1t is the catenary
stretched or fore-shortened in the direction of y.

36. [Compare §§ 233—236 below.] a. When the accele- Acceleration
directed to &
ration is directed to a fixed point, the path is 1n a plane passing fixed centre.
through that point; and in this plane the areas traced out by
the radius-vector are proportional to the times employed. This
includes the case of a satellite or planet revolving about its
primary.
Evidently there is no acceleration perpendicular to the

plane containing the fixed and moving points and the direction




Acceleration
directed to a
fixed centre.
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of motion of the second at any instant; and, there being no
velocity perpendicular to this plane at starting, there is there-
fore none throughout the motion; thus the point moves in the
plane. And bad there been no acceleration, the point would
have described a straight line with uniform velocity, so that in
this case the areas described by the radius-vector would have
been proportional to the times, Also, the area actually described
in any instant depends on the length of the radius-vector and
the velocity perpendicular to it, and is shown below to be
unaffected by an acceleration parallel to the radius-vector.
Hence the second part of the proposition.
d’x r d d’z z
We have W:P;’ a{ﬁ:?%, e =P;,
the fixed point being the origin, and P being some function of
%, ¥, #; 1n nature a function of » only.

d’y  d’x

- Hence T~ y-gt—-,i:(), ete.,
which give on integration
dz dy de dz dy dx
Y&~ Pa= % fata=C% Vg

Hence at once Cx +Cy+Cz2=0, or the motion is in a plane
through the origin. Take this as the plane of xy, then we have
only the one equation

dy  dx
L =Y = U, = h (suppose).

In polar co-ordinates this is
e @0 dd

h=r'— =2 —

di di

if 4 be the area intercepted by the curve, a fixed radius-vector,
and the radius-vector of the moving point. Hence the area in-
creases uniformly with the time.

b. In the same case the velocity at any point is inversely as
the perpendicular from the fixed point upon the tangent to the
path, the momentary direction of motion.

For evidently the product of this perpendicular and the
velocity gives double the area described in one second about the
fixed point.
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Or thus—i ' Accelerati
r thus—if p be the perpendicular on the tangent, Acceleration
dy doe fixed centre.
pP=% Zi; —Y ds ’
ds dy dx
d therefore — =g = =4y —=h.
and therefore P =% =Y h

If we refer the motion to co-ordinates in its own plane, we
have only the equations

d'x Px dy Py

ez~ r ' d T ¢
; 40

r — =Ah,

dt

If, Ly the help of this last equation, we eliminate ¢ from

d’x Px " .
E = substituting polar for rectangular co-ordinates, we
arrive at the polar differential equation of the path,

whence, as before,

For variety, we may derive it from the formule of § 32,

: d°r d6\* dé
They give 7 ke Et-) =P, 7 = =h.
Puttin %= u, we have

7 ()
. 1<d9) =P, and ﬁ:hu“.

df  u\dt i dt

1 2 /1
. a (5) du “ (;&) d™u

‘)

—— DT T e —_— L P e— 2.2 e
But = hu 7 h 75 therefore o h T
1 7doN® ., . — : :
Also - (Ei_i) = A*u’, the substitution of which values gives us
d’u P
6?613_+u=—hﬂ%2 ........................... (1),

the equation required. The integral of this equation involves
{wo arbitrary constants besides %, and the remaining constant
belonging to the two differential equations of the second order
above i3 to be introduced on the farther integration of

when the value of % in terms of @ is substituted from the equa~
tion of the path.
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Other examples of these principles will be met with in the
chapters on Kinetics.

hodograph.  37. If from any fixed point, lines be drawn at every instant,
representing 1n magnitude and direction the velocity of a point
describing any path In any manner, the extremities of these
lines form a curve which is called the Hodograph. The inven-
tion of this construction 1s due to Sir W. R. Hamilton. One of

the most beautiful of the many remarkable theorems to which
1t led him 1s that of § 38.

Since the radius-vector of the hodograph represents the
velocity at each 1nstant, 1t 1s evident (§ 27) that an elementary
arc represents the velocity which must be compounded with the
velocity at the beginning of the corresponding interval of time,
to find the velocity at 1ts end. Hence the velocity in the hodo-
graph 1s equal to the acceleration in the path; and the tangent
to the hodograph is parallel to the direction of the acceleration
In the path.

If x, i, # be the co-ordinates of the moving point, & %, { those
of the corresponiling point of the hodograph, then evidently

 dx dy dz
g'—'gt'r ET C=E£,

1=
| d¢  dn d¢
1 :t " T T T ™ saleea
and therefore C_Zj‘f @ et
dt®  dif  de?

or the tangent to the hodograph is parallel to the acceleration in
the orbit.  Also, if ¢ be the arc of the hodograph,

do dEN® dn\* A\

a‘x/@) (7) + (7
_\/ d%): CY\ , (ERY
- (Ez:_” (dt”) (dﬁ-‘) ‘

or the velocity 1n the hodograph 1s equal to the rate of accelera-
tion in the path.

Hodograph 38. The hodograph for the motion of a wlanet or comet 1s
on%:}?f?g?r always a circle, whatever be the form and divmensions of the orbit.
uc m

Kepler's In the motion of a planet or comet, the acceleration is directed
laws. . , . ] .
towards the sun’s centre. Hence (§ 36, b) the velocity is in-
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versely as the perpendicular from that point upon the tangent Hodograpn

) . : . of planet or
to the orbit. The orbit we assume to be a conic section, whose comet, do.

focus is the sun’s centre. But we know that the intersection Keptere
of the perpendicular with the tangent lies in the circle whose i
diameter 1s the major axis, if the orbit be an ellipse or hyper-
bola; 1n the tangent at the vertex if a parabola. Measure off

on the perpendicular a third proportional to its own length and
any constant line; this portion will thus represent the velocity

In magnitude and 1n a direction perpendicular to its own—

so that the locus of the new points in each perpendicular will be
the hodograph turned through a right angle. But we see by
geometry* that the locus of these points is always a circle.
Hence the proposition. The hodograph surrounds its origin if
the orbit be an ellipse, passes through 1t if a parabola, and the

origin is without the hodograph if the orbit is a hyperbola.

For a projectile unresisted by the air, it will be shewn in
Kinetics that we have the equations (assumed in § 35, ¢)

d vy
de OJ _d_tﬂ =—9,

if the axis of ¥ be taken vertically upwards.

Hence for the hodograph

ds dn

'CTt — 03 —d_t ==
or {=-C, n=0"—gt, and the hodograph is a vertical straight
line along which the describing point moves uniformly.

For the case of a planet or comet, instead of assuming as Hodograph

above that the orbit 1s a conic with the sun in one focus, assume 23;‘;‘#2;;_“"

(Newton’s deduction from that and the law of areas) that the §'¢ed from
acceleration is in the direction of the radius-vector, and varieg 12¥ °f force.

inversely as the square of the distance. We have obviously

dw_pz by _py
det 7 dit

where r? = a” + 9’
: dy  dx
Ience, as 1n § 36, m—&z—y?ZE:ia ............................ (1),

* See our smaller work, § 51.
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-~ -and therefore
dy dx
dw pa di 7 dt
dae =k r ’
o TY dx  dy® o Y dr
mp,(wﬂ-l-y)%* ( E'E—Fy-c—i—g _‘{LTC_ZZE y’?'a
=% = T
dw . _rY
Hence T +4= A TETT RIS ITREPPTTRITPPOITTY (2)
. dy o, p=
Similarly a_t_l_B_ AP ERTIIIERTPPPTERPPRPPCRREY (3).

Hence for the hodograph
(§+ A+ (n+B) =

the circle as before stated.

We may merely mention that the equation of the orbit will be

 found at once by eliminating ? and Cfg

integrals (1), (2), (3) above. We thus get

k’ g

among the three first

—h+ Ay - Bx=" 77

a conic section of which the origin 1s a focus.

39. The intensity of heat and light emanating from a point,
or from an uniformly radiating spherical surface, diminishes with
increasing distance according to the same law as gravitation.
Hence the amount of heat and light, which a planet receives
from the sun during any interval, is proportional to the time
integral of the acceleration during that interval, ¢.e. (§37) to
the corresponding arc of the hodograph. From this it is easy
to see, for example, that if a comet move in a parabola, the
amount of heat it receives from the sun 1n any interval is pro-
portional to the angle through which its direction of motion
turns during that interval. There is a corresponding theorem

for a planet moving in an ellipse, but somewhat more com-
plicated.

40. If two points move, each with a definite uniform velo-
city, one in a given curve, the other at every instant directing
its course towards the first describes a path which is called a
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Curve of Pursuit. The idea is said to have been suggested
by the old rule of steering a privateer always directly for the
vessel pursued. (Bouguer, Mém. de I Acad. 1732)) It is the

curve described by a dog running to 1ts master.

The 51mplest cases are of course those in which the first
point moves in a straight line, and of these there are three, for
the velocity of the first point may be greater than, equal to,
or less than, that of the second. The figurcs in the text below
represent the curves in these cases, the velocities of the pur-
suer being 4, 1, and } of those of the pursued, respectively. In
the second and third cases the second point can never over-
take the first, and consequently the line of motion of the first
is an asymptote. In the first case the second point overtakes
the first, and the curve at that point touches the line of motion
of the first. The remainder of the curve satisfies a modified
form of statement of the original question, and is called the

Curve of Flight.

;Q

Curves of

pursuit.




Curves of
pursuit.

Angular
velocity

30 PRELIMINARY. [40.

We will merely form the differential equation of the curve,
and give its integrated form, leaving the work to the student.

Suppose Oz to be the line of motion of the first point, whose
velocity is », AP the curve of pursuit, in which the velocity 1s %,
then the tangent at P always passes through &, the instan-
taneous position of the first point. It will be evident, on a

moment’s consideration, that the curve 4P must have a tangent
perpendicular to Ox. Take this as the

J axis of ¥, and let O4d=a. Then, 1if
0Q=¢ AP=s, and if x, y be the co-
A ordinates of P, we have
AP 0¢
% v’
because 4, O and P, @ are pairs of si-
0O M Q@ % multaneous positions of the two points.
. v dx
This gives —8=es =Ty @y

From this we find, unless ¢ = 1,

2 aa) yﬂ+l N ar# .
(@ 7o1) " e

2

2 (::c + E) / —alOgEy

&ndifazl, 4 = 9 E’
the only case in which we do not get an algebraic curve. The
axis of « is easily seen to be an asymptote if e 1.

41. When a point moves in any manner, the line joining
it with a fixed point generally changes its direction. If, for
simplicity, we consider the motion as conﬁnfad to a Pla:ne
passing through the fixed point, the angle which the joining
line makes with a fixed line in the plane is continually alter-
ing, and its rate of alteration at any instant is called the
Angular Velocity of the first point about the secox}d. .If
uniform, it is of course measured by the angle described 1in
unit of time: if variable, by the angle which would have
been described in unit of time if the angular velocity. at the
instant in question were maintained constant for so IOIZEg. In
this respect, the process is precisely similar to that Wl}ll‘}h we
have already explained for the measurement of velocity and

acceleration.
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Unit of angular velocity is that of a point which describes,
or would describe, unit angle about a fixed point in unit of
time. The usual unit angle is (as explained in treatises on
plane trigonometry) that which subtends at the centre of a circle
an arc whose length 1s equal to the radius; being an angle of

180°

m

= 57° 29578 ... = 57° 17’ 44".8 nearly.

For brevity we shall call this angle a radian.

42. The rate of increase or diminution of the angular velo-

city when variable is called the angular acceleration, and is
measured in the same way and by the same unit.

By methods precisely similar to those employed for linear

velocity and acceleration we see that if 6 be the angle-vector
of a point moving in a plane—the

d0

Angular velocity is w = = and the
| 2
Angular acceleration is i% = jtf = W % .

Since (§ 27) r %? is the velocity perpendicular to the radius-

vector, we see that

- The angular velocity of a point in a plane is found by
dividing the velocity perpendicular to the radius-vector by the
length of the radius-vector.

- 43. When one point describes uniformly a. circle. about
another, the time of describing a complete circumference being
T, we have the angle 27 described uniformly in 7'; and, there-

fore, the angular velocity is -2%7 . Even when the angular velo-

city is not uniform, as in a planet’s motion, it is useful to

Qar

:i'ntroduce the quantity i which 1s then called the mean

angular velocity.

When a point moves uniformly in a straight line its anguler

velocity evidently diminishes as it recedes from the point about
which the angles are measured.

veloeity.

Anguiar ac-
celeration,

Angular
velocity.
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The polar equation of a straight line i8
r = a sec .

But the length of the line between the limiting angles 0 and 6
is @ tan 6, and this increases with uniform velocity v. Hence

d db o do
1?2(76({3133;[19)=asec Gd_t:a, dt.

Henece d-d—f = ﬂ:f . and is therefore inversely as the square of the

radius-vector.
Similarly for the angular acceleration, we have by a second

24 o'

differentiation,

2. € 40 = 2‘@ g (] — tfyi, and -;Jltimately varies inversely as
T de? 7’ r?

the third power of the radius-vector.

44, We may also talk of the angular velocity of a moving

plane with respect to a fixed one, as the rate of incx:ea,se of 1‘3he
angle contained by them—but unless their line of intersection
remain fixed, or at all events parallel to itself, a somewhat
more laboured statement is required to give definite informa~
tion. 'This will be supplied in a subsequent section.

45 All motion that we are, or can be, acquainted with, 1s
Relative merely. We can calculate from a,stronqmica! data for
any instant the directior in which, and the velocity with which
we are moving on account of the earth’s diurnal rotation. We

may compound this with the similarly calculable velocity of the

earth in its orbit. This resultant again we may compound

with the (roughly known) velocity of the sun relatively to the
so-called fixed stars; but, even if all these elements were accu-

rately known, it could not be said that we had attained a'ny
:dea of an absolute velocity; for it is only the sun’s relative
motion among the stars that we can obser?e; a,r}d, in all pro-
bability, sun and stars are moving on (possibly with very great.
rapidity) relatively to other bodies in space. We musf, there-
fore consider how, from the actual motions of a set of points, we

may find their relative motions with regard to any one of them;
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and how, having given the relative motions of all but one with Relative

regard to the latter, and the actual motion of the latter, we
may find the actual motions of all. The question is very
easily answered. Consider for a moment a number of pas-
sengers walking on the deck of a steamer. Their relative
motions with regard to the deck are what we immediately
observe, but if we compound with these the velocity of the
steamer 1tself we get evidently their actual motion relatively
to the earth., Again, in order to get the relative motion of
all with regard to the deck, we abstract our ideas from the
motion of the steamer altogether—that is, we alter the velocity
of each by compounding it with the actual velocity of the vessel
taken in a reversed direction. |

Hence to find the relative motions of any set of points with
regard to one of their number, imagine, impressed upon each in
composition with its own velocity, a velocity equal and opposite
to the velocity of that one; it will be reduced to rest, and the
motions of the others will be the same with regard to it as
before.

Thus, to take a very simple example, two trains are running
In opposite directions, say north and south, one with a velocity
of fifty, the other of thirty, miles an hour. The relative velocity
of the second with regard to the first is to be found by im-
pressing on both a southward velocity of fifty miles an hour;
the effect of this being to bring the first to rest, and to give the
second & southward velocity of eighty miles an hour, which is
the required relative motion.

Or, given one train moving north at the rate of thirty miles
an hour, and another moving west at the rate of forty miles an
hour. The motion of the second relatively to the first is at
the rate of fifty miles an hour, in a south-westerly direction
Inclined to the due west direction at an angle of tan'3. It
18 needless to multiply such examples, as they must occur to
every one.

46. Exactly the same remarks apply to relative as compared
with absolute acceleration, as indeed we may see at once, since

accelerations are in all cases resolved and compounded by the
same law as velocities.
VOL. I 3

motion.
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_ be the co-ordinates of two points

d « ': 4
If @, y, % and %, ¥ { their relative

veferred to axes regarded as fixed ; and ¢, #,

co-ordinates—we have

Ezﬂ:f‘-m‘j n=yf_y’ z:z’-—ﬂ
and, differentiating,

which give the relative, in terms of the absolute, velocities ; and
B2t 2 dx
deg de¢ dit’

proving our assertion aboub relative and absolute accelerations.

etc.,

The corresponding expressions in polar co-ordinates _in a plane
are somewhat complicated, and by no means convenient. The
student can easily write them down for himself.

47. The following proposition in relative motion is of con-

siderable importance -— |
Any two moving points describe similar paths relatively to

each other, or relatively to any. point which divides 1n a con-

stant ratio the line joining them.

Tet 4 and B be any simultaneous positions of the po_int's.
Take G or @ in AB such that the ratio

G A G B g—% or % has a constant value. Then
s the form of the relative path depends 'only upon t‘he Ze'ngt_h
and direction of the line joining the two points at any instant, 1t

‘s obvious that these will be the same for A with regard to B,

as for B with regard to 4, saving only the inversion r{f th,e
direction of the joining lne. Hence B’s path a,b?ut A, 18 A’s
2bout B turned through two right angles. ATld with regard .to
Gand @ it is evident that the directions remain the same, while

the lengths are altered 1n a agiven ratio ; but thisis the definition

of similar curves. |
48. As a good example of relative motion, let us consider

that of the two points involved in our definition of the curve of
ince, to find the relative position and motion of

with regard to the pursued, we must impress on.
that of the latter, we see

pursuit, § 40.
the pursuer .
both a velocity equal and opposite to
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at once that the problem becomes the same as the following. A Relative
boat crossing a stream 1s impelled by the oars with uniform motion:
velocity relatively to the water, and always towards a fixed
pomnt in the opposite bank ; but it 1s also carried down stream
at a uniform rate ; determine the path described and the time of
crossing. Here, as in the former problem, there are three cases,
figured below. In the first, the boat, moving faster than the
current, reaches the desired point; in the second, the velocities

of boat and stream being equal, the boat gets across only after
an infinite time—describing

a parabola—but does not land |
at _the desired point, which is e=3 e=1

indeed the focus of the para-

bola, while the landing point

i1s the vertex. In the third |

case, its proper velocity being
lJess than that of the water, it
never reaches the other bank,
and is carried Indefinitely
down stream., The compari-

son of the figures in § 40 with those in the present section cannot

fail to be instructive. They are drawn to the same scale, and

for the same relative velocities. The horizontal lines represent
the farther bank of the river, and the vertical lines the path of
the boat if there were no current.

We leave the solution of this question as an exercise, merely
noting that the equation of the curve is

1€ |
yaﬂ B J::c“ +y* —w,

in one or other of the three cases, according as ¢ is >, =, or < 1.

When ¢=1 this becomes
Yy’ =a’ — 2ax, the parabola.
The time of crossing is
. a
u(l-e)’
which is finite only for e< 1, because of course a negative value
is inadmissible,

3—2
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49. Another excellent example of the transformation of rela-
tive into absolute motion is afforded by the family of cycloids.
We shall in a future section consider their mechanical descrip-
tion, by the rollang of a circle on a fixed straight line or circle.
In the mean time, we take a different form of enunciation,
which, however, leads to precisely the same result.

