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Examples of continued applications of (99) (100) with upper sign, is the

deri?&tin(rll sin
continued. .
nd, which
COS

is the case represented by w'=C’ in (109). But in this con-
tinuation we are only doing for the case of n» an integer, part
of what was done in § (n’), Example 2, where the other part,
from the other part of the solution of (109) now lost, gives the
other part of the complete solution of Laplace’s equation subject
to the limitation ¢ —n (or i—s) a positive integer, but not to the
limitation of ¢ an integer or m an integer.

regular ¢ Laplace’s function” growing from ¢’ sin” 6
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for n, we find a complete solution growing in the form
205. IN the preceding chapter we considered as a subject of Ideasof

ff_‘ﬁ; +(=) }fif :E F;L SR (110); pure geometry the motion of points, lines, surfaces, and volumes, EJEEEEFI?,‘%C}
: : : whether taking place with or without change of dimensions and
which may be immediately reduced FO form; and the results we there arrived at are of course altogether
Ef ()L +pf+ (Y EACEWA =0 (1107, independent of the idea of matter, and of the forces which matter

(1 —p*) exerts. We have heretofore assumed the ezistence merely of
7, denoting an integral algebraic function of the ¢ degree, readily motion, distortion, etc.; we now come to the consideration, not
found by the proper successive applications of (99) (100). of how we might consider such motions, ete., to be produced, but
Hence, by (83) (79), we have of the actual causes which in the material world do produce
Kf(p) (L+p)y+ (-} Ef(=p) (L= p) them. The axioms of the present chapter must therefore be
w= a o considered to be due to actual experience, in the shape either

(=) of observation or experiment. How thi ' 1s to b
periment. ow this experience 1s to be

as the complete solution of Laplace’s equation obtained will form the subject of a subsequent chapter.

a4 (1 - pf) ‘_i_'*f’] n [ — 3: ri(i+ 1)_1 Y | DU (112), 2068. We cannot do better, at all events in commencing, than

dp | dp 1-p - follow Newton somewhat closely. Indeed the introduction to
braie exer for the case of ¢ an integer without any restriction as to the the Principia contains in a most lucid form the general founda-
o e value of s, which may be integral or fractional, real or imaginary, tions of Dynamics. The Definitiones and Aziomata swwe Leges
Sesaeral har- with no failure except the case of s an 1nteger f‘nd 1> 8, of which Motis, there laid down, require only a few amplifications and
2’3:323‘3-1%" the complete treatment is included in § (m’), Example 2, above. additional illustrations, suggested by subsequent developments,
oraer.-

to suit them to the present state of science, and to make a much
better introduction to dynamics than we find in even some of
the best modern treatises.

- 207. We cannot, of course, give a definition of Matter which Mattor.
will satisfy the metaphysician, but the naturalist may be con-

tent to know matter as that which can be percetved by the senses,
or as that which can be acted upon by, or can exert, force. The
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latter, and indeed the former also, of these definitions involves
the idea of Force, which, in point of fact, is a direct object of
-ense; probably of all our senses, and certainly of the “mus-
cular sense.” To our chapter on Properties of Matter we must
refer for further discussion of the question, What is matter ?
And we shall then be in a position to discuss the question

of the subjectivity of Force.

208. The Quantity of Matter in a body, or, as we now call
it, the Mass of a body, is proportional, according to Newton, to
the Volume and the Density conjointly. In reality, the defini-
tion gives us the meaning of density rather than of mass; for
it shows us that if twice the original quantity of matter, air for
example, be forced into a vessel of given capacity, the density
will be doubled, and so on. But it also shows us that, of matter
of uniform density, the mass or quantity 1s proportional to the

volume or space it occupies.

Let M be the mass, p the density, and ¥ the volume, of a homo-
geneous body. Then
M="Vp;
if we so take our units that unit of mass is that of unit volume of
a body of unit density.

If the density vary from point to point of the body, we have
evidently, by the above formula and the elementary notation of

the integral calculus,
M= [{[pdxdydz,

where p is supposed to be a known function of =, y, 2, and the
integration extends to the whole space occuplied by the matter of
the body whether this be continuous or not.

It is worthy of particular mnotice that, in this definition,
Newton says, if there be anything which freely pervades the
interstices of all bodies, this is not taken account of in estimat-
ing their Mass or Density.

- 209. Newton furthér states, that a practical measure of the
mass of a body is its Weight. His experiments on pendulums,
by which he establishes this most important result, will be de-
scribed later, in our chapter on Properties of Matter.
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As will be presently explained, the unit mass most convenient

for British measurements is an imperial pound of matter.

210. The Quantity of Motion, or the Momentum, of a rigid Momentum,

body moving without rotation is proportional to its mass and
velocity conjointly. The whole motion is the sum of the motions
of its several parts. Thus a doubled mass, or a doubled velocity,
would correspond to a double quantity of motion; and so on.

Hence, if we take as unit of momentum the momentum of
a unit of matter moving with unit velocity, the momentum of a
mass M moving with velocity v is M.

211. Change of Quantity of Motion, or Change of Momen-
tum, 1s proportional to the mass moving and the change of its
velocity conjointly.

Change of velocity is to be understood in the general sense
of § 27. Thus, in the figure of that section, if a velocity re-
presented by 04 be changed to another represented by OC, the
change of velocity 1s represented in magnitude and direction

by AC.

212. Rate of Change of Momentum 1s proportional to the
mass moving and the acceleration of its velocity conjointly.
Thus (§ 35, b) the rate of change of momentum of a falling
body is constant, and in the vertical direction. Again (§ 35, a)

the rate of change of momentum of a mass M, describing a

2
circle of radius R, with uniform velocity V, 1s My , and 1s

R

directed to the centre of the circle; that is to say, it is a
change of direction, not a change of speed, of the motion.
Hence if the mass be compelled to keep in the circle by a
cord attached to 1t and held fixed at the centre of the circle, the
MV?

B

called the centrifugal force of the mass M moving with velocity
V in a circle of radius £.

force with which the cord is stretched 1s equal to : this is

Generally (§ 29), for a body of mass M moving anyhow in

2
space there is change of momentum, at the rate, M/ %'—: in the direc-
¢

Change of
momenium

Rate of
change of
momentnm,
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fﬁﬁéﬁ of tion of motion, and M — towards the centre of curvature of the
momentum. ] P .y = .
path ; and, if we choose, we may exhibit the whole acceleration
. o’ d*
of momentum by its three rectangular components 3/ — , I E—ff ;
M 7780 O according to the Newtonian notation, Mi, My, Mz,

i 213. The Vis Viva, or Kinetic Energy, of a moving body is
proportional to the mass and the square of the velocity, con-
jJointly. [f we adopt the same units of mass and velocity as
before, there is particular advantage in defining kinetic energy
as half the product of the mass and the square of its velocity.

214. LRate of Change of Kinetic Energy (when defined as
above) 1s the product of the velocity into the component of
rate of change of momentum in the direction of motion.

d s Mv* d (M
For dt( 2 )"""’ (dt 2
saleles,  218. It 1s to be observed that, in what precedes, with the
exception of the definition of mass, we have taken no account
of the dimensions of the moving body. This 1s of no conse-
quence so long as 1t does not rotate, and so long as its parts
preserve the same relative positions amongst one another. In
this case we may suppose the whole of the matter in it to be
condensed in one point or particle. We thus speak of a material
particle, as distinguished from a geometrical point. I1f the body
rotate, or if 1ts parts change their relative positions, then we
cannot choose any one point by whose motions alone we may
determine those of the other points. In such cases the momen-
tum and change of momentum of the whole body in any direc-
tion are, the sums of the momenta, and of the changes of
momentum, of its parts, in these directions; while the kinetic

energy of the whole, being non-directional, 1s simply the sum
of the kinetic energies of the several parts or particles.

Loertia. 216. Matter has an innate power of resisting external in-
fluences, so that every body, as far as i1t can, remains at rest, or

moves uniformly in a straight line.
This, the Inertia of matter, i1s proportional to the quantity of
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matter in the body. And it follows that some cause 1s requisite Inertia.
to disturb a body’s uniformity of motion, or to change its direc-
tion from the natural rectilinear path.

217. FKorce 1s any cause which tends to alter a body’s natural Force.
state of rest, or of uniform motion in a straight line.

Force 1s wholly expended in the Action it produces; and the
body, after the force ceases to act, retains by 1its inertia the
direction of motion and the velocity which were given to it.
Force may be of divers kinds, as pressure, or gravity, or friction,
or any of the attractive or repulsive actions of electricity, mag-
netism, ete.

218. The three elements specifying a force, or the three Specifica-
1011 OI &

elements which must be known, before a clear notion of the force.
force under consideration can be formed, are, 1ts place of appli-

cation, 1ts direction, and 1ts magnitude.

(@) The place of application of a force. The first case to be piace of
considered is that in which the place of application is a point. **7 "
It has been shown already in what sense the term *point”
is to be taken, and, therefore, in what way a force may be
imagined as acting at a point. In reality, however, the place of
application of a force 1s always either a surface or a space of
three dimensions occupled by matter. The point of the finest
needle, or the edge of the sharpest knife, is still a surface, and
acts .by pressing over a finite area on bodies to which it may

be applied. Even the most rigid substanses, when brought

together, do not touch at a point merely, but mould each other
80 as to produce a surface of application. On the other hand,
gravity 1s a force of which the place of application 1s the whole
matter of the body whose weight is considered; and the smallest
particle of matter that has weight occupies some finite portion
of space. Thus it is to be remarked, that there are two kinds
of force, distinguishable by their place of application—force,
whose place of application is a surface, and force, whose place
of application is a solid. When a heavy body rests on the
ground, or on a table, force of the second character, acting
downwards, is balanced by force of the first character acting
upwards.
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(6) The second element in the specification of a force is its
direction. The direction of a force 1s the line in which it acts.
It the place of application of a force be regarded as a point, a
line through that point, in the direction in which the force
tends to move the body, is the direction of the force. In the
case of a force distributed over a surface, it is frequently pos-
sible and convenient to assume a single point and a single line,
such that a certain force acting at that point in that line would
produce sensibly the same effect as is really produced.

(¢) The third element in the specification of a force is its
magnitude. This involves a consideration of the method fol-
lowed in dynamics for measuring forces. Before measuring
anything, 1t 1s necessary to have a unit of measurement, or a
standard to which to refer, and a principle of numerical specifi-
cation, or a mode of referring to the standard. These will be

supplied presently. See also § 258, below.

219. The Accelerative Effect of a Force 1s proportional to
the velocity which 1t produces 1n a given time, and 1s measured
by that which is, or would be, produced in unit of time; in
other words, the rate of change of wvelocity which it produces.
This is simply what we have already defined as acceleration, § 28.

220. The Measure of a Force is the quantity of motion which
1t produces per unit of time.

The reader, who has been accustomed to speak of a force of
so many pounds, or so many tons, may be startled when he finds
that such expressions are not definite unless 1t be specified at
what part of the earth’s surface the pound, or other definite
quantity of matter named, 1s to be weighed ; for the heaviness or
gravity of a given quantity of matter differsin different Jatitudes.
But the force required to produce a stated quantity of motion in
a given time 1s perfectly definite, and independent of locality.
Thus, let W be the mass of a body, g the velocity 1t would
acquire 1n falling freely for a second, and P the force of gravity
upon it, measured in kinetic or absolute units. We have

P=Wy.
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221. According to the system commonly followed in mathe- gggf;nzgni-
. . . . eIl
matical treatises on dynamics till fourteen years ago, when a small glfeﬂ:;yggﬂ

instalment of the first edition of the present work was issued
for the use of our students, the unit of mass was g times the
mass of the standard or unit weight. This definition, giving a
varying and a very unnatural unit of mass, was exceedingly
inconvenient. By taking the gravity of a constant mass for Standards

of weight

the unit of force it makes the unit of force greater 1in high than are masses,
and not

in low latitudes. ' : ot
In reality, standards of weight are masses, primarily

not forces. They are employed primarily in commerce for the easure-
purpose of measuring out a definite quantity of matter; not an foree.
amount of matter which shall be attracted by the earth with a

given force.

- A merchant, with a balance and a set of standard welghts,
would give his customers the same quantity of the same kind of
matter however the earth’s attraction might vary, depending as
he does upon weights for his measurement; another, using a
spring-balance, would defraud his customers in high latitudes,
and himself in low, if his instrument (which depends on constant
forces and not on the gravity of constant masses) were correctly
adjusted in London.

It 1s a secondary application of our standards of weight to
employ them for the measurement of forces, such as steam pres-
sures, muscular power, etc. In all cases where great accuracy
18 required, the results obtained by such a method have to be
reduced to what they would have been if the measurements of
force had been made by means of a perfect spring-balance,

graduated so as to indicate the forces of gravity on the standard

weights in some conventional locality.

It is therefore very much simpler and better to take the

‘Imperial pound, or other national or international standard

weight, as, for instance, the gramme (see the chapter on
Measures and Instruments), as the unit of mass, and to derive
from it, according to Newton’s definition above, the unit of

- force. This is the method which Gauss has adopted in his

great improvement (§ 223 below) of the system of measurement
of forces,

YOL. 1. 15
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222. The formula, deduced by Clairault from observation,
and a certain theory regarding the figure and density of the
earth, may be employed to calculate the most probable value
of the apparent force of gravity, being the resultant of true
gravitation and centrifugal force, in any locality where no
pendulum observation of sufficient accuracy has been made.
This formula, with the two coefficients which it involves,
corrected according to the best modern pendulum observations
(Airy, Encyc. Metropolitana, Figure of the Earth), is as fol-

lows:—

Let G be the apparent force of gravity on a unit mass at the
equator, and g that in any latitude A; then

g= G (1 +-005133 sin* ™).

The value of G, in terms of the British absolute unit, to be
explained 1mmediately, 1s
32'088.

According to this formula, therefore, polar gravity will be
g=32088 x 1005133 = 32-2527.

223. Qravity having failed to furnish a definite standard,
independent of locality, recourse must be had to something else.
The principle of measurement indicated as above by Newton,
but first introduced practically by Gauss, furnishes us with
what we want. According to this principle, the unit force is
that force which, acting on a national standard unit of matter
during the unit of time, generates the unity of velocity.

This i1s known as Gauss’s absolute unit; absolute, because
it furnishes a standard force independent of the differing
amounts of gravity at different localities. It 1s however ter-
restrial and inconstant if the unit of time depends on the earth’s
rotation, as it does in our present system of chronometry. The
period of vibration of a piece of quartz crystal of specified shape
and size and’ at a stated temperature (a tuning-fork, or bar, as
one of the bars of glass used in the “musical glasses™) gives us
a unit of time which is constant through all space and all time,
and independent of the earth. A unit of force founded on such
a unit of time would be better entitled to the designation abso-
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lute than is the “absolute unit” now generally adopted, which 15 Mazweli’a

founded on the mean solar second. But this depends essentially tlons fapee"

on one particular piece of matter, and is therefore liable to all Toa®
the accidents, etc. which affect so-called National Standards
however carefully they may be preserved, as well as to the
almost 1nsuperable practical difficulties which are experienced

when we attempt to make exact copies of them. Still, in the
present state of science, we are really confined to such approxi-

mations. The recent discoveries due to the Kinetic theory of

gases and to Spectrum analysis (especially when it is applied to
the light of the heavenly bodies) indicate to us natural standard
pieces of matter such as atoms of hydrogen, or sodium, ready made
in infinite numbers, all absolutely alike in every physical pro-
perty. The time of vibration of a sodium particle corresponding

~ to any one of 1ts modes of vibration, is known to be absolutely

independent of its position in the universe, and it will probably
remain the same so long as the particle itself exists. The wave-
length for that particular ray, ¢.e. the space through which
hght 18 propagated #n wacuo during the time of one complete
vibration of this period, gives a perfectly invariable unit of
length; and it is possible that at some not very distant day the
mass of such a sodium particle may be employed as a natural
standard for the remaining fundamental unit. This, the latest
improvement made upon our original suggestion of a Perennial
Spring (First edition, § 406), is due to Clerk Maxwell*; who
has also communicated to us another very important and in-
teresting suggestion for founding the unit of time upon physical
Pproperties of a substance without the necessity of specifying any
Particular quantity of it. It is this, water being chosen as the

substance of all others known to us which is most easlly obtained

In perfect purity and in perfectly definite physical condition.—
‘Call the standard density of water the maximum density of
‘the liquid when under the pressure of its own vapour alone,
The time of revolution of an infinitesimal satellite close to the
surface of a globe of water at standard density (or of any kind
Of matter at the same density) may be taken as the unit of
Hme; for it is independent of the size of the globe. This has

* Electricity and Magnetism, 187%.
15—2
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suggested to us still another unit, founded, however, still upon
the same physical principle. The time of the gravest simple
harmonic infinitesimal vibration of a globe of liquid, water at
standard density, or of other perfect liquids at the same density,
may be taken as the unit of time; for the time of the simple
harmonic vibration of any one of the fundamental modes of a
liquid sphere is independent of the size of the sphere.

Let f be the force of gravitational attraction between two -

units of matter at unit distance. The force of gravity at the

surface of a globe of radius », and density p, 1s 4—;— Jpr. Hence
if o be the angular velocity of an infinitesimal satellite, we
have, by the equilibrium of centrifugal force and gravity
(§ 212, 477),

o'r =~ for
Hence W= %fi@- y
and therefore if 7' be the satellite’s period,
3
7=2 ——
“a Tfp

(whmh 18 equal to the period of a siraple pendulum whose length

is the globe’s radius, and weighted end infinitely near the surface
of the globe). Andit has been proved* that if a globe of liquid

be distorted infinitesimally according to a spherical harmonic of

order 3, and left at rest, it will perform simple harmonic oscilla-
tions in a period equal to

e o/ e 56D}

Hence if 7" denote the period of the gravest, that, namely,
for which ¢+ = 2, we have

b
-7, /".

The semi-period of an infinitesimal satellite round the earth is
equal, reckoned in seconds, to the square root of the number of
metres in the earth’s radius, the metre being very approximately

* « Dynamical Problems regarding Blastic Spheroidal Shells and Spheroids
of Incompressible Liquid” (W. Thomson), Phl. Trans. Nov. 27, 1862.
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the length of the seconds pendulum, whose perfod is two BuTﬂom
seconds. Hence taking the earth’s radius as 6,370,000 metres, Uni of

and 1ts density as 5} times that of our standard globe,

7T =3h 17T m.
7' =3h 40 m,

224. The absolute unit depends on the unit of matter, the
unit of time, and the unit of velocity; and as the unit of velo-
cnty depends on the unit of space and the unit of time, there is,
in the definition, a single reference to mass and space, but a
double reference to time; and this is a point that must be par-
ticularly attended to.

225. The unit of mass may be the British imperial pound;
the umt of space the British standard foot; and, accurately
enough for practica: purposes for a few thousand years, the unit
of time may be the mean solar second.

- We accordingly define the British absolute unit force as “the Brisish ab-
force which, acting on one pound of matter for one second,

generates a velocity of one foot per second.” Prof James
Thomson has suggested the name “Poundal” for this unit of
force.

226. To1illustrate the reckoning of force in “absolute measure,” Comparison
find how many absolute units will produce, in any particular Sranity.

locality, the same effect as the force of gra.vﬂ:y on a given mass.
To do this, measure the effect of gravity in producing accelera-
tion on a body unresisted in any way. The most accurate method
isindirect, by means of the pendulum. The result of pendulum
experiments made at Leith Fort, by Captain Kater, is, that the
velocity which would be acquired by a body falling unresisted
for one second is at that place 82207 feet per second. The
preceding formula gives exactly 822, for the latitude 55° 88/,
which is approximately that of Edinburgh. The variation in
the force of gravity for one degree of difference of latitude about

the latitude of Edinburgh is only ‘0000832 of its own amount,
It is nearly the same, though somewhat more, for every degree

of latitude southwards, as far as the southern limits of the
Br1t1sh Isles. On the other hand, the variation per degree is sen-
81bly less, as far north as the Or]mey and Shetland Isles. Hence

~ solute unit.
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Gravity of the augmentation of gravity per degree from south to north
ormassih throughout the British Isles is at most about 13305 of 1ts whole
Kinetic  amount in any locality. The average for the whole of Great
Britain and Ireland differs certainly but little from 322, Our
present application is, that the force of gravity at Edinburgh 1s
32'2 times the force which, acting on a pound for a second,
would generate a velocity of one foot per second; in other
words, 322 is the number of absolute units which measures the
weight of a pound in this latitude. Thus, approximately, the

poundal 1s equal to the gravity of about half an ounce.

227. Forces (since they involve only direction and magni-
tude) may be represented, as velocities are, by straight lines in

their directions, and of lengths proportional to their magnitudes,
respectively.

Also the laws of composition and resolution of any number
of forces acting at the same point, are, as we shall show later
(§ 255), the same as those which we have already proved to
hold for velocities; so that with the substitution of force for
velocity, &§ 26, 27, are still true.

Effective 228. In rectangular resolution the Component of a force in
ot forca. any direction, (sometimes called the Effective Component in that
direction,) is therefore found by multiplying the magnitude of
the force by the cosine of the angle between the directions of
the force and the component. The remaining component in this

case 18 perpendicular to the other.

It 1s very generally convenient to resolve forces into com-
ponents parallel to three lines at right angles to each other;
each such resolution being effected by multiplying by the
cosine of the angle concerned.

Geometrical 229. The point whose distances. from three planes at right
preliminary angles to one another are respectively equal to the mean dis-
of oentre of tances of any group of points from these planes, is at a distance

- from any plane whatever, equal to the mean distance of the
group from the same plane. Hence of course, if it is in motion,
1ts velocity perpendicular to that plane is the mean of the velo-

cities of the several points, in the same direction.
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Let (x,, v, 2,), etc., be the points of the group in number ¢ ; Geometrical

and &, 7, # be the co-ordinates of a point at distances respectively preliminary

equal to their mean distances from the planes of reference ; that of centre of

. inertia,
is to say, let
_ x4z + etc. y,+y,+ete. _ =z +2z +ete.
€ . y Y= - x : -

(4 1 (%

Thus, if p,, p, etc., and p, denote the distances of the points in
question from any plane at a distance @ from the origin of co-
ordinates, perpendicular to the direction (/, m, »), the sum of a
and p, will make up the projection of the broken line 2, %, 2.
on (/, m, n), and therefore

p = lx, + my +nz — a, ete. ;

and similarly, p =&+ my+ nZ— a.

Substituting in this last the expressions for &, 7, 2, we find

P, + p,+ ete.
?

p:

2

which is the theorem to be proved. Hence, of course,

dp__l dp, dp;
:z‘rz(?.z?* di 3"’“*)'

230. The Centre of Inertia of a system of equal material {entre of
points (whether connected with one another or not) is the point

whose distance is equal to their average distance from any plane
whatever (§ 229).

A group of material points of unequal masses may always be
imagined as composed of a greater number of equal material
points, because we may imagine the given material points
divided into different numbers of very small parts. In any
case in which the magnitudes of the given masses are incom-
mensurable, we may approach as near as we please to a rigorous
fulfilment of the preceding statement, by making the parts into
which we divide them sufficiently small.

On this understanding the preceding definition may be ap-
plied to define the centre of inertia of a system of material

points, whether given equal or not. The result is equivalent to
this:— '
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The centre of inertia of any system of material points what-
ever (whether rigidly connected with one another, or connected
in any way, or quite detached), is a point whose distance f}'om
any plane is equal to the sum of the products of each mass into
its distance from the same plane divided by the sum of the

IMasses.

We also see, from the proposition stated above, that a pomt
whose distance from three rectangular planes fulfils this con-
dition, must fulfil this condition also for every other plane.

The co-ordinates of the centre of inertia, of masses w,, w,,
etc., at points (2, ¥, 2,)s (€, ¥ %), €tc., are given by the follow-
ing formulse :—

_ ww, +wx,+etc.  Jwx 7 Swy ; Swz
= w + w,+ ete. S Sw ’ Saw

These formulse are perfectly general, and can easily be put
into the particular shape required for any given case. Thus,
suppose that, instead of a set of detached material points, we
have a continuous distribution of matter through certain definite
portions of space ; the density at x, ¥, z being p, the elementary
principles of the integral calculus give us at once

. [ [fpxdxdyd
[ [pdzdydz’

where the integrals extend through all the space occupied by the
mass in question, in which p has a value different from zero.

ete.,

The Centre of Inertia or Mass is thus a perfectly definite
point in every body, or group of bodies. The term Centre of
Grawity is often very inconveniently used for it. The theory
of the resultant action of gravity which will be given under
Abstract Dypamics shows that, except in a definite class of
distributions of matter, there is no one fixed point which can
properly be called the Centre of Gravity of a rigid body. I}'l
ordinary cases of terrestrial gravitation, however, an approxi-
mate solution is available, according to which, In common
parlance, the term “Centre of Gravity” may be used as equi-
valent to Centre of Inertia; but it must be carefully re-
membered that the fundamental ideas involved in the two

definitions are essentially different.
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The second proposition in § 229 may now evidently be Centre of
Inertia.
stated thus:—The sum of the momenta of the parts of the =
system in any direction is equal to the momentum in the same
direction of a mass equal to the sum of the masses moving with
a velocity equal to the velocity of the centre of inertia.

231. The Moment of any physical agency is the numerical Moment.
measure of its importance. Thus, the moment of a force round
a point or round a line, signifies the measure of its importance

as regards producing or balancing rotation round that point or
round that line.

