22 On the Theory of Types in Chemistry.

process as it takes place in nature, dispenses alike with hypo-
thetical radieals and residues, both of which are, however, con-
venient for the purposes of notation.  In the selection of a
typieal form, to which a grent number of species may be referred,
hydrogen or watee merits the preferenee from its simplicity, and

from the important part whieh it plays i the gencration of

speeies. Water and cawrbonie anhydride are both so directly
conecrned in the gencration of the bodies in the earbon series,
that cither may be assumed as the type; but we prefer to

regard C? 04 like the other anhydrides, as only a derivative of

the type of water, and eventually of the hydrogen type.

These views were first put forward by myself in 1848, when
I expressed the opinion that they were destined to form “the
basis of a true natural system of chemical classification ;”* and it
was only after having opposed them for four years to those of
Gerhardt, that this chemist, in June 1852, renounced his VICWS,
and without any acknowledgment adopted my own*. Already
in 1851, Williamson, in a paper read before the British Associa-
tion, had developed the ideas on the water type to which Wurtz
refers above ; and to hin the Bnglish editor of Guelin’s ¢ Hand-
book * ascribes the theory. The notion of eondensed types, and
of H? as the primal type, was not, so far as I am aware, brought
forward by either of these, and remained unnoticed until resus-
citated by Wurtz in 1855, seven years after T had first announced
it, and one year after my reelamation, published in the American
Journal of Science, in March 1851,

My claims have not, however, been overlooked by Dr Wolcott
Gibbs. In an essay on the polyacid bases, he remarks that in
a previous paper he had attributed the theory of water types to
Gerhardt and Williamson, and adds, “In this I find I have not
done justice to Mr. T. Sterry Hunt, to whom is exclusively due
the credit of having first applicd the theory to the so-called
oxygen acids and to the anhydrides, and in whose earlier papers
may be found the germs of mest of the ideas on classification
usually attributed to Gerhardt and his diseiplest+.” It will be
seen, from what precedes, that I not only applied the theory, as
Dr. Gibbs remarks, but, except so far as Laurent’s suggestion
goes, mvented 1t and published it in all its details some years
before it was aecepted by a single chemist.

In éonclusion, I have only to ask that fature historians will do
Justice to the memory of Auguste Laurent, and will aseribe to

whom it is dae the credit of having given to the science a theory

which has exercised such an important influence on modern che-

* Ann. de Chim. et de Phys. [3] vol. xxxvii. p. 285.
t Procecdings of the American Association, Baltimore, May 1858, p. 197,
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il spesidativn wid vencarch, remembering that my own pub-
g ok the auhiyeot, whiteh cover the whole ground, were
o warhior than those of Williamson, Gerhardt, Wurtz,
¢
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Wi | with Application to Professor Forbes’s Edinburgh Obser-

| wﬁmu, and (he continued Calton Hill Series, By Professor
HLETAM *|'IIHMHHN, I, .Sk

I, Analysis of Periodic Variations.

] l‘*! VERY puvely periodieal function 18, as 1s well known,
d | tln'rrvuh]r h}* means of a series of constant coefficients
mliplying wines i cosimes of the independent variable with
B nstant fuctor and s multiples. This important truth was
?H' il h:" i Iuhull'uhh' ],Iit‘t'.{' Of lllﬂtllﬂll‘lﬂtiﬁﬂl analyais, Gﬂ.llﬂd
W by Daniel Bernonll, partinlly given by La Grange, and
'lﬂﬁ‘l'lhll by ooy,
B W wbtaplly vy velovenoos to the mathematieal propositions
Wie Moy, T ahinll somimenon by laying down the following
UITUTITR
W4 A wlmple harmonie fanction is o function which
vaFtoa i tha wine o conine of the mdependent variable, or of an
aglo varying i miple proportion with the independent vari-
ﬂhr:- The hivemome enrve 1w the well-known name applied to
Hhe Hlnllhw representntion, on the {u'{li!ml‘y Cartesian 5}*Etﬂm, of
what | TRALY i]rliHHJ;;‘ iy N HiHl[llU }Hu"l'ﬂﬂlliﬂ fllﬂl?tiﬂl]. It iE
(hit Torm of by x'llll';l.ilrlg_;' i such a manner as to gi‘i’ﬂ the
gt p et o oot hest possible character of sound ; and,in this
divke, e lll*!}lltll'l‘llli'nl ol cach particle of the striug 18 a har-
monie funetion of the tine, besides being a harmonie funetion
of the diatiiee ol itw position of equilibrium from either end
af Phe abving,  The sonnd i s ense may be called a perfect
A

Pifo 20 Whe nrgoment of nommple harmonic function is the
nigele Lo the mine or comime of which it is proportional.