Find the actual path of a point which revolves uniformly 1n
a circle about another point—the latter moving uniformly in a
straight line or circle in the same plane.

Take the former case first : let @ be the radius of the relative

circular orbit, and w the angular velocity in it, » being the
velocity of 1ts centre along the straight line.

The relative co-ordinates of the point in the circle are @ cos wt
and a sin wf, and the actual co-ordinates of the centre are wv¢
and 0. Hence for the actual path

E=vi+acoswl, n=a sinwl,

Hence £ =£ sin~' _+ Ja® =, an equation which, by giving

different values to » and w, may be made to represent the cycloid
itgelf, or either form of trochoid. See § 92.

For the epicycloids, let &6 be the radius of the circle which B
describes about 4, v, the angular velocity ; @ the radius of A’s
path, o the angular velocity.

B Also at time £=0, let B be in the radius
OA of A’'s path. Then at time ¢, if 4’, B’
be the positions, we see at once that

t AOA"=ot, (B CA=uwt.

Hence, taking 04 as axis of z,

r=acoswt+bcosw?, y=asinwl+bdsinel,

which, by the elimination of #, give an algebraic equation between
x and y whenever w and w, are commensurable.

Thus, for v, = 2w, suppose wé =0, and we have
w=acosf+bcos20, y=asinb +bsin 20,
or, by an easy reduction,
(" +y* - 0" =a' {(x + b)* + ¥*L.

" CA, AD, EB, and BF, are rods of half the
length of the two former, and so pivoted
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Put 2 —b for z, 4.e., change the origin to a distance 4B to the Relative
left of O, the equation becomes |
o’ (2 +y")= (" + y° — 2bx)’,
or, in polar co-ordinates,
a'= (r—2bcos6)®, r=a+2bcos 0,

and when 2b=a, r =a (1 + cos 6), the cardioid. (See § 94.)

50. As an additional iiiustration of this part of our subject, Resuliant
we may define as follows :—
If one point A executes any motion whatever with reference
to a second point B; if Bexecutes any other motion with reter-
ence to a third point C; and so on—the first 1s said to execute,
with reference to the last, a movement which 1s the resultant of
these several movements.
The relative position, velocity, and acceleration are in such a
case the geometrical resultants of the various components com-
bined according to preceding rules.

51. The following practical methods of effecting such a com-
bination in the simple case of the movements of two points are
useful in scientific illustrations and in certain mechanical arrange-
ments. Let two moving points be joined by an elastic string ;

the middle point of this string will evidently execute a move-
"ment which is half the resultant of the motions of the two

points. But for drawing, or engraving, or for other mechanical
applications, the following method is preferable :—
CF and ED are rods .of equal leng_th P> B
moving freely round a pivot at P, which \ \
C g

passes through the middle point of each—

to them as to form a pair of equal rhomb1
CD, EF, whose angles can be altered at 4 D
will. Whatever motions, whether in a plane, or in space of three

dimensions, be given to 4 and B, P will evidently be subjected

to half their resultant.

53. Amongst the most important classes of motions which Haymonio
we have to consider in Natural Philosophy, there is one, namely,
Harmonic Motion, which is of such immense use, not only




Harmonic
motion.

Simple
harmonic
motion.
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ordinary kinetics, but in the theories of sound, light, heat, etec.,

" that we make no apology for entering here into considerable

detail regarding 1t.
63. Def. When a point  moves uniformly in a circle, the

A perpendicular QP drawn from 1ts position
at any instant to a fixed diameter A4’ of
- the circle,intersects the diameter in a point

< ~—_ P, whose position changes by a simple har-

monsc motion.
Thus, if a planet or satellite, or one of

the constituents of a double star, supposed

A to move uniformly in a circular orbit about

its primary, be viewed from a very distant position in the plane

of its orbit, it will appear to move backwards and forwards 1n a

straight line, with a simple harmonic motion. This is nearly

the case with such bodies as the satellites of Jupiter when seen
from the earth.

Physically, the interest of such motions consists in the fact -

of their being approximately those of the simplest vibrations of
sounding bodies, such as a tuning-fork or pianoforte wire ; whence
their name; and of the various media in which waves of sound,

light, heat, etc., are propagated.

54, The Amplitude of a simple harmonic motion 1s the
range on one side or the other of the middle point of the course,
v.e., OA or OA’ in the figure. '

An arc of the circle referred to, measured from any fixed
point to the uniformly moving point @), 1s the Argument of

the harmonic motion.

The distance of a point, performing a simple harmonic motion,
from the middle of its course or range, is a simple harmonic func-
tion of the time. The argument of this function 18 what we have

defined as the argument of the motion. _
The Epoch in a simple harmonic motion is the interval of time

which elapses from the era of reckoning till the moving point
first comes to its greatest elongation in the direction reckoned

as positive, from its mean position or the middle of its range.
Epoch in angular measure is the angle described on the circle of

reference in the period of time defined as the epoch.
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The Period of a simple harmonic motion is the time which Simpte
elapses from any instant until the moving point again moves in ot
the same direction through the same position. |

The Phase of a simple harmonic motion at any instant is the
fraction of the whole period which has elapsed since the moving
point last passed through its middle position in the positive
direction. '

55. Those common kinds of mechanism, for producing recti- Simple.
harmonio

lineal from circular motion, or wvice versa, In which a crank motionin
moving in a circle works in a straight slot belonging to a body mechamiam
which can only move in a straight line, fulfil strictly the definition
of a simple harmonic motion in the part of which the motion is
rectilineal, if the motion of the rotating part 1s uniform.

The motion of the treadle in a spinning-wheel approximates
to the same condition when the wheel moves uniformly ; the
approximation being the closer, the smaller is the angular motion
of the treadle and of the connecting string. It 1s also approx-
imated to more or less closely in the motion of the piston of a
steam-engine connected, by any of the several methods 1n use,
with the crank, provided always the rotatory motion of the

erank be uniform.

56. The velocity of a point executing a simple barmonic Veloci
motion is a simple barmonic function of the time, a quarter of motion,
a period earlier in phase than the displacement, and having 1ts
maximum value equal to the velocity in the circular motion by
which the given function is defined.

For, in the fig. of § 53, if V be the velocity in the circle, 1t
may be represented by O in a direction perpendicular to its
own, and therefore by OP and PQ in directions perpendicular to
those lines. That is, the velocity of P in the simple harmonic

motion 18 _OKQ PQ; which, when P is at O, becomes V.

§57. The acceleration of a point executing a simple harmonic Acoelera-
motion 18 at any time simply proportional to the displacement motion.
from the middle point, but in opposite direction, or always
towards the middle point. Its maximum value is that with

which a velocity equal to that of the circular motion would
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be acquired in the time in which an arc equal to the radius
18 described.

For, in the fig. of § 53, the acceleration of ¢ (by § 35, a) 18 v

Q0
along Q0. Supposing, for a moment, @O to represent the mag-
nitude of this acceleration, we may resolve it in QP, PO. The
acceleration of P 1s therefore represented on the same scale by

: : V: PO TV* L
PO. Its magnitude is therefore 00" 00~ 00" PO, which is
V2
00 an

acceleration under which the velocity V' would be acquired in

the time QT-O as stated.

Let ¢ be the amplitude, e the epoch, and 7' the period, of a
simple harmonic motion. Then if s be the displacement from
middle position at time #, we have

2t
§ = @ COS ( 7 e).
Hence, for velocity, we have

proportional to P0, and has at 4 its maximum value,

B @ _ 2mra Sin 2t
Ta T (T B ) '
Hence V, the maximum value, is g__;a , as above stated (§ 56).

A gain, for acceleration,

4o’ 2wt :
%;:— ;r,f CcoS (—%—— ) = — %&. (See § 67.)
Lastly, for the maximum value of the acceleration,
dn*a V
Tﬂ '_ z‘l 2
2
where, 1t may be remarked, —2% is the time of describing an are

equal to radius in the relative circular motion.

58. Any two simple harmonic motions in one line, and of

in one period, give, when compounded, a single simple harmonic

motion ; of the same period ; of amplitude equal to the diagonal
of a parallelogram described on lengths equal to their amplitudes
measured on lines meeting at an angle equal to their difference
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of epochs; and of epoch differing from their epochs bj angles figglg‘;ﬂi'
equal to those which this diagonal makes with the two sides of 5- H. M. in

the parallelogram. Let P and P’ be one line.
two points executing simple harmonic > \ 131 :
Q =

motions of one period, and in one line

B'BC4A4’. Let ¢ and @ be the uni-

formly moving points in the relative ‘\ 4
circles. On C@Q and CQ' describe a Q \ P

parallelogram SQC @' ; and through S NC
draw SE perpendicular to B'4’" pro-
duced. We have obviously P R=CP B
(being projections of the equal and
parallel lines ¢'S,C¢,on CR). Hence 5

CR= CP+ CP'; and therefore the
point B executes the resultant of the motions P and P. But
CS, the diagonal of the parallelogram, is constant, and therefore
the resultant motion is simple harmonic, of amplitude CS, and
of epoch exceeding that of the motion of P and falling short
of that of the motion of P, by the angles QCS and SCQ re-
spectively.

This geometrical construction has been usefully applied by the
tidal committee of the British Association for a mechanical tide-
indicator (compare § 60, below). An arm CQ' turning round C
carries an arm Q'S turning round Q. Toothed wheels, one of
them fixed with its axis through €, and the others pivoted on a
framework carried by €@, are so arranged that '8 turns very
approximately at the rate of once round in 12 mean lunar hours,
if CQ' be turned uniformly at the rate of once round in 12 mean
solar hours. Days and half-days are marked by a counter geared
to CQ. The distance of § from a fixed line through € shows
the deviation from mean sea-level due to the sum of mean solar
and mean lunar tides for the time of day and year marked by
C @ and the counter.

An analytical proof of the same proposition is useful, belng as

follows : —
a,cos(%rff- )+ ’ 2t _ o
pT€) cas( 7 e)

2t 2t 2art
- r F » ’ L I ] _ 7]-
(@ cos € + a” cos €) cos 7 +(asine+a sme)sm-i—,——rcos(--], —-5) ,
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where r={(acos e +a cos )’ + (asin e+’ sin e")”}’}
={a" + o' + 2aa’ cos (e — e’)}%,

asin e+ ¢ sin ¢
A COS €+ a COS €

and tan 0 =

59. The construction described in the preceding section ex-
hibits the resultant of two simple harmonic motions, whether of
the same period or not. Only, if they are not of the same period,
the diagonal of the parallelogram will not be constant, but will
diminish from a maximum value, the sum of the component
amplitudes, which it has at the instant when the phases of the
component motions agree ; to a minimum, the difference of those
amplitudes, which is its value when the phases differ by half
a period. Its direction, which always must be nearer to the
greater than to the less of the two radii constituting the sides
of the parallelogram, will oscillate on each side of the greater
radius to a maximum deviation amounting on either side to the
angle whose sine is the less radius divided by the greater, and
reached when the less radius deviates more than this by a
quarter circumference from the greater. The full period of this
oscillation is the time in which either radius gains a full turn
on the other. The resultant motion 1s therefore not simple

 harmonic, but is, as it were, simple harmonic with periodically

increasing and diminishing amplitude, and with periodical ac-
celeration and retardation of phase. This view 1s particularly
appropriate for the case in which the periods of the two com-
ponent motions are nearly equal, but the amplitude of one of
them much greater than that of the other.

To express the resultant motion, let & be the displacement at
time ¢; and let @ be the greater of the two component half-

amplitudes.
8=a cos (nt — €)+a’ cos (n't ~ €)
= g co8 (Nt — €) + &' cos (nt — e+ ¢)
= (@ + & cos ) cos (nt — €) — @’ 8in ¢ sin (nt — ¢),
if ¢ =(n't-€)—(nt—¢);

or, finally, 8 = 7 cos (nt — e + 0),
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if r=(a’+ 2aa’cos ¢ + a’ﬂ)* Compost-
tion of
. S, H. M. in
and tan § = — S}n ¢ : - onetine.
a+ @ CoS ¢

The maximum value of tan @ in the last of these equations is
4

found by making ¢=2 +sin"%, and is equal to —%
2 7 (a®— o)z
and hence the maximum value of 6 itself is sin™ % . The geo-

metrical methods indicated above (§ 58) lead to this conclusion
by the following very simple construction.

To find the time and the amount of the maximum acceleration
or retardation of phase, let C4 be the greater half-amplitude.
From A4 as centre, with the less half-amplitude as radius, de-
seribe a circle. OB touching this circle is the generating radius
of the most deviated resultant. Hence CBA is a right angle ;

d
- sin BOA= g
60. A most interesting application of this case of the com- Examples of

111 : : - . composition
position of harmonic motions is to the lunar and solar tides;ofS. B, M

which, except in tidal rivers, or long channels, or deep bays, e
follow each very nearly the simple harmonic law, and produce, as

the actual result, a variation of level equal to the sum of varia-

tions that would be produced by the two causes separately.

The amount of the lunar equilibrium-tide (§ 812) is about 2-1
times that of the solar. Hence, if the actual tides conformed to
the equilibrium theory, the spring tides would be 31, and the
neap tides only 1'1, each reckoned in terms of the solar tide;
and at spring and neap tides the hour of high water is that of
the lunar tide alone. The greatest deviation of the actual tide
from the phases (high, low, or mean water) of the lunar tide
alone, would be about ‘95 of a lunar hour, that is, ‘98 of a solar
hour (being the same part of 12 Iunar hours that 28° 26’, or the

angle whose sine is §1’1' , 18 of 360°). This maximum deviation
would be in advance or in arrear according as the crown of the
golar tide precedes or follows the crown of the lunar tide ; and it

would be exactly reached when the interval of phase between
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Examples of the -two component tides i1s 3'95 lunar hours. That is to say,

composition

of 8. H. M.
in one line.

Mechanism
for com-
unding
. H. mo-
tions in
one line.

there would be maximum advance of the time of high water 43
days after, and maximum retardation the same number of days

before, spring tides (compare § 811).

61. We may consider next the case of equal amphtudes in
the two given motions. If their periods are equal, their re-
sultant is a simple harmonic motion, whose phase is at every
instant the mean of their phases, and whose amplitude is equal
to twice the amplitude of either multiplied by the cosine of half
the difference of their phases. The resultant is of course nothing
when their phases differ by half the period, and 1s a motion of

double amplitude and of phase the same as theirs when they are

of the same phase.
When their periods are very nearly, but not quite, equal (their

amplitudes being still supposed equal), the motion passes very
slowly from the former (zero, or no motion at all) to the latter,
and back, in a time equal to that in which the faster has gone
once oftener through its period than the slower has.

In practice we meet with many excellent examples of this
case, which will, however, be more conveniently treated of when
we come to apply kinetic principles to various subjects in acou-
stics, physical optics, and practical mechanics ; such as the sym-
pathy of pendulums or tuning-forks, the rolling of a turret ship
at sea, the marching of troops over a suspension bridge, etc.

62. If any number of pulleys be so placed that a cord
passing from a fixed point half round each of them has its
free parts all in parallel lines, and 1f their centres be moved
with simple harmonic motions of any ranges and any periods
in lines parallel to those lines, the unattached end of the
cord moves with a complex harmonic motion equal to twice
the sum of the given simple barmonic motions. This 1s the
principle of Sir W. Thomson’s tide-predicting machine, con-
structed by the British Association, and ordered to be placed
in South Kensington Museum, availably for general use in
calculating beforehand for any port or other place on the sea
for which the simple harmonic constituents of the tide have
been determined by. the “harmomic analysis” applied to
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previous observations*. 'We may exhibit, graphically, any case Graphical
. . . . . . representae.
of single or compound simple harmonic motion in one line by tion of
armonic

curves in which the abscisse represent intervals of time, and the motions in
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* See British Association Tidal Committee’s Report, 1868, 1872, 18756: or
Lecture on Tides, by Sir W, Thomson, “Popular Lectures and Addresses,®
vol. 111, p. 178.
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Graphiest  ordinates the corresponding distances of the moving point from 63. We have next to consider the composition of simple har- 8. H. mo-

Honof . its 1t In th f ingle simple harmonie : SRR T S tions in
tionof ~ 1ts mean position. 1o L0e case of < sing P monic motions in different directions. In the first place, we see different
directions.

motionsin motion, the corresponding curve would be that described by the that any number of simple harmonic motions of one period, and

one line. ) . . ) )

point P in § 53, if, while ¢ maintained its uniform circular
motion, the circle were to move with uniform velocity n any
direction perpendicular to OA. This construction gives the
harmonic curve, or curves of sines, in which the ordinates are
proportional to the sines of the abscisse, the straight line in
which O moves being the axis of abscissse. It'is the simplest
possible form assumed by a vibrating string. When the har-
monic motion is complex, but in one line, as is the case for any
point in a violin-, harp-, or pianoforte-string (differing, as these
do, from one another in their motions on account of the different
modes of excitation used), a similar construction may be made.
Investigation regarding complex harmonic functions has led to
results of the highest importance, having their most ceneral
expression in Fourter’s Theorem, to which we will presently devote
several pages. We give, on page 45, graphic representations of
the composition of two simple harmonic motions 1n one line, of
equal amplitudes and of periods which are as 1 : 2 and as 2: 3,
for differences of epoch corresponding to 0, 1, 2, etc, sixteenths
of a circumference. In each case the epoch of the component of
greater period is a quarter of its own period. In the first, second,
third, etc., of each series respectively, the epoch of the component
of shorter period is less than a quarter-period by 0, 1, 2, ete,
sixteenths of the period. The successive horizontal lines are the
axes of absciss® of the successive curves ; the vertical line to the
left of each series being the common axis of ordinates. In each
of the first set the graver motion goes through one complete
period, in the second it goes through two periods.

L:2 2:3
(Octave) (Fifth)
. . nw : : nw
y=mnw+sm(2m+—8-). y=31n2m+sm(3w+-—8—).
Both, from «¢=0 to z=2r; and for n=0, 1, 2...... 15, in succession.

‘These, and similar cases, when the periodic times are not com-

mensurable, will be again treated of under Acoustics.

of the same phase, superimposed, produce a single simple har-
monic motion of the same phase. For, the displacement at any
instant being, according to the principle of the composition of
motions, the geometrical resultant (see above, § 50) of the dis-
placements due to the component motions separately, these com-
ponent displacements, in the case supposed, all vary in simple
proportion to one another, and are in constant directions. Hence
the resultant displacement will vary in simple proportion to each
of them, and will be in a constant direction.

But if, while their periods are the same, the phases of the
several component motions do not agree, the resultant motion
will generally be elliptic, with equal areas described in equal
times by the radius-vector from the centre; although in par-
ticular cases it may be uniform circular, or, on the other hand,
rectilineal and simple harmoniec.

64. To prove this, we may first consider the case 1n which
we have two equal simple harmonic motions given, and these 1n

perpendicular lines, and differing in phase by a quarter period.