232. The Moment of a force about a point is defined as the Moment of
product of the force into its perpendicular distance from the about
point. It 1s numerically double the area of the triangle whose
vertex 1s the point, and whose base is a line representing the
torce 1n magnitude and direction. It is often convenient to
represent 1t by a line numerically equal to it, drawn through
the vertex of the triangle perpendicular to its plane, through
the front of a watch held in the plane with its centre at the
point, and facing so that the force tends to turn round this Moment of
point in a direction opposite to the hands. The moment of a :JEE?M
force round any axis 18 the moment of its component in any o
plane perpendicular to the axis, round the point in which the
plane 1s cut by the axis. Here we imagine the force resolved
into two components, one parallel to the axis, which is ineffective
so far as rotation round the axis is concerned; the other perpen-
dicular to the axis (that is to say, having its line in any plane

perpendicular to the axis). This latter component may be called

- the effective component of the force, with reference to rotation

round the axis. And its moment round the axis may be defined
as 1ts moment round the nearest point of the axis, which is
equivalent to the preceding definition. It is clear that the
moment of a force round any axis, is equal to the area of the
projection on any plane perpendicular to the axis, of the figure
representing its moment round any point of the axis.

233. The projection of an area, plane or curved, on any pigression

pPlane, is the area included in the projection of its bounding {BrwF
line, - Breas.
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If we imagine an area divided into any number of parts, the
projections of these parts on any plane make up the projection
of the whole. But in this statement it must be understood that
*he areas of partial projections are to be reckoned as positive if
particular sides, which, for brevity, we may call the outside of
the projected area and the front of the plane of projection, face
the same way, and negative if they face oppositely.

Of course if the projected surface, or any part of it, be a plane
area at right angles to the plane of projection, the projection
vanishes. The projections of any two shells baving a common
edge, on any plane, are equal, but with the same, or opposite,
signs as the case may be. Hence, by taking two such shells
facing opposite ways, we see that the projection of a closed
surface (or a shell with evanescent edge), on any plane, is
nothing.

Equal areas in one plane, or in parallel planes, have equal
projections on any plane, whatever may be their figures.

Hence the projection of any plane figure, or of any shell,

edged by a plane figure, on another plane, 1s equal to its area,

multiplied by the cosine of the angle at which 1ts plane 1s in-
clined to the plane of projection. This angle is acute or obtuse,
according as the outside of the projected area, and the front of
plane of projection, face on the whole towards the same parts,
or oppositely. Hence lines representing, as above described,
moments about a point in different planes, are to be com-
pounded as forces are.—See an analogous theorem in § 96.

234. A Couple is a pair of equal forces acting 1n dissimilar
directions in parallel lines. The Moment of a couple 1s the
sum of the moments of its forces about any point in their plane,
and is therefore equal to the product of either force into the
shortest distance between their directions. This distance is called

the Arm of the couple.

The Awis of a Couple is a line drawn from any chosen point

of reference perpendicular to the plane of the couple, of such
magnitude and in such direction as to represent the magnitude
of the moment, and to indicate the direction in which the couple

tends to turn. The most convenient rule for fulfilling the
latter condition is this:—Hold a watch with its centre at the

- the moment of the resultant velocityround
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point of reference, and with its plane parallel to the plane of coupia,
the couple. Then, according as the motion of the hands is
contrary to or along with the direction in which the couple
tends to turn, draw the axis of the couple through the face

or through the back of the watch, from its centre. Thus a
couple is completely represented by 1its axis; and couples are to

be resolved and compounded by the same geometrical construc-

tions performed with reference to their axes as forces or velo-
cities, with reference to the lines directly representing them.

235. If we substitute, for the force in § 232, a velocity, we Moment of
have the moment of a velocity about a point; and by intro- .
ducing the mass of the moving body as a factor, we have an
important element of dynamical science, the Moment of Momen- yoment of
tum. The laws of composition and resolution are the same ™™™
as those already explained; but for the sake of some simple
applications we give an elementary investigation.

The moment. of a rectilineal motion 1s the product of its Moment of

length into the distance of its line from the point. ﬁiﬁﬂge&l

The moment of the resultant velocity of a particle about any e

point in the plane of the components is equal to the algebraic
sum of the moments of the components, the proper sign of each
moment being determined as above, § 233. The same is of
course true of moments of displacements, of moments of forces
and of moments of momentum.

First, consider two component motions, 48 and 4, and let For two

forces,

AD be their resultant (§ 27). Their half moments round the motions,

velocities,

point O are respectively the areas OAB, OCA. Now OCA, or mo-

together with half the area of the parallelogram CABD, is &?}Eﬁ%f
equal to OBD. Hence the sum of the two half moments their mo-

together with half the area of the parallelogram, is equal toproved .
AOB together with BOD, that is to say, to the area of the Momentof
whole figure OABD. But ABD, a part O bieer el
of this figure, is equal to half the area of * B e,
the parallelogram ; and therefore the re- AN

mainder, 04D, is equal to the sum of PN

the two half moments. But 04D 1s half

the point 0. Hence the moment of the
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resultant is equal to the sum of the moments of the two com-
ponents.

If there are any number of component rectilineal motions in

one plane, we may compound them in order, any two taken

Any num- together first, then a third, and so on; and it follows that the

moments  Sum of their moments is equal to the moment of their resultant.

piane com- 1t follows, of course, that the sum of the moments of any number
Pounon. Y of component velocities, all in one plane, into which the velo-
city of any point may be resolved, is equal to the moment of
their resultant, round any point in their plane. It follows also,
that if velocities, in different directions all in one plane, be
successively given to a moving point, so that at any time 1ts
velocity is their resultant, the moment of its velocity at any
time is the sum of the moments of all the velocities which have

been successively given to 1t.

Cor.—If one of the components always passes through the
point, its moment vanishes. This i1s the case of a motion in
which the acceleration is directed to a fixed point, and we thus
reproduce the theorem of § 36, @, that 1n this case the areas
described by the radius-vector are proportional to the times;
for, as we have seen, the moment of velocity i1s double the area
traced out by the radius-vector in unit of time.

Moment 236. The moment of the velocity of a point round any axis

s ™ is the moment of the velocity of its projection on a plane per-
pendicular to the axis, round the point in which the plane 1s cut
by the axis.

Moment of The moment of the whole motion of a point during any
& winoie

motion, time, round any axis, 1s twice the area described in that time
axis. by the radius-vector of its projection on a plane perpendicular to

that axis.

If we consider the conical area traced by the radius-vector
drawn from any fixed point to a moving point whose motion 1s
not confined to one plane, we see that the projection of this area
on any plane through the fixed point is half of what we have
just defined as the moment of the whole motion round an axis
perpendicular to it through the fixed point. Of all these
planes, there is one on which the projection of the area is greater
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than on any other; and the projection of the conical area on Moment of
a whole

any plane perpendicular to this plane, 1s equal to nothing, the metion,
. . . : ound an

proper interpretation of positive and negative projections being axis.
used.

If any number of moving points are given, we may similarly
consider the conical surface described by the radius-vector of
each drawn from one fixed point. The same statement applies
10 the projection of the many-sheeted conical surface, thus pre-
sented. The resultant axis of the whole motion in any finite Resultant
time, round the fixed point of the motions of all the moving *
points, 1s a line through the fixed point perpendicular to the
plane on which the area of the whole projection is greater than
on any other plane ; and the moment of the whole motion round

the resultant axis, 1s twice the area of this projection.

The resultant axis and moment of velocity, of any number of
moving points, relatively to any fixed point, are respectively the

resultant axis of the whole motion during an infinitely short
time, and 1ts moment, divided by the time.

The moment of the whole motion round any axis, of the
motion of any number of points during any time, 1s equal
to the moment of the whole motion round the resultant axis
through any point of the former axis, multiplied into the cosine
of the angle between the two axes.

The resultant axis, relatively to any fixed point, of the whole
motion of any number of moving points, and the moment of
the whole motion round it, are deduced by the same elemen-
tary constructions from the resultant axes and moments of the
individual points, or partial groups of points of the system, as
the direction and magnitude of a resultant displacement are
deduced from any given lines and magnitudes of component Moment of

. momen
displacements.

Corresponding statements apply, of course, to the moments of
velocity and of momentum.

237. If the point of application of a force be displaced Virtual

through a small space, the resolved part of the displacement in
the direction of the force has been called its Virtual Velocity.
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This is positive or negative according as the virtual velocity 18
in the same, or in the opposite, direction to that of the force.

The product of the force, into the virtual velocity of its point
of application, has been called the Virtual Moment of the force.
These terms we have introduced since they stand in the history
and developments of the science; but, as we shall show further
on, they are inferior substitutes for a far more useful set of 1deas
clearly laid down by Newton.

238. A force is said to do work if its place of application
has a positive component motion in 1ts direction ; and the work
done by it is measured by the product of its amount into this
component motion.

Thus, in lifting coals from a pit, the amount of work done 1is
proportional to the weight of the coals lifted ; that 1s, to the
force overcome in raising them; and also to the height through
which they are raised. The unit for the measurement of work
adopted in practice by British engineers, 1s that required to
overcome a force equal to the gravity of a pound through the
space of a foot; and is called a Foot-Pound.

In purely scientific measurements, the unit of work 1s not
the foot-pound, but the kinetic unit force (§ 225) acting through
unit of space. Thus, for example, as we shall show further on,
this unit is adopted in measuring the work done by an electric
current, the units for electric and magnetic measurements being
founded upon the kinetic unit force.

If the weight be raised obliquely, as, for instance, along a
smooth inclined plane, the space through which the force has
to be overcome is increased in the ratio of the length to the
height of the plane; but the force to be overcome 1s not the
whole gravity of the weight, but only the component of the
gravity parallel to the plane; and this 1s less than the gravity
in the ratio of the height of the plane to its length. By
multiplying these two expressions together, we find, as we
might expect, that the amount of work required is unchanged
by the substitution of the oblique for the vertical path.

239. Generally, for any force, the work done during an
infinitely small displacement of the point of application is the
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virtual moment of the force (§ 237), or is the product of the }g;?rk of &
. . . . ce.
resolved part of the force in the direction of the displacement

into the displacement.

From this it appears, that if the motion of the point of
application be always perpendicular to the direction in which
a force acts, such a force does no work. Thus the mutual
normal pressure between a fixed and moving body, as the
tension of the cord to which a pendulum bob is attached, or
the attraction of the sun on a planet if the planet describe a

circle with the sun in the centre, is a case in which no work is
done by the force.

240. The work done by a force, or by a couple, upon a body Work of a

turning about an axis, is the product of the moment of the
force or couple into the angle (in radians, or fraction of a radian)
through which the body acted on turns, if the moment remains
the same in all positions of the body. If the moment be varia-
ble, the statement is only valid for infinitely small displace-
ments, but may be made accurate by employing the proper
average moment of the force or of the couple. The proof is
obvious.

If @ be the moment of the force or couple for a position of
the body given by the angle 6, @(6, —6,) if @ is constant, or

61
@d0=q(0,—06,) where ¢ is the proper average value of

9
when variable, is the work done by the couple during the rotation

from 6, to 6.

241. Work done on a body by a force is always shown by a, Transform-

~eorresponding increase of vis viva, or kinetic energy, if no other work.
forces act on the body which can do work or have work done
. against them. If work be done against any forces, the increase
- of kinetic energy is less than in the former case by the amount

of work so done. In virtue of this, however, the body possesses

an equivalent in the form of Potential Energy (§ 273), if its Potentual

physical conditions are such that these forces will act equally, energy.

~&nd in the same directions, if the motion of the system 1s

reversed. Thus there may be no change of kinetic energy pro-
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duced, and the work done may be wholly stored up as potential
energy.

Thus a weight requires work to raise it to a height, a spring
requires work to bend 1it, air requires work to compress it, ete.;
but a raised weight, a bent spring, compressed air, etc., are
stores of energy which can be made use of at pleasure.
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sidered as resting on convictions drawn from observation and
experiment, not on intuitive perception.

244. LEx I. Corpus omne perseverare in statu suo quiescends Newton's

vel movendi uniformiter in directum, nist quatenus tllud & virthus
vmpressis cogitur statum suum mutare.

Every body continues n its state of rest or of uniform motion
in a straight line, except in so far as it may be compelled by

Newton's 242. In what precedes we have given some of Newton’s force to change that state.
W8 0 o, ® . .
Motion.  Definutiones nearly in his own words; others have been enun-

Axiom.

clated 1n a form more suitable to modern methods; and some
terms have been introduced which were invented subsequent
to the publication of the Principia. But the daiomata, sive
Leges Motis, to which we now proceed, are given in Newton’s
own words; the two centuries which have nearly elapsed since
he first gave them have not shown a necessity for any addition
or modification. The first two, indeed, were discovered by
Galileo, and the third, In some of its many forms, was known
to Hooke, Huyghens, Wallis, Wren, and others; before the
publication of the Principia. Of late there has been a tendency
to spht the second law into two, called respectively the second
and third, and to ignore the third entirely, though using it
directly 1n every dynamical problem ; but all who have done so
have been forced wndirectly to acknowledge the completeness of
Newton’s system, by introducing as an axiom what is called
D’Alembert’s principle, which is really Newton’s rejected third
law in another form. Newton’s own interpretation of his third
law directly points out not only D’Alembert’s principle, but also
the modern principles of Work and Energy.

243. An Axiom is a proposition, the truth of which must

245. The meaning of the term Resf, in physical science Rest.

iy essentially relative. Absolute rest is undefinable. If the
universe of matter were finite, its centre of inertia might fairly
be considered as absolutely at rest; or it might be imagined to
be moving with any uniform velocity in any direction whatever
through infinite space. But it is remarkable that the first law
of motion enables us (§ 249, below) to explain what may be
called directional rest. As will soon be shown, § 267, the plane
in which the moment of momentum of the universe (if finite)
round its centre of inertia is the greatest, which is clearly de-
terminable from the actual motions at any instant, 18 fixed 1n

direction in space.

246. We may logically convert the assertion of the first law
of motion as to velocity into the following statements :—

The times during which any particular body, not compelled
by force to alter the speed of its motion, passes through equa_.l
spaces, are equal. And, again—Every other body in the uni-
verse, not compelled by force to alter the speed of its motion,
moves over equal spaces in successive intervals, during which

the particular chosen body moves over equal spaces.

be admitted as soon as the terms in which it is expressed are 247. The first part merely expresses the convention uni- Time.

clearly understood. But, as we shall show in our chapter on
“ Experience,” physical axioms are axiomatic to those only who
have sufficient knowledge of the action of physical causes to
enable them to see their truth. Without further remark we
shall give Newton's Three Laws; it being remembered that, as
the properties of matter might have been such as to render a
totally different set of laws axiomatic, these laws must be con-

versally adopted for the measurement of Time. The earth, in
its rotation about its axis, presents us with a case of motion 1n
which the condition, of not being compelled by force to alter
its speed, is more nearly fulfilled than in any other which
we can easily or accurately observe. And the numerical
measurement of time practically rests on defining equal wnter-
vals of time, as times during which the earth turns through equal

VOL. 1. 16
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angles. This is, of course, a mere convention, and not a law of
nature ; and, a8 we now see 1t, 18 a part of Newton's first law.

Examplesof 248. The remainder of the law 1s not a convention, but a

the law, . : .
great truth of nature, which we may illustrate by referring to
small and trivial cases as well as to the grandest phenomena we
can concelve,

A curling-stone, projected along a horizontal surface of ice,
travels equal distances, except in so far as it is retarded by
friction and by the resistance of the air, in successive intervals
of time during which the earth turns through equal angles.
The sun moves through equal portions of interstellar space in
times during which the earth turns through equal angles, except
1n 8o far as the resistance of interstellar matter, and the attrac-
tion of other bodies in the universe, alter his speed and that of
the earth’s rotation.

Directional 249, If two material points be projected from one position,

fixedness. . . ., . . .
A, at the same instant with any velocities in any directions,
and each left to move uninfluenced by force, the line joining
them will be always parallel to a fixed direction. For the law
asserts, as we have seen, that AP : AP :: AQ: AQ', if P, Q, and
again P, Q' are simultaneous positions; and therefore PQ is
parallel to P'¢f. Hence if four material points O, P, Q, R are
all projected at one instant from one position, OP, 0Q, OR

The “ [nva- are fixed directions of reference ever after. But, practically,

Plane»  the determination of fixed directions in space, § 267, is made to

of the solar . : :

system.  depend upon the rotation of groups of particles exerting forces

on each other, and thus involves the Third Law of Motion.

250. The whole law 1s singularly at variance with the tenets
of the ancient philosophers who maintained that circular motion
1s perfect.

The last clause, “nist quatenus,” etc.,, admirably prepares for
the introduction of the second law, by conveying the idea that
vt 15 force alone which can produce a change of motion. How,
we naturally inquire, does the change of motion produced
depend on the magnitude and direction of the force which
produces it ? And the answer is—
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261. Lex IL Mutationem motds proportionalem esse v Newson's

MOLTICY YMpresse, et fiert secundum lineam rectam qud vis illg "0 *%
tmprimatur.

Cha'wge of motion s proportional to force applied, and takes
place v the direction of the straight line in which the Jorce acts.

252. If any force generates motion, a double force will
generate double motion, and so on, whether simultaneously or
successively, instantaneously, or gradually applied. And this
motion, if the body was moving beforehand, is either added
to the previous motion if directly conspiring with 1t; or 1s
subtracted if directly opposed ; or is geometrically compounded
with it, according to the kinematical principles already ex-
plained, if the line of previous motion and the direction of the
force are inclined to each other at an angle. (This 1s a para-
phrase of Newton’s own comments on the second law.)

233. In Chapter 1. we have vousidered change of velocity,
or acceleration, as a purely geometrical element, and have seen
how it may be at once inferred from the given initial and final
velocities of a body. By the definition of quantity of motion
(§ 210), we see that, if we multiply the change of velocity,
thus geometrically determined, by the mass of the body, we

- bave the change of motion referred to in Newton’s law as the

measure of the force which produces it.

It 1s to be particularly noticed, that in this statement there
1s nothing said about the actual motion of the body before it
was acted on by the force : it is only the change of motion that
concerns us. Thus the same force will produce precisely the
same change of motion in a body, whether the body be at rest,
or in motion with any velocity whatever.

254, Again, it is to be noticed that nothing is said as to the
body being under the action of one force only ; so that we

may logically put a part of the second law in the following
(apparently) amplified form :—

When any forces whatever act on a body, then, whether the

body be originally at rest or moving with any velocity and in any

direction, each force produces in the body the exact change of
16—2
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motion which %t would have produced if it had acted singly on
the body orginally at rest.

265. A remarkable consequence follows immediately from
this view of the second law. Since forces are measured by the
changes of motion they produce, and their directions assigned
by the directions in which these changes are produced; and
since the changes of motion of one and the same body are in
the directions of, and proportional to, the changes of velocity—
a single force, measured by the resultant change of velocity,
and 1n its direction, will be the equivalent of any number of
simultaneously acting forces. Hence

The resultant of any number of forces (applied at one point) s
to be found by the same geometrical process as the resultant of any
number of simultaneous velocities.

256. From this follows at once (§ 27) the construction of
the Parallelogram of Forces for finding the resultant of two
forces, and the Polygon of Forces for the resultant of any num-
ber of forces, 1n lines all through one point.

The case of the equilibrium of a number of forces acting at
one point, is evidently deducible at once from this; for if we
introduce one other force equal and opposite to their resultant,
this will produce a change of motion equal and opposite to the
resultant change of motion produced by the given forces; that
is to say, will produce a condition in which the point expe-
riences no change of motion, which, as we have already seen, is
the only kind of rest of which we can ever be conscious.

2567. Though Newton perceived that the Parallelogram of
Forces, or the fundamental principle of Statics, is essentially
involved in the second law of motion, and gave a proof which
1s virtually the same as the preceding, subsequent writers on
Statics (especially in this country) have very generally ignored
the fact; and the consequence has been the introduction of
various unnecessary Dynamical Axioms, more or less obvious,
but in reality included in or dependent upon Newton’s laws
of motion. We have retained Newton’s method, not only on
account of its admirable simplicity, but because we believe it
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contains the most philosophical foundation for the static as well
as for the kinetic branch of the dynamic science.

258. DBut the second law gives us the means of measuring seasure-
force, and also of measuring the mass of a body. foroe and

For, if we consider the actions of various forces upon the .
same body for equal times, we evidently have changes of
velocity produced which are proportional to the forces. The
changes of velocity, then, give us in this case the means of
comparing the magnitudes of different forces. Thus the velo-
cities acquired in one second by the same mass (falling freely)
at different parts of the earth’s surface, give us the relative
amounts of the earth’s attraction at these places.

Again, if equal forces be exerted on different bodies, the
changes of velocity produced in equal times must be inversely
as the masses of the various bodies. This is approximately the
case, for instance, with trains of various lengths started by the
same locomotive: 1t is exactly realized in such cases as
the action of an electrified body on a number of solid or hollow
spheres of the same external diameter, and of different metals
or of different thicknesses.

Again, if we find a case 1n which different bodies, each acted
on by a force, acquire in the same time the same changes of
velocity, the forces must be proportional to the masses of the
bodies. This, when the resistance of the air is removed, is the

case of falling bodies; and from it we conclude that the weight

of a body in any given locality, or the force with which the
earth attracts 1t, 1s proportional to its mass; a most important
physical truth, which will be treated of more carefully in the
chapter devoted to “ Properties of Matter.”

259. It appears, lastly, from this law, that every theorem of Transta-

Kinematics connected with acceleration has its counterpart in thoe ines
Kinetics. | mﬂg& ofa

For instance, suppose X, ¥, Z to be the components, parallei
to fixed axes of =z, y, 2 respectively, of the whole force acting on
a particle of mass M, We see by § 212 that

d*x d’y d’z
Mg =4 Mga=t MHgm=Z
or Mi=X, Miy=Y, M:=25
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Also, from these, we may evidently write,

Mg:de+I’j;’+Zj—:—X +YJ 7":,
d §
A’S’z_, : +Y?“’_,‘;’z . Z“’y_,{*’,
p 8 p 8 p 8
-ﬂ o
Ms __Xé'c_laa,s_l_ysy ys_l_zfz:zs_
p p~8 p's’ p~'&

The second members of these equations are respectively the com-
ponents of the impressed force, along the tangent (§ 9), perpen-
dicular to the osculating plane (§ 9), and towards the centre of
curvature, of the path described.

260. We have, by means of the first two laws, arrived at a
definition and a measure of force; and have also found how to
compound, and therefore also how to resolve, forces; and also
how to investigate the motion of a single particle subjected to
given forces. But more is required before we can completely
understand the more complex cases of motion, especially those
in which we have mutual actions between or amongst two or
more bodies; such as, for instance, attractions, or pressures, or
transference of energy in any form. This is perfectly supplied

by

261. Lex Ill. Actiom contrariam semper et wqualem esse
reactionem : swe corporum duorum actiones in se mutud semper
esse wquales et wn partes contrarias dirign.

To every action there 1s always an equal and contrary re-
action: or, the mutual actions of any two bodies are always equal
and oppositely directed.

262. If one body presses or draws another, it is pressed or
drawn by this other with an equal force in the opposite direc-
tion. If any one presses a stone with his finger, his finger is
pressed with the same force in the opposite direction by the
stone. A horse towing a boat on a canal is dragged back-
wards by a force equal to that which he impresses on the
towing-rope forwards. By whatever amount, and in whatever
direction, one body has its motion changed by impact upon
another, this other body has its motion changed by the same
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amount, in the opposite direction; for at each instant during Newton's
i L g

the 1mpact the force between them was equal and opposite on
the two. When neither of the two bodies has any rotation,
whether before or after impact, the changes of velocity which
they experience are inversely as their masses.

When one body attracts another from a distance, this other
attracts 1t with an equal and opposite force. This law holds
not only for the attraction of gravitation, but also, as Newton
himself remarked and verified by experiment, for magnetic
attractions: also for electric forces, as tested by Otto-Guericke.

263. What precedes is founded upon Newton’s own com-
ments on the third law, and the actions and reactions con-
templated are simple forces. In the scholium appended, he
makes the following remarkable statement, introducing another
description of actions and reactions subject to his third law,
the full meaning of which seems to have escaped the notice of
commentators :—

St @stimetur agentis actio ex ejus vi et velocitate conjunctim ;
et sumalster resistentis reactio wstimetur conjunctim ex ejus partiwm
singularum velocitatibus et viribus resistendr ab earum attritione,
cohsione, pondere, et acceleratione oriundis; erunt actio et reactio,
m omns instrumentorum usu, sibi tnvicem semper equales.

In a previous discussion Newton has shown what is to be
understood by the velocity of a force or resistance ; 7.e., that it
1s the velocity of the point of application of the force resolved
wn the direction of the force. Bearing this in mind, we may
read the above statement as follows .—

If the Actinity™® of an agent be measured by its amount and tts
velocty conjountly; and +f, ssmilarly, the Counter-activity of the
resistance be measured by the wvelocities of 1its several parts and
thevr several amounts conjointly, whether these arise from friction,
cohesion, werght, or acceleration ;—Activity and Counter-activity,
sn all combinations of machines, will be equal and oppostte.