Cors The wrgnment of w havmonie funetion is equal to the
T }H'Iull'lll. virinhle HllI“I]t]H'll l}}' a constant factur_, with a con-
alinl mhlrll; Lhint iw o any, i may be any linear function of the
! In'luh‘nl vaertahle.

Pefo 3 When time s the independent variable, the epoch 1s

* From the Transnetions of the Royal Society of Edinburgh, vol. xxii.

part 2 Commumiented by the Author.
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the mterval which clapses from the cra of reckoning till the

function first acquires w maximum value.  The augmentation of

argument corvesponding (o that interval will be called ““the
epoch 1 amguloe mewsuee,” or simply “the epoch” when no
ambiguity cnn exist an to whnl is meant.

Def. b The peviod of w simple hormonie function is the
nugmentation which the independent varinble must reccive to
erease the argument by a cirenmference,

Cor. If ¢ denote the cocficient of the independent variable in

the argument, the period is equal to gﬂl" Thus if T denote the

period, e the epoch in angular measure, and # the independent
variable, the argument proper for a cosine is

2mri

T —— [ ]
r_[li b ]

and the argument for a sine,

2l T

— —€

T ' 9 2

3. Composition and Resolution of Simple Harmonic Functions
of one Period.

Prop. The sum of any two simple harmonie functions of one
period 1s equal to one simple harmonic funclion whose amplitude
1s the diagonal of a parallclogram described upon lines drawn
from one point to lengths equal to the amplitudes of the glven
functions, at angles measured from a fixed line of reference
equal to their epochs, and whose epoch is the inclination of the
same diagonal to the same line of reference.

Cor. 1. 1f A, A’ be the amplitudes of two simple harmonice
functions of equal period, and ¢, ¢ their cpochs, that is to say,
if A cos (mt—e), A’ cos (mt—¢) be two simple harmonic fune-
tions, the one simple harmonic function cqual to their sum has
for its amplitude and its cpoch the following values respect-
vely :—

(amplitude) {(A'cos e+ A! cos €)2+ (A sin ¢ + A’ sin €)°}1,
or {A?+2AA’ cos (€ —e) + A2} L

Asme+ Alsin ¢

Acose+Alcosé’

Cor. 2. Any number of simple harmonic functions, of cqual
period, added together, are cquivalent to a single harmonic fanc-

(cpoch) tan—!
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ton ol liel the anplitude and epoch are derived from the ampli-
tde nid epochs of the given functions, in the same manner as
the mngnilude and inclination to a fixed line of reference, of the
vernltunl of any number of forces in one plane, are derived from
the mngnitudes and the inclinations to the same line of reference
ol the given forces.

(‘or. 3. The physical principle of the superposition of sounds
being admitted, any number of simple unisons of one period co-
existing, produce one simple unison of the same period, of which
the intensity (measurcd by the square of the amplitude) and the
cpoch are determined in the manner just specified. |

Cor. 4. The sum of any number of simple harmonic functions
of one period vanishes for every argument, if it vanishes for any
two arguments not differing by a semicircumference, or by some
multiple of a semicircumference.

Cor. 5. The co-existence of perfect unisons may constitute
perfect silence.

Cor. 6. A simple harmonic function of any epoch may be
resolved into the sum of two whose epochs are respectively zero
and a quarter period, and whose amplitudes are respectively
equal to the value of the given function for ihe arcuments zero
and a quarter period respeetively.

4. Complex Harmonic Functions.—Ilarmonic functions of dif-
ferent periods added can never produce a simple harmonic fune-
tion. If their periods are commensurable, their sum may be
called a ‘complex harmonic function.

Cor. A complex harmonic function is the proper expression
for a perfect harmony in music,

5. Ezpressibility of Arbitrary Functions by Trigonometrical
series.

Prop. A complex harmonic function, with a constant term
added, 1s the proper expression, in mathematical language, for
any arbitrary periodic function.