Their resultant is a uniform circular motion. For,let BA, B'A’
be their ranges; and from O, their common middle point, as
centre, describe a circle through 4 A'BB’. The given motion of £

in BA will be (§ 53) defined by the motion |

of a point @ round the circumference of A

this circle ; and the same point, if moving ‘ 2

in the direction indicated by the arrow, will \
. : : . . B A

give a simple harmonic motion of #, in

B’ A', a quarter of a period behind that ot ‘

the motion of Pin BA. But, since 4°0A4, r

QP O, and QP O are right angles, the figure B

QP OP is a parallelogram, and therefore ¢ is in the position of

the displacement compounded of OP and OF'. Hence two equal

simple harmonic motions in perpendicular lines, of phases dif-

fering by a quarter period, are equivalent to a uniform circular

motion of radius equal to the maximum displacement of either
singly, and in the direction from the positive end of the range of
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the component in advance of the other towards the positive end
oi the range of this latter.

65. Now, orthogonal projections of simple harmonic motions
are clearly simple harmonic with unchanged phase. Hence, if
we project the case of § 64 on any plane, we get motion in an
ellipse, of which the projecticns of the two component ranges
are conjugate diameters, and in which the radius-vector from the
centre describes equal areas (being the projections of the areas
described by the radius of the circle) in equal times. But the
plane and position of the circle of which this projection is taken
may clearly be found so as to fulfil the condition of having the
projections of the ranges colncident with any two given mutually
bisecting lines. Hence any two given simple harmonic motions,
equal or unequal 1n range, and oblique or at right angles to one
another in direction, provided only they differ by a quarter
period in phase, produce elliptic motion, having their ranges for
conjugate axes, and describing, by the radius-vector from the
centre, equal areas 1n equal times (compare § 34, b).

66. Returning to the composition of any number of simple
harmonic motions of one period, in lines in all directions and of
all phases : each component simple harmonic motion may be de-
terminately resolved into two in the same line, differing in phase
by a quarter period, and one of them having any given epoch.
We may therefore reduce the given motions to two sets, differing
in phase by a quarter period, those of one set agreeing in phase
with any one of the given, or with any other simple harmonic
motion we please to choose (u.e., having their epoch anything
we please).

All of each set may (§ 58) be compounded into one simple
harmonic motion of the same phase, of determinate amplitude,
in a determinate line ; and thus the whole system is reduced to
two simple fully determined harmonic motions differing from
one another in phase by a quarter period.

Now the resultant of two simple harmonic n.otions, one a
quarter of a period in advance of the other, in different lines, has
been proved (§ 65) to be motion in an ellipse of which the ranges
of the component motions are conjugate axes, and in which equal
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areas are described by the radius-vector from the centre in equal g F. tno-
times. Hence the gegeral proposition of § 63. Girerant
Let z, =l cos(wt—e¢),
Y=, COS(F —~€)yd covvnrirniiniinirnnrannn (1)
2, =n,a, cos (wf—¢ ),

be the Cartesian specification of the first of the given motions ;
and so with varied suffixes for the others ;

l, m, n denoting the direction cosines,

7 . ,» half amplitude,

€ ’s ,y €poch,
the proper suffix being attached to each letter to apply it to each

case, and o denoting the common relative angular velocity. The
resultant motion, specified by «, ¥, 2 without suffixes, is

= 2, co8 (wf— ¢ ) = cos wt3l a, cos ¢, +sin w3 @ sin e,
y=ete.; =z=etc.;

or, as we.may write for brevity,

Y = @ cos wt + ¢’ sin wt,

x = P cos wt + P’ sin wt,
2z =R cos wt + R’ sin wt,

, :
@=2ma cose, @ =3ma sine,
k=3na cose, R =3nasine.

where P=3lacose, P=3lasin Ep}
ceieen(3)

The resultant motion thus specified, in terms of six component
simple harmonic motions, may be reduced to two by compounding
P, @, &, and I, ', K, in the elementary way. Thus if

{=(P?+ @ + ]*32)%, )
EE AN S
T T
{'=(P*+ Q" + R?p,
vt o.¢ L F
A AR
the required motion will be the resultant of £ cos ¢ iu the line
(A, u, ¥), and ¢’ sin ot in the line (X, u’, /). It is thercfore 1mo-
tion in an ellipse, of which 2¢ and 2¢’ in those directions are
VOL. 1. 4
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conjugate diameters; with radius-vector from centre tracing

27

equal areas In equal times ; and of period — .

67. We must next take the case of the composition of simple
harmonic motions of different periods and in different lines. In
general, whether these lines be in one plane or not, the line
of motion returns into itself if the periods are commensurable;
and if not, not. This is evident without proof.

If a be the amplitude, ¢ the epoch, and # the angular velocity
in the relative circular motion, for a component in a line whose
direction cosines are A, u, v—and if & », { be the co-ordinates in
the resultant motion,

§=3.Ma cos(nt—ec), n=3.p0ocos(nt—¢) {=3.va cos(nt—c¢).

Now it is evident that at time ¢ + 7' the values of £, 5, { will recur
as soon as n T, n T, etc., are multiples of 2, that 18, when 7' 1s
2m 2w

the least common multiple of — - , ete.

| 2
If there be such a common multiple, the trigonometrical func-
tions may be eliminated, and the equations (or equation, if the
motion is in one plane) to the path are algebraic. If not, they

are transcendental.

68. From the above we see generally that the composition
of any number of simple harmonic motions in any directions
and of any periods, may be effected by compounding, according

to previously explained methods, their resolved parts in each

of any three rectangular directions, and then compounding the
final resultants in these directions.

69. By far the most interesting case, and the simplest, 1s

rectangular that of fwo simple harmonic motions of any periods, whose di-

directionas.

rections must of course be In one plane.
Mechanical methods of obtaining such combinations will be

afterwards described, as well as cases of their occurrence in
Optics and Acoustics.

‘We may suppose, for simplicity, the two component motions
to take piace in perpendicular directions. Also, as we can only
have a re-entering curve when their periods are commensur-
able, it will be advisable to commence with such a case.
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The following figures represent the paths produced by the S. H. mo-

<
< 3
>
=

rectan
Torections

combination of simple harmonic motions of equal amplitude in
two rectangular directions, the periods of the components being
as 1:2, and the epochs differing successively by 0, 1, 2, ete,
sixteenths of a circumference.

In the case of epochs equal, or differing by a multiple of =,
the curve is a portion of a parabola, and is gone over twice
in opposite directions by the moving point in each complete
period.

OO0

For the case figured above,

x=acos(2nt—e¢), y=acosnt.

Hence z = @ {cos 2nt cos € + sin 27¢ sin €}

: .
:a{(2y 1) cose+2y\/l—g-,sin e},

which for any given value of ¢ is the equation of the correspond-
ing curve. Thus for e=0,

2y

il
—

&8

—1, or ¢*= —g (x + a), the parabola as above.

4—2
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For E=1_I' we have :E= 2%,\/1—3'/"2: or almi=4yl(a!_y¥),.

2 @ @
the equation of the 5th and 13th of the above curves.

In general
1= cos ('nt + e), Y =@ CO8 (nlt + El),

from which ¢ is to be eliminated to find the Cartesian equation of
the curve.

70. Another very important case is that of two groups of
two simple harmonic motions in one plane, such that the resultant
of each group is uniform circular motion.

If their periods are equal, we have a case belonging to those
already treated (§ 63), and conclude that the resultant 1s,
general, motion in an ellipse, equal areas being described in
equal times about the centre. As particular cases we may have
simple harmonie, or uniform circular, motion. (Compare § 91.)

If the circular motions are in the same direction, the resultant
is evidently circular motion in the same direction. This is the
case of the motion of 8 in § 58, and requires no further comment,
as its amplitude, epoch, etc., are seen at once from the figure.

71. If the periods of the two are very nearly equal, the re-
sultant motion will be at any moment very nearly the circular
motion given by the preceding construction. Or we may regard
it as rigorously a motion in a circle with a varying radius de-

creasing from a maximum value, the sum of the radii of the two
component motions, to a minimum, their difference, and increas-

ing again, alternately; the direction of the resultant radius
oscillating on each side of that of the greater component (as in
corresponding case, § 59, above). Hence the angular velocity
of the resultant motion is periodically variable. In the case of
equal radii, next considered, 1t 18 constant.

72. When the radii of the two component motions are equal,
we have the very interesting and important case figured below.
Here the resultant radius bisects the angle between the com-
ponent radii. The resultant angular velocity is the arithmetical
mean of its components. We will explain in a future section
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(§ 94) how this epitrochoid is traced by the rolling of one circle Composi=
circular
motions,

]

on another. (The particular case above delineated is that of a
non-reéntrant curve.)

73. Let the uniform circular motions be in opposite direc-
tions; then, if the periods are equal, we may easily see, as
before, § 66, that the resultant is in general elliptic motion,

including the particular cases of uniform circular, and simple
harmoniec, motion. '

If the periods are very nearly equal, the resultant will be
easily found, as in the case of § 59.

74.  If the radii of the component motions are equal, we have
cases of very great importance in modern physics, one of which

18 figured below (like the preceding, a non-reéntrant curve).
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This 1s intimately connected with the explanation of two sets of
important phenomena,—the rotation of the plane of polarization
of ight, by quartz and certain fluids on the one hand, and by
transparent bodies under magnetic forces on the other. It is
a case of the hypotrochoid, and its corresponding mode of
description will be deseribed in a future section. It will also
appear in kinetics as the path of a pendulum-bob which contains
a gyroscope 1n rapid rotation.

75. Before leaving for a time the subject of the composition
of harmonic motions, we must, as promised in § 62, devote some
pages to the consideration of Fourier's Theorem, which is not
only one of the most beautiful results of modern analysis, but
may be said to furnish an indispensable instrument in the treat-
ment of nearly every recondite question in modern physics. To
mention only sonorous vibrations, the propagation of electric
signals along a telegraph wire, and the conduction of heat by
the earth’s crust, as subjects in their generality intractable with-
out 1t, is to give but a feeble 1dea of its importance. The follow-
ing seems to be the most intelligible form in which it can be
presented to the general reader : —

THEOREM.—.A complex harmonic function, with a constant term
added, 18 the proper expression, in mathematical language,
for any arbitrary periodic function ; and consequently can
express any function whatever between definite values of
the variable.

76. Any arbitrary periodic function whatever being given,
the amplitudes and epochs of the terms of a complex harmonic
function which shall be equal to it for every value of the inde-
pendent variable, may be investigated by the “ method of inde-
terminate coeflicients.”

Assume equation (14) below. Multiply both members first

by cos g%r—g d¢ and integrate from 0 to p: then multiply by
iy
sin ‘:g d¢ and integrate between same limits. Thus instantly

you find (13).
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This investigation is sufficient as a solution of the problem, Pouriers
—t0 find a complex harmonic function expressing a given arbi- Hheorem
trary periodic function,—when once we are assured that the
problem 1s possible ; and when we have this assurance, it proves
that the resolution is determinate:; that is to say, that no

other complex harmonic function than the one we have found
can satisfy the conditions.

For description of an integrating machine by which the
coefficients A;, B; in the Fourier expression (14) for any given
arbitrary function may be obtained with exceedingly little
labour, and with all the accuracy practically needed for the
narmonic analysis of tidal and meteorological observations, see
Proceedings of the Royal Society, Feb. 1876, or Chap. v. below.

77. The full theory of the expression investigated in § 76
will be made more intelligible by an investigation from a
different point of view.

Let F(x) be any periodic function, of period . That is to
8ay, let F(x) be any function fulfilling the condition

F@+p) =F (&) ceeivnreieeeeeeaanneran.. (1),

where ¢ denotes any positive or negative integer. Consider the
integral

j’ ‘Fx)dx

o O+ a’

where a, ¢, ¢’ denote any three given quantities. Its value is
¢ du n [ de .

less than F'(z) L ot and greater than F(?) et if 2

and z' denote the values of x, either equal to or intermediate
between the limits ¢ and ¢/, for which #(x) is greatest and least
respectively. But

[ ] (fan S-tan™ ) @),

W ) a a/

and therefore

] (@) adx < F (z) (ta.n“‘ ¢ _tan™ f:) , 1

a’ +&* o @
o ) O IR (3)
and w > I(2) (tan" - — tan™ —) : J
a 7
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Hence if 4 be the greatest of all the values of ¥(x), and B the

least,

f F(w) adx ~< A (—2- — tan™" f‘i) 3

. @HT [ (4)
and o ::-B(:—B&l] 1&)')

Also, similarly,
¢ K (sc)ada: 1 4_3_ ) -\
]'cf+ar:’ -::A(ta.n ~+t35)

-0

¢ 2 J» ................. (6)
and - ’y = B (tarll E; 4= 2) -

Adding the first members of (3), (4), and (5), and comparing
with the correspond:ing sums of the second members, we find

!

F(m)adm-cﬁ'(z)(tan"lc ta,n"c\—f-fl(-:r tan™ - + tan™ 1?-) '
. /" M(6)

a®+ " o a/ @

1 C _,© € _,C
and ,, :-F(z')(ta.n 1&—1:3,11 1G>+B(7r — tan™" - -+ tan ‘ )
Bllt, by (1)1 |

] Ii(iim f?F( )da;{ ==-=°(m " ml_l_%p) )} .......... (7).
Now 1f we denote ,/—1 by v, .

1 1 1 1
a’ + (2 + 1p)’ N ﬁ(ﬂ:-ﬁip—ﬂu -m+ip+av)’
and therefore, taking the terms corresponding to positive and
equal negative values of ¢ together, and the terms for :=0 sepa-

rately, we have

i [ 1 - 1 { 1 ) 22£ﬁm & — av
E*=-'(a*+(m+ip)’)"'2'ﬁ z—av " P — (2 —av)’
1 =0 {B+Q}U }

‘)
Z+av “2en o, 1p* — (2 + av)’

T {0013 (:(: av)_cgt'rr(a:+av)}
2apv P P

T . 2mav T . 2mav
Sin —— 8l —
2apv p upv %
o TV 71'9.’: Dmrav nx
COSs™ — COS — COS — 08 —

P P P p
sra e
P _ ¢ P

T €

. 2 .
ap =2 e T
. P —-2003—?5—+c p

77.] | KINEMATICS. 57

Hence, Fourier 5

F Theorem
j'“‘* Flx)yde = . :ﬁ F(x)da (8)
e O+ X ap 2;“ Ve — 19 AN
el - 2 cos — + ¢

Next, denoting temporarily, for brevlty, p by &, and putting

_%ma
€ P ome i, (9),
we have 1 ' =
2.”_"' - _2_’_’_'?‘;“1—6(§+C'1)+6’
P _2¢co08— +¢ P
P

e 1. N 1 1
_1-3“(1—6§ 1-—6{"‘_)

: =il +e({+L7)+ (P + 77+ (0 +7) +ete

2 .
-—§—5 (1 +Zecos——1-rf+2e coséirf+23 cos@f+etc)

- 1-—¢ P P _ p
Hence, according to (8) and (9),

j F(x)de _[ Fm)dm(1+230052—7§+23 cos4ﬂ+etc) .(10).
o &+ X p p

Hence, by (6), we infer that

F(z) (ta.n“ °_ tan™’ i) + A (7:' —tan~* ¢ +tan™? ?-) >

4/ /7

ﬂr a 4/ a

and F (') ( =12 _ tan™! c) + B(:'r —tan~'% + tan™! i) <
P
Ejﬁ'(:iz:)akir:(l + 2¢ 003-2—1—133+ etc)
P Jo P
Now let ¢’=—¢, and x=¢§¢ -,

¢ being a variable, and § constant, so far as the integration is
concerned ; and let

F (&)= $(@+&)=(£)
F(z) = ¢(£+z)1
F ()= ¢p(E+2).

and therefore
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The preceding pair of inequalities becomes

¢(§+z).2tan"c+ﬁ(w—2tan"ﬂ>::r 1

i €t

and  ¢(£+2). 2 tan™’ “ ¥ B(n‘ — 2 tan™ E—) < b e (11)

a 7
T [ p@ra+ 2556 | 4(€)¢ cos =it
P \Je 0 P
where ¢ denotes any periodic function whatever, of period p.
Now let ¢ be a very small fraction of p. In the limit, wherec
is infinitely small, the greatest and least values of ¢(¢’) for values
of & between &+ ¢ and £ — ¢ will be infinitely nearly equal to one

another and to ¢(§); that 1s to say,

bE+D) = d(E+D)=b(©O.
Next, let @ be an infinitely small fraction of ¢. In the hmit

c =
. | 0
tan it
_2ra
and e=¢ ¥ =1.

Hence the comparison (11) becomes in the limit an equation
which, if we divide both members by =, gives
2em (& — _§)

¢(§)=%{Lp¢(€)d£’+ 22:“: fcﬁ(f")dé’ cos - }...(12).

This is the celebrated theorem discovered by Fourier® for the
development of an arbitrary periodic function in a series of simple
harmonic terms. A formula included in it as a particular case

had been given previously by Lagranget.

If, for cos 2W(i —&) , we take its value
cos 2umg COS 2—-W§ + 81N 2ume S11n. 2—1—-11-5
p L ) P

and introduce the following notation :—

4= [ s@)as |

A‘_pj; ¢ (&) cos » dé, L .ouiinn ereeneneues (13)
2 (%0 gin 2076

B,=> [ (&) sin == dt,

*. Théorie analytique de la Chaleur. Paris, 1822,
+ Anciens Mémoires de UAcadémie de Turin.

77

KINEMATICS. H9
we reduce (12) to this form :— Fourier's
‘ ' Theorem.

P(&)=A4, + E:: A, cos 2?;1'5 + 2:? B, sin 21;-—? ......... (14),

which is the general expression of an arbitrary function in terms
of a series of cosines and of sines. Or if we take

P=(42+ B33, and tane==".................. (15),

2*;5 ei) ................. . (16),

which is the general expression in a series of single simple har-
monic terms of the successive multiple periods.

Each of the equations and comparisons (2), (7), (8), (10), and Conver-
(11) is a true arithmetical expression, and may be verified by actual %‘%gig’a
calculation of the numbers, for any particular case ; provided only *°
that # () has no infinite value in its period. Hence, with this
exception, (12) or either of its equivalents, (14), (16), is a true
arithmetical expression ; and the series which it involves is there-
fore convergent. Hence we may with perfect rigour conclude
that even the extreme case in which the arbitrary function ex-
periences an abrupt finite change in its value when the inde-
pendent variable, increasing continuously, passes through some
particular value or values, is included in the general theorem.