Farther on (§§ 264, 293) we shall give an account of the

* We translate Newton’s word *‘ Aetio™ here by * Activity” to avoid confusion
with the word ‘¢ Action” so universally used in modern dynamical treatises, ac-
cording to the definition of § 326 below, in relation to Maupertuis’ principle of
 Least Action.”
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splendid dynamical theory founded by I’Alembert and La-

grange on this most important remark,

264. Newton, in the passage just quoted, points out that
forces of resistance against acceleration are to be reckoned as
reactions equal and opposite to the actions by which the ac-
celeration 1s produced. Thus, if we consider any one material
point of a system, its reaction against acceleration must be
equal and opposite to the resultant of the forces which that
point experiences, whether by the actions of other parts of the
system upon 1t, or by the influence of matter not belonging to
the system. In other words, it must be in equilibrium with
these forces. Hence Newton’s view amounts to this, that all the
forces of the system, with the reactions against acceleration of
the material points composing it, form groups of equilibrating
systems for these points considered individually. Hence, by
the principle of superposition of forces in equilibrium, all the
forces acting on points of the system form, with the reactions
agalnst acceleration, an equilibrating set of forces on the whole
system.  This is the celebrated principle first explicitly stated,
and very usefully applied, by D’Alembert in 1742, and still
known by his name. We have seen, however, that it is very
distinetly implied in Newton’s own interpretation of his third
law of motion. As it 1s usual to 1nvestigate the general equa-
tions or conditions of equilibrium, in dynamical treatises, before
entering 1n detail on the kinetic branch of the subject, this
principle is found practically most useful in showing how we
may write down at once the equations of motion for any
system for which the equations of equilibrium have been in-
vestigated.

265. Livery rigid body may be imagined to be divided into
indefinitely small parts. Now, in whatever form we may
eventually ind a physical explanation of the origin of the forces
which act between these parts, it is certain that each such
small part may be considered to be held in its position
relatively to the others by mutual forces in lines jomning them.

266. From this we have, as immediate consequences of the
second and third laws, and of the preceding theorems relating

266.] DYNAMICAL LAWS AND PRINCIPLES, 249

to Centre of Inertia and Moment of Momentum, a number of
important propositions such as the following :—

(@) The centre of mertia of a rigid body moving in any Motion of
Centre ¢

manner, but free from external forces, moves uniformly in a inertia of a
rigid body.

straight line.

(b) When any forces whatever act on the body, the motion of
the centre of inertia is the same as it would have been had
these forces been applied with their proper magnitudes and

directions at that point itself.

(¢) Since the moment of a force acting on a particle is the Moment of
> nmomentum

same as the moment of momentum it produces in unit of time, of a rigid
the changes of moment of momentum in any two parts of a
rigid body due to their mutual action are equal and opposite.
Hence the moment of momentum of a rigid body, about any axis

which 1s fixed 1n direction, and passes through a point which

13 either fixed in space or moves uniformly in a straight line, is

unaltered by the mutual actions of the parts of the body.

(d) The rate of increase of moment of momentum, when the
body 1s acted on by external forces, 1s the sum of the moments

of these forces about the axis.

267. We shall for the present take for granted, that the conserva-

tion of

mutual action between two rigid bodies may in every case be momentum,
. . and of mo-

Imag] irs of equal and opposite forces ment ot

1mmagined as composed of pairs q pp ment of

in straight lmes. From this it follows that the sum of the
quantities of motion, parallel to any fixed direction, of two
ngid bodies influencing one another in any possible way, re-
mains unchanged by their mutual action; also that the sum
of the moments of momentum of all the particles of the two
bodies, round any line in a fixed direction in space, and passing
through any point moving uniformly in a straight line in any
direction, remains constant. From the first of these propositions
we infer that the centre of inertia of any number of mutually
influencing bodies, if in motion, continues moving uniformly
in a straight line, unless in so far as the direction or velocity
of its motion is changed by forces acting mutually between
them and some other matter not belonging to them ; also that
the centre of inertia of any body or system of bodies moves
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The* Inva- just as all their matter, if concentrated in a point, would move
Brane” isa under the influence of forces equal and parallel to the forces
through the really acting on its different parts. From the second we 1nier
centre of

that the axis of resultant rotation through the centre of inertia
of any system of bodies, or through any point either at rest or
moving uniformly in a straight line, remains unchanged in
direction, and the sum of moments of momenta round 1t
remains constant if the system experiences no force from with-
out. This principle used to be called Conservation of Areas,
a very ill-considered designation. From this principle it follows
that if by internal action such as geological upheavals or sub-
sidences, or pressure of the winds on the water, or by evapora-
tion and rain- or snow-fall, or by any influence not depending
on the attraction of sun or moon (even though dependent on
solar heat), the disposition of land and water becomes altered,
the component round any fixed axis of the moment of momen-

Rate of
doing work.

Horse-
power.

tum of the earth’s rotation remains constant.

268. The foundation of the abstract theory of energy is laid
by Newton in an admirably distinet and compact manner in the
sentence of his scholium already quoted (§ 263), in which he
points out its application to mechanics®. The actio agentis,
as he defines it, which is evidently equivalent to the product of
the effective component of the force, into the velocity of the
point on which it acts, is simply, in modern English phrase-
ology, the rate at which the agent works. The subject for
measurement here is precisely the same as that for which Watt,
a hundred years later, introduced the practical unit of a “ Horse-
power,” or the rate at which an agent works when overcoming
33,000 times the weight of a pound through the space ot a foot
in a minute; that is, producing 550 foot-pounds of work per
second. The unit, however, which is most generally convenient

is that which Newton’s definition implies, namely, the rate of
doing work in which the unit of energy is produced in the unit

of time.

¢ The reader will remember that we use the word ¢ mechanies” in its true
classical sense, the science of machines, the sense in which Newion himself
used it, when he dismissed the further consideration of it by saying (in the
soholium referred to), Caterum mechanicam tractare non est hujus tnstituti.
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269. Looking at Newton’s words (§ 263) in this light, we Enerey in
see that they may be logically converted into the following drnamics
form :— .

Work done on any system of bodies (in Newton’s state-
ment, the parts of any machine) has its equivalent in work done
agamst friction, molecular forces, or gravity, if there be no
acceleration ; but if there be acceleration, part of the work is
expended 1n overcoming the resistance to acceleration, and the
additional kinetic energy developed is equivalent to the work
so spent. This is evident from § 214.

When part of the work is done against molecular forces, as
In bending a spring; or against gravity, as in raising a weight ;
the recoil of the spring, and the fall of the weight, are capable
at any future time, of reproducing the work originally expended
(§ 241). But in Newton’s day, and long afterwards, it was
supposed that work was absolutely lost by friction ; and, indeed,
this statement is still to be found even in recent authoritative
treatises. But we must defer the examination of this point till
we consider in 1ts modern form the principle of Conservation of
FEnergy.

270. If a system of bodies, given either at rest or in
motion, be influenced by no forces from without, the sum of the
kinetic energies of all its parts is augmented in any time by an
amount equal to the whole work done in that time by the
mutual forces, which we may imagine as acting between its
points. When the lines in which these forces act remain all
unchanged in length, the forces do no work, and the sum of the
kinetic energies of the whole system remains constant, If, on
the other hand, one of these lines varies in length during the
motion, the mutual forces in it will do work, or will consume
work, according as the distance varies with or against them.

271. A limited system of bodies is said to be dynamically Conserva-
conservative (or simply conservative, when force is understood to e System.
be the subject), if the mutual forces between its parts always
perform, or always consume, the same amount of work during

any motion whatever, by which it can pass from one particular
configuration to another.
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272. The whole thedry of energy in physical science is

founded on the following proposition:— |
If the mutual forces between the parts of a material system

are independent of their velocities, whether relative to one
another, or relative to any external matter, the system must be
dynamically conservative.

For if more work is done by the mutual forces on the
different parts of the system in passing from one particular
configuration to another, by one set of paths than by another
set of paths, let the system be directed, by frictionless con-
straint, to pass from the first configuration to the second by
one set of paths and return by the other, over and over again
for ever. It will be a continual source of energy without any
consumption of materials, which is impossible.

273. The polential energy of a conservative system, in the
configuration which it has at any instant, 1s the amount of work
required to bring it to that configuration against its mutual
forces during the passage of the system from any one chosen
configuration to the configuration at the time referred to. It
is generally, but not always, convenient to fix the particular
configuration chosen for the zero of reckoning of potential
energy, so that the potential energy, in every other configuration
practically considered, shall be positive.

974, The potential energy of a conservative system, at any
instant, depends solely on its configuration at that instant,
being, according to definition, the same at all times when the
system is brought again and again to the same configuration.
Tt is therefore, in mathematical language, said to be a function
of the co-ordinates by which the positions of the different parts
of the system are specified. 1If, for example, we have a copser-
vative system consisting of two material points; or two rigid
bodies, acting upon one another with force dependent only on
the relative position of a point belonging to one of them, and a
point belonging to the other; the potential energy of the
system depends upon the co-ordinates of one of these points
relatively to lines of reference m fixed directions through the
other. It will therefore, in general, depend on three indepen-
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dent co-ordinates, which we may conveniently take as the dis- rotential
tance between the two points, and two angles specifying the concerva.
absolute direction of the line joining them. Thus, for example, v system
let the bodies be two uniform metal globes, electrified with any

given quantities of electricity, and placed in an insulating
medium such as air, in a region of space under the influence

of a vast distant electrified body. The mutual action between

‘these two spheres will depend solely on the relative position of
their centres. It will consist partly of gravitation, depending
solely on the distance between their centres, and of electric
force, which will depend on the distance between them, but
also, 1n virtue of the inductive action of the distant body, will
depend on the absolute direction of the line joining their
centres. In our divisions devoted to gravitation and electricity
respectively, we shall investigate the portions of the mutual
potential energy of the two bodies depending on these two
agencles separately. The former we shall find to be the pro-
duct of their masses divided by the distance between their
centres; the latter a somewhat complicated function of the
distance between the centres and the angle which this line
makes with the direction of the resultant electric force of the
distant electrified body. Or again, if the system consist of two
balls of soft iron, in any locality of the earth’s surface, their
mutual action will be partly gravitation, and partly due to the
magnetism induced 1n them by terrestrial magnetic force. The
portion of the mutual potential energy depending on the latter
cause, will be a function of the distance between their centres
and the inclination of this line to the direction of the terrestrial
magnetic force. It will agree in mathematical expression with

the potential energy of electric action in the preceding case, so

far as the inclination 1s concerned, but the law of variation with
the distance will be less easily determined.

275. In nature the hypothetical condition of § 271 is appa- 1yevitable

rently violated in ; : ' loss of
Y all circumstances of motion. A material system gagrar of

can never be brought through any returning cycle of motion fan® ™
without spending more work against the mutual forces of its
parts than is gained from these forces, because no relative

motion can take place without meeting with frictional or
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other forms of resistance; among which are included (1)
mutual friction between solids sliding upon one another; (2)
resistances due to the viscosity of fluids, or 1mperfect elasticity
of solids; (3) resistances due to the induection of electric cur-
rents; (4) resistances due to varying magnetization under the
influence of imperfect magnetic retentiveness. No motion In
nature can take place without meeting resistance due to some,
if not to all, of these influences. It is matter of every day
experience that friction and imperfect elasticity of solids 1impede
the action of all artificial mechanisms; and that even when
bodies are detached, and left to move freely in the air, as falling
bodies, or as projectiles, they experience resistance owing to the
viscosity of the air.

The greater masses, planets and comets, moving 1n a less
resisting medium, show less indications of resistance®. Indeed
it cannot be said that observation upon any one of these bodies,
with the exception of Encke’s comet, has demonstrated resist-
ance. But the analogies of nature, and the ascertained facts of
physical science, forbid us to doubt that every one of them,
every star, and every body of any kind moving in any part of
space, has its relative motion impeded by the air, gas, vapour,
medium, or whatever we choose to call the substance occupying
the space immediately round it; just as the motion of a rifle
bullet is impeded by the resistance of the air.

276. There are also indirect resistances, owing to friction
impeding the tidal motions, on all bodies (like the earth) par-
tially or wholly covered by liquid, which, as long as these bodies
move relatively to neighbouring bodies, must keep drawing oft
energy from their relative motions. Thus, if we consider, In
the first place, the action of the moon alone, on the earth with
its oceans, lakes, and rivers, we perceive that 1t must tend to
equalize the periods of the carth’s rotation about 1ts axis, and
of the revolution of the two bodies about their centre of 1nertia;
because as long as these periods differ, the tidal action on the

* Newton, Principia. (Remarks on the first law of motion,) ‘ Majora autem
Planetaruin et Cometarum corpora motus suos et progressivos et circulares, in
spatiis minus resistentibus factos, couservant diutius.”
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earth’s surface must keep subtracting energy from their motions. Eige{st of
18

To view the subject more in detall and, at the same time, to friction.

avoid unnecessary complications, let us suppose the moon to be

a uniform spherical body. The mutual action and reaction of

gravitation between her mass and the earth’s, will be equivalent
to a single force in some line through her centre; and must be
such as to impede the earth’s rotation as long as this is per-
formed 1n a shorter period than the moon’s motion round the
earth. It must therefore lie in some such direction as the line
MQ in the diagram, which represents, necessarily with enormous
exaggeration, its deviation, 0@, from the
earth’s centre. Now the actual force on
the moon in the line M@, may be re-
garded as consisting of a force in the
line MO towards the earth’s centre,
sensibly equal in amount to the whole
force, and a comparatively very small
force in the line M7 perpendicular to
MQ. This latter is very nearly tangential to the moon s path,
and is in the direction with her motion. Such a force, 1f sud-
denly commencing to act, would, in the first place, increase the
moon’s velocity; but after a certain time she would have moved
so much farther from the earth, in virtue of this acceleration, as
to have lost, by moving against the earth’s attraction, as much
velocity as she had gained by the tangential accelerating force.
The effect of a continued tangential force, acting with the mo-
tion, but so small in amount as to make only a small deviation
at any moment from the circular form of the orbit, is to gra-
dually increase the distance from the central body, and to cause
as much again as 1ts own amount of work to be done against
the attraction of the central mass, by the kinetic energy of
motion lost. The circumstances will be readily understood, by
considering this motion round the central body in a very gradual
spiral path tending outwards. Provided the law of the central
force is the inverse square of the distance, the tangential
component of the central force against the motion will be twice
as great as the disturbing tangential force in the direction with
the motion; and therefore one-half of the amount of work done
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{nevitable agalnst the former, 18 done by the latter, and the other half by to say, twice in the 3?1&1‘ day, or, which .would be the same {nevitable
a?:.fﬁ_v ot kinetic energy taken from the motion. The integral effect on thing, the month). This could not go on without loss of energy ey o
;Eiﬁf?“‘- the moon’s motion, of the particular disturbing cause now under by fluid friction. It is easy to trace the whole course of the motions.

disturbance in the earth’s and moon’s motions which this cause friction.

triction.  consideration, is most easily found by using the principle of

moments of momenta. Thus we see that as much moment of
momentum 1s gained in any time by the motions of the centres
of mertia of the moon and earth relatively to their common
centre of 1nertia, as is lost by the earth’s rotation about its axis.
The sum of the moments of momentum of the centres of inertia
of the moon and earth as moving at present, is about 4-45 times
the present moment of momentum of the earth’s rotation. The
average plane of the former is the ecliptic; and therefore the
axes of the two momenta are inclined to one another at the
average angle of 23° 274, which, as we are neglecting the sun’s
influence on the plane of the moon’s motion, may be taken as
the actual inclination of the two axes at present. The résultant,
or whole moment of momentum, is therefore 588 times that of
the earth’s present rotation, and its axis is inclined 19°13’ to
the axis of the earth. Hence the ultimate tendency of the tides
18, to reduce the earth and moon to a simple uniform rotation
with this resultant moment round this resultant axis, as if they
were two parts of one rigid body: in which condition the moon’s
distance would be increased (approximately) in the ratio 1 : 146,
being the ratio of the square of the present moment of momen-
tum of the centres of inertia to the square of the whole moment
of momentum ; and the period of revolution in the ratio 1 : 177,
being that of the cubes of the same quantities. The distance
would therefore be increased to 347,100 miles, and the period
lengthened to 4836 days. Were there no other body in
the universe but the earth and the moon, these two bodies
might go on moving thus for ever, in circular orbits round their
common centre of inertia, and the earth rotating about its axisin
the same period, so as always to turn the same face to the moon,
and therefore to have all the liquids at its surface at rest rela-
tively to the solid. But the existence of the sun would pre-
vent any such state of things from being permanent. There
would be solar tides—twice high water and twice low water—in
the period of the earth’s revolution relatively to the sun (that is

would produce®: its first effect must be to bring the moon to
fall in to the earth, with compensation for loss of moment of
momentum of the two round their centre of inertia in increase of
its distance from the sun, and then to reduce the very rapid rota-
tion of the compound body, Earth-and-Moon, after the collision,
and farther increase its distance from the Sun till ultimately,
(corresponding action on liquid matter on the Sun having s
effect also, and it being for our illustration supposed that there are
no other planets,) the two bodies shall rotate round their common
centre of inertia, like parts of one rigid body. It is remarkable
that the whole frictional effect of the lunar and solar tides
should be, first to augment the moon’s distance from the earth
to a maximum, and then to diminish it, till ultimately the
moon falls in to the earth : and first to diminish, after that to
increase, and lastly to diminish the earth’s rotational velocity.
We hope to return to the subject latert, and to consider the
general problem of the motion of any number of rigid bodies
or material points acting on one another with mutual forces,
under any actual physical law, and therefore, as we shall see,
necessarily subject to loss of energy as long as any of their
mutual distances vary; that is to say, until all subside into
a state of motion in circles round an axis passing through their
centre of inertia, like parts of one rigid body. It 1s probable

# The friction of these solar tides on the earth would cause the earth to
rotate still slower:; and then the moon’s influence, tending to keep the earth
rotating with always the same face towards herself, would resist this further
reduetion in the speed of the rotation. Thus (as explained above with reference
to the moon) there would be from the sun & force opposing the earth’s rotation,
and from the moon a force promoting it. Hence according to the preceding
explanation applied to the altered circumstances, the line of the earth’s at-
traction on the moon passes now as before, not through the centre of inertia of
the earth, but now in a line slightly behind it (instead of before, as formerly).
It therefore now resists the moon’s motion of revolution. The combined effect
of this resistance and of the earth’s attraction on the moon is, like that of a
resisting medium, to cause the moon to fall in towards the earth in a spiral path
with gradually increasing velocity.

+ [See m. § 830 and Appendices G (a) and (b), where numerical values are
given differing slightly from those used here. G. H. D.]
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Inevitable that the moon, in ancient times liquid or viscous in its outer

energy of  layer if not throughout, was thus brought to turn always the

visible

motioans.
motic gsame face to the earth.

Iriction.

277. We have no data in the present state of science for
estimating the relative importance of tidal friction, and of the
resistance of the resisting medium through which the earth and
moon move; but whatever it may be, there can be but one
ultimate result for such a system as that of the sun and planets,
if continuing long enough under existing laws, and not dis-

Ultimate turbed. by meeting with other moving masses in space. That
of the solar Tesult 18 the falling together of all into one mass, which, although

gystem. . . .
rotating for a time, must in the end come to rest relatively to
the surrounding medium.

Qonserva- 278. The theory of energy cannot be completed until we
energy.  are able to examine the physical influences which accompany
loss of energy in each of the classes of resistance mentioned
above, § 275. We shall then see that in every case in which
energy 18 lost by resistance, heat is generated; and we shall
learn from Joule’s investigations that the quantity of heat so
generated 1s a perfectly definite equivalent for the energy
lost. Also that in no natural action is there ever a develop-
ment of energy which cannot be accounted for by the dis-
appearance of an equal amount elsewhere by means of
some known physical agency. Thus we shall conclude, that
if any limited portion of the material universe could be per-

fectly isolated, so as to be prevented from either giving

energy to, or taking energy from, matter external to it, the

sum of 1ts potential and kinetic energies would be the same at
all times: 1n other words, that every material system subject
to no other forces than actions and reactions between its parts,
is a dynamically conservative system, as defined above, § 271.
But 1t i1s only when the inscrutably minute motions among
small parts, possibly the ultimate molecules of matter, which
constitute light, heat, and magnetism; and the intermolecular
forces of chemical affinity; are taken into account, along with
the palpable motions and measurable forces of which we
become cognizant by direct observation, that we can recognise
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the universally conservative character of all natural dynamic Conserva-

tion of
action, and perceive the bearing of the principle of reversibility cuieTRY.

on the whole class of natural actions involving resistance, which
seem to violate 1t. In the meantime, in our studies of abstract
dynamics, it will be sufficient to introduce a special reckoning
for energy lost in working against, or gained from work done
by, forces not belonging palpably to the conservative class.

279. As of great importance in farther developments, we
prove a few propositions intimately connected with energy.

280. The kinetic energy of any system 1s equal to the sum Kinetic
of the kinetic energles of a mass equal to the sum of the masses : srroem.
of the system, moving with a velocity equal to that of its centre
of inertia, and of the motions of the separate parts relatively to
the centre of inertia.

For if x, y, z be the co-ordinates of any particle, m, of the

system; £ , { its co-ordinates relative to the centre of inertia;

and x, v, 2, the co-ordinates of the centre of inertia itself; we have
for the whole kinetic energy

anl (G (B G} () (3O

But by the properties of the centre of inertia, we have

d_df_dw d& |
m priey stmgg:o ete. ete.

Hence the preceding is8 equal to

v {(3) + (@) + (@) -1 {(@) + @) « @)}

which proves the proposition.

281. The kinetic energy of rotation of a rigid system about
any axis is (§ 95) expressed by  2mr'e®, where m is the mass
of any part, » its distance from the axis, and » the angular
velocity of rotation. It may evidently be written in the form
$w*Tmr’. The factor Zmr® is of very great importance in
Rinetic investigations, and has been called the Moment of Moment of
Inertia of the system about the axis in question. The moment tnertia-
of inertia about any axis is therefore found by summing the

17— 2



260 _ PRELIMINARY. [281.

Moment of products of the masses of all the particles each into the square
of its distance from the axis.

Momentof It 18 1Important to notice that the moment of momentum

momentium . o . .

ofarota- Of any rigid system about an axis, being Smvr =Smr'e, is the

dta 1 ax
body: &' product of the angular velocity into the moment of inertia.
If we take a quantity k, such that

E'Sm = Smr®

Badius of kiis called the Radius of Gyration about the axis from which
r 18 measured. The radius of gyration about any axis is there-
fore the distance from that axis at which, if the whole mass
were placed, it would have the same moment of inertia as be-

Fly-wheel. fore. In a fly-wheel, where it is desirable to have as great a
moment of inertia with as small a mass as possible, within
certain hmits of dimensions, the greater part of the mass is
formed into a ring of the largest admissible diameter, and the

radius of this ring is then approximately the radius of gyration
of the whole.

Moment of A rigid bod.y bemg refefrred to rectungular axes passing
about any through any point, it is required to find the moment of inertia
#X18. . . . .
about an axis through the origin making given angles with the
co-ordinate axes.

Let A, p, v be its direction-cosines. Then the distance (r) of
the point x, y, z from it is, by § 95,
= (uz — vy)' + (vz — A2)" + (\y — pa)?,
and therefore
ME'=2mr’=3m [A*(y*+2°) + p* (2 +&°) + V¥ (2°+ 5°)— Quvyz— 2vAzae—2Apacy |
which may be written

AN + By + Cv* — 2apv — 2BvA — 2yAp,

where 4, B, C' are the moments of inertia about the axes, and
a = 2myz, 8= 3mzx, y=Smxy. From its derivation we see that
this quantity is essentially positive. Hence when, by a proper
linear transformation, it is deprived of the terms containing the
products of A, p, v, it will be brought to the form

ME* = AN + Bu® + Cv* = @,

where 4, B, C are essentially positive. They are evidently the
moments of inertia about the new rectangular axes of co-ordinates,
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and A, i, v the corresponding direction-cosines of the axis round ngn of

which the moment of inertia is to be found. :E?;m any

Let A > B> (C, if they are unequal. Then
AN + Bpt + CvV'=Q (A" + u* + ")
shows that @ cannot be greater than A, nor less than C. Also,

if A, B, C' be equal, ¢ is equal to each.
If a, b, ¢ be the radii of gyration about the new axes of z, ¥, ,

A=Ma*, B=Mb, C =M,
and the above equation gives
k= a’\* +b0%u* + 4P
But if , ¥, 2 be any point in the line whose direction-cosines are
A, 1, v, and 7 its distance from the origin, we have

T=Z=%_ r, and therefore
A pov
E'r? = a’x® + b%y" + 2"
If, therefore, we consider the ellipsoid whose equation 1s
a’x’ + b’yﬂ + %" = e",
we see that it intercepts on the line whose direction-cosines are
A, u, v—and about which the radius of gyration is %, a length
which is given by the equation
Bri=d,
or the rectangle under any radius-vector of this ellipsoid and
the radius of gyration about it is constant. Its semi-axes are
: € € ¢
ﬂﬂdﬁ]’ltly E y '5 ] 'E
Thus it 1s evident that

here ¢ may have any value we may assign.

282. For every rigid body there may be described about
any point as centre, an ellipsoid (called Poinsot's Momental

Ellipsoid*) which is such that the length of any radius-vector is

* The definition is not Poinsot’s, but ours. The momental ellipsoid as we
define it is fairly called Poinsot’s, because of the splendid use he has made
of it in his well-known kinematic representation of the solution of the problem
—to find the motion of a rigid body with one point held fixed but otherwise
influenced by no forces—which, with Sylvester’s beautiful theorem completing
it 80 as to give a purely kinematical mechanism to show the time which the
body takes to attain any particular position, we reluctantly keep back for our

Second Volume,

Momental
ellipsoid.
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inversely proportional to the radius of gyration of the body

about that radius-vector as axis.
The axes of this ellipsoid are, and might be defined as, the

Principal Axes of 1nertia of the body for the point in question:
but the best defimition of principal axes of inertia is given
below. First take two preliminary lemmas :—

- (1) If a rigid body rotate round any axis, the centrifugal

Centritugal forces are reducible to a single force perpendicular to the axis

Forces.

Definition

of Principal .

Axesn of
Inertia.

of rotation, and to a couple (§ 234 above) having its axis parallel
to the line of this force.