6. Investigation of the Trigonometrical S#ies capressing an
Arbitrary Function.—Any arbitrary periodic funetion whatever
being given, the amplitudes and epochs of the terms of a cone
plex harmonic function, which shall be cqual to it for ever
value of the independent vurinble, may be investigated by the
““method of indeterminate cocflicients,” applied to determine an
infinite number of coefficients from an infinite number of equa-
tions of condition, by the assistance of the integral calculus as
follows :—

Let F(¢) denote the function, and T its period. We must
suppose the valae of I'(/) kuown for every value of ¢, from ¢=o
to /=T. Let M, denote the constant term, and let M,, M,, M,
&c. denote the amplitudes, and ¢, €, €, &c. the epochs of the
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sticcessive terms of the complex harmonic functions by which it
is to be expressed ; that is to say, let these constants be such
that

(Fy=M, + M,‘cm(:{Ft —l,) +M iunu(iF!—eg)

+ M,cos (QF-‘ -—dﬂ) + &c.

Then,ic.tpamliug cach cosine by the ordinary formuls, and

assuming

M,cose;=A,, M,cose=A, &,

Ml sin € I-‘-'Bi, MR sitl ;= Bﬁ, &e;
we have

. T Bt
F(f)=Ag+ 44 mug,i-‘r-—z + A, eus%ﬁ + Ag CUﬁ—-;F‘ + &e.,
, 0wl . .
+ B, sin -2%1 + By sin 4:;:! + BB, sin ;F + &e.
et

Multiplying éach member by cos tdafJ where ¢ denotes a or

I]il
any integer, and integrating from #==0 to =T, we have

i : . e
y F(t) cos Efl;—ir-{f’f = A,j‘ CcOS 2—;?;) dr,

=A; X 1T, when 7 is any integer ;

or
=A,x T, when :=0.
Hence
1 T
o=\ F(o)i,
» T '
=2 F(o cos St

and similayly we find ;
. - Lons
B =%£ F(¢) sin &thdt:

equations by which the coefficients in the double serics of sines
and cosines are expressed in terms of the values of the function
supposed known from f=o to #=T. The amplitudes and
épochs of the single harmonic terms of the chief period and its
submultiples dre caleulated from them, according to the follow
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TP ETAERTA

lnn ¢ == J—:—‘; M,=(A2+B3H}

fue B Jiganothimie ealeulation,
“1il: A{ SCC E*).

The psoveeding investigation is sufficient as a solution of the
peobilows, to il o complex harmonic function expressing a
BIvin whitrary periodie funetion, when once we are assured ﬁ:at

¢ peblom i powsible; and when we have this assurande, it
proves that the resolution is determinate, that is to say, that no
Wthed mplex harmonic function than the one we have found
fuu sttlaly (ho conditions,  'or a thorough and most interest-
Wi analysia of the subjoet, supplying all that is wanting to com-
et the bvewtigntion, and giving admirable views of the pro-
et e wll widdew, the roader in referred to Fourier’s delightful
ventlon A v il perfect synthetical investigation of the
km e expreanion ol wn nebiteary periodie function is to be
W i Potemin's Vhduie Mathdmatique de la Chaleur, chap. vii.

l! ,llﬂlil!‘il' 'Eilthlhmll i{f ’.l'l'li'hhhll ?:I"lli}“"ffl'ff”'i'_

Fo 00 ohe while aiiplave of the vt were st onol instant of
Wt perature, wnd 10 this Lemporature were made to vary
a8 0 pertvetly pevioadie funetion of the time, the temperature at
ALY IEEFRil point niust altimately come to vary also as a periodie
fnetion of the thime, with the same ]:n-.:r'huuljr whatever may have
boon the bnitind disteibution of temperature throughout the whole.
Fourtor's prineiples show how the periodic variation of internal
temperature 18 to be conceived as following, with diminished
ninphtude und retarded phase, from the varying temperature at
the wurfuce supposed given: and by his formula the precise law
neeording to which the amplitude would diminish and the phase
wonld he votarded, for points more and morve remote from the
mirtnen, I the figure were truly sphervieal and the substance
homogeneoun, in determined,

B, The largest appheation of this theory to the earth as a
whole 1s to the unalysin of inaginable sceular changes of tem-
orature, with at least thousands of millions of years for a period.
Ln such an application, it would be necessary to take into account
the spherical figure of the earth as a whole. Periodic variations
nt the surface with any period less than a million* of years will,