In such a case, if any value be given to the independent variable
differing however little from one which corresponds to an abrupt
change in the value of the function, the series must, as we may
infer from the preceding investigation, converge and give a
definite value for the function. But if exactly the eritical value
1s assigned to the independent variable, the series eannot con-
verge to any definite value. The consideration of the limiting
values shown in the comparison (11) does away with all difficulty
in understanding how the series (12) gives definite values having
a finite difference for two particular values of the independent
variable on the two sides of a critical value, but differing in-

finitely little from one another.

we have ¢(§) =4, +3"7 P, cos (

If the differential coefficient d%g) is finite for every value of

¢ within the period, it too is arithmetically expressible by a series
of harmonic terms, which cannot be other than the series oh-
tained by differentiating the series for ¢(£). Hence
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converg- d¢ (S) 27T g0 . . (giﬂ'f
_———— S 2. sin anll 7 I 17,
?:E-ﬂar’s dé p =7 D ( )

Series. ] ..
and this series is convergent ; and we may therefore conclude that

the series for ¢(£) is more convergent than a harmnonic series
with |
1, &, 3 4 ete,
: : d*d (&) e s

for its coefficients. If & has no infinite values within the
period, we may differentiate both members of (17) and still have
an equation arithmetically true; and so on. We conclude that
if the n* differential coefficient of ¢(£) has no infinite values,
the harmonic series for ¢(£) must converge more rapidly than a.

harmonic -series with

1 1 1
1, 2—'“ ] ? ’ -f' y etce.,
for its coeflicients.
Displace- 78. We now pass to the consideration of the displacement

t of . | . . "
moi body. Of a rigid body or group of points whose relative positions are

unalterable, The simplest case we can consider 1s that of the
motion of a plane figure in its own plane, and this, as far as
kinematics is concerned, is entirely summed up in the result of

the next section.

Displace- 79. If a plane figure be displaced in any way In its own

ﬁ:ﬁ?gﬁre plane, there is always (with an exception treated 1n § 81) one

nits plane point of it common to any two positions; that 1s, 1t may be
moved from any one position to any other by rotation in its own

plane about one point held fixed.
To prove this, let 4, B be any two points of the plane figure

in its first position, 4', B the positions of the same two after
a displacement. The lines 44', BB will

not be parallel, except in one case to be
presently considered. Hence the hine equi-
distant from 4 and 4" will meet that equi-
distant from B and B' in some point O.
Join 04, OB, OA', OB'. Then, evidently,
because 0A' = OA, OB =0B and A'F
= A B, the triangles OA'B’ and 0AB are

equal and similar. Hence O 1s sumilarly

4

s

situated with regard to 4’8’ and AB, and is therefore one and
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the same point of the plane figure 1n 1ts two positions. If, for
the sake of illustration, we actually trace the triangle O4 B upon
the plane, it becomes OA'B'in the second position of the figure.

80. If from the equal angles A'OB’, AOB of these sumilar
triangles we take the common part 4’0B, we have the remaining
angles 404, BOB’' equal, and each of them is clearly equal to
the angle through which the figure must have turned round the
point O to bring it from the first to the second position.

The preceding simple construction therefore enables us not
only to demonstrate the general proposition, § 79, but also to
determine from the two positions of one terminated line AJ5,
A’'B’ of the figure the common centre and the amount of the

angle of rotation.

81. The lines equidistant from 4 and 4, and from B and B,
are parallel if AB is parallel to 4’8’ ; and therefore the con-
struction fails, the point O being ) B

infinitely distant, and the theorem
becomes nugatory. In this case the
motion is in fact a simple trans- y

lation of the figure in 1ts own B
plane without rotation—since, 4B being parallel and equal to
A'B’, we have 44’ parallel and equal to BB'; and 1instead of
there being one point of the figure common to both positions,
the lines joining the two successive positions of all points in the
figure are equal and parallel.

82. Tt is not necessary to suppose the figure to be a mere flat
disc or plane—for the preceding statements apply to any one of
a set of parallel planes in a rigid body, moving in any way
subject to the condition that the points of any one plane in it
remain always in a fixed plane in space.

83. There is yet a case in which the construction 1n § 79 1s
nugatory—that is when 4.4’ is paral- ' B
lel to BE, but the lines of AB and 4
A'B intersect. In this case, how-
ever, the point of intersection 1s the 4
pojat O required, although the former B’
method would not have enabled us to find it.

,

Dispiace-
ments of a
plane figure
1n its plane.
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Bxamples 84. Very many interesting applications of this principle may
Srent o one be made, of which, however, few belong strictly to our subject,

piane: and we shall therefore give only an example or two. Thus we
know that if a line of given length 4 B move with 1ts extremities

always in two fixed lines 04, OB,
any point 1n it as P describes an
ellipse. It 1s required to find the
direction of motion of P at any in-
stant, 7.e., to draw a tangent to the
ellipse. BA will pass to its next
position by rotating about the point
@; found by the method of § 79
by drawing perpendiculars to OA4

and OB at 4 and B. Hence P for the instant revolves about ¢),
and thus its direction of motion, or the tangent to the ellipse, is
perpendicular to @P.  Also AB in its motion always touches a
curve (called in geometry its envelop) ; and the same principle
enables us to find the point of the envelop which lies in 4.8, for
the motion of that point must evidently be ultimately (that 1s
for a very small displacement) along AB, and the only point
which so moves is the intersection of 4B with the perpen-
dicular to it from . Thus our construction would enable us

to trace the envelop by points. (For more on this subjeet

see § 91.)

85. Again, suppose 4B to be the beam of a stationary engine
having a reciprocating motion about 4, and by a link BD
turning a crank CD about C. Determine the relation between
the angular velocities of 4B and (D in any position. Kvi-
dently the instantaneous direction of motion of B 1s trans-
verse to AB, and of D transverse to CD—hence if 4B, CD
produced meet in O, the motion of BD is for an 1nstant as if
4 B o it turned about O. From this
’ 1t may be easily seen that if

the angular velocity of 4B be
AB OD

0BTD ™ &
similar process 18 of course
applicable to any combination of machinery, and we shall find it

D w, that of CD is
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very convenient when we come to consider various dynamical Examples
problems connected with virtual velocities. ment o one
plane.

86. Nince in general any movement of a plane figure in its composision

plane may be considered as a rotation about one point, it is svoms

evident that two such rotations may in general be compounded Dea.
into one; and therefore, of course, the same may be done with
any number of rotations. Thus let 4 and B be the points of
the figure about which in succession the rotations are to take
place. By a rotation about 4, B is brought say to B, and by a
rotation about B, 4 is brought to 4. The construction of §79
gives us at once the point O and the amount of rotation about it
which singly gives the same effect as those about 4 and B in
succession.  But there is one case of exception, viz., when the
rotations about 4 and B are of equal A »
amount and In opposite directions. In

this case 4'B’ is evidently parallel to

AB, and therefore the compound result

18 a translation only. Thatis, if a body 4 B

revolve in succession through equal angles, but in opposite di-

-rections, about two parallel axes, it finally takes a position to

which 1t could have been brought by a simple translation per-
pendicular to the lines of the body in its initial or final position,
which were successively made axes of rotation; and inclined to
their plane at an angle equal to half the supplement of the
common angle of rotation.

87. Hence to compound into an equivalent rotation a rota- Composition
tion and a translation, the latter being effected parallel to the and transia-

plane of the former, we may decompose the translation into two plane,
rotations of equal amount and opposite direction, compound one

of them with the given rotation by § 86, and then compound

the other with the resultant rotation by the same process. Or

we may adopt the following far _

simpler method. Let O4 be the g 4 C
translation common to all points L\_ """‘j”

in the plane, and let BOC be the 0 '
angle of rotation about O, BO B

being drawn so that OA bisects the exterior angle COB. Take
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Composition the point B in BO produced, such that B'C, the space through

ompos) tion in which the preceding one left 1t. It 1s evident at once Superposi-
o1 ro ons

- a . * : . " . - . . tl u
and transla- which the rotation carries it,1s equal and opposite to OA. This that this is an immediate deduction from the fact that the second motions.
1'1 * . L - ' . ] »
p&ﬁ;n - point retains 1ts former position after the performance of the order of infinitely small quantities may be with rigorous accuracy
compound operation ; so that a rotation and a translation in neglected. This principle is of very great use, as we shall find

one plane can be compounded into an equal rotation about a

In the sequel ; its applications are of constant occurrence.
different axis.

A plane figure has given angular velocities about given axes

In general, if the origin be taken as the point about which
rotation takes place in the plane of xy, and if it be through an
angle 6, a point whose co-ordinates were originally «, ¥ will have
them changed to

f=acosf—ysinf, mn==xsinb+ycosb,
or, if the rotation be very small,

f:x—yQ, q:y—{-me.

omicionof  88. In considering the composition of angular velocities

the second  about different axes, and other similar cases, we may deal with

o oun- infinitely small displacements only ; and it results at once from
reles. the principles of the differential calculus, that if these displace-
ments be of the first order of small quantities, any point whose
displacement is of the second order of small qua,ntities_ is to be
considered as rigorously at rest. Hence, for instance, 1f a ]?Ofiy
revolve through an angle of the first order of small quantities
about an axis (belonging to the body) which during the revolu-
tion is displaced through an angle or space, also of the first
order, the displacement of any point of the body is rigorously
what it would have been had the axis been fixed during the
rotation about it, and its own displacement made either before
or after.this rotation. Hence in any case of motion of a rigid
svstem the angular velocities about a system of axes moving with
the system are the same at any instant as those abOLEt a system
fixed in space, provided only that the latter coincide at the

instant in question with the moveable ones.

perpendicular to 1ts plane, find the resultant.

Let there be an angular velocity » about an axis passing
through the point a, 2.

The consequent motion of the point z, ¥ in the time &¢ is, as
we have just seen (§ 87),

— (¥ — b) wot parallel to #, and (x - a)wdt parallel to v.

Hence, by the superposition of small motions, the whole motion
parallel to « is

— (y2w — Zbw)dt,
and that parallel to ¥ (xS0 — Saw)dt.

Hence the point whose co-ordinates are

' = 2auw and ¥’ _ 2o
B /= So

Sw
18 at rest, and the resultant axis passes through it. Any other
point x, ¥ moves through spaces
— (Y20 — 2bw)dt, (x3w--Zaw)dt,
But if the whole had turned about «, 5/’ with velocity Q, we should
have had for the displacements of z, 7,
—(y—y)Qot, (x—x)QL.
Comparing, we find Q = So.

Hence 1f the sum of the angular velocities be zero, there is no

rotation, and indeed the above formulae show that there is then
merely translation,

3 (bw)ot parallel to #, and - 3(aw)dt parallel to .

These formule suffice for the consideration of any problem on
the subject.

superposi-  89. From similar considerations follows also the gen?ral prin- .90. Any motion whatever ?f a plane figure 1n its own plane Rolling of
tion of small ciple of Superposttion of small motions. It asserts that if several might be produced_by the rolling of a curve fixed to the figure curve.
causes act simultaneously on the same particle or rigid body, and upon a curve fixed in the plane. '
if the effect produced by each is of the first order of small quan- Ff)r we may consider the whole motion a8 made up of suc-
tities, the joint effect will be obtained 1f we consider the causes cessive elementary displacements, eachiof which correspon'ds, as
to act successively, each taking the point or system 1n the posi- we have seen, to an elementary rotation about some point in
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the plane. Let o, o,, o,, etc, be the successive points of
the moving figure about which the rotations take place, O,,
0,, O,, etc, the positions of these points when each is the
instantaneous centre of rotation. Then the figure rotates about
0, (or O,, which coincides with it) till o, coincides with O,, then
about the latter till o, coincides with
O,, and so on. Hence, if we join o,
0,, 0,, etc., in the plane of the figure,
and O,, 0,, O,, etc., In the fixed plane,
the motion will be the same as if the
polygon 0,0,0,, etc.,rolled upon the fixed
polygon 0,0,0,, etc. By supposing the
successive displacements small enough
the sides of these polygons gradually diminish, and the polygons
finally become continuous curves Hence the theorem.

From this it immediately follows, that any displacement of a
rigid solid, which is in directions wholly perpendicular to a fixed
line, may be produced by the rolling of a cylinder fixed in the
solid on another cylinder fixed in space, the axes of the cylinders
being parallel to the fixed line.

91. As an interesting example of this theorem, let us recur
to the case of § 84:—A circle may evidently be circumscribed
about OB@A ; and it must be of invariable magnitude, since in
it a chord of given length 4B subtends a given angle O at the
circumference. Also OQ is a diameter of this circle, and is there-
fore constant. Hence, as @ is momentarily at rest, the motion
of the circle circumseribing OBQA is one of internal rolling on
a circle of double its diameter. Hence 1if a circle roll internally
on another of twice its diameter, any point in its circumference
describes a diameter of the fixed circle, any other point in its
plane an ellipse. This i1s precisely the same proposition as that
of § 70, although the ways of arriving at it are very different.
As 1t presents us with a particular case of the Hypocycloid, it
warns us to return to the comsideration of these and kindred
curves, which give good instances of kinematical theorems, but
which besides are of great use 1n physics generally.

92. When a circle rolls upon a straight line, a point in its
circumference describes a Cycloid ; an internal point describes a
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Prolate, an external one a Curtate, Cycloid. The two latter
varieties are sometimes called Trochoids.

The general form of these curves will be seen in the annexed
figures ; and in what follows we shall confine our remarks to the
cycloid itself, as of immensely greater consequence than the
others. The next section contains a simple investigation of those

Cyecloids
and
Trochoids.

properties of the cycloid which are most useful in our subject.

93. Let AB bea diameter of the generating (or rolling) circle Properties
i > of the

BC the line on which it rolls.
The points 4 and B describe
similar and equal cycloids, of
which 4QC and BS are portions.
If PQR be any subsequent posi-
tion of the generating circle, @
and S the new positions of 4 and
B, «QPS is of course a right
angle. If, therefore, QR be drawn
parallel to PS, PR is a diameter
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properties of the rolling circle. Produce QR to T, making R.T = QR=PS.
g;elo?d- Evidently the curve 4 T which is the locus of 7, is similar and

equal to BS, and is therefore a cycloid similar and equa',l to AC.
But QR is perpendicular to P@, and 18 therefore the Instanta-
neous direction of motion of @, or is the tangent to the cycloid
AQC. Similarly, PS is perpendicular to the cycloid BS at §,
and so is therefore TQ to AT at T. Hence (§ 19) AQC 1s the

evolute of AT, and arc AQ=QT=2QK.

icyotoids, 94 When the circle rolls upon a.not.her circle, th-e curve
532‘%&3, described by a point in 1ts circumference 18 _ca,lled an E].g)lc'_.yclmd,
ete- or a Hypocycloid, as the rolling circie 1s Wlthout. or Wlthil]l the

fixed circle; and when the tracing point is not in the circum-

ference, we have Epitrochoids and Hypotrochoids. Of the latter
we have already met with examples, §§ 70,

< 91, and others will be presently mentioned.
Of the former, we have in the first of the
appended figures the case of a circle rolling
externally on another of equal size. The
curve in this case is called the Cardioid

§ 49).
In the second diagram, a circle

P
rolls externally on another of twice
its radius. The epicycloid so de-
scribed is of importance in Optics,
and will, with others, be referred
to when we consider the subject of
Caustics by reflexion.

In the third diagrm‘n, we have

a hypocycloid traced by the rolling
of one circle internally on another

of four times 1ts radius.
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The curve figured in § 72 is an epitrochoid described by a Eﬂgicycloids,
point in the plane of a large circular disc which volls upon a cycloids,ete.
circular cylinder of small diameter, so that the point passes
through the axis of the cylinder.

That of § 74 1s a hypotrochoid described by a point in the
plane of a circle which rolls internally on another of rather
more than twice 1ts diameter, the tracin;s point passing through
the centre of the fixed circle. Had the diameters of the circles
been exactly as 1 : 2, § 72 or § 91 shows that this curve would
have been reduced to a single straight line.

The general equations of this class of curves are

mz(a+6)0039—6bcos@%—z-)€,
| : . a+b
y:(a-i-b)mnﬁ—ebsmT 6,

where a 18 the radius of the fixed, b of the rolling circle ; and eb
18 the distance of the tracing point from the centre of the latter.

95. If a rigid solid body move in any way whatever, sub- Motion
Ject only to the condition that one of its points remains fixed, fixed point.
there 1s always (without exception) one line of it through this
point common to the body in any two positions. This most
important theorem is due to Euler. To prove it, consider Eulers
a spherical surface within the body, with its centre at the rheorem.
fixed point C. All points of this sphere attached to the
body will move on a sphere fixed in space. Hence the
construction of § 79 may be made, but with great circles
instead of straight lines; and the same reasoning will apply to
prove that the point O thus obtained is common to the body
in its two positions. Hence every point of the body in the
line OC, joining O with the fixed point, must be common to it
in the two positions. Hence the body may pass from any one
position to any other by rotating through a definite angle about
a definite axis. Hence any position of the body may be speci-
fied by specifying the axis, and the angle, of rotation by which
it may be brought to that position from a fixed position of re-

ference, an idea due to Euler, and revived by Rodrigues.
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Let OX, 0OY, OZ be any three fixed axes through the fixed
point O round which the body turns. Let A, p, v be the
direction cosines, referred to these axes, of the axis O round
which the body must turn, and x the angle through which it
must turn round this axis, to bring it from some zero position to
any other position. This other position, being specified by the
four co-ordinates A, u, v, x (reducible, of course, to three by
the relation A® + u? + v*=1), will be called for brevity (A, g, v, x)-
Tet OA, OB, OC be three rectangular lines moving with the
body, which in the “zero” position coincide respectively with

0X, 0Y, OZ; and put
(X4), (Y4), (Z4), (X B), (YB), (ZB), (XC), (Y(), (£0),

for the nine direction cosines of 04, OB, OC, each referred to
0X, 0Y, 0Z. These nine direction cosines are of course reduci-
ble to three independent co-ordinates by the well-known six
relations. Let it be required now to express these nine direction
cosines in terms of Rodrigues’ co-ordinates A, g, v, X.

Let the lengths OX, ..., O4, ..., OI be equal, and call each
unity : and describe from O as centre a spherical surface of unit
yadius ; so that X, YV, Z, 4, B, C, I shall be points on this sur-
face. Let XA, YA, ... XB, denote arcs, and X4Y, AX5, ...
angles between arcs, in the spherical diagram thus obtained.
We have JA = IX =cos™'A,and X74 = y. Hence by the isosceles
spherical triangle X/4,

cos XA = cos® IX +8in’L.X cos x,
or (XA)=N+ (1 =A%) cos ). coooiiiniinnnnnnn. (1).

And by the spherical triangle X /5,
cos XB=cosIX cosIB+sin/X sinIBcosXIB
=}\p.+~/(1 ~ A%) (i—p.“} cos XIB ......... (2).

Now XI/B=XIY +YIB=XIY + x; and by the spherical
triangle XI1Y we have |

cos XY =0=cos FX cosIY +sinIX sin /Y cos A /Y
=M+ (T =2) (1 — p®) cos XI7Y.
Hence J(A =2 (1 —p®) cos XIY =~ Ap,
and JA A1 - ) sin XTIV = /(1 -2 —pf) =
by which we have
J(A=N) (1 —p) cos (XIY + x) =~ Apcos x—vsinx;
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and using this in (2), Rodrignes’
CO-0rQi-
cos XB=Ap(l—cosx) —vsiny...ocovirinrnnnenn (3).  mates,
Similarly we find
cos AV =Au(l—eosx) +vsiny.................. (4).