(2) But 1n particular cases the couple may vanish, or both
couple and force may vanish and the centrifugal forces be in
equilibrium. The force vanishes if, and only if, the axis of
rotation passes through the body’s centre of inertia.

DEF. (1). Any axis 18 called a principal axis of a body's
inertia, or simply a principal axis of the body, if when the body
rotates round 1t the centrifugal forces either balance or are re-

ducible to a single force.
DEr. (2). A principal axis not through the centre of inertia

i called a principal axis of inertia for the point of itself through
which the resultant of centrfugal forces passes.

DEF. (3). A principal axis which passes through the centre
of inertia is a principal axis for every point of itself.

The proofs of the lemmas may be safely left to the student as
exercises on § 559 below ; and from the proof the identification
of the principal axes as now defined with the principal axes of
Poinsot’s momental ellipsoid is seen immediately by aid of the
analysis of § 281.

283. The proposition of § 280 shows that the moment of
inertia of a rigid body about any axis is equal to that which
the mass, if collected at the centre of inertia, would have about
this axis, together with that of the body about a parallel axis
through its centre of inertia. It leads us naturally to in-
vestigate the relation between principal axes for any point and
principal axes for the centre of inertia. The following investi-
gation proves the remarkable theorem of § 284, which was first
given in 1811 by Binet in the Journal de I’ Ecole Polytechnique.
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Let the origin, O, be the centre of inertia, and the axes the Principal
principal axes at that point. Then, by &§ 280, 281, we have for
the moment of inertia about a line through the point P (¢, 9, &),
whose direction-cosines are A, u, v;

Q= AN+ Bp® + OV + M {(pg — vn)* + (vE = NL)* + (A — pé)}
=+ M (' + ON N+ {B+ M (F+ &)} p* +{C + U (£ + 1)}
— 2M (pvnl + vALE + Auéy).
Substituting for @, 4, B, ' their values, and dividing by ¥,
we have
B=@+0"+AN+ @+ C+E)p’ + @+ + ")
— 2 (nlpv + LEvA + Eqdp).
Let 1t be required to find A, u, v 80 that the direction specified
by them may be a principal axis, Let s=Af+un+vf 1.e
let s represent the projection of OF on the axis sought.
The axes of the ellipsoid

(@®+9" + )2+ ...... ~2(nlyz+......)=H ......(a),

are found by means of the equations
(@ +7 + T ~p)A—&qu — {&v=0 |
BB E =Py =0 b ®).
LN —nlp+ (" + & + 9" —pv=0
If, now, we take f to denote OP, or (£ + %* + {*)3, these equations,

where p i clearly the square of the radius of gyration about
the axis to be found, may be written

(@' +/*=pA—E(EA +qpn+ &) = 0,

ete, = ete.,
or @+ —pA — €s=0,
ete. = etce.,
or (" —K)N-§8=0
(bE—K_)y.—'qs=0 .................. (a)

(" —K)v-{s=0
where K=p —f%. Hence

s
A = ]
@'~ K
Multiply, in order, by &, », ¢, add, and divide by s, and we get
& 7' c
F—K P-K -k 1

, ote.
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Principal By (c) we see that (A, p, v) is the direction of the normal throu'.gh 286. The only actions and reactions between the parts of a Energyin
axe8. the point P, (£, 1, {) of the surface represented by the equation system, not belonging palpably to the conservative class, which dynamica.
& vy . L2 S (¢), we shall consider in abstract dynamics, are those of friction
—K bV-K ¢-K between solids sliding on solids, except in a few instances in

which is obviously a surface of the second degree confocal with
the ellipsoid

and passing through P in virtue of (d), which determines A accord-
ingly. The three roots of this cubic are clearly all real; one of
them is less than the least of a®, 3*, ¢*, and positive or negative

which we shall consider the general character and ultimate
results of effects produced by viscosity of fluids, imperfect
elasticity of solids, imperfect electric conduction, or imperfect
magnetic retentiveness. We shall also, in abstract dynamics,
consider forces as applied to parts of a limited system arbitrarily
from without. These we shall call, for brevity, the applied forces.

287. The law of energy may then, in abstract dynamics, be

according as P is within or without the ellipsoid (f). And if
a > b> ¢, the two others are between ¢* and 5, and between b* and

a®, respectively. Theaddition of /* to each gives the square of the
radius of gyration round the corresponding principal axis. Hence

expressed as follows :—

The whole work done in any time, on any limited material
system, by applied forces, is equal to the whole effect in the

forms of potential and kinetic energy produced in the system,

Binet’s 984. The principal axes for any point of a rigid body are together with the work lost in friction.

Theorem.  ormals to the three surfaces of the second order through that
point, confocal with the ellipsoid, which has 1ts centre at the
centre of inertia, and its three principal diameters co-incident
with the three principal axes for that point, and equal respec-
tively to the doubles of the radii of gyration round them.

central  This ellipsoid is called the Central Ellspsod.

288. This principle may be regarded as comprehending the
whole of abstract dynamics, because, as we now proceed to
show, the conditions of equilibrium and of motion, in every
possible case, may be immediately derived from it.

289. A material system, whose relative motions are unre- Equili-
rmm.,

ellipsord. sisted by friction, is in equilibrium in any particular configura-
kinetic ~ 285. A rigid body is said to be kinetically symmetrical tion 1f, and is not in equilibrium unless, the work done by
symmelty  about its centre of inertia when its moments of inertia about the applied forces is equal to the potential energy gained, in any

round possible infinitely small displacement from that configuration.
This is the celebrated principle of “virtual velocities” which
Lagrange made the basis of his Mécanique Analytique. The ill-

chosen name “virtual velocities” is now falling into disuse.

 280. To prove it, we have first to remark that the system Principle
cannot possibly move away from any particular configuration velooiiies
except by work being done upon it by the forces to which it is

subject: it is therefore in equilibrium if the stated condition is
fulfilled. To ascertain that nothing less than this condition can
secure its equilibrium, let us first consider a system having
only one degree of freedom to move. Whatever forces act on
-t%le whole system, we may always hold it in equilibrium by a
single force applied to any one point of the system in its line

three principal axes through that point are equal; and there-
fore necessarily the moments of inertia about all axes through
that point equal, § 281, and all these axes principal axes. About
it uniform spheres, cubes, and in general any complete crys-
talline solid of the first system (see chapter on Properties of
Matter), are kinetically symmetrical.

round an A rigid body is kinetically symmetrical about an azis when
o this axis is one of the principal axes through the centre of
inertia, and the moments of inertia about the other two, and
therefore about any line in their plane, are equal. A spheroid,
a square or equilateral triangular prism or plate, a circular ring,
dise, or cylinder, or any complete crystal of the second or
fourth system, is kinetically symmetrical about its axis.
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balanced by them in any position in which it may be placed, Neqils;-al
aquili-

principle  of motion, opposite to the direction in which it tends to move,
1ts equilibrium 1s said to be neutral. This is the case with any brium.

velooines.  and of such maguoitude that, in any infinitely small motion

either direction. it shall resist, or shall do, as much work as the
other forces, whether applied or internal, altogether do or 1'e.sist.
Now, by the principle of superposition of forces in equ111br1u-m,
we might, without altering their effect, apply to any one point
of the system such a force as we have just seen would hold t}le
system in equilibrium, and another force equal and opposite
to it. All the other forces being balanced by one of these two,
they and it might again, by the principle of superposition of
forces in equilibrium, be removed; and therefore the whole set
of given forces would produce the same effect, W}:leth.er for
equilibrium or for motion, as the single force :whlc.h 18 l.eft
acting alone. This single force, since 1t 18 In a line in which
the point of its application is free to move, must move the
system. Hence the given forces, to which this single fa:?rf:e .has
been proved equivalent, cannot possibly be in eth]armt'n
unless their whole work for an infinitely small motion 18
nothing, in which case the single equivalent force 1s reduced
to nothing. But whatever amount of freedom to move the
whole system may have, we may always, by the application of
frictionless constraint, limit it to one degree of freedom only;
—and this may be freedom to execute any particular motion
whatever, possible under the given conditions of the system.
If, therefore, in any such infinitely small motion, there is
variation of potential energy uncompensated by work of the
applied forces, constraint limiting the freedom of the system to
only this motion will bring us to the case in which we have

Neutral
equili-
brium.

just demonstrated there cannot be equilibrium. But the appl-
cation of constraints limiting motion cannot possibly disturb
equilibrium, and therefore the given system under the actual
conditions cannot be in equilibrium 1n any particular con-
figuration if there is more work done than resisted 1n any
possible infinitely small motion from that configuration by all

the forces to which it is subject*.

291. If a material system, under the influence of internal
and applied forces, varying according to some definite law, 18

* [This attempt to dednce the principle of virtual velocities from the equation
of energy alone can hardly be regarded as satisfactory. H. L.]

spherical body of uniform material resting on a horizontal
plane. A right cylinder or cone, bounded by plane ends per-
pendicular to the axis, is also in neutral equilibrium on a

horizontal plane. Practically, any mass of moderate dimensions
1s 1n neutral equilibrium when its centre of inertia only is

fixed, since, when its longest dimension is small in comparison

with the earth’s radius, gravity 1s, as we shall see, approximately
equivalent to a single force through this point.

But 1if, when displaced infinitely little in any direction from stable
equili-
brium.

a particular position of equilibrium, and left to 1tself, it com-
mences and continues vibrating, without ever experiencing
more than infinitely small deviation in any of its parts, from
the position of equilibrium, the equilibrium in this position is
said to be stable. A weight suspended by a string, a uniform
sphere 1n a hollow bowl, a loaded sphere resting on a horizontal
plane with the loaded side lowest, an oblate body resting with
one end of its shortest diameter on a horizontal plane, a plank,
whose thickness is small compared with its length and breadth,
floating on water, etc. etc., are all cases of stable equilibrium if
we neglect the motions of rotation about a vertical axis in the
second, third, and fourth cases, and horizontal motion in general,
n the fifth, for all of which the equilibrium is neutral.

If, on the other hand, the system can be displaced in any Unstable
way from a position of equilibrium, so that when left to itself {2l

1t will not vibrate within infinitely small limits about the posi-
tion of equilibrium, but will move farther and farther away from
1t, the equilibrium in this position is said to be unstable. Thus
a loaded sphere resting on a horizontal plane with its load as
high as possible, an egg-shaped body standing on one end, a
board floating edgeways in water, etc. etc., would present, if
they could be realised in practice, cases of unstable equili-
brium.

When, as in many cases, the nature of the equilibrinm varies
with the direction of displacement, if unstable for any possible
displacement it is practically unstable on the whole. Thus a
c?in standing on its edge, though in neutral equilibrium for
displacements in its plane, yet being in unstable equilibrium
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Unstavle  for those perpendicular to its plane, is practically unstable. A the concise language of mathematical analysis, constitutes Deduction

b, sphere resting in equilibrium on a saddle presents a case in Lagrange’s application of the “principle of virtual velocities ™’ gf&figns
which there is stable, neutral, or unstable equilibrium, accord- to express the conditions of D’Alembert’s equilibrium between any :;ﬁgrﬂf
ing to the direction in which it may be displaced by rolling, the forces acting, and the resistances of the masses to accelera-
but, practically, it would be unstable. tion. It comprehends, as we have seen, every possible coundi-

et ot i 292, The theory of energy shows a very clear and simple tion of every case of motion. The “equations of motion” in

ﬁ;ﬁﬁfﬁ of  test for discriminating these characters, or determining whether any particular case are, as Lagrange has shown, deduced from

brium. the equilibrium is neutral, stable, or unstable, in any case. If 1t with great ease.
therg 18 Just as muc}n work reS}sted 'a,ﬂ performed by the.a-.pp'l ted Let m be the mass of any one of the material points of the
and internal forces in any possible displacement the equilibrium _ . _ _ _

_ _ ‘ ‘ _ _ system ; «, ¥, z 1ts rectangular co-ordinates at time ¢, relatively
is neutral, but not unless. If in every possible infinitely small to axes fixed in direction (§ 249) through .

: . el gh a point reckoned as
displacement from a, p031t101.1 of equlllbI"llllm. they. do less work fixed (§ 245) ; and X, Y, Z the components, parallel to the same
among them than they resist, the equilibrium is thoroughly | _ Ty %y
stable, and not unless. If in any or in every infinitely small axes, of the whole force acting onit. Thus —m—5, —m 3,
displacement from a position of equilibrium they do more work d% _ _ .
than they resist, the equilibrium is unstable. It follows that ~ ™ g F0 the components of the veaction against acceleration.
if the system is influenced only by internal forces, or if the And these, with X, Y, Z, for the whole system, must fulfil the
applied forces follow the law of doing always the same amount conditions of equilibrium. Hence if dx, 3y, 02 denote any arbi-
of work upon the system passing from one configuration to trary variations of «, y, 2z consistent with the conditions of the
another by all possible paths, the whole potential energy must system, we have
be constant, in all positions, for neutral equilibrium; must d*x d®y d’z Indetermi-
be a minimum for positions of thoroughly stable equilibrium ; > {(X_ " EEE)Sw N (Y_m cﬁ) oy + (Z'" m 3?) 3"}: 0..(1), ?iﬁ‘f-gfq“&'
must be either an a,bso_lute maximum, or a ma,ximm?:t for some where 3} denotes summation to include all the particles of the any system.
displacements and a minimum for others when there 18 unstable system. This may be called the indeterminate, or the variational,
equilibrium*. equation of motion. Lagrange used 1t as the foundation of his

Deduction ~ 293. We have seen that, according to D’Alembert’s prin- whole kinetic system, deriving from it all the common equations of

& ngigna ciple, as explained above (§ 264), forces acting on the different motion, and his own remarkable equations in generalized co-ordi-

ny systom. points of a material system, and their reactions against the nates (presently to be given). We may write it otherwise as follows :

accelerations which they actually experience 1n any case of
motion, are in equilibrium with one another. Hence in any actual
case of motion, not only is the actual work done by the forces
equal to the kinetic energy produced in any infinitely small time,
in virtue of the actual accelerations; but so also is the work
which would be done by the forces, in any infinitely small time,
if the velocities of the points constituting the system, were at
any instant changed to any possible infinitely small velocities,
and the accelerations unchanged. This statement, when put in

* 1Tt will be observed that these criteria are stated rather than proved. See:
§ 837 post. H. L.}

3m (£dx + §dy + #0z) = 3 (Xox + Yoy + Z82) ...... (2),

where the first member denotes the work done by forces equal to
those required to produce the real accelerations, acting through
the spaces of the arbitrary displacements; and the second member

the work done by the actual forces through these imagined
gpaces.

If the moving bodies constitute a conservative system, and if
V denote its potential energy in the configuration specified by
(%, v, 2, etc.), we have of course (§§ 241, 273)

0V=—3(Xox+ Yoy + Z82).................. (3),
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and therefore the indeterminate equation of motion becomes
Sim (@8x + 48y + 202) = — 8V ..o ieiiniinnn (4),
Of conservas- where 87 denotes the excess of the potential energy in the con-
tive system. figuration (x+ oz, ¥ + 8y, % + Oz, etc.) above that 1n the configura-

tion (z, ¥, 2, etc.).
One immediate particular result must of course be the common

equation of energy, which must be obtained by supposing 3z, 6y,
Sz, etc., to be the actual variations of the co-ordinates 1n an

infinitely small time &2 Thus if we take dx=da3t, etc., and
divide both members by 6f, we have

S (Xa+ Yy + Z2) = Zm (&% + §y + 7) [TOTT ()
Equation of Here the first member iscomposed of Newton’s Actiones 4 gentium ;

e with his Reactiones Resistentium so far as friction, gravity, and
molecular forces are concerned, subtracted : and the second consists

of the portion of the Reactiones due to acceleration. As we have
seen above (§ 214), the second member is the rate of increase of

Sim (#* + ¢° +2°) per unib of time. Hence, denoting by v the
velocity of one of the particles, and by W the integral of the

first member multiplied by d, that is to say, the integral work
done by the working and resisting forces in any time, we have

) L (6),
E, being the initial kinetic energy. This is the int.egml equa-
tion of energy. In the particular case of a conservative system,
IV is a function of the co-ordinates, irrespectively of the time, or
of the paths which have been followed. According to the pre-
vious notation, with besides ¥, to denote the potential energy of
the system in its initial configuration, we have W=V,—- ¥, and
the integral equation of energy becomes
Sdmv’= V- V+ L,

or, if £ denote the sum of the potential and kinetic energies, &
constant, Simt' =B =T v, (7).

The general indeterminate equation gives immediately, for the
motion of a system of free particles,

m @, =X, my, = Y, mz =4, mi,= X, ete.
Of these equations the three for each particle may of course be
treated separately if there 1s no mutual influence between the
particles: but when they exert force on one another, X , ¥, etc.,
will each in general be a function of all the co-ordinates.
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From the indeterminate equation (1) Lagrange, by his method Constraint

of multipliers, deduces the requisite number of equations for into the tn-

determining the motion of a rigid body, or of any system of con- SE&%‘E{EE““
nected particles or rigid bodies, thus:—Let the number of the
particles be 7, and let the connexions between them be expressed

by n equations,
Fx,y,2,x,..)=0
B (s Yy 20y @y =) =00 (8)
etc. etc.

being the kinematical equations of the system. By taking the
variations of these we find that every possible infinitely small dis-
placement &x,, dy,, 0% , 0x,, ... must satisfy the n linear equations

F F
ﬂ—&v +§— oy, + ete. = 0, ol 0 +ﬂ3yl+etc.=0, ete. ... (9).

dux,

' ay, de, ! ay,

Multiplying the first of these by A, the second by A, ete,
adding to the indeterminate equation, and then equating the co-

efficients of oz, , dy,, etc., each to zero, we have

dF ar, d'z,
I\d'—wl-i' A‘: dﬂ}l : ...+Xl—m1 dtﬂ 0
dlr dFf d”yl PSRRI (10).
)\.c—ia-l-hfzi—g}—l'ﬁ...-l-yl—???al dtﬂ —0
etc. ete. ]

These are 1n all 3¢ equations to determine the n unknown Determi.
quantities A, A, ..., and the 3:—n Independent variables to ?i%?ge&w
which =, v, ... are reduced by the kinematical equations (8). Geduved.
The same equations may be found synthetically in the following
manner, by which also we are helped to understand the precise

meaning of the terms containing the multipliers A, A, ete.

First let the particles be free from constraint, but acted on
both by the given forces X , Y , etc, and by forces depending
on mutual distances between the particles and upon their
positions relatively to fixed objects subject to the law of con-
servation, and having for their potential energy

— 3 (RF* + & F? + ete.),

g0 that components of the forces actually experienced by the
different particles shall be
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. dF dF, el dE
X, +BE 7o+ b, 7 vete. + (F &t E g ete
etc., etc.

Hence the equations of motion are

d'x, dF ar | 2 Bk Ak, )]
™~ =X, +kFcZE1 + k‘F‘dm} + ete. +%(F 3"”:+E _dml+ ete. |
l

Y, _ (11).
m, 7 = etc, [
ete., etc. |

Now suppose &, k, etc. to be infinitely great:—in order that the
Jorces on the particles may not be infinitely great, we must have

F=0, F =0, ete.,

that is to say, the equations of condition (8) must be fulfilled ;
and the last groups of terms in the second members of (11) now
disappear because they contain the squares of the infinitely small
quantities F, F,, etc. Put now AkF =\ kF =\, etc, and we
have equations (10). This second mode of proving Lagrange’s
equations of motion of a constrained system corresponds pre-
cisely to the imperfect approach to the ideal case which can be
made by real mechanism. The levers and bars and guide-
surfaces cannot be infinitely rigid. Suppose then %, &, ete. to
be finite but very great quantities, and to be some functions of
the co-ordinates depending on the elastic qualities of the materials
of which the guiding mechanism is composed :—equations (11)
will express the motion, and by supposing %, %, etc. to be
greater and greater we approach more and more nearly to the
1deal case of absolutely rigid mechanism constraining the precise
fulfilment of equations (8).

The problem of finding the motion of a system subject to any
unvarying kinematical conditions whatever, under the action of
any given forces, is thus reduced to a question of pure analysis.
In the still more general problem of determining the motion when
certain parts of the system are constrained to move in a specified
manner, the equations of condition (8) involve not only the

co-ordinates, but also ¢, the time.” It is easily seen however that
the equations (10) still hold, and with (8) fully determine the

wotion. For:—consider the equations of equilibrium of the par-

ticles acted on by any forces X ', ¥ ', etc., and constrained by
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proper mechanism to fulfil the equations of condition (8) with Determi«
the actual values of the parameters for any particular value tions 4™
of &. The equations of equilibrium will be uninfluenced 3";&%&
by the fact that some of the parameters of the conditions

(8) have different values at different times, Hence, with
e 'z, dy, . ,
Ty o, Y -m, 2¢ » ostead of X', ¥, ete., according

to 1Y’ Alembert’s principle, the equations of motion will still be

(8), (9), and (10) quite independently of whether the parameters

of (8) are all constant, or have values varying in any arbitrary
manner with the time.

To find the equation of energy multiply the first of equations Equation of

(10) by #,, the second by 4., etc.,, and add. Then remarkine &
that in virtue of (8) we have

dr  dF APy
Lt y1+ec.+(dt)_ ,
dF,  dF. iF

dmlml+'6—z'§:yl+6tc.+('t—iz—)=o,

partial differential coefficients of #, F,, etc. with reference to ¢
: ar\ /dF
being denoted by (-—-) , ( ‘) , ete.; and denoting by 7' the

dt dt
kinetic energy or & Zm (&° + 3* + %), we find
dT .. o /dF dF, -
=3 (X + Yy + Z) -\ (—Cﬁ) Y (-ﬁ)- ete. =0....(12).

When the kinematic conditions are “wnvarying,” that is to

say, when the equations of condition are equations among the
co-ordinates with constant parameters, we have

iF iF
(*Ez—t') = O, (-G-Z_t_) = O, Btc.,

and the equation of energy becomes

aT

=2 (A8+ Yg+ 2Z8) oo (13),

showing that in this case the fulfilment of the equations of
condition involves neither gain nor loss of energy. On the

other hand, equation (12) shows how to find the work performed
or consumed 1n the fulfilment of the kinematical conditions when
they are not unvarying,

VOL. 1. 18
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As a simple example of varying constraint, which will be very
easily worked out by equations (8) and (10), perfectly illustrating
the general principle, the student may take the case of a particle
acted on by any given forces and free to move anywhere iu
a plane which is kept moving with any given uniform or varving
angular velocity round a fixed axis.

When there are connexions between any parts of a system, the
motion is in general not the same as if all were free. If we con-
sider any particle during any infinitely small time of the motion,
and call the product of its mass into the square of the distance
between 1ts positions at the end of this time, on the two supposi-
tions, the constraint: the sum of the constraints is a minimum.
This follows easily from (1).

294, When two bodies, 1n relative motion, come into con-
tact, pressure begins to act between them to prevent any parts
of them from jointly occupying the same space. This force
commences from nothing at the first point of collision, and
gradually increases per unit of area on a gradually increasing
surface of contact. If, as 1s always the case in nature, each
body possesses some degree of elasticity, and 1f they are not kept
together after the impact by cohesion, or by some artificial
appliance, the mntual pressure between them will reach a
maximum, will begin to diminish, and in the end will come to
nothing, by gradually diminishing in amount per unit of area
on a gradually diminishing surface of contact. The whole pro-
cess would occupy not greatly more or less than an hour if
the bodies were of such dimensions as the earth, and such degrees
of rigidity as copper, steel, or glass. It is fimished, probably,
within a thousandth of a second if they are globes of any of
these substances not exceeding a yard i1n diameter.

295. 'The whole amount, and the direction, of the “Impact™

experienced by either body in any such case, are reckoned
according to the “change of momentum” which it experiences.
The amount of the impact is measured by the amount, and 1ts
direction by the direction, of the change of momentum which 1s
produced. The component of an impact in a direction parallel
to any fixed line is similarly reckoned according to the com-
ponent change of momentum 1n that direction.
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296. If we imagine the whole time of an impact divided
into a very great number of equal intervals, each so short that
the force does not vary sensibly during it, the component
change of momentum in any direction during any one of these
intervals will (3 220) be equal to the force multiplied by
the measure of the interval. Hence the component of the
impact 18 equal to the sum of the forces in all the intervals,
multiplied by the length of each interval.

Let P be the component force in any direction at any instant,
7, of the interval, and let / be the amount of the corresponding
component of the whole impact. Then

I = [ Pdr.

297. Any force in a constant direction acting in any cir-
cumstances, for any time great or small, may be reckoned on
the same principle ; so that what we may call its whole amount
during any time, or its “tume-integral,” will measure, or be
measured by, the whole momentum which it generates in the
time 1n question. But this reckoning is not often convenient
or useful except when the whole operation considered is over
before the position of the body, or configuration of the system
of bodies, involved, has altered to such a degree as to bring any
other forces into play, or alter forces previously acting, to such
an extent as to produce any sensible effect on the momentum
measured. Thus 1f a person presses gently with his hand,
during a few seconds, upon a mass suspended by a cord or
chain, he produces an effect which, if we know the degree of
the force at each instant, may be thoroughly calculated on
elementary principles. No approximation to a full determina-

tion of the motion, or to answering such a partial question as

“how great will be the whole deflection produced?” can be
founded on a knowledge of the “time-integral” alone. If, for
Instance, the force be at first very great and gradually diminish,
the effect will be very different from what it would be if tho
force were to increase very gradually and to cease suddenly,
even although the time-integral were the same in the two
cases. But if the same body is “ struck a blow,” in a horizontal
direction, either by the hand, or by a mallet or other somewhat

18—2
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integral.
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hard mass, the action of the force is finished before the suspend-
ing cord has experienced any sensible deflection from the ver-
tical. Neither gravity nor any other force sensibly alters the
effect of the blow, And therefore the whole momentum at the
end of the blow is sensibly equal to the “ amount of the impact,”
which is, in this case, simply the time-1ntegral.