* A periodic variation of external temperature of one million years’ period
would give variations of temperature within the earth sensible to one

thousand times greater :h:lrths than a similar variation of one year's period.
Now the ordinary annual variation is reduced to 4'5th of its superficial
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at points below the surfuce, give rise to variations of temperature
not appreciably influenced by the general curvature, and sensibly
agreeing with what would be produced if the surface were an
infinite plane, exeept inkofur an they are moditied by superficial
irregularities,  Henee Fouvie’s formul for an infinite solid,
bounded on one side by un infinite plane, of which the tempera-
ture is made to vary arbitrarily, contain the proper analysis for
diurnal or annual variations of terrestrial temperature, unless a
theory of the cffect of incqualities of surface (upon which no in-
vestigator has yct ventured) is aimed at.

0. The cffect of diurnal variations of temperature becomes
insensible at so small a distance below the surface, that in most
localities irregularities of soil and drainage must prevent any very
satisfactory theoretical treatment of their inward progression and
extinction from being carried out. At depths exceeding three
feet below the surface, all periodic cffects of daily variations of
temperature become insensible in most soils, and the observable
changes are those duc to a daily average, varying from day to
day. If now the annual variation of tempernture were truly
periodic, a complex harmonic function could be determined to
represent for all time the temperature at three feet or any greater
depth. But in reality the annual variation is very far from
recurring in a perfectly periodic manner, since there are both
great differences in the annual average temperatures, and never-
_ceasing irregularities in the progress of the variation within each
year. A full theory of the conscquent variations of temperature
propagated downwards, must include the consideration of
non-periodic changes; but the most convenicnt first step is
that which I propose to take in the present communication, in
which the average annual variations for groups of years will be
discussed according to the laws to which periodic variations are
subject.

10. The method which Fourier has given for treating this and
other similar problems is founded on the prineiple of the inde-
pendent spperposition of thermal conductions. This principle
holds rigorously in nature, except insofar as the conductivity or

amount at a depth of 25 French feet, and is scarcely sensible at a depth of
60 French feet (being there reduced, in such roek as that of Calton Iill,
to y57). Hence, at a depth of 50,000 French feet, or about ten Lnglish
miles, a variation having one million years for its period would be reduced
to +35. If the period were ten thousand million vears, the varintion would
similarly be reduced to 435 at 1000 miles’ depth, and would be to some
a{J{;reninblﬂ extent affected by the spherical figure of the whole earth,
although to only a very small extent, since there would be comparatively but
very little change of temperature (less than 7 of the supcrficial amount)
beyond the first lnyer of 500 miles’ thickness.
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the wpecifie hont of the conducting substance may vary with the
vhangen of temperature to which it is subjected ; and it may be
pecepted with very great confidence in the case with which we
wro now concerned, as it is not at all probable that either the
#nduetivity or the specific heat of the rock or soil can vary at all
setmbly under the influence of the greatest changes of tempera-
fure experienced in their natural circumstances ; and, indeed, the
only canse we can conceive as giving rise to sensible change in
Lhewe physical qualities is the unequal percolation of water, which
wo may safely assume to be confined in ¢rdinary localities to
dopths of less than three feet below the surface. The particular
mude of treatment which I propose to apply to the present sub-
Jeet comsists 1n expressing the temperature at any depth as a
complex harmonic function of the time, and considering each
term of this function separately, aceording to Fourler’s formule
{or the case of a simple harmonic varation of temperature, pro-
pugated inwards from the surface. The laws expressed by these
formulee may be stated in general terms as follows.

|1, Hourier’s Solution stated*.—If the temperature at any
point of an infinite plane, in a solid extending infinitely in all
directions, be subjected to a simple harmonic variation, the tem-
perature throughout the solid on cach side of this plane will
follow everywhere according to the simple harmonie law, with
epochs retarded equally, and with ump’itudus diminished in a
constant proportion for equal augmentations of distance. The
retardation of epoch expressed in circular measure (are divided
by radius) is equal to the diminution of the Napierian logarithm
of the amplitude ; and the amount of each per unit of distance
e

is equal to 4 /' 7o, if € denote the capacity for heat of a unit bulk

of the substance, and £ its conductivity -

12. Hence, if the complex harmonic functions expressing the
varying temperature at two different depths be determined, and
each term of the first be compared with the corresponding term

of the second, the value of ;T;E may be determined cither b
Tk Y

dividing the difference of the Napicerian logarithms of the ampli-
tudes, or the difference of the epochs by the distance between the
points. The comparison of each term in the one series with the