The other six formulse may be written out by symmetry from
(1), (3), and (4); and thus for the nine direction cosines we find

(YB)=p2+(1-p2) cosx; (YC)= uv (1 - cos x)—Asinyx; (ZB)=uv (1 —co8 x)+A 8in x ;

{X4) =23+ (1-2% cosx; (XB)=Au(l—-cos x)—-vsiny; (YA)=Au(l—cos8 x)+vsinx;
}‘(5)
{(ZC)=13+ (L- ¥ cosx; (ZA)=wvA 1 —cos x)—usiny; (XC)=w»A(1l-cos x)+usiny.

Adding the three first equations of these three lines, and re-
membering that

we deduce
cos x = 3 [(X4) +(¥YB)+(Z0) —-1]............... (7);

and then, by the three equations separately,

_1+(X4)—(YB) - (20)
3—(X4)~(YB)-(Z0y
o= 1= (X4) +(YB) - (2C) )
3 - (XA)—(Y.B)—-(ZO)’ ...............

s 1=(X4)~(YB) + (20)
3—(X4)-(YB)-(20C) )

These formule, (8) and (7), express, in terms of (X4), (YB),
(ZC), three out of the nine direction cosines (X' 4), ..., the

direction cosines of the axis round which the body must turn,
and the cosine of the angle through which it must turn round

this axis, to bring it from the zero position to the position
specified by those three direction cosines.

AE

By aid of Euler’s theorem above, successive or simultaneous Compo-
. . sition of
rotations about any number of axes through the fixed point rotations.
may be compounded into a rotation about one axis. Doing this

for infinitely small rotations we find the law of compostition of
angular velocities.

Let OA, OB be two axes about which a body revolves with Composi-
angular velocities &, p respectively. tion of angu-

lar veloei-
tles.

With radius unity describe the arc 4B, and in it take any
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point 7. Draw Je, 73 perpendicular to OA, OB respectively.
Let the rotations about the two axes be
such that that about OB tends to raise I

about OA to depress it. In an infinitely
ghort interval of time 7, the amounts of
these displacements will be pIB8.r and
—wla.r. The point I, and therefore

during the interval r if the sum of these

dlspla,cemants is zero, that is if p.I8 =w.Ja. Hence the line
OI is instantaneously at rest, or the fwo rotations about 04 and

OB may be compounded into one about 0I. Draw Ip, Iy,
parallel to OB, 04 respectively. Then, expressing in two ways
the area of the parallelogram IpOg, we have

Og.lﬁi.}?-ﬁ%
Og : Op :: p : m.

Henoe, if along the axes OA, OB, we measure off from O lines

Op, Og, proportional respectively to the angular velocities about

these axes—the diagonal of the parallelogram of which these are
~ contiguous sides is the resultant axis.

Again, if Bb be drawn perpendicular to 04, and if © be the
angular velocity about O, the whole displacement of B may
evidently be represented either by = . Bb or Q. I8.

Hence

Q : @ :: Bb: IB :: sinBOA : sin JOB :: sin Ip0 : &in pl0,
2 O : Op. |

Thus it is proved that,—

Parslielo- If lengths proportional to the respective angular valocmes
gamof  about them be measured off on the component and resultant

velooities. o <es, the lines so determined will be the sides and diagonal. of
' a parallelogram.

Qomposi- 96 Hence the single angular velocity equivalent to three

l?rh mﬁ“ co-existent angular velocities about three mutua.]ly perpen-

Pheet- dicular axes, is determined in magnitude, and the direction of
gt ite axis is found (§ 27), as follows :—The square of the resultant

angular velocity is the sum of the squares of its components,

5r

above the plane of the paper, and that

every point in the line OI, will be at rest
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and the ratios of the three components to the resultant are the Compos-

direction cosines of the axis. lar m
tiea n.hont
Hence simultaneous rotations about any number of axes 2X8mest-

meeting in a point may be compounded thus:—Let w be the PO'% .
angular velocity about one of them whose direction cosines are
l, m, n; Q the angular velocity and A, u, v the direction cosines

of the resultant,
M) = 3 (lw), pQ =3 (mo), vQ =3 (nw),
whence 0 = 3 (lw) + 3° (mw) + 3° (nw),
| 2 (lw) 3 (mw) 3 (nw)
and A= g k=" qg oy V=—g -

Hence also, an angular velocity about any line may be re
solved into three about any set of rectangular lines, the resolu-
tion in each case being (like that of simple velocities) effected
by multiplying by the cosine of the angle between the directions.

Hence, just as in § 31 a uniform acceleration, pérpendicular
to the direction of motion of a point, produces a change in the
direction of motion, but does not influence the velocity; so, if a
body be rotating about an axis, and be subjected to an action
tending to produce rotation about a perpendlcular axis, the
result will be a change of direction of the axis about which the
body revolves, but no change in the angular velocity. On this

kinematical principle is founded the dynamical explanation of

the Precession of the Equinoxes (§ 107) and of some of the
seemingly marvellous performances of gyroscopes and gyrostats.

The following method of treating the subject is useful in
connexion with the ordinary methods of co-ordinate geometry.

It contains also, as will be seen, an independent demonstration

of the parallelogram of angular velocities : —

Angular velocities w, p, o about the axes of =z, y, and 2
respectively, produce In time ¢ displacements of the point at
- @y, %' (887, 89),

(% —oy) 8t || 2, (0w ~m2) 3t y, (wy—p)¥| 2.
Henoe points for which

“__..-..

are not displaced. These are therefore the equations of the axis.




74 PRELIMINARY. [96.
Composi- Now the perpendicular from any point «, y, 2 to this line is,
’{‘;‘:.“7‘;’{32. ' by co-ordinate geometry,
e i (wx + py + 02)" |3
axes meet- 2 g T HC
e T e
1 J g 2 2
- JWE_I_PE_I_G_B (Pz_o'y) + (ox — wz) +(Wy_9w)
_ whole displacement of «, y, z
Nt + p’ + o ot ‘
The actual displacement of x, ¥, # is therefore the same as would
have been produced in time o6¢ by a single angular velocity,
Q =,/w"+ p* + o°, about the axis determined by the preceding
equations. |
Composi- 97. We give next a few useful theorems relating to the

tion of suc- " . : :
cessivefinite composition of successive finite rotations.

rotations. If a pyramid or cone of any form roll on a heterochirally
similar* pyramid (the image in a plane mirror of the first posi-
tion of the first) all round, it clearly comes back to its primitive
position. This (as all rolling of cones) 1s conveniently exhibited
by taking the intersection of each with a spherical surface.
Thus we see that if a spherical polygon turns about its angular
points In succession, always keeping ¢n the spherical surface,
and if the angle through which it turns about each point is
twice the supplement of the angle of the polygon, or, which
will come to the same thing, if it be in the other direction,
but equal to twice the angle itself of the polygon, it will be
brought to its original position.

The polar theorem (compare § 134, below) to this is, that a
body, after successive rotations, represented by the doubles of
the successive sides of a spherical polygon taken in order, is
restored to its original position; which also is self-evident.

98. Another theorem 18 the following ;—

If a pyramid rolls over all its sides on a plane, 1t leaves its
track behind 1t as one plane angle, equal to the sum of the
plane angles at its vertex.

* The similarity of a right-hand and a left-hand is called heterochiral: that
of two right-hands, homochiral. Any objeect and its image in a plane mirror
are heterochirally similar (Thomson, Proc. R. S. Edinburgh, 1873).
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Otherwise :—in a spherical surface, a spherical polygon having CGomposition

rolled over all its sides along a great circle, is found 1n the sive fivite
same position as if the side first lying along that circle had

been simply shifted along it through an arc equal to the poly-

gon’s periphery. The polar theorem 1s:—if a body be made to

take successive rotations, represented by the sides of a spherical
polygon taken in order, it will finally be as if 1t had revolved

about the axis through the first angular point of the polygon
through an angle équal to the spherical excess (§ 134) or area

of the polygon.

99. The investigation of § 90 also applies to this case; and 1t Motion
is thus easy to show that the most general motion of a spherical ﬁg?ﬂiﬂﬂﬁﬂ
figure on a fixed spherical surface is obtained by the rolling ot e
a curve fixed in the figure on a curve fixed on the sphere.
Hence as at each Instant the line joining C and O contains a
set of points of the body which are momentarily at rest, the
most general motion of a rigid body of which one point is fixed
consists in the rolling of a cone fixed in the body upon a cone

fixed in space—the vertices of both being at the fixed point.

100. Given at euch instant the angular velocities of the fﬁ{,ﬁﬁ‘; 311;0

body about three rectangular axes attached to 1t, determine fo given ro-
its position in space at any time.
From the given angular velocities about 04, 0B, OC, we
know, § 95, the position of the instantaneous axis OI with re-
ference to the body at every instant. Hence we know the
conical surface in the body which rolls on the cone fixed in
space. The data are sufficient also for the determination of
this other cone; and these cones being known, and the lines of
them which are in contact at any given instant being deter-
mined, the position of the moving body is completely deter-

mined.

If A, p, v be the direction cosines of O referred to 04, 0B,
0C ; w, p, o the angular velocities, and « their resultant:

A uw v 1

b— —
L

@ p o w
by § 95. These equations, in which =, p, o, @ are given functions
of ¢, express explicitly the position of O relatively to OA, OB,




Position of
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rotations.
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0C, and therefore determine the cone fixed in the body. For

the cone fixed in space: if » be the radius of curvature of 1ts
intersection with the unit sphere, ' the same for the rolling
cone, we find from § 105 below, that if 8 be the length of the
arc of either spherical curve from a common Initial point,

r]_ds_ . ) .o, 1 ds 5 . 3
N:-;?t ElIl(Slll T -+ 81 1?‘)= ;675(?"/1_?”-}-?’ \/1"""):

which, as 8, ' and @ are known in terms of #, gives » in terms
of ¢, or of s, as we please. Hence, by a single quadrature, the
‘“‘intrinsic” equation of the fixed cone.

101. An unsymmetrical system of angular co-ordinates v, 6, ¢,
for specifying the position of a rigid body by aid of a line OB
and a plane A OB moving with it, and a line OY and a plane
YOX fixed in space, which is essentially proper for many
physical problems, such as the Precession of the Equinoxes and
the spinning of a top, the motion of a gyroscope and its gimbals,
the motion of a compass-card and of its bowl and gimbals, 1s con-
venient for many others, and has been used by the greatest
mathematicians often even when symmetrical methods would
have been more convenient, must now be described.

ON being the intersection of the two planes, let YON =+,
and NOB=¢; and let & be the angle from the fixed plane,
produced through ON, to the portion NOB of the moveable
plane. (Example, 8 the “obliquity of the ecliptic,” ¥ the
longitude of the autumnal equinox reckoned from OY, a fixed
line in the plane of the earth’s orbit supposed fixed; ¢ the
hour-angle of the autumnal equinox; B being in the earth’s
equator and in the meridian of Greenwich: thus ¥, 6, ¢ are
angular co-ordinates of the earth.) To show the relation of
this to the symmetrical system, let 04 be perpendicular to OB,
and draw OC perpendicular to both; OX perpendicularto 0¥,
and draw OZ perpendicular to OY and OX; so that OA, 0B,
OC are three rectangular axes fixed relatively to the body,
and 0X, 0Y, OZ fixed in space. The annexed diagram shows
v, 8, ¢ in angles and arc, and in arcs and angles, on a spherical
surface of unit radius with centre at O.

To illustrate the meaning of these angular co-ordinates, sup-
pose 4, B, C initially to coincide with X, Y, Z respectively.
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Then, to bring the body into the position specified by 0, b, v,
rotate it round OZ through an angle equal to yr+¢, thus

Letter O at cen-
tre of sphere

concealed by
Y.

XX=v+¢,
YN =,
NB = ¢.

bringing 4 and B from X and Y to A4’ and B’ respectively ;

and, (taking VN = Jr,) rotate the body round ON through an
angle equal to 6, thus bringing 4, B, and C from the positions
A’, B, and Z respectively, to the positions marked 4, B, C in
the diagram. Or rotate first round ON through 6, so bringing
O from Z to the position marked O, and then rotate round
OC through ¥+ ¢. Or, while OC is turning from OZ to the
position shown on the diagram, let the body turn round OC
relatively to the plane ZCZ'O through aun angle equal to ¢.
It will be in the position specified by these three angles.

Tet : XZC =y, ¢t ZOA=m— ¢, and Z(C =0, and =, p, o Mean
the same as in § 100. By considering in succession instantaneous
motions of C along and perpendicular to ZC, and the motion of
AB in its own plane, we have

d6 . dy

dt_.,ﬁ-smtﬁ_l_pcgs(ﬁ, B]_]lea =pﬂln¢—'ﬁ'003¢,
dy d
and EEGOSQ+ EE——U.

The nine direction cosines (X'4), (YB), &c., according to the
notation of § 95, are given at once by the spherical triangles

Position of
the body
due to given
rotations.




Position of

thé body
doe to given

rotations.

General
motion of a

rlgid bOd_?l
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XNA, YNB, &ec.; each having N for one angular point, with 6,
or its supplement or its complement, for the angle at this point.
Thus, by the solution in each cage for the cosine of one side in
terms of the cosine of the opposite angle, and the cosines and
sines of the two other sides, we find

(XA)= cos @ cosy cos ¢ —sin y sin ¢,
(X B)=—cos § cos y sIn ¢ — sin ¢ cos ¢,
(Y4) = cos@siny cos ¢ + cos § sin ¢.

(Y B) =— cos 6 sin  8In ¢ + cos yr cos ¢,
(Y(') = sin@siny,
(ZB) = sin 0 sin ¢.

(Z0) = cosé,
(Z4)=—s1n 4 cos ¢,
(XC)= sinfcosy.

102. We shall next consider the most general possible motion
of a rigid body of which no point 1s fixed—and first we must
prove the following theorem. There 1s one set of parallel planes
in a rigid body which are parallel to each other in any two
positions of the body. The parallel lines of the body perpen-
dicular to these planes are of course parallel to each other in
the two positions.

Let C and O be any point of the body in its first and second
positions, Move the body without rotation from its second
position to a third in which the point at " in the second posi-
tion shall occupy its original position O. The preceding de-
monstration shows that there is a line (O common to the body
in its first and third positions. Hence a line C'0’ of the body
in its second position is parallel to the same line CO 1n the first
position. This of course clearly applies to every line of the
body parallel to CO, and the planes perpendicular to these
lines also remain parallel.

Let S denote a plane of the body, the twc positions of which
are parallel. Move the body from its first position, without
rotation, in a direction perpendicular to S, till S comes into the
plane of its second position. Then to get the body into its
actual position, such a motion as is treated in § 79 is farther
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required. But by § 79 this may be effected by rotation about
a certain axis perpendicular to the plane §, unless the motion
required belongs to the exceptional case of pure translation.
Hence [this case excepted] the body may be brought from the
first position to the second by translation through a determinate
distance perpendicular to a given plane, and rotation through a
determinate angle about a determinate axis perpendicular to
that plane. This is precisely the motion of a screw in 1ts nut.

103. In the excepted case the whole motion consists of two
translations, which can of course be compounded into a single
one ; and thus, in this case, there is no rotation at all, or every
plane of it fulfils the specified condition for § of § 102.

104. Returning to the motion of a rigid body with one point
fixed, let us consider the case in which the guiding cones, § 99,
are both circular. The motion in this case may be called Pre-
cesstonal Rotation.

The plane through the instantaneous axis and the axis of
the fixed cone passes through the axis of the rolling cone. This
plane turns round the axis of the fixed cone with an angular
velocity ) (see § 105 below), which must clearly bear a con-
stant ratio to the angular velocity w of the rigid body about

its instantaneous axis.

105. The motion of the plane containing these axes 1s
called the precession in any such case. What we have denoted
by Q is the angular velocity of the precession, or, as it 18 some-
times called, the rate of precession.

The angular motions @, { are to one another inversely as
the distances of a point in the axis of the rolling cone from the
instantaneous axis and from the axis of the fixed cone.

For, let OA be the axis of the fixed
cone, OB that of the rolling cone, and Of
the instantaneous axis. From any poini
P in OB draw PN perpendicular to 0l,
and P¢) perpendicular to OA. Then we
perceive that P moves always in the
circle whose centre is @, radius P¢,
and plane perpendicular to O4. Hence

A

General
motion Of a
rlg.id body

Precessional
tation.
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onal the actual velocity of the point P is QQPF. But, by the
. principles explained above, § 99, the velocity of P is the
same as that of a point moving in a circle whose centre 1s W,

plane perpendicular to ON, and radius NP, which, as this radius
revolves with angular velocity o, is ®NP. Hence
Q.QP=w.NP, or o : Q : QP : NP.

Let « be the semivertical angle of the fixed, 8 of the rolling,
cone. Each of these may be supposed for simplicity to be
acute, and their sum or difference less than a right angle—
though, of course, the formule so obtained are (like all
trigonometrical results) applicable to every possible case. We
have the following three cases :—

I. Convex
cone rolling
On ¢onvex.
mﬂhﬁ:ﬂsin (a + B),
} where A0 =a, IOB =B.

gn'ngorglﬁ I Let B be negative, and let B'=-8;
cave. then B’ is positive, and we have

—wsin 8 = Qsin (e - ),
where AOI=a, BOI=8'.

4,

B
gﬁfﬁ?ﬂg& A /I In the preceding let 8 > a.
Gy e con- /It may then be conveniently
" written
! B A I wsin §'= 2 sin (£’ - a),
‘ where A0l =a, BOI=J',

a and B’ being still positive.

Casesotpre-  108. If, as illustrated by the first of these diagrams, the
Yotati cagse is one of a convex cone rolling on a convex cone, the pre-

rotation.
cessional motion, viewed on a hemispherical surface having 4
for its pole and O for its centre, is in a similar direction to

Ppresent a portion of
the earth’s surface

arc Al = 8,552,000

the circle in which

feet. Imagine this
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that of the angular rotation about the instantaneous axis. Onsceof
This we shall call positive precessional rotation. It is the case roation.

of a common spinning-top (peery), spinning on a very fine

point which remains at rest in a hollow or hole bored by itself;

not sleeping upright, nor nodding, but sweeping its axis round

in a circular cone whose axis is vertical. In Case IIL also we
have positive precession. A good example of this occurs in the case
of a coin spinning on a table when its plane is nearly horizontal.

107. Case 11, that of a convex cone rolling inside a concave
one, gives an example of negative precession: for when viewed

‘a8 before on the hemispherical surface the direction of angular

rotation of the instantaneous axis is opposite to that of the

roling cone. This is the case of a symmetrical cup (or figure

of revolution) supported on a point, and stable when balanced,
1.e., having 1ts centre of gravity below the pivot; when in-
clined and set spinning non-nutationally. For instance, if a
Troughton’s top be placed on its pivot in any inclined position,
and then spun off with very great angular velocity about its
axis of figure, the nutation will be insensible; but there will
be slow precession.