298. Such is the case of Robins’ Ballistic Pendulum, a
massive cylindrical block of wood cased in a cylindrical sheath
of iron closed at one end and moveable about a horizontal axis
at a considerable distance above it—employed to measure the
velocity of a cannon or musket-shot. The shot 1s fired into the
block in a horizontal direction along the axis of the block and
perpendicular to the axis of suspension. The impulsive
penetration is so nearly instantaneous, and the inertia of the
block so large compared with the momentum of the shot, that
the ball and pendulum are moving on as one mass before the
pendulum has been sensibly deflected from the vertical. This is
essential to the regular use of the apparatus. The iron sheath
with its flat end must be strong enough to guard against sphn-
ters of wood flying sidewise, and to keep in the bullet.

299, Other illustrations of the cases in which the time-
integral gives us the complete solution of the problem may be
given without limit. They include all cases in which the
direction of the force is always coincident with the direction
of motion of the moving body, and those special cases in which
the time of action of the force is so short that the body’s motion
does not, during its lapse, sensibly alter its relation to the direc-
tion of the force, or the action of any other forces to which it
may be subject. Thus, in the vertical fall of a body, the time-
integral gives us at once the change of momentum; and the
same rule applies in most cases of forces of brief duration, as
in a “drive” in cricket or golf.

300. The simplest case which we can consider, and the one
usually treated as an introduction to the subject, is that of the
collision of two smooth spherical bodies whose centres before
collision were moving in the same straight line. The force
between them at each instant must be in this line, because of
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the symmetry of circumstances round it; and by the third Direot jum-
PACL O

law it must be equal in amount on the two bodies. Hence spheres.

(LEX I11.) they must experience changes of motion at equal rates
in contrary directions; and at any instant of the impact the
integral amounts of these changes of motion must be equal
Let us suppose, to fix the ideas, the two bodies to be moving
both before and after impact in the same direction in one line:
one of them gaining on the other before impact, and either
following it at a less speed, or moving along with it, as the

case may be, after the impact is completed. Cases in which

the former 1s driven backwards by the force of the collision,
or In which the two moving in opposite directions meet in
collision, are easily reduced to dependence on the same formula
by the ordinary algebraic convention with regard to positive
and negative signs.

In the standard case, then, the quantity of motion lost, up
to any instant of the impact, by one of the bodies, is equal to
that gained by the other. Hence at the instant when their
velocities are equalized they move as one mass with a momen-
tum equal to the sum of the momenta of the two before impact.
That 1s to say, if v denote the common velocity at this instant,
we have .

(M + Myv=MV+ MV,
MV + MV
T M+ M

if M, M’ denote the masses of the two bodies, and V, V' their
velocities before 1mpact.

During this first period of the impact the bodies have been,
on the whole, coming into closer contact with one another,
through a compression or deformation experienced by each,
and resulting, as remarked above, in a fitting together of the
two surfaces over a finite area. No body in nature is per-
fectly inelastic; and hence, at the instant of closest approxi-
mation, the mutual force called into action between the two
bodies continues, and tends to separate them. Unless pre-
vented by natural surface cohesion or welding (such as is
always found, as we shall see later in our chapter on Properties
of Matter, however hard and well polished the surfaces may

or v
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be), or by artificial appliances (such as a coating of wax, applied
in one of the common illustrative experiments; or the coupling

applied between two railway carriages when run together so as
to push in the springs, according to the usual practice at rail-
way stations), the two bodies are actually separated by this
force, and move away from one another. Newton found that,
provided the impact is mot so wiolent as to make any sensible
permanent indentation in either body, the relative velocity of

separation after the impact bears a proportion to their previous
relative velocity of approach, which is constant for the same

two bodies. This proportion, always less than unity, ap-
proaches more and more nearly to it the harder the bodies are.

Thus with balls of compressed wool he found it §, iron nearly
the same, glass 1§. The results of more recent experiments on
the same subject have confirmed Newton’s law. These will be
described later. In any case of the collision of two balls, let
¢ denote this proportion, to which we give the name Coefficient
of Restitution;* and, with previous notation, let in addition
U, U denote the velocities of the two bodies atter the conclusion
of the impact; in the standard case each being positive, but

U > U. Then we have
U-U=e(V-V1)
and, as before, since one has lost as much momentum as the

other has gained,
MU+ MU =MV+MV.

From these equations we find
(M+M)YU =MV + MV —eM (V-V),
with a similar expression for U'.

Also we have, as above,
(M + M)v=MV+ MV

Hence, by subtraction,
(M+M)w—U)=eM' (V-V)=e{M'V—-(M+M)v+ UV}

* Tn most modern treatises this is called a * coefficient of elasticity,” which
is clearly a mistake; suggested, it may be, by Newton’s words, but inconsistent
with his facts, and untterly at variance with modern language and modern know-

ledge regarding elasticity.
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and therefore v-U=e¢ (V— ?J). Direot
Of course we have also U'—v=¢(v—V"). ;?Egeretff

These results may be put in words thus :—The relasive velocity
of either of the bodies with regard to the centre of inertia of
the two 1s, after the completion of the impact, reversﬁed In
direction, and dimiuished in the ratio e : 1.

- 301. Hence the loss of kinetic energy, being, according to
88 267, 280, due only to change of kinetic energy relative to
the centre of inertia, is to this part of the whole as 1 —¢* : 1.

Thus
Initial kinetic energy =4 (M + M) v* + tM (V — o) + M’ (0= V")
Final " yw =s(M+M)Y+IM (v—- Uy +iM' (U —o)
Loss =3 (1 - ){M (V-0o)+M(w-TV")L

302. When two elastic bodies, the two balls supposed above Distribu-
for instance, 1mpinge, some portion of their previous kinetic energy afler
energy will always remain in them as vibrations. A portion mpack
of the loss of energy (miscalled the effect of imperfect elas-
ticity) is necessarily due to this cause 1n every real case.

Later, in our chapter on Properties of Matter, it will be
shown as a result of experiment, that forces of elasticity are,
to a very close degree of accuracy, simply proportional to the
strains (§ 154 ), within the limits of elasticity, in elastic solids
which, like metals, glass, etc., bear but small deformations with-
out permanent change. Hence when two such bodies come
into collision, sometimes with greater and sometimes with less
mutual velocity, but with all other circumstances similar, the
velocities of all particles of either body, at corresponding times
of the impacts, will be always in the same proportion. Hence
the velocity of separation of the centres of 1nertia after 1mpact Newton’s

. . . . experimen-
will bear a constant proportion to the previous velocity of tal law con

approach ; which agrees with the Newtonian Law*. It is there- ;Ftdi'gjgwith
fore probable that a very sensible portion, if not the whole, of sty
the loss of energy in the visible motions of two elastic bodies,

after impact, experimented on by Newton, may have been due
* [On the theory of impact propounded by Hertz the extent of the area of

contact will vary with the relative velocity before impact, and the argument from
dynamical similarity does not apply. H.L.]
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Distribu-  t0 vibrations; but unless some other cause also was largely
on ¢ . v, o .
energy after operative, it is difficult to see how the loss was 80 much greater

"WPA% with iron balls than with glass.

303. In certain definite extreme cases, imaginable although
not realizable, no energy will be spent in vibrations, and the
two bodies will separate, each moving simply as a rigid body,
and having in this simple motion the whole energy of work
done on it by elastic force during the collision. For instance,
let the two bodies be cylinders, or prismatic bars with flat ends,
of the same kind of substance, and of equal and similar trans-
verse sections: and let this substance have the property of
compressibility with perfect elasticity, in the direction of the
length of the bar, and of absolute resistance to change in every
transverse dimension. Before impact, let the two bodies be
placed with their lengths in one line, and their transverse sec-
tions (if not circular) similarly situated, and let one or both be
set in motion in this line. The result, as regards the motions
of the two bodies after the collision, will be sensibly the
same if they are of any real ordinary elastic solid material,
provided the greatest transverse diameter of each is very small
in comparison with its length. Then, if the lengths of the two
be equal, they will separate after 1mpact with the same relative
velocity as that with which they approached, and neither will
retain any vibratory motion after the end of the collision.

304. If the two bars are of unequal length, the shorter will,
after the impact, be exactly in the same state as if it had
struck another of its own length, and it therefore will move as
a rigid body after the collision. But the other will, along wrth
a motion of its centre of gravity, calculable from the principle
that its whole momentum must (§ 267) be changed by an
amount equal exactly to the momentum gained or lost by the
first, have also a vibratory motion, of which the whole kinetic
and potential energy will make up the deficiency of energy
which we shall presently calculate in the motions of the centres
of inertia. For simplicity, let the longer body be supposed to
be at rest before the collision. Then the shorter on striking it
will be left at rest ; this boing clearly the result in the case of
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¢ =1 in the preceding formule (§ 300) applied to the impact Distribu-
of one body striking another of equal mass previously at rest. energy after
The longer bar will move away with the same momentum, and apat
therefore with less velocity of its centre of inertia, and less
kinetic energy of this motion, than the other body had before
impact, in the ratio of the smaller to the greater mass. It will
also have a very remarkable vibratory motion, which, when its
length is more than double of that of the other, will consist of
a wave running backwards and forwards through its length, and
causing the motion of ity ends, and, in fact, of every particle of
it, to take place by “fits and starts,” not continuously. The
full analysis of these circumstances, though very simple, must
be reserved until we are especially occupied with waves, and
the kinetics of elastic solids. It is sufficient at present.to
remark, that the motions of the centres of 1nertia of the two

bodies after impact, whatever they may have been previously,

are given by the preceding formule with for ¢ the value

M’l‘

W where M’ and M are the smaller and the larger mass re-
spectively.

305. The mathematical theory of the vibrations of solid elastic
spheres has not yet been worked out; and its application to
the case of the vibrations produced by impact presents con-
giderable difficulty. Kxperiment, however, renders it certain,
‘tl}a.t but a small part of the whole kinetic energy of the pre-
vious motions can remain in the form of vibrations after the
impact of two equal spheres of glass or of ivory. This is
proved, for instance, by the common observation, that one of
them remains nearly motionless after striking the other pre-
viously at rest; since, the velocity of the common centre of
inertia of the two being necessarily unchanged by the impact,
we infer that the second ball acquires a velocity nearly equal
to that which the first had before striking it. But it is to be

expected that unequal balls of the same substance coming into
collision will, by impact, convert a very sen ible proportion of
the kinetic energy of their previous moticns into energy of
vibrations; and generally, that the sume will be the case when
equal or unequal masses of different substances come into colli-
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sion ; although for one particular proportion of their diameters,

energy afler depending on their densities and elastic qualities, this effect will

impact.

Moment (Ef
an impac
about an
axis.

Balilistic
pendulum.

be a minimum, and possibly not much more sensible than it is
when the substances are the same and the diameters equal.

306. It need scarcely be said that in such cases of impact
as that of the tongue of a bell, or of a clock-hammer striking
its bell (or spiral spring as in the American clocks), or of piano-
forte hammers striking the strings, or of a drum struck with the
proper implement, a large part of the kinetic energy of the
blow is spent in generating vibrations.

307. The Moment of an tmpact about any axis 18 derived
from the line and amount of the impact in the same way as the
moment of a velocity or force is determined from the line and
amount of the velocity or force, §§ 235, 236. If a body 1s
struck, the change of its moment of momentum about any axis
is equal to the moment of the impact round that axis. But,
without considering the measure of the impact, we see (§ 267)
that the moment of momentum round any axis, lost by one
body in striking another, is, as in every case of mutual action,
equal to that gained by the other.

Thus, to recur to the ballistic pendulum—the Iine of motion
of the bullet at impact may be in any direction whatever, but the
only part which is effective is the component in a plane perpen-
dicular to the axis. We may therefore, for simplicity, consider
the motion to be in a line perpendicular to the axis, though not
necessarily horizontal, Let m be the mass of the bullet, v its
velocity, and p the distance of its line of motion from the axis.
Let M be the mass of the pendulum with the bullet lodged 1n it,
and % its radius of gyration. Then if w be the angular velocity
of the pendulum when the impact is complete,

mop = Mo,
from which the solution of the question is easily determined.
For the kinetic energy after impact is changed (§ 241) into
its equivalent in potential energy when the pendulum reaches its
- position of greatest deflection. Let this be given by the angle

.@: then the height to which the centre of inertia is raised 1s
k(1 —cos @) if A be its distance from the axis. Thus
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m'v'p’
Mgh (1 - cos 6) =3 Mk'o' =} =1
or 2 sin o _ e
2 Mk Jgh’

an expression for the chord of the angle of deflection. In
practice the chord of the angle # is measured by means of a
light tape or cord attached to a point of the pendulum, and
slipping with small friction through a clip fixed close to the posi-
tion occupied by that point when the pendulum hangs at rest.

pandulum,

308. Work done by an vmpact is, in general, the product of Werk done

the impact into half the sum of the initial and final velocities
of the point at which 1t is applied, resolved in the direction of
the 1mpact. In the case of direct impact, such as that treated
in § 300, the initial kinetic energy of the body is + M V? the
final £ MU” and therefore the gain, by the impact, is
YU (U~ V),

or, which 1s the same,

MU-V).3(U+7V).
But M(U— V) is (§ 295) equal to the amount of the impact.
Hence the proposition: the extension of which to the most
general circumstances 1s easily seen.

Let ¢« be the amount of the impulse up to time 7, and 7 the
whole amount, up to the end, 7. Thus,—

T T 7
a=f Pdr, [=] Pdr; also P =—.
0 0 ar
Whatever may be the conditions to which the body struck is
subjected, the change of velocity in the point struck is propor-
tional to the amount of the impulse up to any part of its whole
time, 8o that, if $#{ be a constant depending on the masses and

conditions of constraint involved, and if U, », ¥V denote the com-
ponent velocities of the point struck, in the direction of the

impulse, at the beginning, at the time 7, and at the end, re-

spectively, we have

I
U+ , V=U+—==.
TR m -
Hence, for the rate of the doing of work by the force P, at the
instant ¢, we have

P11=PU+—££.

W

by impact.
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Work done Hence for the whole work-( W) done by it, where %,, v,, w, denote any possible component velocities of the. Bqualiors |
by impact. . first particle, ete. motion.
W= P U+ -——)d‘r . . C e |
One particular case of this equation is of course had by suppos-
ing %, v, ... to be equal to the velocities @,, ¥,, ... actually
=UI + ﬁ ‘d'- Ul+ % w acquired ; and, by halving, ete., we find |
=UI+%I(V—-U)=I.%(U+V). _. E(P.%m+Q%y+R.%z)=%2m(wﬂ+y’+z’) ....... (c).

This agrees with § 308 above.
309. It is worthy of remark, that if any number of impacts

be applied to a body, their whole effect will be the same whether
they be applied together or successively (provided that the
whole time occupied by them be infinitely short), although
the work done by each particular impact is 1 general different
according to the order in which the several 1mpacts are applied.

311. Euler discovered that the kinetic energy a,cquired from Thoorem of
unler, €x-

rest by a rigid body in virtue of an impulse fulfils a maximum- iendﬂd by
agrange.

minimum condition. Lagrange* extended this proposition to

a system of bodies connected by any invariable kinematic re- Equation of

: : Isi
lations, and struck with any impulses. Delaunay found that moson.

The whole amount of work is the sum of the products obtained 1t 1s really ailway 5 & ma:ximum 'Lf’hm the vmpulses are guven,
by multiplying each impact by half the sum of the components and when dufferent MOLIONS possible under the conditions of
of the initial and final velocities of the point to Wthh 1t 18 the system, and fulfilling the law of energy [§ 310 (c)], are

considered. Farther, Bertrand shows that the energy actually
acquired is not merely a “maximum,” but exceeds the energy
of any other motion fulfilling these conditions; and that the
amount of the excess is equal to the energy of the motion which
must be compounded with either to produce the other.

applied.

Equations

310. The effect of any stated impulses, applied to a rigid

o puisive ody, or to a system of material points or rigid bodies con-
nccted in any way, is to be found most readily by the aid of
D’Alembert’s principle ; according to which the given impulses,

and the impulsive reaction against the generation of motion,
measured in amount by the momenta generated, are 1n equi-

Let &', 9, ... be the component velocities of any motion what-
ever fulfilling the equation (¢), which becomes

librium ; and are therefore to be dealt with mathematically by L3(PE+Qy + R)=4{3m (&% +9" +27)=T1"....... (d).
applying to them the equations of equilibrium of the system. If, then, we take &' —& =u, ¥/ —%,=v,, etc.,, we have
Let P, @, £ be the component impulses on the first particle, T - T =§3m {(22 + w) w + (27 + v)v + (28 + w)w}
m , and let &, y,, £, be the components of the velocity Iin- = 3m (du + yv +2w) + 3 Zm (v’ + 0"+ v’)...... (e).
stantaneously acquired by this particle. Component forces equal But, by (b),
to (P,-mg), (€, -my,), ... must equilibrate the system, S (dw + gv + fw) = 3 (Pu+ Qo+ Ruw).... ..... (F);
and therefore we have (§ 290? | and, by (c) and (d)
3 {(P —ma) S+ (¢ — my) Sy + (BR—m2) d2p =0.......... (@) S(Pu+ Qv+ Rw)=2T" 9T ................ ().
where 8z, , 8y , ... denote the components of any infinitely small Hence (¢) becomes
displacements of the particles possible under the conditions of T -T=2(T -T)+}3mu+o* +w )
the system. Or, which amounts to the same thing, since any whence T— T = }Sm (4 + 0 + ) (h)
......... ceeved(B),

possible infinitely small displacements are simply proportional to
any possible velocities in the same directions,

2P - m) U+ (Q — my) v + (¢ —mz) w} ) USPRPRNY (b) * Mécanique Analytigue, 279 partie, 3™° section, § 37.

which i1s Bertrand’s result.
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Lignidset 312, The energy of the motion generated suddenly m a
| ilﬁlglu‘igi?rgly. mass of incompressible liquid given at rest completely filling
a vessel of any shape, when the vessel is suddenly set in
motion, or when it is suddenly bent out of shape 1n any way
whatever, subject to the condition of not changing 1ts volume,
148 less than the energy of any other motion 1t can have with the
same motion of its bounding surface. The consideration of this
theorem, which, so far as we know, was first published 1n
the Cambridge and Dublin Mathematical Journal [Feb. 1849,
has led us to a general minimum property regarding motion
acquired by any system when any prescribed velocities are
generated suddenly in any of its parts; announced in the
Proceedings of the Royal Society of Edinburgh for April, 1863.
It is, that provided impulsive forces are applied to the system
only at places where the velocities to be produced are pre-
scribed, the kinetic energy is less in the actual motion than in
any other motion which the system can take, and which has
the same values for the prescribed velocities. The excess of
the energy of any possible motion above that of the actual
motion is (as in Bertrand’s theorem) equal to the energy of the
motion which must be compounded with either to produce the

other. The proof is easy:—here 1t 15 :—

Equations (d), (¢), and (/) hold as in § (311). But now each
velocity component, % , », w,, %,, etc. vanishes for which the
component impulse P, ,, £, P,, etc. does not vanish (because
& +u, y +v, etc. fulfil the prescribed velocity conditions).
Hence every product Pw , @ v, etc. vanishes. Hence now
instead of (¢) and (%) we have

S(@u+ygv+zw)=0..........coci(9),
and T-T=33m@' +v"+w") ..o (R).

We return to the subject in §§ 316, 317 as an illustration of
the use of Lagrange’s generalized co-ordinates; to the introduc-
tion of which into Dynamics we now proceed.

fmpulsive 313. The method of generalized co-ordinates explained
}ﬂl‘?ﬁ;ﬁ“t;ﬁ' above (§ 204) is extremely useful in its application to the
g dypamics of a system; whether for expressing and working

nates out the details of any particular case in which there 1s any
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finite number of degrees of freedom, or for proving general Impulsive
motion ree

principles applicable even to cases, such as that of a liquid, as ferred to
generalized

described in the preceding section, in which there may be an coordi-
infinite number of degrees of freedom. It leads usto generalize

the measure of inertia, and the resolution and composition of
forces, impulses, and momenta, on dynamical principles corre-
sponding with the kinematical principles explained in § 204,
which gave us generalized component velocities: and, as we

shall see later, the generalized equations of continuous motion

are not only very convenient for the solution of problems, but

most tnstructive as to the nature of relations, however compli-
cated, between the motions of different parts of a system. In

the meantime we shall consider the generalized expressions for

the impulsive generation of motion. We have seen above

(§ 308) that the kinetic energy acquired by a system given at

rest and struck with any given impulses, 1s equal to half the

sum of the products of the component forces multiplied each

into the corresponding component of the velocity acquired by

its point of application, when the ordinary system of rectangular
co-ordinates 1s used. Precisely the same statement holds on

the generalized system, and if stated as the convention agreed
upon, it suffices to define the generalized components of im- Generalized

components

pulse, those of velocity having been fixed on kinematical of impulse
aor mo-

principles (§ 204). Generalized components of momentum wmentum.
of any specified motion are, of course, equal to the generalized
components of the impulse by which it could be generated from

rest.

(a) Let ¢, ¢, 8, ... be the generalized co-ordinates of a material
system at any time; and let i, ¢, 6, ... be the corresponding
oeneralized velocity-components, that is to say, the rates at
which , ¢, 0, ... increase per unit of time, at any instant, in
the actual motion. If «,, y,, 2, denote the common rectangular
co-ordinates of one particle of the system, and « , 9,, %, 1t8 com-
ponent velocities, we have

, _dx, . dx, 3

a"_'c_ll}-l‘b+@¢+etc'

. dy, . dy . e e 1).

y1=3‘%{-¢r: d3;¢+6tc' (1)
etc. etc.
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Hence the kinetic energy, which is 3im (&*+ 4" +2%), in terms
of rectangular co-ordinates, becomes a quadratic function of
), ¢, etc., when expressed in terms of generalized co-ordinates,

g0 that if we denote it by 7' we have

T=3{(d, 0) g + (b, $) "+ . +2 (Y ) Y + ... }ue . (2),

where (¢, ¢), (¢, ¢), (¥, @), etc., denote various functions of the
co-ordinates, determinable according to the conditions of the
system. The only condition essentially fulfilled by these co-
efficients is, that they must give a finite positive value to 7' for

all values of the variables.
(b) Again let (X , Y ,Z), (X,, ¥,, Z,), etc., denote component

forces on the particles (z , v,, 2,), (%,, ¥,, %,), etc., respectively ;
and let (8x, &y, , 0z,), etc., denote the components of any in-
finitely small motions possible without breaking the conditions of

the system. The work done by those forces, upon the system
when so displaced, will be

3 (X8 + Y8y + Z02)...vveeririrerennnen. (3).

To transform this into an expression in terms of generalized co-
ordinates, we have
dez, )

dz,
8.’131 =-d—l#'3l1b+ga; 8(}’)4-6130.

3;4,r1=-i%/l oY + %8¢+etc.

ete. ete. |

and 1t becomes
WOy + PO + €C. .vvnniieniianianniennann, (6),

where
dax dy dz\ )
dx dy dz)
¢=E(X@+ e b

etc. etc. ]

These quantities, ¥, ®, etc., are clearly the generalized com-
ponents of the force on the system.

Let ¥, ®, etc. denote component impulses, generalized on the
same principle ; that is to say, let

T T
\I'=f Vi, ¢'=f &di, ete.,

. ﬁ "

313.] DYNAMICAL LAWS AND PRINCIPLES. 289

where ¥, ®, ... denote generalized components of the continuomus
force acting at any instant of the infinitely short time 7, within
which the impulse is completed.

If this impulse is applied to the System, previously in motion Impulsive

n t-he manner specified above, and if &, 84, ... denote the re- of motion
sulting augmentations of the components of velocity, the means gﬁg:flmg%
of the component velocities before and after the impulse will be naten

v+ 48y, ¢+ 184, ......
Hence, according to the general principle explained above for
calculating the work done by an impulse, the whole work done
in this case is

Y (Y + 33y) + @ (b + §34) + ete.

To avoid unnecessary complications, let us suppose 3y, 8¢, ete.,
to be each infinitely small. The preceding expression for the
work done becomes |

¥y + d + ete. ;

&l-ld,' as the effect produced by this work is augmentation of
kinetic energy from 7' to 7' + 87", we must have

0T =Wy + P + ete.

Now let the impulses be such as to augment i to y + 8, and to
leave the other component velocities unchanged. We shall have

- - dl .
‘-?li{/""q)q& + ete. =a—¢— Sll(/.
dl .

Dividing both members by 8y, and observing that i is a linear

function of i, ¢, etc., we see that ¥ : E , etc.,, must be equal
of &
to th e £d g : . 4T
6 coetiicients of ¢, ¢, ... respectively in @
(c) From this we see, further, that the impulse required to pro-
duce the component velocity y from rest, or to generate it in

the system moving with any other possible velocity, has for its
components

(l‘b, 'P) ')’;: (‘p: 96) '15: ('r”: 5) Q&; ete.