* Tor the mathematical demonstration of this solution, see Note ap-
pended to Professor Everett’s paper, which follows the present article in
the Transactions.

t That is to say, the quantity of heat conducted per unit of time across
a unit area of a plate of unit thickness, with its two surfaces permanently
maintained at temperatures differing by unity. '
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corresponding term in the other series gives us, therefore, two
we
k L
feetly, if (1) the data were perfoctly necurate, if (2) the isother-
mal surfaces throughout were parallel planes, and if (8) the
ﬁ]lluniiiu heat and conductivity of the soill were everywhere and
always constant.

As these conditions are not strietly fulfilled in any natural
application, the first thing to be done in working out the theory
18 to test how far the different determinations agree, and to judge
accordingly of the applicability of the theory in the circumstances.
If the test thus afforded prove satisfactory, the value of the con-
ductivity in absolute measure may be deduced from the result

with the aid of a separate experimental determination of the
specifie heat.

13. The method thus deseribed differs from that followed by
Professor Forbes, in substituting the separate consideration of
separate terms of the complex harmonie funetion for the exami-
nation of the whole vaviation unanalysed, which he condueted
according to the plan laid down by Poisson,

- This plan consists in using the formulwe for a simple harmonie

variation, as approximately applicable to the actual variation.
At great depths the amplitudes of the second and higher terms
of the complex harmonie function become so much reduced as
not sensibly to influence the variation, which is consequently
there expressed with suflicient accuracy by a single harmonie
term of yearly period ; but at even the greatest depths {or which
continuous observations have actually been made, the second (or
seml-annual) term has a very sensible influence, and the third
and fourth terms are by no means without ecffect on the varia-
tions at three feet and six feet from the surface. A close agree-
ment with theory 1s therefore not to be expected, until the me-
thod of analysis which I now propose is applied. It may be
added that i the theorctical reductions hitherto made, either
by Professor Forbes or others, the amplitudes of the variations
for the different depths have alone been compared, and the very
interesting econclusion of theory, as to the relation between the
absolute amount of retardation of phase and the diminution of
amplitude for any increase of depth, has remained untested.

14. In Professor Forbes’s paper *, the very difficult operations
which he had performed for effecting the construction and the
sinking of the thermometers, and the determination of the cor-

determinations of the value of \ which should agree per-

* «Account of some Experiments on the Temperature of the Earth at
different Depths and in different Soils near Edinburgh,” Transactions
of the Royal Society of Edinburgh, vol. xvi. part 2, Edinburgh, 1846,
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o b b apphisd to obtain the true temperatures of the
d e wl JHLHHI depths from the readings of the scales
gt b thete stems protruding above the surface, are fully
devisibadd e yosulte of five years’ observations—1837 to
Vg8 e piven, wlong with most interesting graphical repre-
r'l“llhmu nod tHhasteations, A Process of gl‘ﬂphiﬁ iuterpnlatiﬂn,
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Twenty-four Feet below Surfuce.
Observatory . . . AGNR] |- OGhheos2ar (L -- 1:013)
Experimontal Gavedenn 47:09 1 02000020 (2 - +986)
ﬂrniglﬂitll v 07 O eon e (1 'B1D)

The semi-nnnual termn in these equations present so great
iwregularitien  (those for the Calton 11l station, for instance,
showing n greater amplitude at 6 feet depth than ot 8 feet), that
no satisfuctory result can be obtained by including them in the
theorctical discussion on which we are now about to enter. We
shall sce later, however, that when an average for the whole period
of eighteen years for the Calton Hill station is taken, the semi-
annual terms are, for the 3 feet and 6 feet depths, in fair agree-
ment with theory ; and for the two greater depths are as small as
18 necessary for the verification of the theory, and so small as not
to be much influenced by errors of observation and of reduction,
or of ‘“corrections” for temperature of the thermometer tubes.
For the present, we attend exclusively to the annual terms, The
amplitudes and cpochs of these terms, extracted from the pre-
ceding cquations, arc shown in the following Table :—

TasLE I. Annual Harmonic Variations of Temperature.