To this case also belongs the precessional motion of the earth’s mogel
illustrating

axis; for which the . illustrating
angle a =28° 27’ 28", ===

Equinoxes.

the period of the ro-
tation @ the sidereal
day; that of Q is
25,868 years. If the
second diagram re-

""""""""""""
........
''''''''''''

round the pole, the

|

‘_l

l
|

Hi

,111E|1||me

feet, and therefore
the circumference of

I moves=52,240,000

circle to be the in-
VOL. I.

=




Precession
of tho equi-
noxes.

Free rota-
body kineti

neti-
cally sym-
metrical
about an
8X18,
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ner edge of a fixed ring in space (directionally fixed, that is
to say, but having the same translational motion as the
earth’s centre), and 1magine a circular post or pivot of
radius BI to be fixed to the earth with its centre at B.
This ideal pivot rolling on the inner edge of the fixed
ring travels once round the 52,240,000 feet-circumference in
25,868 years, and therefore its own circumference must be
5563 feet. Hence BI=0-88 feet; and angle BOI, or B,
= (0"-00867.

108. Very interesting examples of Cases I. and III. are fur-
nished by projectiles of different forms rotating about any ayis.
Thus the gyrations of an oval body or a rod or bar flung into
the air belong to Class I. (the body having one axis of less
moment of 1inertia than the other two, equal); and the
seemingly irregular evolutions of an ill-thrown quoit belong

to Class IIT. (the quoit having one axis of greater moment of

inertia than the other two, which are equal). Case 1II. has
therefore the following very interesting and important appli-
cation.

If by a geological convulsion (or by the transference of a few
million tons of matter from one part of the world to another)
the earth’s instantaneous axis O/ (diagram III, § 105) were at
any time brought to non-coincidence with its principal axis of

greatest moment of inertia, which (§§ 825, 285) i1s an axis of

approximate kinetic symmetry, the instantaneous axis will, and
the fixed axis 04 will, relatively to the solid, travel round the
solid’s axis of greatest moment of inertia in a period of about
306 days [this number being the reciprocal of the most probable
C-A
C
diagram of Case III. with B/=306 x A4I. Thus in a very little
1

less than a day (less by 306 when BOI 18 a small angle)

(§ 828)]; and the niotion 1s represented by the

value of

[ revolves round 4. It i1s OA, as has been remarked by

Maxwell, that is found as the direction of the celestial pole
by observations of the meridional zenith distances of stars, and

this line being the resultant axis of the earth’s moment of
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momentum (§ 267), would remain invariable in space did no Free rota-

. ) tion of a
external influence such as that of the moon and sun disturb the body kineti-
| ’ . . . GHILY,BFHI-
earth’s rotation. When we neglect precession and nutation, metrical

the polar distances of the stars are constant notwithstanding axis.
the 1deal motion of the fixed axis which we are now consider-
ing; and the effect of this motion will be to make a periodic
variation of the latitude of every place on the earth’s surface
having for range on each side of its mean value the angle BOA,
and for its period 306 days or thereabouts. Maxwell* ex-
amined a four years series of Greenwich observations of Polaris
(1851-2-3-4), and concluded that there was during those

~years no variation exceeding half a second of angle on each

side of mean range, but that the evidence did not disprove
a variation of that amount, but on the contrary gave a very
shght indication of a minimum latitude of Greenwich belonging
to the set of months Mar. ’51, Feb. '52, Dec. 52, Nov. '53,
Sept. '54.

“This result, however, is to be regarded as very doubtful......
“and more observations would be required to establish the
‘“ existence of so small a variation at all.

“I therefore conclude that the earth has been for a long time
“revolving about an axis very near to the axis of figure, if not
“coinciding with it. The cause of this near coincidence is
“ erther the original softness of the earth, or the present fluidity
“of 1ts interior [or the existence of water on its surface].
“The axes of the earth are so nearly equal that a con-
“siderable elevation of a tract of country might produce a.
“deviation of the principal axis within the limits of observa-
“tion, and the only cause which would restore the uniform
“motion, would be the action of a fluid which would gradually
‘““diminish the oscillations of latitude. The permanence of
“latitude essentially depends on the inequality of the earth’s
“axes, for 1f they had all been equal, any alteration in the
“crust of the earth would have produced new principal axes,
“and the axis of rotation would travel about those axes, alter-

* On a Dynamical Top, Trans. R. S. E., 1857, p. 559.
6—2
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Freerots- ““ing the latitudes of all places, and yet not in the least altering

Eggyﬂl{i;eﬁ- ¢ the position of the axis of rotation among the stars.”

cally aym-

e Perhaps by a more extensive “search and analysis of the
wxis. « observations of different observatories, the nature of the

« periodic variation of latitude, if it exist, may be determined.
« T am not aware* of any calculations having been made to prove
« its non-existence, although, on dynamical grounds, we have
“ gvery reason to look for some very small variation having the

“ periodic time of 3256 days nearly” [more nearly 306 days|,
« 5 period which is clearly distinguished from any other astro-

. . . ”
« nomical cycle, and therefore easily recognised.

The periodic variation of the earth’s instantaneous axis thus

anticipated by Maxwell must, if it exists, give rise to a tide
of 306 days period (§ 801). The amount of this tide at the

equator would be a rise and fall amounting only to 54 centi-
metres above and below mean for a deviation of the instan-

taneous axis amounting to 1" from its mean position OB, or
for a deviation BI on the earth’s surface amounting to
31 metres. This, although discoverable by elaborate analysis
of long-continued and accurate tidal observations, would be less

casily discovered than the periodic change of latitude by astro-
nomical observations according to Maxwell's method.

* [Written in 1857. G. H. D.]

¥ Maxwell; Transactions of the Royal Society of Edinburgh, 20th April, 1857.

1 Prof. Maxwell now refers us to Peters (Recherches sur la parallaxe des
étoiles fizes, St Petersburgh Observatory Papers, Vol. L, 1853), who seems to
have been the first to raise this interesting and important question. He found
trom the Pulkova observations of Polaris from March 11, 1842 till April 30,
1843 an angular radius of 0”079 (probable error 0"7-017), for the circle round
its mean position deseribed by the instantaneous axis, and for the time,
within that interval, when the latitude of Pulkova was & maximum, Nov.16, 1842,
The period (calculated from the dynamical theory) which Pefers assumed was
304 mean solar days: the rate therefore 1-201 turns per annum, or, nearly
enough, 12 turns per ten years. Thus if Peters’ result were genuine, and
remained constant for ten years, the latitude of Pulkova would be a maximum
about the 16th of Nov. again in 1852, and Pulkova being in 30° East longitude
from Greenwich, the latitude of Greenwich would be & maximum g5 of the period,
or about 25 days earlier, that is to say about Oct. 22, 1852, But Maxwell’s ex-
amination of observations seemed to indicate more nearly the minimum latitude
of Greenwich about the same time. This discrepance is altogether in accordance
with & continuation of Peters’ investigation by Dr Nyrén of the Pulkova Ob-
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109. In various illustrations and arrangements of apparatus Commun:-
. . cation of

useful in Natural Philosophy, as well as in Mechanics, it is angular
required to connect two bodies, so that when either turns about equally be-
a certaln axis, the other shall turn with an equal angular clined axes.
velocity about another axis in the same plane with the former,
but inclined to 1t at any angle. This is accomplished in
mechanism by means of equal and similar bevelled wheels, or
rolling cones; when the mutual inclination of two axes is not
to be varied. It is approximately accomplished by means of
Hooke's joint, when the two axes are nearly in the same line, ooke’s
but are required to be free to vary in their mutual inclination.
A chain of an infinitely great number of Hooke's joints may be Flexible but.
imagined as constituting a perfectly flexible, untwistable cord, cord, ke
which, if 1ts end-links are rigidly attached to the two bodies,
connects them so as to fulfil the condition rigorously without
the restriction that the two axes remain in one plane. If we Yniversal
imagine an infinitely short length of such a chain (still, how- S
ever, having an infinitely great number of links) to have its
ends attached to two bodies, it will fulfil rigorously the con-
dition stated, and at the same time keep a definite point of one
body infinitely near a definite point of the other ; that is to say,
1t will accomplish precisely for every angle of inclination what

Hooke’s joint does approximately for small inclinations.

The same 18 dynamically accomplished with perfect accuracy Elastic unic

. . 1
for every angle, by a short, naturally straight, elastic wire of flexurojoint.

servatory, in which, by a careful serutiny of several series of Pulkova observations
between the years 1842...1872, he concluded that there is no constancy of
magnitude or phase in the deviation sought for. A similar negative conclusion
was arrived at by Professor Newcomb of the United States Naval Observatory,
Washington, who at our request kindly undertook an investigation of the ten-

~ month period of latitude from the Washington Prime Vertical Observations

from 1862 to 1867. His results, as did those of Peters and Nysen and Maxwell,
seemed to indicate real variations of the earth’s instantaneous axis amounting
to possibly as much as ” or ¥’ from its mean position, but altogether irregular
both in amount and direction; in fact, just such as might be expected from
irregular heapings up of the oceans by winds in different localities of the
earth. ]

We intend to return to this subject and to consider cognate questions regard-
ing irregularities of the earth as a timekeeper, and variations of its figure and
of the distribution of matter within it, of the ocean on its surface, and of tha
atmosphere surrounding it, in §§ 267, 276, 405, 406, 830, 832, 845, 846.




86 PRELIMINARY. [109.

Elsstic uni- truly circular section, provided the forces giving rise to any re-
forurcjoint. sistance o equality of angular velocity between the two bodies
are infinitely small. In many practical cases this mode of con-
nexion is useful, and permits very little deviation from the con-
ditions of a true universal flexure joint. It is used, for instance,
in the suspension of the gyroscopic pendulum (§ 74) with perfect
success. The dentist’s tooth-mill 1s an interesting illustration
of the elastic universal flexure joint. In it a long spiral spring

of steel wire takes the place of the naturally straight wire
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AOB, fully specify the position of the moveable body in this
case.

110. Suppose a rigid body bounded by any curved surface General

molion of

to be touched at any point by another such body. Any motion one rigid

. ¥ 4.q.  body touch-
of one on the other must be of one or more of the forms sliding, ing another.
rollvng, or spinming. The consideration of the first is so simple

as to require no comment.

Any motion 1n which there 1s no slipping at the point of
contact must be rolling or spinning separately, or combined.

suggested above. : _
Let one of the bodies rotate about successive instantaneous

Moviag Of two bodies connected by a universal flexure joint, let one 0 Mine in th t - Capo oL
taclied t0 & be held fixed. The motion of the other, as _a'xe::j :* ying mt : coﬁmonh Angeh 1?; ]?ne ah f’h’f’ point o
by s univer- 4 long as the angle of inclination of the axes 1nstantaneous. contact, and each passing tohrough this pom't—
foins, remains constant, will be exactly that figured the -other bod-y being fixed. This motion is what we call rolling,
in Case 1., § 105, above, with the angles x and or simple rolling, of the moveable body on the fixed.
8 made equal. Let O be the joint; 4 O the On the other hand, let the instantaneous axis of the moving
0 axis of the fixed body; OB the axis of the ‘body be the common normal at the point of contact. This 18
moveable body. The supplement of the angle pure spinning, and does not change the point of contact.
A OB is the mutual inclination of the axes; Let the moving body move, so that its instantaneous axis,
A and the angle AORB itself is bisected by the still passing through the point of contact, is neither in, nor
instantaneous axis of the moving body. The perpendicular to, the tangent plane. This motion is combined
diagram shows a case of this motion, in which the mutual in- rolling and spinning.
clination, 8, of the axes 1s acute. According to the formula 111. When a body rolls and spins on another body, the Traces of
of Case 1, § 105, we have trace of either on the other is the curved or straight line along rolling:
w 8in a = () sin 2a, which 1t 1s successively touched. If the instantaneous axis is
or = 920 cosa = 2Q si nﬁ, '::in the no:::ma.l plane per_pendicular tq the traces, the rolling
2 18 called direct. If not direct, the rolling may be resolved into Direct
where o is the angular velocity of the moving body ahout 1ts a direct rolling, and a rotation or twisting round the tangent rolling:
instantaneous axis, O, and Q is the angular velocity of its pre- line to the traces.
cession ; that is to say, the angular velocity of the plane through When there is no spinning the projections of the two traces
the fixed axis 44’, and the moving axis OB of the moving on the common tangent plane at the point of contact of the
body. - . two surfaces have equal and same-way directed curvature: or
Two dogrees Besides this motion, the moving body may clearly have any they have “contact of the second order.”” When there s
0 move en- angular velocity whatever about an axis through O perpen- spinnang, the two projections still touch one another, but with

{3y thus  dicular to the plane 40B, which, compounded with » round
mspendet OI, gives the resultant angular velocity and instantaneous axis.

Two co-ordinates, § = A’OB, and ¢ measured in a plane per-
pendicular to 40, from a fixed plane of reference to the plane

contact of the first order only: their curvatures differ by a
quantity equal to the angular velocity of spinning divided
by the velocity of the point of contact. This last we see by
noticing that the rate of change of direction along the pro-




88 PRELIMINARY. 111.

Dirst  jection of the fixed trace must be equal to the rate of change
" of direction along the projection of the moving trace if held
fixed plus the angular velocity of the spinning.

At any instant let 2z=Ada®+ 20xy +By* .................. (1)

and 28 =A'%c" + 200y + B'y* ................. (2)

be the equations of the fixed and moveable surfaces S and &
infinitely near the point of contact O, referred to axes 00X, OY
in their common tangent plane, and OZ perpendicular to it:
let =, p, o be the three components of the instantaneous angular
velocity of §'; and let z, 9, be co-ordinates of P, the point of
contact at an Infinitely small time ¢, later: the third eo-ordinate,
%, is given by (1).

Let £ be the point of 8’ which at this latertime coincides with P,
The co-ordinates of £’ at the first instant are x + oyt, ¥ — ot ;
and the corresponding value of 2’ is given by (2). This point is
infinitely near to (x, g, #'), and therefore at the first instant the

direction cosines of the normal to S’ through it differ but infinitely

little from
—~(Ad'z+C'y), —(C'z + By), 1.

But at time ¢ the normal to §* at P’ coincides with the normal
to § at P, and therefore its direction cosines change from the
preceding values, to

-~ (dx+Cy), —(Cx+By), 1:
that is to say, it rotates through angles

(C'-0)x+ (B ~ B)y round 0X,

and —{d'-A)z+(C"-C)yt , OY.

Hence wt=(0"'-C)x+ (B - By ) ]
ot = —{(A'— Ao+ (0 = C) g} [ (3),

or W = (C’—O):ﬁ—i—(.BI—B)y
P=_{(A,__A)sé+(0,_0)g}} .................. (4),

if %, 4 denote the component velocities of the point of contact.

Put g = E )i, (5),

and take components of = and p round the tangent to the traces
and the perpendicular to it in the common tangent plane of the
two surfaces, thus:

(twisting component)... 3 w + g P

= (0’ - O)fﬁﬂ;‘i’f +[(B-B)—(d' - ......(6),
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and

(direct-rolling component)...... g— w——p
q

=% (4"~ 4) & + 2(C" = C) sy + (B — B) g*]...... (7).

Choose 0X, OY so that C -~ ("=0, and put 4'— 4=a, B'—B=S
(6) and (7) become

(twisting component) ............ g = +;£ p={(B-a) %_y ........ (8),
(direct-rolling component)...... g o —g D = gl;(fzm::E +B5%)...... (9).

[Compare below, § 124 (2) and (1).]
And for o, the angular velocity of spinning, the obvious pro-
position stated in the preceding large print gives

1 1)
o= R 10),
/-, 0
1 1

if » and " be the curvatures of the projections on the tangent

plane of the fixed and moveable traces. [Compare below, § 124

(3).]
From (1) and (2) it follows that

When one of the surfaces 1s a plane, and the trace on the
other is a line of curvature (§ 130), the rolling is direct.

When the trace on each body 1s a line of curvature, the
rolling 18 direct. (fenerally, the rolling is direct when the twists
of infinitely narrow bands (§ 120) of the two surfaces, along the
traces, are equal and in the same direction.

112. Imagine the traces constructed of rigid matter, and all
the rest of each body removed. We may repeat the motion
with these curves alone. The difference of the circumstances
now supposed will only be experienced if we vary the direction
of the instantaneous axis. In the former case, we can only do
this by introducing more or less of spinning, and if we do so
we alter the trace on each body. In the latter, we have always
the same moveable curve rolling on the same fixed curve; and
therefore a determinate line perpendicular to their common
tangent for one component of the rotation; but along with this
we may give arbitrarily any velocity of twisting round the
common tangent. The consideration of this case is very in-

Direet
rolling,




Curve
rolling on
curve.

Angular
velocity of
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structive, It may be roughly imitated in practice by two stiff

wires bent into the forms of the given curves, and prevented
from crossing each other by a short piece of elastic tube clasping
them together.

First, let them be both plane curves, and kept in one plane.
We have then rolling, as of one cylinder on another.

Let p” be the radius of curvature of the rolling, p of the fixed,
cylinder ; o the angular velocity of the former, ¥V the linear velo-
city of the point of contact. We have

m=(1+—1;,> V.
p P

For, in the figure, suppose P to be at any time
the point of contact, and ¢ and ¢’ the points which
are to be in contact after an infinitely smali
interval £ ; O, O’ the centres of curvature; PO¢
=6, PO'Q =¢.

Then P¢ = P¢)’ =space described by point of
contact. In symbols pf =p'¢’= V.

Also, before 0'Q’ and 0¢ can coincide in direc-
tion, the former must evidently turn through an
angle 6 + ¢,

Therefore wt= 6 + 6 ; and by eliminating 6 and
¢, and dividing by ¢, we get the above result.

It is to be understood, that as the radii of curvature have
been considered positive here when both surfaces are convex,
the negative sign must be introduced for either radius when the
corresponding curve 1s concave.

OF

4,

Hence the angular velocity of the rolling curve 1s 1n this

rollingina case equal to the product of the linear velocity of the point of

plane,

Piane
curves not
in same
plane,

contact by the sum or difference of the curvatures, according
as the curves are both convex, or one concave and the other
convex.

113. When the curves are both plane, but in different
planes, the plane in which the rolling takes place divides the
angle between the plane of one of the curves, and that of the
other produced through the common tangent line, into parts
whose sines are inversely as the curvatures in them respec-
tively ; and the angular velocity 1s equal to the linear velocity
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of the point of contact multiplied by the difference of the pro- Plane

curves not

jections of the two curvatures on this plane. The projections of in same
the circles of the two curvatures on the plane of the common

plane.

tangent and of the instantaneous axis coincide.

For, let PQ, Pp be equal arcs of the two curves as before, and
let PR be taken in the common tangent (i.e., the intersection of
the planes of the curves) equal to each. Then @K, pK ave
ultimately perpendicular to PA.

PR
Hence p R = 5
QYR = PR .

2p

Also, ¢ QRp = a, the anglc between the planes of the curves.
: 2
We have Qp”_PR (lﬂ+ lﬂ — — COS a).
4 \o° p° op
Therefore if w be the velocity of rotation as before,

IDZV/\/_]_'.+_:.I__2GOS&_
D'E ,i)2 gp

Also the instantaneous axis is evidently perpendicular, and there-
fore the plane of rotation parallel, to ¢p. Whence the above.
In the case of a =, this agrees with the result of § 112.