Hence we conclude that to generate the whole resultant velocit y

(¢, &, ...) from rest, requires an impulse, of which the com-
ponents, if denoted by ¢, 4, , ..., are expressed as follows :—

VOL. I. 19
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iMnGtr!E:lIIll?uf £=(y, ¥) :15+ (P, ¥) <;b + (6, ) _9+ e ) These expressions solve the direct problem,—to find the velo- Yet%crimm'
velocities. =, P+ (P, D) b+ (0, P) b+ ... } . city produced by a given impulse (£ %, ...), when we have the momens

{=(y, 0) ¢ + (¢, 0) ¢+ (0, 6)0+...| () kinetic energy, 7, expressed as a quadratic function of the com- vams.
- ete. ) ponents of the impulse. |
where it must be remembered that, as seen in the original ex- (e) If we consider the motion simply, without reference to the
pression for 7, from which they are derived, (¢, ) means the impulse required to generate it from rest, or to stop 1t, the quanti-
same thing as (¢, ¢), and so on. The preceding expressions are ties &, 7, ... are clearly to be regarded as the components of the
the differential coeflicients of 7 with reference to the velorities; momentum of the motion, according to the system of generalized
that is to say, co-ordinates.
&= JT: y = JT = fl_? ____________________ (8) (/) The tollowing algebraic relation will be useful :— Reciprocal
dy de Z EJ+n,p+ Zﬂ' +ete. = &, + n, + L6, + ete........ (11, {)ilta{?eﬁﬁ
(d) The second members of these equations being lin-ea,t: func- where, £ 7, ¢, ¢, etc.,, having the same signification as before, %ﬁimtfe]};g:ns
tions of , ¢, ..., We may, by ordinary elimination, find ¢, ¢, etc, ¢, M, C, etc., denote the impulse-components corresponding to motions.
in terms of & 7, etc, and the expressions so obtained are of any other values, , ¢, 9",, etc., of the velocity-components. It
course linear functions of the_ last-named elements. And, since 1s proved by observing that each member of the equation becomes
T is a quadratic function of ¢, $, etc., we have a symmetrical function of i, ¥ ; ¢, ¢,; ete. ; when for £, 7 , ete.,
AT = &Y + N + EO 4+ €1C. oveverenriiraanenn. (9). their values in terms of lf/_,, ¢ , ete., and for &, », ete,, their values
. . - . in terms of ¢, ¢, ete., are substituted,
Kinetic From this, on the supposition that 7, i, ¢, ... are expressed 1n
energy in terms of £, 7, ..., we have by differentiation 314. A material system of any kind, given at rest, and Application
momentums ar . .di dé ,db subjected to an impulse in any specified direction, and of any (i}zeﬁ:egg-ml-
ties. T = Y+ & ZErgE Y 4 aet etc. given magnitude, moves off so as to take the greatest amount Eﬁﬁ;}%ﬁms
Now the algebraic process by which ¢, $, etc,, are obtained in ;)lfllb]'iel(jse:;c§ %I;)e;go); | w;l(;gh the specified 1mpulse can give it,
terms of & u, etc., shows that, inasmuch as the coeflicient of ¢ in | J | S (0):
the expression, (7), for £, is equal to the coefficient of i, in the | [:Bt & m, ... be the components of the given impulse, and
expression for 7, and so on; the coefficient of 7 in the expres- Y, ‘_;6: ... the commnents of the actual motion produced by it,
sion for lp must be equal to the coeflicient of £ in the expression which are determined by t]f}e equa,tions (10) above. Now let us
for ¢, and so on ; that is to say, suppose the system be guided, by means of merely directive
_ _ . : constraint, to take, from rest, under the influence of the given
aj_dd dj_do consth from rest, under ¢ _
L L=—, ete impulse, some motion (i, ¢ ,...) different from the actual
dq  dE’ df as ‘motion; and let &, », ... be the impulse which, with this con.
Hence the preceding expression becomes straint removed, would prodnce the motion (¥, ¢é,,...). We
: ) ; shall have, for thi e, ag abov
2fd_z.r=l‘[}+§ﬂ+n-d—lp+§ﬂ+...=2|ﬁ, ’ 30&3—, y : 7 :
dE de " Tdy T S dL T,=% @&y, +08,+...)
and therefore But £ -¢& 7u,—7 ... are the components of the impulse ex-
. . dT D perienced in virtue of the constraint we have supposed introduced.
in terms of Y= dé | "They neither perform nor consume work on the system when
funs. . dT } """""""""""" (10) moving as directed by this constraint ; that is to say,
Similarly = 3’ etc-Jl (E-8),+(n—n)d + (L —0)6 _ .
) +(p—-n)p, +({ -0 +etc.=0........... (12);
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Avplication and therefore | . . (b) A very important case of this cluss is presented by prescrib- Problems
E{% :Ei-:l;o - 2T =&),+ g, + L0, +ete. ... RERSEREEELE (13). Ing, among the velocities alone, a number of Il)i.nez:.iu,r equayir;ilons with i“’;’;‘;‘;ﬁfﬂfﬁ
Ehﬁtfem of Hence we have constant terms, and supposing the impulses to be so directed and P, son aiid
2(T-T)=¢(W—) +9(d— ¢ ) + ete. related as to do no work on any velocities satisfying another pre-
=(E~&) (f—y¢)+(m—1) (b — ¢ ) + ete. scribed set of li.m_aa,r equations wit.h no constant terms ; the whole
FE (G =)+, (P~ )+ ete. number of equ:iltlons of course being equal to the number of inde-
‘ , ‘ ‘ pendent co-ordinates of the system. The equations for solving
But, by (11) and (12) above, we have this problem need not be written down, as they are obvious ; but
E(W—y)+m,(d—¢)+ete.=(~E) ¥, +(n—1) ¢, + ete. =0, the following reduction is useful, as affording the easiest proof of
and therefore we have finally the minimum property stated below.
QT —-T)=((-E)(F—y)+m=-n)(d- ¢)+ete. ...(14). (c) The given equations among the velocities may be reduced
Theorems that is to say, 7T exceeds 7, by the amount of the kinetic energy to a set, each homogeneous, except one equation with a constant
ggj‘f;;;“ that would be generated by an impulse (£—¢, 7 -7, {-{, etc.) term. Those homogeneous equations diminish the number of de-
gg:ffgi]}z o applied simply to the system, which 1s essentially positive. grees of freedom ; and we may transform the co-ordinates so as
naies,

to have the number of independent co-ordinates diminished ac-
cordingly. Farther, we may choose the new co-ordinates, so
that the linear function of the velocities in the single equation
with a constant term may be one of the new velocity-components;
and the linear functions of the velocities appearing in the equation
connected with the prescribed conditions as to the impulses may
be the remaining velocity-components: Thus the impulse will
fulfil the condition of doing no work on any other component
velocity than the one which is given, and the general problem—

In other words,

315. If the system is guided to take, under the action of a
given impulse, any motion (Y, ¢ , ...) different from the natural
motion (¥, ¢, ...), it will have less kinetic energy than that of
the natural motion, by a difference equal to the kinetic energy

of the motion (Nr — 4 , ¢ —d,...).

Cor. If a set of material points are struck independently
by impulses each given in amount, more kinetic energy 1s
generated if the points are perfectly free to move each 11-
dependently of all the others, than if they are connected in any
way. And the deficiency of energy in the latter case is equal
to the amount of the kinetic energy of the motion which
geometrically compounded with the motion of erther case would
give that of the other.

316. Given any material system at rest: let any parts of General
it be set in motion suddenly with any specified velocities, pos- fompare
sible according to the conditions of the system; and let its .
other parts be influenced only by its connexions with the parts
set in motion ; required the motion :

takes the following very simple form :—An impulse of the cha-

(@) Hitherto we have either supposedthe motion to befully given, racter specified as a particular component, according to the

Problems
;‘;gﬁediﬁ% and the impulses required to produce them, to be to be found ; or generalized method of co-ordinates, acts on a material system ;
puises and the impulses to be given and the motions produced by them to be its amount being such as to produce a given velocity-component

to be found. A not less important class of problems is presented
by supposing as many linear equations of condition between the
impulses and components of motion to be given as there are de-
grees of freedom of the system to move (or independent co-ordi-
nates). These equations, and as many more supplied by (8}
or their equivalents (10), suffice for the complete solution of the
problem, to determine the impulses and the motion.

of the corresponding typs. It is required to find the motion.

The solution of course is to be found from the equations

J=A, =0, L=0.imiirieerrnn, (15)

(which are the special equations of condition of the problem) and
the general kinetic equations (7), or (10). Choosing the latter,
and denoting by [§, &), [£, 5], etc., the coefficients of $£%, &, ete,,



294 PRELIMINARY.. [316. 817.] DYNAMICAL LAWS AND PRINCIPLES. 295

~ for the result.

This result possesses the ‘remarkable property, that the
kinetic energy of the motion expressed by it is less than that of
any other motion which fulfils the prescribed condition as to

General in 7 we have In dealing with cases it may often happen that the use of the Kinetic
’ i | - . . | . . ‘ €Nnergy u
?3121;3& : ‘. 4 5 X 4 b ¢,{] 1 ote (16) co-ordinate system required for the application o‘f the soluti on minimwn
312). [&, 4 R Y [& €77 » (16) is mot .convenient; but in all cases, even in such as in

examples (2) and (3) below, which involve -an infinite number
of degrees of freedom, the minimum property now proved affords
an easy solution,

Example (1), Let a smooth plane, constrained to keep moving Impact of

. » - " . ' ) . t'h

velocity. For, if £, 9, {, etc., denote the impulses required to with a given normal velocity, ¢, come 1n contact with a free %Sfﬁztﬁ’lﬂa
. » » 3 . « & » . : oI Innmni

produce any other motion, y,, ¢,, 6,, etc., and 7, the correspond- inelastic rigid body at rest: to find the motion produced. The massona

ing kinetic energy, we have, by (9),
2T =&y +n.¢, + L0 + ete.
But by (11), | |
| EV+nd+L0+ete. =&,
since, by (15), we have =0, £=0, etc. Hence
2T, = &j,+ £, (§,~ ¥) +1,($,— ) + { (6,- ) + ...

Now let also this second case (y, ¢,...) of motion fulfil the pre-
scribed velocity-condition y, = 4. We shall have

£ (=) +m, b~ D)+, 6~ )+ .
— (&~ O, ) + (=)~ ) + (£, (0, — ) + ...

since s, —y=0, p=0, {=0,.... Hence if T denote the kinetic
energy of the differential motion (f,— v, ¢ — ¢,...) we have

2T‘=2T+2@ .............................. (17);

but T is essentially positive and therefore 7', the kinetic energy -

of any motion fulfilling the preseribed velocity-condition, but
differing from the actual motion, is greater than 7' the kinetic
energy of the actual motion ; and the amount, ¢, of the differ-
ence is given by the equation

» * L] - . . " id
velocity-condition here is, that the motion shall consist of any e ik

motion whatever giving to the point of the body which 18 struck rest.
a stated velocity, ¢, perpendicular to the impinging plane, com-
pounded with any motion whatever giving to the same point
any velocity parallel to this plane. To express this condition, let
u, v, w be rectangular component linear velocities of the centre
of gravity, and let w, p, o be component angular velocities round
axes through the centre of gravity parallel to the line of re-
ference. Thus, if x, v, # denote the co-ordinates of the point
struck relatively to these axes through the centre of gravity,
and if 7, m, n be the direction cosines of the normal to the im-
pinging plane, the prescribed velocity-condition becomes

(u+p2—oy)l+(W+ox—wz)m + (W+TY—pR)R=—G . 0ro.... ),
the negative sign being placed before ¢ on the understanding
that the motion of the impinging plane is obliquely, if not directly,

towards the centre of gravity, when /, m, n are each positive
If, now, we suppose the rectangular axes through the centre of
gravity to be principal axes of the body, and denote by Mf*, Mg’
M2 the moments of inertia round them, we have

T=iM W' +v"+w* +f @ +9°p" + H0) ceieeeninnninn (5).

2T =7,(d,— ) +¢{, (6, — 6) + ete. ............ (18), This must be made a minimum subject to the eqlfa,_tion of con-
or in words, dition (). Hence, by the ordinary method of indeterminate
: : multipliers,
Kinetic 317. The solution of the problem 1is this :—The motion Mu+ N =0, Mo+ m=0, Mw+An=0
| _ | ' =0,
minimum actually taken by the system is the motion which has less M7+ \ (ny—mz) = 0, Mgp+A(le—nam) = 0, Mo +\(ma—ly) = 0}(0).
in this case. Y ’ P 3

kinetic energy than any other fulfilling the prescribed velocity- These six equations give each of them explicitly the value of one

COD.(!IthIlS. And the excess of the energy of any other such of the six unknown quantities w, v, w, @, p, o, in terms of A and
motion, above that of the actual motion, is equal to the energy data. Using the values thus found in (a), we have an equation
of the motion which must be compounded with either to pro- to determine A ; and thus the solution is completed. The first

duce the other. three of equations (c¢) show that A, which has entercd as an
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indeterminate multiplier, 18 to be mterpreted as the measure of
the a.mount of the impulse.

Hxample (2). A stated veloc.tty in a stated direction is com-
municated impulsively to each end of a flexible inextensible cord
forming any curvilineal arc: it is required to find the initial
motion of the whole cord.

Let z, v, 2 be the co-ordinates of any point P in it, and &, %, 2

the components of the required initial velocity. Let also s be
the length from one end to the point P.

If the cord were extensible, the rate per unit of time of the
stretching per unit of length which it would experience at £, in
virtue of the motion &, ¥, 2, would be

dx da: N dy dy +dzdz
dsds dsds dsds’

Hence, as the cord is inextensible, by hypothesis,

dedié dydy dadz
T T T g dede Oriirrieiiensanannen (a).

Subject to this, the kinematical condition of the system, and

L= {i‘::?},’
y=v) when 8=0, =%} when 8=/,
d=w Z2=w

[ denoting the length of the cord, and (u, v, w), (v, ¥/, w'), the
components of the given velocities at its two ends ; it is required
to find &, ¥, 2 at every point, so as to make

-L I%,u. (& + G +27)dsenininniiiiis i ()

a minimum, u denoting the mass of the string per unit of length,
at the point P, which need not be uniform from pomt to point ;

and of course

ds=(da +dy® +d®)b...ovrnniiinnnnne, (c).

Multiplying (@) by A, an indeterminate multiplier, and proceeding
a8 usual according to the method of variations, we have

I _?éﬁf dy doy dzdﬁz)} _
p(w3w+y3y+23z)+)\. +ds % T T ds =0,
In Whl(:h we may regard z, y, z as known functions of s, and this

it is convenient we should make independent variable. Inte-
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grating “by parts” the. portwn of the first member which contains Generation
A, and attending to the terminal conditions, we find, according to g‘;‘:‘n‘;‘;g?m
the regular process, for the equations containing the solution ﬁtr%‘,};i?ﬁe
. cora or
. 4/ dwx ' d /. dz | chain. .
M=£(Ad) ug = ds(xds), pz-—-&s( ds) ............... (d)

These three equations with (@) suffice to determine the four
unknown quantities, &, ¥, £, and A Usmg (d) to eliminate %, ¥, #
from (a), we have

d

0 dz d }de } 1 1 { de &

ds{dsds( )t dsds’( ds) }
Taking now s for independent variable, and performing the
differentiation here indicated, with attentmn to the following

relations —

dx® 1 da:d”a:+ 0
E{?—{-t”_ ,ds dSH e = ) |

dx d’x d’x\?
—_—— ++(—-) +...=0,

ds ds” ds®

and the expression (§ 9) for p, the radius of curvature, we find

a linear differential equation of the second order to determine
A, when u and p are given functions of s.

The interpretation of (d) is very obvious., It shows that A is
the impulsive tension at the point P of the string ; and that the
velocity which this point acquires instantaneously is the resultant

of l d—-)t tangential, and —l towards the centre of curvature,

pds J7
The differential equation (e¢) therefore shows the law of trans-

mission of the instantaneous tension along the string, and proves
that it depends solely on the mass of the cord per unit of length
in each part, and the curvature from point to point, but not at
all on the plane of curvature, of the imitial form. Thus, for
instance, it will be the same along a helix as along a circle of
the same curvature.
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With reference to the fulfilling of the six terminal equations,
& difficulty occurs inasmuch as &, g, 2 are expressed by (d) imme-
diately, without the introduction of fresh arbitrary constants,
in terms of A, which, as the solution of a differential equation of
the gecond degree, involves only two arbitrary constants. The
explanation is, that at any point of the cord, at any instant, any
velocity in any direction perpendicular to the tangent may be
generated without at all altering the condition of the cord even
at points infinitely near it. This, which seems clear enough
without proof, may be demonstrated analytically by transforming
the kinematical equation (@) thus. Let f be the component tan-
gential velocity, ¢ the component velocity towards the centre of
curvature, and p the component velocity perpendicular to the
osculating plane. Using the elementary formulas for the direc-

~ tion cosines of these lines (§9), and remembering that s is now

independent variable, we have

, dx dzd"y — dyd®z
m=f£+qusﬂ pP( d&a / )

, y=etc.

Substituting these in (@) and reducing, we find

a form of the kinematical equation of a flexible line which will
be of much use to us later.

We see, therefore, that if the tangential components of the im-

pressed terminal velocities have any prescribed values, we may
give besides, to the ends, any velocities whatever perpendicular
to the tangents, without altering the motion acquired by any part
of the cord. From this it is clear also, that the directions of the

terminal impulses are necessarily tangential ; or, in other words,
that an impulse inclined to the tangent at either end, would

generate an infinite transverse velocity.

To express, then, the terminal conditions, let /" and /" be the

tangential velocities produced at the ends, which we suppose
known. We have, for any point, .2, as seen above from (d),

1 dA
Fez

o ds
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and hence when
8=0, Lar_ =F
u ds
1P U (RXCEETIIIETPRTIP P PRR (h),
and when g=1 —-—=F
p ds

which suffice to determine the constants of integration of (d).
Or if the data are the tangential impulses, 7, 7’, required at the
ends to produce the motion, we have

when 8=0, A= { ) @
and when g Ao [ T e :

Or if either end be free, we have A =0 at 1t, and any prescribed
condition as to impulse applied, or velocity generated, at the
other end.

The solution of this problem is very interesting, as showing
how rapidly the propagation of the impulse falls off with “change
of direction” along the cord. The reader will have no difficulty
in illustrating this by working it out in detail for the case of a

d}

cord either uniform or such that £

ds
the form of a circle or helix. When p and p are constant,
for instance, the impulsive tension decreases in the proportion
of 1 to e per space along the curve equal to p. The results have
curious, and dynamically most interesting, bearings on. the mo-
tions of a whip lash, and of the rope in harpooning a whale.

is constant, and given in

Example (3). Let a mass of incompressible liquid be given at
rest completely filling a closed vessel of any shape ; and let, by
suddenly commencing to change the shape of this vessel, any
arbitrarily prescribed normal velocities be suddenly produced in
the liquid at all points of its bounding surface, subject to the
condition of not altering the volume : It is required to find the
instantaneous velocity of any interior point of the fluid.

Let «, v, # be the co-ordinates of any point P of the space
occupied by the fluid, and let w, v, w be the components of the
required velocity of the fluid at this point. Then p being the
density of the fluid, and [/ denoting integration throughout the
space occupled by the fluid, we have

T=([[4p(u’'+v'+w)dadydz.............. (@),

" (eneration

of motion
by impulse
in an in-
extensible
cord or
chain.

Impulsive
motmn of
incompres-
sible liquid.
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Impulsive which, subject to the kinematical condition (§ 193),
motion of .
Inoompres- du  dv dw
sible liquid. e e e o — —
-+ 2 + = 0 et (B),

must be the least possible, with the given surface values of the
normal component velocity. By the method of variation we have

the differential, is the impulsive pressure at the point (z, y, <)
of the fluid. Hence we may infer that the equation (f), with
the condition that A shall have a given value at every point
of a certain closed surface, has a possible and a determinate
solution for every point within that surface. This is precisely
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From the hydrodynamical principles explained later it will Impulsive
| . . .. motion of
appear that A, the function of which p (udx + vdy +wdz) 18 ipgianil;:lre_s&
| 810J6 hiquid,

_ ddu ddv ddw
[ff{p(uSu +vdv + wow) + A (EE + o + E;)} dedydz = O (c).

But integrating by parts we have

déu ddv ddw

dn . dh . d\
_.ff[(&w%-l- b o+ b 35) dedyds .....(d),

and if /, m, n denote the direction cosines of the normal at any

point of the surface, dS an element of the surface, and [[ in-
tegration over the whole surface, we have

[ (budydz + dvdzdx + dwdxdy) = [ [\ (ldu + mdv + ndw) dS =0,

since the normal component of the velocity is given, which
requires that [du + mdv+noéw =0. Using this in going back

with the result to (¢), (d), and equating to zero the coeflicients of
du, ov, ow, we find

R S S
pU=—, pv—dy, PW = 7 iiiiiirneenane, (e).
These, used to eliminate w, v, w from (d), give
d /1 dA d /1 dA d /1 dA
d?(pdm)+@(ﬁ@)+gz<ﬁéz—>=0 ........... (f)s

an equation for the determination of A, whence by (e) the
solution is completed.

The condition to be fulfilled, besides the kinematical equation
(6), amounts to this merely,~—that p (udz + vdy + wdz) must be
a complete differential. If the fluid is homogeneous, p is con-
stant, and wudx + vdy + wdz must be a complete differential; in
other words, the motion suddenly generated must be of the

“ non-rotational” character [§ 190, (¢)] throughout the fluid mass.
The equation to determine A becomes, in this case,

d’N d°A LA
m-}_@ +d_z§=0 -..--------------n--------n(g)l

the same problemn as the determination of the permanent tempe-
rature at any point within a heterogeneous solid of which the
surface is kept permanently with any non-uniform distribution
of temperature over it, (f) being Fourier's equation for the
uniform conduction of heat through a solid of which the conduct-
. 1 -
ing power at the point (, ¥, 2) 18 . The possibility and the
determinateness of this problem (with an exception regarding

multiply continuous spaces, to be fully considered in Vol. 11.)
were both proved above [Chap. 1. App. A, (¢)] by a demonstra-
tion, the comparison of which with the present i8 instructive.
The other case of superficial condition—that with which we

have commenced here—shows that the equation (f), with

{ @+ m@+ 7 aA given arbitrarily for every point of the sur-

da dy  dz
face, has also (with like qualification respecting multiply con-
tinuous spaces) a possible and single solution for the whole
interior space. This, as we shall see in examining the mathe-
matical theory of magnetic induction, may also be inferred from
the general theorem (e) of App. A above, by supposing a to be

zero for all points without the given surface, and to have the

value ! for any internal point (z, ¥, 2).
P .

318. The equa,tions of continued motion of a set of free Lagr::ngﬂ’zr
. . equations
particles acted on by any forces, or of a system connected 1n motion in
| N - ' . . erms o
: n bv anv forces, are readily obtained generalized
any manner and acted on by any y generalized

in terms of Lagrange’s Generalized Co-ordinates by the regular

and direct process of analytical transformation, from the or-
dinary forms of the equations of motion in terms of Cartesian

(or rectilineal rectangular) co-ordinates. It is convenient first

to effect the transformation for a set of free particles acted
on by any forces. The case of any system with invariable
connexions, or with connexions varied in a given manner, 18



<educed
direct by
transforma-
tion from
the equa-~
tions of
motion in
terms of
Cartesian
co-ordi-
nates,
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then to be dealt with by supposing one or more of the gene-
ralized co-ordinates to be consfant: or to be given functions
of the time. Thus the generalized equations of motion are
merely those for the reduced number of the co-ordinates re-
maining un-given; and their integration determines these
co-ordinates. '

Let m , m,, etc. be the masses, «, ¥, 2, @, etc. be the co-
ordinates of the particles; and X , ¥, Z , X , etc. the components
of the forces acting upon them. Let ¢, ¢, ete. be other variables
equal In number to the Cartesian co-ordinates, and let there be
the same number of relations given between the two sets of
variables; so that we may either regard ¢, ¢, etc. as known
functions of z,, y,, ete., or x,, ¥, etc. as known functions of
Y, ¢, etc. Proceeding on the latter supposition we have the
equations (@), (1), of § 313; and we have equations (b), (6), of
the same section for the generalized components ¥, ®, ete. of the
force on the system.

For the Cartesian equations of motion we have

d’x, d*y d’z, 'z,
X =m 77 Y1=m1—67;—, Zl=mla-t—g—, X, =m, e ete....(19).
. 1. dx dy _
Multiplying the first by _gj’ the second by E(;’ and so on,

and adding all the products, we find by 313 (6)

d'x, dey, d'y, dy, dz dz
W — _l 71 1 1 i
g ( ar dy " df dy T af dy

+ m, (ete.) + ete. ... (20).

Now
d’z, dx, E(w cis_c,_)_m d dxl_i & cl_:z':l)_ . dx
de dy  dt Ydy 1 d¢ dl,b—dt(wld,,[} ml_C?lZ;

d(,d(&* d (&,°
:a.t{% d(p)}—*} Si'#) ....... (21),

Using this and similar expressions with reference to the other
co-ordimates in (20), and remarking that

dm, (2" + g2+5%) +3m_(etc) +ete. =7 ......... (22),

f, as before, we put 7 for the kinetic energy of the system; we
find | -

v 44T _dr
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| . . d . dﬁ& | d I.t
The substitutions of %}/‘ for % and of E—J for 7 j:;’ used EZ%EEEE of
above, suppose %, to be a function of the co-ordinates, and of the gﬂﬁg?ﬁm
generalized velocity-components, as shown in equations (1) of ﬁ“ﬁuﬁam
§ 313. Tt is on this supposition [which makes 7' a quadratic {mstonma-
function of the generalized velocity-components with functions E}fﬁ"egﬂg
of the co-ordinates as coefficients as shown in § 313 (2)] that the tions of
- . { . ~ terms of
differentiations C—Z% and 'a?(?{; in (23) are performed. Proceeding Lartesian
- nates.

gimilarly with reference to ¢, etc., we find expressions similar to
(23) for ®, etc., and thus we have for the equations of motion in

terms of the generalized co-ordinates

d dT dT _ °

dt d.,rar“’*
ddl _dT _ o b, (24).
dtdd d¢ |

ete, )

It is to be remarked that there is nothing in the preceding

transformation which would be altered by supposing ¢ to appear
in the relations between the Cartesian and the generalized co-

ordinates: thus if we suppose these relations to be

F (2, 9y 2y Zpyennne J, @, 0,......8)=0
F (x,, .5 2 Tgyeennn Y, ¢, 0,...... =07 i, (25),
etc.
we now, instead of § 313 (1), have
dx, . dx, . )
& = (%) + cfgf¢+3% ¢ + etc.
. dy,) dy, . dy, . OO (26),
U= (‘d—t - EE l'b-{-agqb-l-etc.
ete. J
where (%E) denotes what the velocity-component &, would be

if , ¢, etc. were constant; being analytically the partial differ-
ential coefficient with reference to £ of the formula derived from

(26) to express x, as a function of ¢, §, ¢, 0, etc.