A good example of this is the case of a coin spinning on a
table (mixed rolling and spinning motion), as its plane becomes
gradually horizontal. In this case the curvatures become more
and more nearly equal, and the angle between the planes of the
curves smaller and smaller. Thus the resultant angular velo-
city becomes exceedingly small, and the motion of the point
of contact very great compared with 1it.

114. The preceding results are, of course, applicable to tor- Qurve roll

tuous as well as to plane curves; it is merely requisite to sub- curve: two
degrees of

stitute the osculating plane of the former for the plane of the freedom.
latter.

115. We come next to the case of a curve rolling, with or Curve roll.
ing on sur-

without spinning, on a surface. face: three
degrees of

It may, of course, roll on any curve traced on the surface. treedom.

When this curve is given, the moving curve may, while rolling
along it, revolve arbitrarily round the tangent. But the com-
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Curveroll- ponent Instantaneous axis perpendicular to the common tan-
ing on sur- '

face: three  gent, that is, the axis of the direct rolling of one curve on the
freedom.  other, 1s determinate, § 118. If this axis does not lie in the
surface, there is spinning. Hence, when the trace on the surface
1s given, there are two independent variables in the motion;
the space traversed by the point of contact, and the inclination
of the moving curve's osculating plane to the tangent plane of

the fixed surface.

Trace pre- 116. If the trace is given, and it be prescribed as a condi-
no spinning t10N that there shall be no spinning, the angular position of the
rolling curve round the tangent at the point of contact is deter-
minate. For in this case the instantaneous axis must be in the
tangent plane to the surface. Hence, if we resolve the rotation
into components round the tangent Iine, and round an axis per-
pendicular to 1t, the latter must be in the tangent plane. Thus
the rolling, as ot curve on curve, must be in a normal plane to
the surface ; and therefore (§§ 114, 113) the rolling curve must
Two degrees be always so situated relatively to its trace on the surface that
the projections of the two curves on the tangent plane may be

of coincident curvature.

The curve, as 1t rolls on, must continually revolve about the
tangent line to 1t at the point of contact with the surface, so as
in every position to fulfil this condition.

Let a denote the inclination of the plane of curvature of the

trace, to the normal to the surface at any point, o’ the same for

the plane of the rolling curve; ! 1, their curvatures. We

b
P’ p
reckon a as obtuse, and o’ acute, when the two curves lie on
opposite sides of the tangent plane. Then

1. , 1.
— 8l & = — Sl a,
p P
which fixes o’ or the position of the rolling curve when the point

of contact is given.

Angular ve- Let w be the angular velocity of rolling about an axis perpen-
LA dicular to the tangent, = that of twisting about the tangent,and let
¥V be the linear velocity of the point of contact. Then, since l,cos o’

p
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and — ! cos a (each positive when the curves lie on opposite sides Angular ve-
P locity of di-
rect rolling.

of the tangent plane) are the projections of the two curvatures on
a plane through the normal to the surface containing their com-

mon tangent, we have, by § 112,

w= V(-—l,cas a.’—-l— cos cr.),
P P

o/ being determined by the preceding equation. Let 7 and 7
denote the tortuosities of the trace, and of the rolling curve, re-
spectively. Then, first, if the curves were both plane, we see
that one rolling on the other about an axis always perpendicular
to their common tangent could never change the inclination of
their planes. Hence, secondly, if they are both tortuous, such

rolling will alter the inclination of their osculating planes by an
indefinitely small amount (v — 7')ds during rolling which shifts Aungular ve-

. . . locity round
the point of contact over an arc ds. Now a is a known function tangent.

of s if the trace is given, and therefore so also is «’. But a—a’
is the inclination of the osculating planes, hence

d(a—a’) ]
V{ T (T—-T)}HE".

117. Next, for one surface rolling and spinning on another. surface on
First, if the trace on each is given, we have the case of § 113 Surface.
or § 115, one curve rolling on another, with this farther con-
dition, that the former must revolve round the tangent to the
two curves so as to keep the tangent planes of the two surfaces

coincident.
It is well to observe that when the points in contact, and the Both traces
two traces, are given, the position of the moveable surface 1s 25253“"“1‘
. : : ‘,o ., 1. of freeqom,
quite determinate, being found thus :—Place it 1n contact with
the fixed surface, the given points together, and spin 1t about
the common normal till the tangent lines to the traces coincide.
Hence when both the traces are given the condition of no
spinning cannot be imposed. During the rolling there must in
general be spinning, such as to keep the tangents to the two
traces coincident. The rolling along the trace is due to rotation
round the line perpendicular to it in the tangent plane. The
whole rolling is the resultant of this rotation and a rotation
about the tangent line required to keep the two tangent planes

coincident.
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Eggﬁ on  In this case, then, there is but one independent variable—the

both traces Space passed over by the point of contact : and when the velocity
one 2:5:;‘?‘.{ of the point of contact is given, the resultant angular velocity,
- and the direction of the instantaneous axis of the rolling body

are determinate. We have thus a sufficiently clear view of the

general character of the motion in question, but it is right that

we consider 1t more closely, as it introduces us very naturally

to an important question, the measurement of the fwist of a rod,

wire, or narrow plate, a quantity wholly distinct from the for-

tuostty of its axis (§ 7).

118. Suppose all of each surface cut away except an infinitely

narrow strip, including the trace of the rolling. Then we have

the rolling of one of these strips upon the other, each having at
every point a definite curvature, tortuosity, and twist.

Pyist. 119. Suppose a flat bar of small section to have been bent
(the requisite amount of stretching and contraction of its edges
being admissible) so that its axis assumes the form of any plane
or tortuous curve, If 1t be unbent without twisting, 7., if the
curvature of each element of the bar be removed by bending it
through the requisite angle in the osculating plane, and 1t be
found untwisted when thus rendered straight, it had no twist in
1ts original form. This case 1s, of course, included in the general
theory of twist, which 1s the subject of the following sections.

Axis and 120. A bent or straight rod of circular or any other form of

WANSVETSE section being given, a line through the centres, or any other
chosen points of its sections, may be called its axis. Mark a
line on its side all along its length, such that it shall be a
straight line parallel to the axis when the rod is unbent and
untwisted. A line drawn from any point of the axis perpen-
dicular to this side line of reference, is called the {ransverse of
the rod at this point.

The whole twist of any length of a straight rod is the angle
between the transverses of its ends. The average twist is the
integral twist divided by the length. The twist at any point
18 the average twist in an infinitely short length through this
point ; In other words, 1t 1s the rate of rotation of its transverse
per unit of length along it.
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The twist of a curved, plane or tortuous, rod at any point is ¥'wist.
the rate of component rotation of its transverse round its tangent
line, per unit of length along it.

If ¢ be the twist at any point, fids over any length is the
integral twist I this length.

121. Integral twist in a curved rod, although readily de-
fined, as above, in the language of the integral calculus, can-
not be exhibited as the angle between any two lines readily
constructible. The following considerations show how 1t 18 to
be reckoned, and lead to a geometrical construction exhibiting
it in a spherical diagram, for a rod bent and twisted n any
manner :—

122. If the axis of the rod forms a plane curve lying in one Estimation
. , . . of integral
plane, the integral twist is clearly the difference between the twist:
inclinations of the transverse at its ends to its plane. For Inaplane
if it be simply unbent, without altering the twist in any part, oS
the inclination of each transverse to the plane 1n which 1its
curvature lay will remain unchanged ; and as the axis of the
rod now has become a straight line in this plane, the mutual
inclination of the transverses at any two points of 1t has become

equal to the difference of their inclinations to the plane.

123. No simple application of this rule can be made to a
tortuous curve, in consequence of the change of the plane of
curvature from point to point along it; but, instead, we may

proceed thus :—

First, Let us suppose the plane of curvature of the axis of In & curve
. ’ ' conslsvin
the wire to remain constant through finite portions of the curve, of plane

and to change abruptly by finite angles from one such portion E{{%&% N
to the next (a supposition which involves no angu- .

lar points, that is to say, no infinite curvature, mn N\ 3}

the curve). Let planes parallel to the planes ot cur- XV D
vature of three successive portions, PQ, @R, RS (not

shown in the diagram), cut a spherical surface in the

great circles GAG, ACA', CE. The radil of the /B
o

sphere parallel to the tangents at the points ¢ and £
of the curve where its curvature changes will cut 1ts ¢
surface in 4 and C, the intersections of these circles.
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Let @ be the point in which the radius of the sphere parallel to
the tangent at P cuts the surface; and let GH, 4B, CD (lines
Estimation necessarily in tangent planes to the spherical surface), be paral-
ovistons lels to the transverses of the bar drawn from the points P, Q, B
gstmgof  of its axis. Then (§ 122) the twist from P to @ is equal to the
Ponsin .~ difference of the angles HG A and BA®'; and the twist from ¢

ﬁfﬁﬁfﬁ to R is equal to the difference between B4 C and DCA'. Hence

the whole twist from P to £ 1s equal to
HGA -BAG +BAC— DCA’,

or, which is the same thing,
ACE+GAC—-(DCE—-HGA).

Continuing thus through any length of rod, made up of portions
curved in different planes, we infer that the integral twist be-
tween any two points of it is equal to the sum of the exterior
angles in the spherical diagram, wanting the excess of the in-
clination of the transverse at the second point to the plane of
curvature at the second point above the inclination at the first
point to the plane of curvature at the first point. The sum of
those exterior angles is what is defined below as the “change of
direction in the spherical surface” from the first to the last side
of the polygon of great circles. When the polygon 1s closed, and
the sum includes all its exterior angles, it is (§ 134) equal to
27 wanting the area enclosed if the radius of the spherical sur-
face be unity. The construction we have made obviously holds
in the limiting case, when the lengths of the plane portions are
infinitely small, and is therefore applicable to a wire forming a
tortuous curve with continuously varying plane of curvature, for
which it gives the following conclusion :—

In a con- Let a point move uniforinly along the axis of the bar: and,

gﬁ‘tﬁgﬁy parallel to the tangent at every instant, draw a radius of a

o sphere cutting the spherical surface in a curve, the hodograph
of the moving point. From points of this hodograph draw par-
allels to the transverses of the corresponding points of the bar.
The excess of the change of direction (§ 135) from any point to
another of the hodograph, above the increase of its inchination to

the transverse, is equal to the twist in the corresponding part
of the bar.
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Th ‘ ) y Estimatio
e annexed diagram, showing the hodograph and the Ratimation

parallels to the transverses, illustrates this rule. Thus, for in- twist: in a
ntinu-

stance, the excess of the change of direction in the spherical ously
tortuous

surface along the hodograph from A to C, above DCS—BAT, curve.
18 equal to the twist in the bar between the points of it to

which 4 and C correspond. Or,
again, if we consider a portion of
the bar from any point of it, to
another point at which the tangent
to its axis is parallel to the tan- \
gent at its first point, we shall have | |

a closed curve as the spherical hodograph; and if 4 be the
point of the hodograph corresponding to them, and AB and
AB the parallels to the transverses, the whole twist in the
included part of the bar will be equal to the change of direction
all round the hodograph, wanting the excess of the exterior
angle B'AT above the angle BAT; that is to say, the whole

twist will be equal to the excess of the angle BAB’ above
the area enclosed by the hodograph. '

Thfa principles of twist thus developed are of vital Import-
ance 1n the theory of rope-making, especially the construction

and the dynamics of wire ropes and submarine cables, elastic
bars, and spiral springs.

For example: take a piece of steel pianoforte-wire carefully pynamics
straightened, so that when free from stress it is straight : bend kinks.
1t into a circle and join the ends securely so that there can be
no turning of one relatively to the other. Do this first without
torsion: then twist the ring into a figure of 8, and tie the two
parts together at the crossing. The area of the spherical hodo-
graph is zero, and therefore there is one full turn (27) of twist;
which (§ 600 below) is uniformly distributed throughout the
length of the wire. The form of the wire, (which is not in a
plane,) will be investigated in § 610. Meantime we can see
that the “torsional couples” in the normal sections farthest
from the crossing give rise to forces by which the tie at the
crossing is pulled in opposite directions perpendicular to the
Plane of the crossing. Thus if the tie is cut the wire springs
back into the circular form. Now do the same thing again,

VOL. I. 7
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mies beginning with a straight wire, but giving 1t one full turn
Yins. (2m) of twist before bending it into the circle. The wire will
stay in the 8 form without any pull on the tie. Whether
the circular or the 8 form is stable or unstable depends
on the relations between torsional and flexural ngidity. If
the torsional rigidity is small in comparison with the flexural
rigidity [as (§§ 703, 704, 705, 709) would be the case i,
instead of round wire, a rod of + shaped section were used),
the circular form would be stable, the 8 unstable.

Lastly, suppose any degree of twist, either more or less
than 2, to be given before bending into the circle. The
circular form, which is always a figure of free equilibrium, may
be stable or unstable, according as the ratio of torsional to
flexural rigidity is more or less than a certain value depending
on the actual degree of twist. The tortuous 8 form 1s not (except
in the case of whole twist = 27, when 1t becomes the plane
elastic lemniscate of Fig. 4, § 610,) a continuous figure of iree
equilibrium, but involves a positive pressure of the two cross-
ing parts on one another when the twist > 2w, and a negative
pressure (or a pull on the tie) between them when twist <27r:
and with this force it is a figure of stable equilibrium.

surtaceroll. 124, Returning to the motion of one surface rolling and

mng o1 sur- . . . .
face; both spinning on another, the trace on each being given, we may

tracesgiven. onsider that, of each, the curvature (§ 6), the tortuosity (§ 7),
and the twist reckoned according to transverses in the tangent
plane of the surface, are known; and the subject 1s fully spe-

cified in § 117 above.

Let l, and ! be the curvatures of the traces on the rolling

P P
and fixed surfaces respectively; «’ and a the inclinations of their

planes of curvature to the normal to the tangent plane, reckoned
as in § 116; 7 and 7 their tortuosities; ¢ and ¢ their twists;
and g the velocity of the point of contact. All these being
known, it is required to find :—

o the angular velocity of rotation about the transverse of the
traces; that is to say, the line in the tangent plane perpendicular
to their tangent line,

ar the angular velocity of rotation about the tangent line, and

o ,s ' of spinming.
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We have Surface roil-

1 1 Egenn syur-

w=¢ (- cosa — P oS a) ........................... (1), tracésg?ff]eln-

3 , d(a—a' ,

W—Q(t—-t =9’{ o (T—T)} ............ (2),

1 . 1
and =q (- ey ;
oc=q (P’ s1n a. p sin a.) ........................... (3).

These three formulas are respectively equivalent to (9), (8),
and (10) of § 111.

. 125. In the same case, suppose the trace on one only of Surfacerol-
the surfaces to be given. We may evidently impose the con- faco without

dition of no spinning, and then the trace on the other is deter- =~

]I;linate. This case of motion is thoroughly examined in § 137,
elow.

) The condition is that the projections of the curvatures of the
two traces on the common tangent plane must coincide.

If - and 2
T r

surfaces in a normal section of each through the tangent line to
the trace, and if a, o, p, p’ have their meanings of § 124,

p'=7"cosa', p=rcos a (Meunier’s Theorem, § 129, below).

But 1. , 1. , 7 :
u Fsm a =-;J gina, hence tana =;—tan a, the condition re-

quired,

be the curvatures of the rolling and stationary

126. If a straight rod with a straight line marked on one gxﬂégplﬂﬁ of
side of it be bent along any curve on a spherical surface, so and twist,

that the marked line is laid in contact with the spherical sur-
face, it acquires no twist in the operation. For if it is laid
80 along any finite arc of a small circle there will clearly be
no twist. And no twist i1s produced in continuing from any

point along another small circle having a common tangent with
the first at this point.

If a rod be bent round a cylinder so that a line marked

along one side of it may lie in contact with the cylinder,
or if, what presents somewhat more readily the view now de-

7—2
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Bxamplesof sired, we wind a straight ribbon spirally on a cylinder, the

tortuosity
and twist,

axis of bending is parallel to that of the cylinder, and therefore
oblique to the axis of the rod or ribbon. We may therefore
resolve the instantaneous rotation which constitutes the bending
at any instant into two components, one round a line perpen-
dicular to the axis of the rod, which is pure bending, and the

other round the axis of the rod, which is pure twist.

The twist at any point in a rod or ribbon, so wound on a

circular cylinder, and constituting a uniform helix, 1s
CO8 @ SIn @
7 ’
if » be the radius of the cylinder and a the inclination of the
spiral. For if V be the velocity at which the bend proceeds
: Vco :

along the previously straight wire or ribbon, - c: ® will be the
angular velocity of the instantaneous rotation round the line of
bending (parallel to the axis), and therefore

Veosa . V cos a
sin a and
7 'y

COS @

are the angular velocities of twisting and of pure bending respec-

tively.
From the latter component we may infer that the curvature of
the helix 1s
cos “o.
; y

a known result, which agrees with the expression used above

§ 13).

127. The hodograph in this case is a small circle of
the sphere. If the specified condition as to the mode of

laying on of the rod on the cylinder is fulfilled, the trans-
verses of the spiral rod will be parallel at points along 1t sepa-

rated by one or more whole turns., Hence the integral twist
in a single turn is equal to the excess of four right angles
above the spherical area enclosed by the hodograph. If a be
the iuclination of the spiral, 47 — a will be the arc-radius of the
hodograph, and therefore its area is 27 (1 —sina«). Hence the
integral twist in a turn of the spiral is 27 sin a, which agrees

with the result previously obtained (§ 126).
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128. As a preliminary to the further consideration of the Curvature
Ay : . . nf surface.
rolling of one surface on another, and as useful in various parts

of our subject, we may now take up a few points connected
with the curvature of surfaces.

The tangent plane at any point of a surface may or may not
cut it at that point. In the former case, the surface bends away
from the tangent plane partly towards one side of it, and partly
towards the other, and has thus, in some of its normal sections,
curvatures oppositely directed to those in others. In the latter
case, the surface on every side of the point bends away from
the same side of its tangent plane, and the curvatures of all
normal sections are similarly directed. Thus we may divide

curved surfaces into Anticlastic and Synclastic. A saddle gives synclastic

a good example of the former class; a ball of the latter. Cur- clastio ur-

vatures In opposite directions, with reference to the tangent e
plane, have of course different signs. The outer portion of an
anchor-ring is synclastic, the inner anticlastiec.

129. Meunier's Theorem.—The curvature of an oblique sec- curvature
tion of a surface is equal to that of the normal section through Seotions.
the same tangent line multiplied by the secant of the inclina-
tion of the planes of the sections. This is evident from the

most elementary considerations regarding projections.

130. Luler's Theorem.—There are at every point of a syn- Principal
. N . . curvalures,
clastic surface two normal sections, in one of which the cur-

‘vature 1s a maximum, in the other a minimum ; and these are

at right angles to each other.

In an anticlastic surface there i1s maximum curvature (but
In opposite directions) in the two normal sections whose planes
bisect the angles between the lines in which the surface cuts
its tangent plane. On account of the difference of sign, these
may be considered as a maximum and a minimum.

Generally the sum of the curvatures at a point, in any two Sun of cur-
' vatures 1

normal planes at right angles to each other, is independent of pormal sec-

- right angles
the position of these planes. | to each
other.

Taking the tangent plane as that of «x, ¥, and the origin at the
point of contact, and putting




He

sections.
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d’z d’z d*z
@)~ (aty), 2 (7,7
we have 2= % (A2 + 2Bxy + Cy®) + ete. (1)

The curvature of the mormal section which passes through the
point , ¥, 2 i8 (in the limit)
1 22  Ax"+2Bxy+ Cy

r 2+ z* + o
If the section be inclined at an angle 6 to the plane of X7, this
becomes
}.= A cos’@ + 2B sinf cosf + (' sin’f. (2)
o 1 1 : : :

Hence, if p and = be curvatures in normal sections at right
angles to each other,

! +- l= 4 + ¢ = constant,

r 8

(2) may be written

%= -12-{A(1 + 08 26) + 2B sin 20 + C(1 — cos 26)}
=%{A + C + A —C cos 26 + 2B sin 26},
or if %(A—-C’):Rcos2a, b = K sin 2a,

. 1 28
that is R=\/{Z (4 -- C’)E+B’}, and tan Sa_—A_O;,

S +0)+\/{7} (4~ O+ B*} cos 2 (0— )

The maximum and minimum curvatures are therefore those 1n
normal places at right angles to each other for which §=a and

we have

0=a+z, and are respectively

5
- (4 +0)¢J{%(A -0y + B}

Hence their product is 4C —- B®.

If this be positive we have a synclastic, if negative an anti-
clagtic, surface. If it be zero we have one curvature only, and the
surface is cylindrical at the point considered. It is demonstrated
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(§ 152, below) that if this condition is fulfilled at every point, the Principal .

surface is “developable” (§ 139, below).

By (1) a plane parallel to the tangent plane and very near it
cuts the surface in an ellipse, hyperbola, or two parallel straight
lines, in the three cases respectively. This section, whose
nature informs us as to whether the curvature be synclastic,
anticlastic, or cylindrical, at any point, was called by Dupin
the Indicatr.

A line of curvature of a surface is a line which at every point
is cotangential with normal section of maximum or minimum

curvature.

131. Let P, p be two points of a surface infinitely near to
each other, and let » be the radius of curvature of a normal
section passing through them. Then the radius of curvature
of an oblique section through the same points, inchined to the
former at an angle a, is (§ 129) 7 cos a. Also the length along
the normal section, from P to p, is less than that along the
oblique section—since a given chord cuts off an arc from a
circle, longer the less the radius of that circle.

If @ be the length of the chord Pp, we have

\ .y @ a’
Distance Pp along normal section = 2r sin™ 5= @ (1 + W) ,

oblique section =« ( 1+ - -—) :

& & 24r* cos® a

132. Hence, if the shortest possible line be drawn from one
point of a surface to another, its plane of curvature 1S every-
where perpendicular to the surface.

norm

sectionas.

Definition
of Line of
Curvature.

Shortest
line be-
tween two
points on &
surface.

Quch a curve is called a Geodetic line. And 1t 1s easy to see Geodetic

that it is the line in which a flexible and inextensible string
would touch the surface if stretched between those points, the

surface being supposed smooth.

133. If an infinitely narrow ribbon be laid on a surface
along a geodetic line, its twist is equal to the tortuosity of its
axis at each point. We have seen (§ 125) that when one body
rolls on another without spinning, the projections of the traces
on the common tangent plane agree in curvature at the point

Lines.




Shortest
line be-
tween two
points on a
surface,

Spherieal
eXCeSS.

Area of
spherical
polygon,

Reciprocal
polars on a
sphere,
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of contact. Hence, if one of the surfaces be a plane, and the
trace on the other be a geodetic line, the trace on the plane is a
straight line. Conversely, 1f the trace on the plane be a straight
line, that on the surface is a geodetic line.

And, quite generally, if the given trace be a geodetic line,
the other trace is also a geodetic line.

134. The area of a spherical triangle (on a sphere of unit
radius) 1s known to be equal to the “ spherical excess,” 7.e., the
excess of the sum of its angles over two right angles, or the
excess of four right angles over the sum of its exterior angles.
The area of a spherical polygon whose n sides are portions
of great circles—i.e., geodetic lines—is to that of the hemi-
sphere as the excess of four right angles over the sum of its
exterior angles 1s to four right angles. (We may call this the
“ spherical excess” of the polygon.)

For the area of a spherica,l triangle is known to be equal to
A+B+C -

Divide the polygon into 7 such triangles, with a common
vertex, the angles about which, of course, amount to 2.
Area = sum of interior é,ngles_ of triangles — nw

- = 2= +sum of interior angles of polygon — nr

=2m —sum of exterior angle of polygon.

Given an open or closed spherical polygon, or line on the
surface of a sphere composed of consecutive arcs of great circles.
Lake either pole of the first of these arcs, and the corresponding
poles of all the others (all the poles to be on the right hand, or
all on the left, of a traveller advancing along the given great
circle arcs in order). Draw great circle arcs from the first of
these poles to the second, the second to the third, and so on in
order. Another closed or open polygon, constituting what is
called the polar diagram to the given polygon, is thus obtained.
The sides of the second polygon are evidently equal to the
exterior angles in the first; and the exterior angles of the
second are equal to the sides of the first. Hence the relation
between the two diagrams is reciprocal, or each is polar to the
other. The polar figure to any continuous curve on a spherical
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surface 1s the locus of the ultimate intersections of great circles Reciproeal
polars on a
equatorial to points taken infinitely near each other along it.  spher.
The area of a closed spherical figure is, consequently, ac-
cording to what we have just seen, equal to the excess of 2
above the penphery of its polar, if the radius of the sphere be

unlty

135. If a point move on a surface along a figure whose Integral
change of

sides are geodetic lines, the sum of the exterior angles of this dircction in
polygon 1s defined to be the tntegral change of the direction in
the surface.
In great circle sailing, unless a vessel sail on the equator, or
on a meridian, her course, as indicated by points of the com-
pass (true, not magnetic, for the latter change even on a meri-
dian), perpetually changes. Yet just as we say her direction
does not change if she sail in a meridian, or in the equator, so
we ought to say her direction does not change if she moves in
any great circle. Now, the great circle is the geodetic line on
the sphere, and by extending these remarks to other curved
surfaces, we see the connexion of the above definition with that
1n the case of a plane polygon (§ 10).
Note—We cannot define integral change of direction here by Ghange of

directi
any angle directly constructible from the first and last tangents o Surfaco,

to the path, as was done (§ 10) in the case of a plane curve or traced onit.
polygon; but from §§ 125 and 133 we have the following
statement :—The whole change of direction in a curved surface,
from one end to another of any arc of a curve traced on it, is
equal to the change of direction from end to end of the trace of

this arc on a plane by pure rolling.

136. Def. The excess of four right angles above the inte- Integral
curvature,
gral change of direction from one side to the same side next
time 1n going round a closed polygon of geodetic lines on a
eurved surface, is the integral curvature of the enclosed portion
of surface. This excess is zero in the case of a polygon traced
on a plane. We shall presently see that this corresponds exactly
to what Gauss has called the curvatura integra.
Def. (Gauss.) The curvatura integra of any given portion Ourvature

integra.
of a curved surface, is the area enclosed on a spherical surface
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of unit radius by a straight line drawn from its centre, parallel
to a normal to the surface, the normal being carried round the
boundary of the given portion.

Horograph.  The curve thus traced on the sphere is called the Horograph
of the given portion of curved surface.

The average curvature of any portion of a curved surface is
the integral curvature divided by the area. The specific curva-
ture of a curved surface at any point i1s the average curvature
of an infinitely small area of it round that point.

Change of 187. The excess of 27 above the change of direction, in a sur-
round the face, of a point moving round any closed curve on it, is equal to
the surface, the area of the horograph of the enclosed portion of surface.
with area of

;I::plﬁ:m- Let a tangent plane roll without spinning on the surface over
f-:%i?t}: Ifgleug: every point of the bounding line. (Its instantaneous axis will
or T inte- always lie in it, and pass through the point of contact, but will
ture” equals not, as we have seen, be at right angles to the given bounding
Integra.” curve, except when the twist of a narrow ribbon of the surface
along this curve is nothing.) Considering the auxiliary sphere

of unit radius, used in Gauss’s definition, and the moving line

through its centre, we perceive that the motion of this line 1s, at

each instant, in a plane perpendicular to the instantaneous axis

. of the tangent plane to the given surface. The direction of

motion of the point which cuts out the area on the spherical

surface is therefore perpendicular to this Instantaneous axis.

Hence, if we roll a tangent plane on the spherical surface also,

making it keep time with the other, the trace on this tangent

plane will be a curve always perpendicular to the instantaneous

axis of each tangent plane, The change of direction, in the

spherical surface, of the point moving round and cutting out the

Curvatura area, being equal to the change of direction in 1ts own trace on
E’Eﬁ?&fﬁd its own tangent plane (§ 135), is therefore equal to the change

of direction of the instantaneous axis in the tangent plane to the
given surface reckoned from a line fixed relatively to this plane.
But having rolled all round, and being in position to roll round
again, the instantaneous axis of the fresh start must be inclined
to the trace at the same angle as in the beginning. Hence the
change of direction of the instantaneous axis in either tangent
plane is equal to the change of direction, in the given surface, of
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a point going all round the boundary of the given portion of it
(§ 135); to which, therefore, the change of direction, in the
spherical surface, of the point going all round the spherical area.
is equal. But, by the well-known theorem (§ 134) of the
“gpherical excess,” this change of direction subtracted from 2w
leaves the spherical area. Hence the spherical area, called by
Gauss the curvatura integra, is equal to 2x wanting the change
of direction in going round the boundary.

It will be perceived that when the two rollings we have con-
sidered are each complete, each tangent plane will have come
back to be parallel to its original position, but any fixed line in
it will have changed direction through an angle equal to the
equal changes of direction just considered.

Note.—The two rolling tangent planes are at each instant
parallel to one another, and a fixed line relatively to one drawn
at any time parallel to a fixed line relatively to the other, re-

mains parallel to the last-mentioned line.

If, instead of the closed curve, we have a closed polygon of
geodetic lines on the given surface, the trace of the rolling of
its tangent plane will be an unclosed rectilineal polygon. I1f
each geodetic were a plane curve (which could only be if the
given surface were spherical), the instantaneous axis would be
always perpendicular to the particular side of this polygon which
is rolled on at the instant; and, of course, the spherical area on

the auxiliary sphere would be a similar polygon to the given
one. But the given surface being other than spherical, there

must (except in the particular case of some of the geodetics
being lines of curvature) be tortuosity in every geodetic of
the closed polygon; or, which is the same thing, twist in
the corresponding ribbons of the surface. Hence the portion
of the whole trace on the second rolling tangent plane which
corresponds to any one side of the given geodetic polygon, must
in general be a curve; and as there will generally be finite angles
in the second rolling corresponding to (but not equal to) those in
the first, the trace of the second on its tangent plane will be an
unclosed polygon of curves. The trace of the same rolling on
the spherical surface in which it takes place will generally be
a spherical polygon, not of great circle arcs, but of other curves.
The sum of the exterior angles of this polygon, and of the
changes of direction from one end to the other of each of 1ts sides,
is the whole change of direction considered, and is, by the proper

?ﬂ?'ﬂﬂﬁﬂ?‘a
tnlegra, and
horograph
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: .. Curvatura
%:;ﬁ;’:‘:ﬁd application of the theorem of § 134, equal to 2= wanting the (3) Let a tangent plane roll without PR Over the horagpraph.
horograph. spherical area enclosed. | boundary of a given closed curve or geodetic polygon on any Aorograph

Or again, if, instead of a geodetic polygon as the given curve,
we have a polygon of curves, each fulfilling the condition that
the normal to the surface through any point of it is parallel to a
fixed plane; one plane for the first curve, another for the
second, and so on; then the figure on the auxiliary spherical
surface will be a polygon of arcs of great circles; its trace on its

tangent plane will be an unclosed rectilineal polygon ; and the

trace of the given curve on the tangent plane of the first rolling
will be an unclosed polygon of curves. The sum of changes of
direction in these curves, and of exterior angles in passing from
one to another of them, is of course equal to the change of
direction in the given surface, in going round the given polygon
of curves on it. The change of direction in the other will be
simply the sum of the exterior angles of the spherical polygon,
or of its rectilineal trace. Remark that in this case the in-
stantaneous axis of the first rolling, being always perpendicular
to that plane to which the normals are all parallel, remains
parallel to one line, fixed with reference to the tangent plane,
during rolling along each curved side, and also remains parallel
to a fixed line in space.

Lastly, remark that although the whole change of direction of
the trace in one tangent plane is equal to that in the trace on
the other, when the rolling is completed round the given circuit;
the changes of direction in the two are generally unequal in any
part of the circuit. They may be equal for particular parts
of the circuit, viz., between those points, if any, at which the in-
stantaneous axis 13 equally inclined to the direction of the trace
on the first tangent plane.,

Any difficulty which may have been felt in reading this Section
will be removed if the following exercises on the subject be

curved surface. Show that the points of the trace in the tangent

plane which successively touch the same point of the given
surface are at equal distances successively on the circumference

of a circle, the angular values of the intermediate arcs being each
97 — K if taken in the direction in which the trace 1s actually
described, and K if taken in the contrary direction, A being
the ¢ integral curvature” of the portion of the curved surface
enclosed by the given curve or geodetic polygon. Hence if X
be commensurable with = the trace on the tangent plane, how-
ever complicatedly autotomic it may be, is a finite closed curve

or polygon. | |
(4) The trace by a tangent plane rolling successively over

i three principal quadrants bounding an eighth part of the cir-

cumference of an ellipsoid is represented in the accompanying
diagram, the whole of which is traced when the tangent plane is

4 C

C My . _ Bﬂ'f

"
7 | | A

CF Aﬂ'f

rolled four times over the stated boundary. 4,B,C; 4', B, (',
&c. represent the points of the tangent plane touched 11:1 OI:dEI‘
by ends of the mean principal axis (4), the greatest principal
axis (B), and least principal- axis (C), and 4B, BC, C4' are the
lengths of the three principal quadrants.

performed.

(1) Find the horograph of an infinitely small circular area of
any continuous curved surface. It is an ellipse or a hyperbola
according as the surface is synclastic or anticlastic (§ 128). Find
the axes of the ellipse or hyperbola in either case.

(2) Find the horograph of the area cut off a synclastic surface
by a plane parallel to the tangent plane at any given point of it,
and infinitely near this point. Find and interpret the corre-
sponding result for the case in which the surface is anticlastic
in the neighbourhood of the given point.

138. It appears from what precedes, that the same equality Analogy be-

. - : ! and surfaces
or identity subsists between * whole curvature  1n a plane 200t aras

" curvature.
arc and the excess of 7 above the angle between the terminal
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Analogy be- tanoents, as between “ whole curvature” and excess of 27 above

tween hnes

andsurfaces change of direction along the bounding line in the surface for

a8 regards .
curvature. any portion of a curved surface.

Or, according to Gauss, whereas the whole curvature in a
plane arc is the angle between two lines parallel to the terminal

normals, the whole curvature of a portion of curve surface is
the solid angle of a cone formed by drawing lines from a point
parallel to all normals through its boundary.

: : . change of direect:
Again, average curvature in a plane curve is ge of direction.

length
and specific curvature, or, as it is commonly called, curvature,
at any point of it= change Of_dlreftwnllj ;tn]iimtely smaHJlength-
Il

Thus average curvature and specific curvature are for surfaces
analogous to the corresponding terms for a plane curve.

Lastly, in a plane arc of uniform curvature, 7.e, in a circular

ch f directi 1 . :
arc, ___a,_ngel;)n gtfe = e And 1t 1s easily proved (as below)
that, iIn a surface throughout which the specific curvature is

: 27 —change of direction  integral curvature 1
uniform, — e, Or & , = —,, Where
area pp

p and p’ are the principal radii of curvature. Hence in a sur-

face, whether of uniform or non-uniform specific curvature, the

specific curvature at any point is equal to -}—, In geometry of

pp
three dimensions, pp’ (an area) is clearly analogous to p in a

curve and plane.

Consider a portion S, of a surface of any curvature, bounded
by a given closed curve. Let there be a spherical surface, radius
r, and centre (. Draw a radius C'Q, parallel to the normal at
any pomnt 2 of §. If this be done for every point of the bound-
Horograph. ary, the line so obtained encloses the spherical ares used in
Gauss’s definition. Now let there be an infinitely small rect-
angle on §, at £, having for its sides arcs of angles ¢ and ¢, on
the normal sections of greatest and least curvature, and let their
radii of curvature be denoted by p and p’. The lengths of these
sides will be p{ and p'{ respectively, Its aresa will therefore be
pp'{{. The corresponding figure at @ on the spherical surface
will be bounded by arcs of angles equal to those, and therefore of
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lengths r{ and 7{’ respectively, and its area will be +°({’. Hence ﬁ;’ﬁg’gﬁgfl‘j

if do denote this area, the area of the infinitely small portion of

: : 'd : ;s
the given surface will be P Pr’ 7. In a smface for which pp’ is

constant, the area is therefore = f-?,; f fdo- = pp’ x Integral curvature.

139. A vperfectly flexible but inextensible surface 1s sug- Flexibleand
gested, although not realized, by paper, thin sheet metal, or surface.
cloth, when the surface is plane ; and by sheaths of pods, seed
vessels, or the like, when it is not capable of being stretched
flat without tearing. The process of changing the form of a
surface by bending is called “ developing.” But the term “ De-
velopable Surface” is commonly restricted to such inextensible
surfaces as can be developed into a plane, or, in common lan-
guage, “ smoothed flat.”

140. The geometry or kinematics of this subject 1s a great
contrast to that of the flexible line (§ 14), and, in 1its merest
elements, presents ideas not very easily apprehended, and sub-
jects of investigation that have exercised, and perhaps even
overtasked, the powers of some of the greatest mathematicians.

141. Some care is required to form a correct conception of
what is a perfectly flexible inextensible surface. First let us
consider a plane sheet of paper. It is very flexible, and we
can easily form the conception from it of a sheet of ideal
matter perfectly flexible. It is very inextemsible; that is to
say, it yields very little to any application of force tending to
pull or stretch it in any direction, up to the strongest 1t can
bear without tearing. It does, of course, stretch a little. It
is easy to test that it stretches when under the influence of
force, and that it contracts again when the force i1s removed,
although not always to its original dimensions, as 1t may and
generally does remain to some sensible extent permanently
stretched. Also, flexure stretches one side and condenses the
other temperarily; and, to a less extent, permanently. Under
elasticity (§8 717, 718, 719) we shall return to this. In the
meantime, in considering illustrations of our kinematical propo-
sitions, it is necessary to anticipate such physical circumstances.