Using (26) in (22) we now find instead of a homogeneous
quadratic function of i, ¢, etc., as in (2) of § 313, a mixed



304 ~ PRELIMINARY, 1318,

Lagrange’s function of zero degree and first and second degrees, for the
eguations of .. e

motion in kinetic energy, as follows :—

terms of

So-ordinates 7= K+ () g+(d) b+ . +3{(W Y)Y+ (b, ) '+ ... 2(4, D). }.(2T),

deduced
direct by
transforma-
tion from

k-ymn () (@) (@)} )

terms of

Cartesian W)= Sm { dx . dy) ay (dz) dz} ote

where

nates. dt d 4, d,’[,

- () ( )@ [

de dr dy dy dz a’z) obo.
(dqf db " dv de " dydp)’

ete.

W ¥

>

J

K, (¥), (o), (\r ¥), (&, D), ete. béing thus in general each a known
function of ¢, ¥, ¢, ete.

Equations (24) above are Lagrange’s celebrated equations of
motion in terms of generalized co-ordinates. It was first
pointed out by Vieille¥* that they are applicable not only when
¥, ¢, etc. are related to z, y,, 2, z,, etc. by invariable relations
as supposed in Lagrange’s original demonstration, but also
when the relations involve ¢ in the manner shown in equa-
tions (25). Lagrange’s original demonstration, to be found
in the Fourth Section of the Second Part of his Mécanique
Analytique, consisted of a transformation from Cartesian to
generalized co-ordinates of the indeterminate equation of
motion; and it is the same demonstration with unessential
variations that has been hitherto given, so far as we know,
by all subsequent writers including ourselves in our first edition
(§ 329). It seems however an unnecessary complication to
introduce the indeterminate variations oz, dy, etc.; and we find
it much simpler to deduce Lagrange’s generalized equations
by direct transformation from the equations of motion (19)
of a free particlet.

* Sur les équations différentielles de la dynamique, Liouville’s Jowrnal,
1849, p. 201.

+ [The proof b',* direct transformation was given by Sir W, R. Hamilton,
Phil, Trans., 1835, p. 96. H. L.]
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When the kinematic relations are invariable, that is to say iaagmngﬂ’as
when ¢ does not appear in the equations of coundition (25), we Srin of the
find from (27) and (28), motion oF
g - g anded.
T=3 {9+ 20 )+ (B, 8) '+ ) nn(29),
d dT s s )
TR AR A L
{ Wsy) S Y) _}¢
dy 95 e, (29"),
R LT
e e e,
and
d 4 04 4 d($ P) ;e

Hence the u,b-equation of motion expanded in this, the most
important class of cases, is as follows :

WY+ ) b+ ... +Qu(T) =, '*
where
AW ) .0 A, .. 7
QMT}:%{_%\/%@ 2+ 2 (§¢¢)¢¢+ d(‘//;)) d(j:b‘i") ¢g+___}#
..................... (29").

Remark that @y (7') is a quadratic function of the velocity-com-
ponents derived from that which expresses the kinetic energy
(Z') by the process indicated in the second of these equations,

in which ¢ appears singularly, and the other co-ordinates Sym-
metrically with one another.

Multiply the y-equation by i, the ¢-equation by ¢, and so Equation of
onj and add. In what comes from @y (7') we find terms CHOTEY:

("Djﬁw V. ¢, and d(ﬁl’b) Vb
which together yield d W i) s V)

dep
With this, and the rest simply as shown in (29"), we find

(@) Y+ p) b+ .1
U+ (b d) b+ ...] 6

VOL. 1. 20
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Equation of ar . dT , O 9giv In § 827 below a purely analytical proof will be given of Hamilton’s
erieTey. T dy "b+3$¢+ B ARG 5% Lagrange’s generalized equations of motion, establishing them form.
ar . : . directly as a deduction from the principle of “Least Action,”
or 2 WY PhH s (297). independently of any expression either of this principle or of

the equations of motion in terms of Cartesian co-ordinates. In

Hamilton’s When the kinematical relations are invariable, that 1s to say,

form.

when ¢ does not appear in the equations of condition (25), the
equations of motion may be put under a slightly different form
first given by Hamilton, which is often convenient ; thus :—Let
T, §, ¢,..., be expressed in terms of & »,..., the impulses re-
quired to produce the motion from rest at any instant [§ 313 (d)];
so that 7 will now be a homogeneous quadratic function, and
J, ¢, ... each a linear function, of these elements, with coefli-
cients—functions of ¢, ¢, etc., depending on the kinematical
conditions of the system, but not on the particular motion.
Thus, denoting, as in § 322 (29), by 0, partial differentiation Wit:!tl
reference to & %, ..., ¥, ¢,..., considered as independent vari-

ables, we have [§ 313 (10)]
. 0T . 0T
'1’/ - Eg: ¢’ - d"? ’
and, allowing d to denote, as in what precedes, the partial dif-
ferentiations with reference to the system y, ¢, ..., ¥, ¢, ..., We

have [§ 313 (8)] . 7
(31).

é:-gl;, ﬂzﬁ, .....................

The two expressions for 7' being, as above, § 319,

T {0y Y) 6%+ 42 (0 $) b} = MY, V1€ 4200, Blén+...}(32),
the second of these is to be obtained from the first by substitu-

ting for ¢, ¢...., their expressions in terms of £ =, ... Hence
0T dT dToy dI o dT+ ¢ 8T+ 0 8_T+
— T — —_— — - e — ——— Y, RIS
- d T awgastagdyT " ay Ay E " dy d
dT o0 (.07 oT )_c_q_z_'+2§£’
=@T@(§&-+ndq+... v 0
From this we conclude
ol a7 - o  dT . 33
&P:-a—';,and, slmlarly,d¢ dd,,ec. ...... (33)
Hence Lagrange’s equations become
de  of 34).
a + dl‘b' =W, etC......ovviinienienans. ( )

their Hamiltonian form they are also deduced in § 330 (33) from
the principle of Least Action ultimately, but through the beau-
tiful “ Characteristic Equation” of Hamilton.

o19. Hamilton’s form of Lagrange’s equations of motion in

terms of generalized co-ordinates expresses that what is re-

quired to prevent any one of the components of momentum
from varying is a corresponding component force equal in
amount to the rate of change of the kinetic energy per unit
increase of the corresponding co-ordinate, with all components
of momentum constant: and that whatever is the amount of
the component force, its excess above this value measures the
rate of increase of the component momentum.

In the case of a conservative system, the same statement
takes the following form:—The rate at which any component
momentum increases per unit of time is equal to the rate, per
unit increase of the corresponding co-ordinate, at which the
sum of the potential energy, and the kinetic energy for con-
stant momentums, dinninishes. This is the celebrated “canonical
form” of the equations of motion of a system, though why it
has been so called it would be hard to say.

Let V denote the potential energy, so that [§ 293 (3)]

Yoy + PO + ... =—87,
av av
and therefore 3 iy’ ® Z_Elc_,b-’

Let now U denote the algebraic expression for the sum of the
potential energy, ¥V, in terms of the co-ordinates, , ¢..., and the
kinetic energy, 7, in terms of the co-ordinates and the components

of momentum, ¢, »,.... Then
d¢  oU
't;?f: — @* , ete.

also dy QU [ s (35),
dt 'gg' , ete.

“Canonical
form?® of
Hamilton’s
general
equations of
motion of &
CONServi-
tive system.
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the latter being equivalent to (30), since the potential energy does
not contain &, 7, etc.

In the following examples we shall adhere to Lagrange's form
(24), as the most convenient for such applications.

Example (A).~—Motion of a single point (m) referred to polar
co-ordinates (r, 6, ). From the well-known geometry of this
case we see that dr, 786, and r sin 63¢ are the amounts of linear
displacement corresponding to infinitely small increments, or, 86,
o¢, of the co-ordinates : also that these displacements are respec-
tively in the direction of 7, of the arc 700 (of a great circle)
in the plane of » and the pole, and of the arc rsin 63¢ (of a
small circle in a plane perpendicular to the axis); and that they
are therefore at right angles to one another. Hence if F, G, H
denote the components of the force experienced by the point, in
these three rectangular directions, we have

F=R, Gr=0, and Hrsinf= o ;

R, ®, ® being what the generalized components of force (§ 313)
become for this particular system of co-ordinates. We also see
that #, 76, and rsin ¢ are three components of the velocity,
along the same rectangular directions. Hence

T =Lm( + r°6° + r® sin® 6¢°).

From this we have

dr-—mfr, éT:: mr*6), dZ_T = mr*sin®f¢ ;
di dg dep
ar o e apign OL dT
7 mr(6° +sin 9:;5), §=mr *sin 6 cos 6¢’, s = 0.
Hence the equations of motion become
fd?’_ 12 2 g 48 } .
ld r(6® + sin® 6¢°) ; =
m {d (;:9) 7% gin @ cos 995’} = G'r,
'S
mfl(’r Bdl;l 6¢) = Hrsin § ;

or, according to the ordinary notation of the differential calculus,

d'r dé* g n &P
m{dt’ (-&?—-l-ﬁm&dt, } = F,
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d 2 dd d. B
( ( ) — 7 sin 6 cos 6 — $ ) f_ G'r, tho ato of O
(dt dt, Lagrange's
generalized
d o n Ab : equations of
m — (‘?’ sin”@ ) Hr sin 6. motion ;—
dt it polar co-
‘ _ ordinates.
If the motion is confined to one plane, that of =, §, we have
%ii-’ =0, and therefore H =0, and the two equations of motion

which remain are
d’r d¢* d [ ,do\
™m (dtg r dt”)zF’ m{-ﬁ (? r)— Gr.
These equations might have been written down at once in terms

of the second law of motion from the kinematical investigation of
d’r d&° 1d s, db
§ 32, in which it was shown that TE— T 7 and 1:55( dt)
are the components of acceleration along and perpendicular to
the radius-vector, when the motion of a point in a plane is ex-

pressed according to polar co-ordinates, r, 0.

The same equations, with ¢ instead of 6, are obtained from the
polar equations in three dimensions by putting 6= 24w, which
implies that G =0, and confines the motion to the plane (r, ¢).

Example (B).—Two particles are connected by a string ; one Dynamical
of them, m, moves i any way on a smooth horizontal plane, and problem.
the string, passing through a smooth infinitely small aperture in
this plane, bears the other particle m’/, hanging vertically down-
wards, and only moving in this vertical line: (the string re-
maining always stretched in any practical illustration, but, in
the problem, being of course supposed capable of transmitting
negative tension with its two parts straight.) Let/ be the whole
length of the string, » that of the part of it from m to the aperture
in the plane, and let § be the angle between the direction of #
and a fixed line in the plane. We have

T = L {m(#* + r°6°) + w5},

Ef—-g= (m + m)7, -3—? =m0,
dT 2 ar
E‘ = mrl y Eg =0,

Also, there being no cther external force than gm the weight

of the second particle,
R=—-gm/, =0
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Examples of Hence the equations of motion are body about a parallel axis through its centre of inertia ; we have, fﬂllilﬂt%?llggi
mr“:ﬁg‘;ﬁs _ d(r*6) according to §§ 280, 281, ?ﬂ;ﬂi‘iﬁ;}_ﬂ'
%ﬁéﬁgﬂf (m & m )i = mrG* = —m'g,  m dt 0. T =1 {mp?$* + n[a’d’ + 2abd cos (Y — ) + b%* + &° *]}.
03101 ; '
ﬁio“ﬁ?&f.“l The motion of m' is of course that of a particle influenced only Hence we have,
by a force towards a fixed centre; but the law of this force, P ar . _ . dT - : . :
(the tension of the string), is remarkable. To find it we have d—q5=11y9¢+m2¢+mbcos(tp—¢)¢; E=nabcos(¢—-¢)¢+n(b +&) Y ;
§ 32), P=m(—#+76°). But, by the equations of the motion,
, 3 al’_ _dr =nab sin (Y — ¢) ¢
7 — ‘?'9‘2 = mqfﬂaf (9’ + ‘?"éﬂ), and é = ’;?i'_?,-;‘i ) dqf) B dlp |
er 1t ake as to the applied forces
where % (according to the usual notation) denotes the moment .The m.OSt general sup g v_velc an(bmt t on th ﬁfspt bod a,nti
f t f the motion, being an arbitrary constant of in- 1s equivalent to assuming a couple, ®, to act on the . 7
1} l:jno'men HE 0 , g y a couple, ¥, on the second, each in a plane perpendicular to the
egration, enee axes ; and these are obviously what the generalized components of
! 2 .
p=" , (g + -}—"—-ﬂ 7 3) : stress become 1n this particular co-ordinate system, ¢, . Hence
m -+ m " the equations of motion are
Case of The particular case of projection which gives m a circular motion -
llaitt?l?imun; jue and leaves m’ at rest is interesting, inasmuch as (§ 3560, below) (my” + na’) ¢ + nab yoos(y=¢)}_ nab sin ( — ¢) iy = P,
to motion. . . r e . dt
the motion of m is stable, and therefore m’ is in stable equi- _
llbl‘lum. nab d [(’b cozglib T Q‘J)] + n (bﬂ + kﬂ) ll; + nab sin (lp' w— qf;) (}(jl‘[} =,
Ixauples L le (C).—A rigid bod ' ' _ . :
é‘a‘&‘m‘iﬁég; and Zizﬁer(ri) 4 bor;gl " i: ;lm oftesdu'l; i 01::;;1 g; ta. ;ix Zi;f:; If there is no other applied force than gravity, and if, as we may
inéﬂd)lhog- ] d 4 PP » O suppose without losing generality, the two axes are horizontal, the

axis ; the motion round each axis being perfectly free.

Case (a).—T'he second axis parallel to the first. At any time,
t, let ¢ and ¢ be the inclinations of a fixed plane through the
first axis to the plane of it and the second axis, and to a
plane through the second axis and the centre of inertia of the
second body. These two co-ordinates, ¢, Y, 1t is clear, completely
specify the configuration of the system. Now let @ be the dis-
tance of the second axis from the first, and b that of the centre
of inertia of the second body from the second axis. The velocity
of the second axis will be a¢; and the velocity of the centre
of inertia of the second body will be the resultant of two velocities

ag, and by,

in lines inclined to one another at an angle equal to y — ¢, and
its square will therefore be equal to

a’$’ + 2abdy cos (Y — p) + by,

Hence, if m and » denote the masses, 7 the radius of gyration
of the first body about the fixed axis, and % that of the second

potential energy of the system will be
gmh (1 — cos ) + gnia [l —cos (¢p+ 4)] +b[1 —cos (¥ + 4)]},

the distance of the centre of inertia of the first body from the
fixed axis being denoted by A, the inclination of the plane
through the fixed axis and the centre of inertia of the first body,
to the plane of the two axes, being denoted by A4, and the fixed
plane being so taken that ¢ =0 when the former plane is vertical.

By differentiating this, with reference to ¢ and i, we therefore
have

—® =gmhsin ¢ +gnasin (¢ + 4), —¥ =gnb sin (Y + 4).
We shall examine this case in some detail later, in connexion
with the interference of vibrations, a subject of much importance
in physical science.
When there are no applied or intrinsic working forces, we

have ® =:0 and ¥ =0 : or, if there are mutual forces between the
two bodies, but no forces applied from without, ®+¥=0. In
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?gﬂ&tlllfls%li? Glthﬁl' Gf thﬁﬁe CaSes we have the fﬁll{)w; n'n{r ﬁI'St integral — Empz p (Cr)- T ﬂ.k a th & Case 0 (b) ﬂ;]ld mount a thil'd b(}dy M g{l?lgfan b%fdy
ﬁﬂ:ﬁ}f‘l{eﬁf (mj® + na®)  + m'ab cos (Y — ¢) (¢ + ¢) +n (b° + ) =0 upon an axig OC fixed relatively to » 1n any positio.n pa:r-'a.llel to pivoted on
N vy iatned be adding th _ _ ' _ NE. Suppose for simplicity O to be the centre of inertia of A principal N
0 t'ia,me Dy adding the two equations of motion and integrating. and OC one of its principal axes; and let O4, OB be its two edona |
This, which CI?MIY-GXP res:s'es the COHSthcy ?f the whole moment of other principal axes relative to O, The notation being 1n other ITF?_”‘HEd
mﬂme'ntum,.glves ¢ and q/‘m terms of (y — q’:)_ and (¢ — ¢), Using respects the same as in Example C (b), denote now farther by
these in th-e integral equation of energy, provided the mutual forces A, B, C the moments of inertia of M round 04, OB, OC ; ¢ the
Zr(e! fu;:l)ctmns of y—¢, we have a single equation between angle between the plane AOC and the plane through the fixed
_.'r’(_i%' , (¢ — ¢), and constants, and thus the full solution of axis of m perpendicular to the pivoted axis of n ; w, p, o the
: component angular velocities of M round 04, 0B, OC.
the problem is reduced to quadratures. [It is worked out fully : F
below, as Sub-example G,.] In the annexed diagram, taken from § 101 above, ZUZ" 18 a
el | Oa.?e (b)—The second axis perpendicular to the first. For
governing simpheity suppose the pivoted axis of the second body, n, to be
masses in . . _
W&Ef-’?u | a I?rmclpal axis relatively [§ 282 Def. (2)] to the point, &, in
g?,ﬂer’?off which it 18 cut by a plane perpendicular to it through the fixed
ais0 o 3 -
Simballed axis of the first body, m. Let NZ and NF be #’s two other
Dopass- principal axes. Denote now by Letter O at cen-
owl. tre of sphere
k the distance from N to m’s fixed axis ; concealed by
k, e, f the radii of gyration of » round its three principal ¥
axes through W ; | XA’ = W + o,
J the radius of gyration of m round its fixed axis; Yy #‘P:
0 the inclination of V% to m’s fixed axis ; ﬁ":‘ﬁ-

Y the inclination of the plane parallel to n’s pivoted axis
through m’s fixed axis, to a fixed plane through the
latter. |

Remarking that the component angular velocities of % round
NE and NF are ¢ cos 6 and 4 sin 6, we find immediately

L= b {[m" + m (B + & 0o 6 + £ sin 6)] 7 + ni ),
or, if we put
mj® +n (B +f*) =@, n(d—f)=D;
T =31 {(G + D cos? ) J* + nk? ég}-

circle of unit radius having its centre at O and its plane parallel
to the fixed axis of m and perpendicular to the pivoted axis

of n.

The component velocities of € in the direction of the arc ZC

and perpendicular to it are § and ysin@; and the component
angular velocity of the plane ZCZ' round OC is Y cos 0. Hence

w = sin ¢ —  sin 6 cos ¢,

o = 0 cos ¢ + y 8in 0 sin ¢,
and o =1 cos 0 + ¢.
[Compare § 101.]

The farther working out of this case we leave as a simple but
most Interesting exercise for the student. We may return
to 1t later, a8 1ts application to the theory of centrifugal chrono-
metric regulators is very important.
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E[ ,?if;i?&l ﬁgdy The kinetic energy of the motion of A relatively to O, its angle which the plane 408 makes with a fixed plane of reference, Gyroscopic
one of s centre of Inertia, 1s (5 281) ' through 04, chosen so as to contain a second péndulum.
principal 1 (A%* + Bp® + C'c®) ; principal axis of the imagined rigid body, ¢, 4y
eirsj%:lﬂied and (§ 280) its whole kinetic energy is obtained by adding the when 0B 13 1P faced n lmel-mth ;:—‘l 0 E :a,nd l'et
kinetic energy of a material point equal to its mass moving with ¥ be the angle b?tween v PIane Of TEIeIEhes m
the velocity of its centre of imertia. This latter part of the ¢ through its N of symmetry and the plane
kinetic energy of M is most simply taken into account by sup- O.f thj tw;hplmcilﬁil e ?E-Péi alrezdy e
posing » to include a material point equal to M placed at O ; tioned. o er—; cororTA fii (© t¢’ V)
and using the previous notation %, ¢, / for radii of gyration of n clea,rliy specily the configuration o Vi Bysten at
on the understanding that n now includes this addition. Hence any t,lme’ b _ L et the moments of 1:_rlert1a' o1 .the A
ave ’ ?
: : remaining one, be denoted by X, 18, &€ respectively; and let
T'= i {(;_;! +D cos” 6) '.ff; +nie 9:} Wy o @' be the moment of inertia of Q round its be:fring i,
+ SIn ¢ — iy s1n. & COS ¢b)° + COS ¢ + Y sin 6 sin ¢h)° -
( oy i ( * lf_ C (y cos ;5 2_ )%, We have seen (§ 10_9) that, .with the kind of joint we have sup-
Rigid body From this the three equations of motion are easily written down poaet?. at 0, evexy Posmble m{}t.mn ot a body 1*1g1d_1.y con_Peet?d wich
:Elg;::jtyil:gm_ | - ' OB, is resolvable mto a rf)tatmn round O{' , the line bisecting the
ﬁg&f ?a B'y putting & = Of D=0, and. k=0, we have the'?ase ?f the angle 4A0B, and a rotation round the line thr?ugh O perpen-
mlit)iin’ates motion of a free rigid body relatively to its centre of inertia. dicular to the plane AOB. The a'ngula,r velocity of the latter
| By putting B= 4 we fall on a case which includes gyroscopes 18 0, a,ccmi'djn_g to our present notation. TI-m former “":0111(1 give
Gyroscopes and i}érc:;ats of every variety; and have the following much 1(3;)[&:{ iofthms %B; tlii&i&iz;e iz?;l:li;;:f‘::li;i’yr‘;&t;‘mdrj?d
gyrostats. simplified formula : , that 1t ha : roun 3
T=3{G+A4+(D—A4)cos®0] ¢’ + (nk* + A) 6° + C (Y cos  + ¢)7, and 1s therefore equal to
or si_ni’O.BBqB:sinlé & = 26 sin 16,
T =} {(E + F cos* ) § + (nk* + 4) 6 + O ( cos 6 + ¢)?}, sin 10 cos 39
if we put £E=G+ 4, and F=D— 4. This may be resolved into 2¢sin®L6= ¢ (1 —cos§) round 0B,
and 2¢ sin 10 cos 36 = ¢ sin 6 round the perpendicular to OB, in
Example (D).—Gyroscopic pendulum.—A rigid body, P, is plane AOB. Again, in virtue of the symmetrical character of
attached to one axis of a universal flexure joint (§ 109), of which the joint with reference to the line O/, the angle ¢, as defined
the other is held fixed, and a second body, €, is supported on P by above, will be equal to the angle between the plane of the two
a fixed axis, in line with, or parallel to, the first-mentioned arm of first-mentioned principal axes of body £, and the plane A0BA.
the jomnt. For simplicity, we shall suppose @ to be kinetically Hence the axis of the angular velocity ¢ sin 6, is inclined to the
Eg;gﬁglg? symmetrical about its bearing axis, and OB to be a principal principal axis of moment 48 at an angle equal to ¢. Resolving

ax1s of an ideal rigid body, P¢, composed of P and a mass so
distributed along the bearing axis of the actual body @ as to

have the same centre of inertia and the same moments of inertia
round axes perpendicular to it. Let 40 be the fixed arm, O the
joint, OB the movable arm bearing the body P, and coinciding
with, or parallel to, the axis of @. TLet BOA =8 ; let ¢ be the

therefore this angular velocity, and 6, into components round the
axes of I and €, we find, for the whole component angular
velocities of the imagined rigid body £¢, round these axes,
é 8in 0 cos ¢ + 6 sin ¢, and — ¢ sin G sin ¢ + f cos ¢, respectively.
The whole kinetic energy, 7', is composed of that of the imagined
rigid body P¢@, and that of @ about axes through its centre of
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&%‘3{’53‘3‘? inertia : we therefore have
27 =A(1—cos 0)° ¢*+ 1 (Hsinfcos ¢ +fsin p)*+ € (hsin O sin p—fcos¢)?

+ A" {y— ¢ (1 — cos G)}.

ar

Henoo 5= 1/ - $ (1 -cos0)}, G =
a7

7% =@ (1 —cos 6)* ¢ + I (¢ sin 6 cos ¢ -+ #sin ¢) sin § cos ¢
+®(c;f;sinﬁsing';—-éc&s::ﬁ)sinésingb—g’{lﬁ—(ﬁ(l-—-cosﬁ)}(l—0039),
a7

g =~ B ($sindcos ¢ + fsin ) (¢sin 6 sin ¢ — 6 cos )

0,

+@(cﬁsillﬂSi]lqﬁ—5.003¢))(c£3in9008¢+9-3i11¢);

ar . . . : ;
57 =18 (psinb cosdp+ 0 sin ¢p)sin¢p— € (¢ sin 6 sin ¢ —6 cos ¢p)cos

ar

and@_:g(l—ﬂos@)sin&ff—i-%cos@cos:ﬁ:ﬁ(cﬁsinécosqb+ésin¢)

+€ cosfsind (¢ sin sin¢p— 6 cos ) —A' sin O {y— (1 — cos ) é}.

Now let a couple, G, act on the body @, in a plane perpendi-
cular to its axis, and let L, M, V act on P, in the plane perpen-
dicular to 0B, in the plane A'0OB, and in the plane through OB
perpendicular to the diagram. If y is kept constant, and ¢
varied, the couple & will do or resist work in simple addition
with L. Hence, resolving L + ¢ and ¥ into components round
01, and perpendicular to it, rejecting the latter, and remembering
that 2 sin16¢ is the angular velocity round 07, we have

®=2sin$0{- (L +&)sin}f+ Neos 36} ={—~ (L + @)(1 —cosb) +Nsin ).

Also, obviously
=G, O=UM.

Using these several expressions in Lagrange’s general equations
(24), we have the equations of motion of the system. They will
be of great use to us later, when we shall consider several parti-
cular cases of remarkable interest and of very great importance.

Example of Example (E).— Motion of a free particle referred to rotating axes.
¥ .

m}émﬁt Let «, y, z be the co-ordinates of a moving particle referred to
constrains axes rotating with a constant or varying angular velocity round

st ) . )
Ees)_mg the axis 07, L¢t x,, 9, 2, be its co-ordinates referred to the

same axis, ()Z, and two axes 0X,, OY , fixed in the plane per-
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pendicular to it. We have Example of
. . varying
s = a—4 sina =a8na+ ¥ COSa, relation
&, =% COS ysia, ¥, TY ? o without t
0 T _ . * s 27 = etoe. constrain
&, =& Ccos a—gsina— (¥ SN a + Y COS a)ad, ¥, - (rotating

where a, the angle X 0OX, must be considered as a given func- axes).

tion of ¢. Hence |

T=3m{d® +5° + %+ 2 (xy—yz)a+ (° + y°) &},
a7 dT a7
da

=m(m‘—y¢i), dy _m(f?"'m&'): Td; = maz,

ar . . dT . dT

%=m(ya+a:a.), @—M(—ivﬂ-Jl-yﬂ): dz_o'
Also,

d dT d dT

= =m (& — 9o — yo), aa—gzm(y+ma+ma),

and hence the equations of motion are
m (& — 2ga — wa® — ya) = X, m (j + 2¢a —yao* + wa)= Y, mé=2,

X, Y, Z denoting simply the components of the force on the
particle, parallel to the moving axes at any instant. In this
example ¢ enters into the relation between fixed rectangular axes
and the co-ordinate system to which the motion is referred ; but
there is no constraint. The next is given as an example of vary-
ing, or kinetic, constraint.

Example (F).—A particle, influenced by any jforces, and at- Example of
tached to one end of « string of which the other is moved with any relation
constant or varying wvelocity in a straight line. Let 6 be the ﬁm‘;&;_
inclination of the string at time ¢, to the given straight line, and constraint.
¢ the angle between two planes through this line, one containing
the string at any instant, and the other fixed. These two co-
ordinates (6, ¢) specify the position, P, of the particle at any
instant, the length of the string being a given constant, a, and
the distance OF, of its other end Z, from a fixed point, O, of the
line in which it is moved, being a given function of ¢, which we
shall denote by w. Let x, y, # be the co-ordinates of the particle
referred to three fixed rectangular axes. Choosing OX asthe given

straight line, and YOX the fixed plane from which ¢ is measured,
we have
x=u+acosf, y=asinbcosep, z=asinfsin ¢,

#=1u— asin 606 ;



Example of
varying
relation
due to
kinetic
consiraint.

318

PRELIMINARY. [319.

and for g, £ we have the same expressions as in Example (A),
Hence _
I'=T+3im (&° — 240a sin 6)

where T denotes the same as the 7' of Example (A), with
=0, and 7 =a. Hence, denoting as there, by & and H the two
components of the force on the particle, perpendicular to EP,
vespectively 1n the plane of 6 and perpendicular to it, we find, for
the two required equations of motion,

d (sin® 6¢)
dt
These show that the motion is the same as if £ were fixed, and
a force equal to — mii were applied to the particle in a direction
parallel to £X ; a result that might have been arrived at at once
by superimposing on the whole system an acceleration equal and
opposite to that of &, to effect which on P the force — maii is

required.

= H.

m {a (6 — sin @ cos %) — sin 4 U= G, and ma

Lxample (F'). Any case of varying relations such that in

318 (27) the coefficients (Y, ), (, ¢) ... are independent of ¢
Let T denote the quadratic part, L the linear part, and X [as

in § 318 (27)] the constant part of 7' in respect to the velocity
components, so that

T=3{N P +2WU d) b+ (b, P) " +...}
L=@)j+($)+..
K=, ¢, 0, ...)

where (,{), ({, ), ($, ¢) ... denote functions of the co-ordi-

nates without ¢, and (y), (¢), ..., (), ¢, 0, ...) functions of the
co-ordinates and, may be also, of ¢; and

ceenser(@),

T=T+L+K.......00 i (b)

We have “_o.

di
Hence the contribution from A to the first member of the 7z

. .. dK :

equation of motion 18 simply — i Again we have

d L

Cz_l,l'/ = (lf/) 3
hence ' (;Z—-d—L‘= d—(—l’(—,)&-;-d—_(.‘lb_)tf,.i.etc. + (é__(_!’_) .

dt dfy dy dep at
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Farther we have | | §$$ée of
dL _d(y) ; d($) b + relation
#y” ay Yay T il
Hence the whole contribution from L to the y-equation of
motion 18
L) _d8)) g, @0 L0, (d(‘f’)) ..... o).
b d¢)¢’+(d6 ay )T a )

Lastly, the contribution from T is the same as the whole from
T in § 318 (29'") ; so that we have

i@—d@_(%w)ﬂb'*'(%‘i’)ﬁb*‘

dt dyy dy
A .. AWy :; [odWhe) ddd)] o, )

and the completed y-equation of motion 18
d a d@_,_(d(‘i’)_d(‘i’))q?ﬁ(d(l‘b)—w 0+ ...
dt dy dy dp  dy dé  dy

d(y) _dK _
+( 7 0 V......... (e).

It is important to remark that the coefficient of ¢ in thi? -
equation is equal but of opposite sign to the coefficient of ¢ 1n

the ¢-equation. [Compare Example G (19) below. ]
Proceeding as in § 318 (29") (29), we have in respect to T Equation ot

. energy.
precisely the same formulas as there in respect to 7. The terms

involving first powers of the velocities simply, balance in the
sum : and we find finally

dT  (AL\ _ QB _ i B+ o,
o (_C_{_t_)_ 7 W) + Pop + (f):

where dy ¢,..) denotes differentiation on the suppo?it:,ion of
W, ¢, ... variable; and ¢ constant, where 1t appears explicitly.

Now with this notation we have

dL (dL) . e, BN W)Y+ (D) b+ ...y

dt ~ \ dt dt
dK (@Z) L G K
and 'R?— At dﬂ

Hence from (f) we have
dT d(@-l—L—}-K) i ’ El_(‘p’q{,,“_)L ry o L
== 7 =¥ + P + ... + s + (W)Y + (b)) P+

dw,é,.)K ‘EE)
+ 9 T Lol g EESEERIR (9)-
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Take, for illustration, Examples (E) and (F) from above; in
which we have
[ Example (E)] T=1m (@@ +9y +2),

L = ma (xy — y),
K =1 ma® (& +4°),
and [Example (F)] @ =} ma® (sin®6¢* + 6°),
L =— maa sin 66,
K =1 mi’.

Write out explicitly in each case equations (f) and (g), and

verify them by direct work from the equations of motion forming

the conclusions of the examples as treated above (remembering
that & and % are to be regarded as given explicit functions of #).

Example (G).—Preliminary to Gyrostatic connexions and to
Fluid Motion. Let there be one or more co-ordinates x, x', ete.
which do not appear in the coefficients of velocities in the

: : a7l al
expression for 7'; that is to say let ax = 0, ™ ={), etc. The
equations corresponding to these co-ordinates become
¢4l _x iz--@_-.xg €tC. v iiaininan, (1).

ddy 7 dtdy

Farther let us suppose that the force-components X, X', etc.
corresponding to the co-ordinates y, x', etc. are each zero: we

shall have

dr _ , 4T _

Ef(' : 3; =0, etC ...coceniinnnnn.n (2);

or, expanded according to previous notation [318 (29)],

(4’:)()'1[’4'(‘#’:)() ‘}‘;+"'+(X#X)7k+(X:Xf)X’+--- -“—"-C]l
W XD+ (@, X)b+ .. + OO X+ OGLX) X+ =0 5 ...(3).

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Hence, if we put

(‘P}X)ﬂ{}"'(q!’:)()‘i';"' vee. =P
W X) ¥+ (X)) b+ ... =P,}

lllllllllllllllllllllllllllllllll
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we have

(X!X))E'}'(X:Xt) }-("l' ve. =0-=-P
(X’? X)X'I'(X’: Xr)f(!-*- ces =0’—.P,

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

%__J
—
n
o

Resolving these for x, ¥/, ... we find

X ) GOX D o [(C=P)+ [ (X5X ) (XX Nsoee [(C'—=P) +...

(xu,xf), X”;X” e (XIH, xf), (xﬂr,xﬂ),“.

..................... | ),
(X!X): O6eX) 06X )s -+ ()

(XFJ X)! (x’! x’)j (X’, xﬂ), .-
(XH! X): (X”: XI): (X”, }(”), .ee

llllllllllllllllllllllllllllll

and symmetrical expressions for x', X", ..., or, as we may write
them short,

X =(C, C) (C-P)+(C,C)Y'-P) +...
X=(C,C)(C=P)+(C", ") (O = P)+...peeeneeee: (7),

...................................................

where (C, (), (C, ('), (C",(), ... denote functions of the retained
co-ordinates ¥, ¢, 0, .... It 18 to be remembered that, because

(X! Xf) = (Xf! X): (X X”) = (X”: X): we see from (6) that

(C, C")=(C", C), (C,C")=(C", C), (C", C")=(C", "), and so on...(8).

The following formulas for x, ¥/, ..., condensed in respect to
O, ¢', 0" by aid of the notation (14) below, and expanded in
respect t0 i, ¢, ..., by (4), will also be useful.

. dk . : )
X= 5 (My+ Np + ...)
X"=@;“(Mf¢+N’¢'+ )r )

where

M =(C,C). (4 x)+(C,C). X)) +...°
N =(C,0).(¢,x)+(C, C) (b, X) + ...

llllllllllllllllllllllllllllllllllllllllllllllll

The elimination of yx, x, ... from 7' by these expressions for
VOL. I. 21
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them is facilitated by remarking that, as it is a quadratm func-
tion of i, ¢, ... % X, -.-, W€ have

o (.37 ar .,dT
T: —— — —— e
%{wdz;}-l_éd':ﬁ TR TAS }
Hence by (3),
T : :
‘[1 bad it . *F Y} ety
%{gb ¢+¢- ¢+ L+ xC+X O+ }

so that we have now only first powers of x, x/, ... to eliminate.
(Gleaning out y, ¥/, ... from the first group of terms, and denoting
by 7', the part of 7" not containing x, ¥/, ..., we find
T=T,+ 3 [0 ¢+ (X o+ ... + CIX
+HWX) g+ (B X) b+ ... + O X

or, according to the notation of (4),
T=T +3{(C+P)x+(C"+PY)X +...}.
Eliminating now ¥, ¥, ... by (7) we find
T=T, +3{(C,0)(C°-P*) +2 (0, C)(CC" = PP) +(C, C") (C"* — P?)
L SRR § § § )

It is remarkable that only second powers, and products, not
first powers, of the velocity-components v, ¢, ... appear in this
expression. We may write 1t thus :—

T=T+K.cooinvvieiriiiiriranen. . (12),
where T denotes a quadratic function of y, ¢, ..., as follows:—
T=T,-3{(C,0) P+2(C,C) PP +(C', (") P* +...}....(13),
and K a quantity independent of 4, ¢, ..., as follows:—

E=3{0,0)C*+2(C, 0V CC"+(C,C") C" + ...}......(14).

Next, to eliminate x, X/, ... from the Lagrange’s equations, we

have, in virtue of (12) and of the constitutions of 7, T, and K,

£+ é._ﬂ_’cf& al dx + ete. L (15),
dy dx dy dx dyr - dy
whmﬁ Zﬁ , ete. are to be found by (7) or (9), and therefore
are mmPly the coefficients of ¢ in (9) ; so that we have
éx;:-—ﬂ; CLg:—M’ ..................... (16),
dy . dip

where M, M’ are functions of ¢, ¢, ... explicitly expressed by
(10). TUsing (16) in (15) we find
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dx[/ 2 +COM+C'M +eteauinennnnnn . (17). O tea.

Again remarking that & + K contains y, both as it appeared
originally in 7', and as farther introduced in the expressions (7)
for %, ¥/, ..., we see that

(@+E)-—~g+ dex dex

dy  dx d¢ dx dy ™
dT ax .
B TR AL

And by (9) we have

ax _ dM dN \ ., d dK
dy ( C7AME ) dy d0'’
which, used in the precedmb, gives

d.ZV o f M AN dK
CT+4 ———-—0’( + )——O'( —— -——+...)-— 4~
( ) = 3 l‘bdl[/ ¢d¢+¢d¢ atc+2d¢_
Hence
dl' d¥& dK "- .
_+20( R R ¢ ) X
W& Vg (19
where 3 denotées summation with regard to the constants C,
C’, ete.
Using this and (17) in the Lagrange’s y-equation, we find finally
for the y-equation of motion in terms of the non-ignored co-
ordinates alone, and conclude the symmetrical equatmna for ¢,
ete., as follows,
d"@) aT { dM dnN ) dM dO) } dK
()@ %) (T H)t G
d am') dT AN _dM\ . (AN dON dK
5 (5) -G+ 20 (- 35 ) b+ (Gr - 30) 0+ + G =@
dt\dg/ dé (aap dé - - d Tag " | (19).
d (dT\ d¥ d0 dM d0 dnN d&
a(z)-a G @) (G-@) ) w=°

A e N BB A RN R R RN AN AR RN A PR FEY IR PR PEE A PR PR T RN

[Compare Example F’ (¢) above. It is important to remark
that in each equation of motion the first power of the related
velocity-component disappears ; and the coefficient of each of the
other velocity-components in this equation is equal but of opposite
gign to the coefficient of the velocity-component corréspanding to
this equation, in the equation corresponding to that other velocity-
component. |

21—2
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Eﬁ?ﬁgm of The equation of energy, found as above [§ 313 (297) and and the one equation of the motion becomes %%:ggn
(297)), 1s T K d / AB —c*cos’ @ ) } 6 d / AB—c*cos’ 0 ) ® dK
( d-: )=\In,['/+<1’<£+etrc. ............... (20). dt(A+B+2ccosQ dG(A+B+200039 dé ’

The interpretation, considering (12), is obvious. The contrast
with Example F' (g) is most instructive.

Sub-Example (G,).—Take, from above, Example C, case (a):
and put ¢=y +0; also, for brevity, my”+na’=B, n(b’+L&")= 4,
and nab=c¢. We have*

T =3 {Ay*+ 2¢ (§ + 6) cos 6 + B (§ + 6)%} ;
and from this find

which is to be fully integrated first by multiplying by df and
integrating once ; and then solving for d¢ and integrating again
with respect to §. The first integral, being simply the equation
of energy integrated, is [Example G- (20)]

T=[0di-K;
and the final integral 1s

. (40 AB—cos®*f
_'f 2(A + B +2¢c cost) (JOdO —K)

dT aT : . . In the particular case in which the motion commences from gﬂgr_ation
FCI[/ =9 _J\; = Ay +c(2y+0)cosb+ B(y+0); rest, or is such that it can be brought to rest by proper applica- ordinates.
dT aT tions of force-components, ¥, P, etc. without any of the force-
do =—oy (¥ + 9) sin 6, d6 =cyf cos 0+ B (Y + 9) components X, X/, ete., we have (=0, ("=0, ete.; and the

Here the co-ordinate 6 alone, and not the co-ordinate , appears
in the coeficients. Suppose now ¥ =0 [which is the case con-

elimination of ¥, X, etc. by (3) renders 7' a homogeneous quad-
ratic function of i, ¢, ete. without C, €', etc.; and the equations
of motion become

sidered at the end of C (a) above]. We have dﬂ:-—- C, and dal' dl _ v
tod - ay dt dy  dy
educe
. (O —(ccosf+B)6 dd?“@:"@ 21
Y = A+ B+2cosf’ dtdqf) dc’b b e iieiriaesueansoanan ( )
; i dr_dr_
7=y (55 +05g) ~H 0O +0l(ecos0- ) g+ B zd b
etec. etc.

=4 {y[C + (c cos 0 + B) 9]+B€}

(07— (ccos f+B) 6 BBE}_%O’-I-(AB—GECOS“G) §
_%{ A+ B+ 2¢cos @ - A+B+2ccos6

We conclude that on the suppositions made, the elimination of
the veloclty-components corresponding to the non—appearmg co-
ordinates gives an expression for the kinetic energy in terms

AB— ¢ cos® 6 & of the remaining velocity-components and corresponding co-

Hence T = %A + B+ 2¢ cosb ordinates which may be used in the generalised equations just

. 0 ag if these were the sole co-ordinates. The reduced number of
an

=%A+B+2ccos_§:

* Remark that, according to the alteration from 3, g, &, ¢, to ¥, ¥, 6, 6,
as independent variables,
% =(a);

al dT)
de
i " (dw)*—(ﬁi) i~ ()

dy  \dy
where ( ) indicates the original notation of C(a).

equations of motion thus found suffices for the determination
of the co-ordinates which they involve without the necessity
for knowing or finding the other co-ordinates. If the farther
question be put,—to determine the ignored co- ordinates, 1t is to
be answered by a simple integration of equations (7) with

C=0, (=0, ete.

One obvious case of application for this example is a system in
which any number of fly wheels, that is to say, bodies which are
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kinetically symmetrical round an axis (§ 285), are pivoted fric-

tionlessly on any moveable part of the system. In this case
with the particular supposition ¢'=0, C' =0, ete., the result is
simply that the motion is the same as if each fly wheel were
deprived of moment of inertia round its bearing axis, that is to
say reduced to a line of matter fixed in the position of this axis
and having unchanged moment of inertia round any axis per-
pendicular to it. But if C, (", etc. be not each zero we have a
case embracing a very interesting class of dynamical problems
in which the motion of a system having what we may call
gyrostatic links or connexions is the subject. Example (D)
above 18 an example, in which there is just one fly wheel and one
moveable body on which it is pivoted. The ignored co-ordinate
18  ; and supposing now ¥ to be zero, we have

—dp(l—cos@)=C ......evvurruen..... (a).

If we suppose ¢'= 0 all the terms having @’ for a factor vanish
and the motion is the same as if the fly wheel were deprived of
inertia round its bearing axis, and we had simply the motion of
the “ideal rigid body P@” to consider. But when €' does not
vanish we eliminate y from the equations by means of (a). It
18 1mportant to remark that in every case of Example () in
which (=0, (" =0, ete. the motion at each instant possesses the
property (§ 312 above) of baving less kinetic energy than any
other motion for which the velocity-components of the non-ignored
co-ordinates have the same values.

Take for another example the final form of Example C’ above,
putting B for C, and 4 for nk* + 4. We have
T'=%{(E+ Fcos®0)y* + B ( cos 0+ $)* + 46} ...(22).
Here neither i nor ¢ appears in the coefficients. Let us suppose
¢ = 0, and eliminate ¢, to let us ignore ¢. We have

C—ﬁ%j=ﬁ(¢cosﬁ+ ¢)=C.
Hence ¢ = g ~ Y eosO.....ooiiiiiiii (23),
T=L{(E+Fcos® )"+ 46%}............... (24),
and K=1% %ﬂ .......................... (25).

The place of % in (9) above is now taken by ¢, and comparing

with (23) we find
M=cos6, N=0, 0=0.
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of co-
ordinates.

Hence, and as K is constant, the equations of motion (19) Ignoration

become i
:f jﬁ fl@ C sin 66 =¥
7
Y d; P e eerreean e (26);
and i(’i@ +Csin) =0 |
dt d¢ do J
and, using (24) and expanding,
d{(E + F cos’0) y} O sin 99';__\1,]
dt > e rnane (27).

Af + Fsin cos 6y° + C sin G = @

A most important case for the “ignoration of co-ordinates” is
presented by a large class of problems regarding the motion of
frictionless incompressible fluid in which we can ignore the
infinite number of co-ordinates of individual portions of the fluid
and take into account only the co-ordinates which suffice to
specify the whole boundary of the fluid, including the bounding
surfaces of any rigid or flexible solids immersed in the fluid*,
The analytical working out of Example (G)shows in fact that when
the motion is such as could be produced from rest by merely
moving the boundary of the fluid without applying force to its
individual particles otherwise than by the transmitted fluid
pressure we have exactly the case of (=0, (=0, ete.: and
Lagrange’s generalized equations with the kinetic energy expressed
in terms of velocity-components completely specifying the motion
of the boundary are available, Thus,

290. Problems in fiuid motion of remarkable interest and Elijtﬂéﬂof

importance, not hitherto attacked, are very readily solved by liquid

the aid of Lagrange’s generalized equations of motion. For
brevity we shall designate a mass which 1s absolutely incom-
pressible, and absolutely devoid of resistance to change of shape,
by the simple appellation of a liquid. We need scarcely say
that matter perfectly satisfying this definition does not exist
in nature: but we shall see (under properties of matter) how
nearly it is approached by water and other common real
liquids. And we shall find that much practical and interesting
information regarding their true motions is obtained by deduc-
* [This bold transition to the case of a system including a continuous
medium, with an infinity of ignored coordinates, has been felt by some writers

to require verification. The necessary steps in the hydrodynamical application
bave been supplied by Kirchhoff and Boltzmann. H. L.]
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Kinetios of tions from the principles of abstract dynamics applied to the

liquid. 1deal perfect liquid of our definition. It follows from Exam ple

(@) above (and several other proofs, some of them more

synthetical in character, will be given in our Second Volume,)
that the motion of a homogeneous liquid, whether of infinite
-extent, or contained 1n a finite closed vessel of any form, with
any rigid or flexible bodies moving through it, if it has ever
been at rest, is the same at each instant as that determinate
motion (fulfilling, § 312, the condition of having the least
possible kinetic energy) which would be impulsively produced
from rest by giving instantaneously to every part of the
bounding surface, and of the surface of each of the solids
within it, its actual velocity at that instant. So that, for
example, however long 1t may have been moving, if all these
surfaces were suddenly or gradually brought to rest, the whole
fluid mass would come to rest at the same time. Hence, if
none of the surfaces is flexible, but we have one or more rigid
bodies moving in any way through the liquid, under the in-
fluence of any forces, the kinetic energy of the whole motion
at any instant will depend solely on the finite number of co-
ordinates and component velocities, specifying the position and
motion of those bodies, whatever may be the positions reached
by particles of the fluid (expressible only by an infinite number
of co-ordinates). And an expression for the whole kinetic
energy 1n terms of such elements, finite in number, is precisely
what is wanted, as we have seen, as the foundation of Lagrange’s
equations 1n any particular case.

It will clearly, in the hydrodynamical, as in all other cases,
be a homogeneous quadratic function of the components of velo-
city, if referred to an invariable co-ordinate system ; and the
coefficients of the several terms will in general be functions of
the co-ordinates, the determination of which follows immediately

from the solution of the minimum problem of Example (3)§ 317,
in each particular case.

Lzample (1).—A ball set in motion through a mass of incom-
pressible fluid extending infinitely in all directions on one side of
an wnfinite plane, and originally at rest. Let «, y, z be the co-
ordinates of the centre of the ball at time ¢, with reference to
rectangular axes through a fixed point O of the bounding plane,
with OX perpendicular to this plane. If at any instant either
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component g or # of the velocity be reversed, the kinetic energy E;%ﬁiﬁ of

will clearly be unchanged, and hence no terms %z, 2%, or £y can liquid.
appear in the expression for the kinetic energy : which, on this

account, and because of the symmetry of circumstances with
reference to ¥ and z, 1s
T=3{Pi+ Q7 +2)}.

Algo, we see that P and @ are functions of z simply, since the
circumstances are similar for all values of ¥ and 2. Hence, by

differentiation,
O =i, G = Qi 5= @5
% (‘%) = Pi + %g &’ %(%) =@y + d——dg Y&, ete.,
C(g = %{%wﬂ +§g (§° + z‘“)} , %7: 0, ete.,
and the equations of motion are
Pi+ % {% % — fi_g i +:&E)}=X,
Qg+%§g:ﬁ_—_ Y, 2+ ifz‘izzl

Principles sufficient for a practical solution of the problem of
determining P and @ will be given later. In the meantime, it
is obvious that each decreases as x increases. Hence the equa-

tions of motion show that

321. A ball projected through a liquid perpendicularly Efect of a

rigid plane

- : the mo-
from an infinite plane boundary, and influenced by no other on the mo-

forces than those of fluid pressure, experiences a gr'a,dual ac- through a
celeration, quickly approximating to a limiting velocity which
1t sensibly reaches when its distance from the plane 1s many
times its diameter. But if projected parallel to the plane, 1t
experiences, as the resultant of fluid pressure, a resultant attrac-
tion towards the plane. The former of these results 1s easily
proved by first considering projection towards the plane (in
which case the motion of the ball will obviously be retarded),
and by taking into account the general principle of reversibility

(§ 272) which has perfect application in the 1deal case of a per-
fect liquid. The second result is less easily foreseen without