Calton Hill. Experimental Garden. Craigleith Quarry,
Depths Epochs of maxi- Iipochn of maxi- Epochs of maxi-
below mum, nim, mun.
surface | Ampli- | Ampli- |, Awmpli-
in |tudes in I tudes in tudes in
French | degrees | . s In |degrees| , In In degrecs | . 10 In
feet, | Fahr. €grees | yonths | Fahr, | 9C8T€es | 1oonths Fuhr. | degrees months
i and |ang days. and anq days. and and
minutes, minutes, mmutm.i days.
Feet.

3 | 7-386(226 52Aug. 19 9063 221 40/Aug. 13| 8069(220 0 Aug. 14
6 | 5063247 5Sept. 8 6-661(239 20 31| 6148 233 43 26
12 | 24455 (287 30 Oct. 19 3408 (281 27 Oct. 13) 4216 [256 42 Scpt. 17
24 | 0635363 Glan. 6 0920355 0 Dec. 27| 1536 305 46 Nov. 7

By taking the differences of the Napierian logarithms of the
amplitudes, and the differences of epochs reduced to circular
measure (arc divided by radius), thus shown for the different
depths, and dividing each by the corresponding difference of
depths, we find the following numbers :—

L
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Tamp 1 Hates of Logarithmic Diminution in Amplitude,

i ol Waotaedation i Kpoch, of Aunual Harmonic Variations
o | LI
F S
\ Cobban 1L I'xperimental Garden. | Craigleith Quarry,
- e
, :ﬁ y LUl R =R b=
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i
1] A0 | 080 | 1062 | 106476 | 06690
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H:) weee DRI e Wisrepancien nee, with the excep-
: ¥ "’ IH wibeen b Clpnbglenhy WQunrry, on the whole
llﬁiﬂrfr ([ iim, Hinn Hllﬂhrlm r-lpmilml when the very
i P J:Hgguuu- of Yhe Voo gdeipnstanoes from the theoretionl
" af!} O B wbesedd  Phe moan resultn over the 21 feet,
:T::HH I ”Il ‘l'\ "H‘, |Ii'll§lﬂll very remirkonble llgl':*nlm'tlLH,—-—t]m
Iunhna byl Feon wmphitnden boing wdentienl with that
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Y R ﬁ]lmllli fon the Calton Thil wtntion, while the dif-
penees hbwesn tha voveesponding numbers for the two other

e il I eeh o case only whout theee per eent. Taking
e I!'Illl*l' for ||H’- Hiwl wlanlion, and the mean of the
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Wi g aambers dovived from nmphtades and from
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A continnation of the obscrvations at Calton Hill not only
lendn, ay we shall woe, to nlimost identical results, both by dimi-
nuhion of amplitude and by retardation, on the whole 21 feet,
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but also reproduces noma of the fentures of discrepance presented
by the pr{}?rﬁnl of the varintion through the intermediate depths,
(

and therofore contlrmm the genernl neenracy of the preceding
resultu, for nll thee wlanbionn, wo e e it might be questioned
hacuume of anly tive yenen' obmervations hiving been available.
Faether conmderntion of these vesultn, nnd deduetion of the cone

ductivities of the different portions of the enrth’s erust involved,
are deferred until after we have taken into necount the further
data for Calton Hill, to the reduction of which we now proceed.

[To be continued. ]

V. Meteorological Charts. By Francis Garton, Esq.*

[With a Plate.)

‘ ‘ JHEN contemporary meteorological reports from numerous

stations are printed one after another in a eolumn (such
as we may see In newspapers and certain foreign publieations),
they present no picture to the reader’s mind,  Lists of this de-
seription are therefore insuflicient. to do more than supply data
which meteorologieal students must protract as they best can,
upon a map, in some notation intelhgible to themselves, at a
considerable expense of labour and artistic skill.

It 18 needless to enlarge upon the serious obstacle which the
necessity of doing this opposes to the pursuit of meteorology.
It has sufficed to convert what might be a very popular science
into a laborious and difficult study. We vequire means of print-
1ng, not lists of dry figurcs, but actual c¢harts which should record
meteorological observations pictorially and geographically, with-
out sacrificing detail. Tt is then in the belief that an attempt I
have just made to supply this desideratum might interest some
of your readers, and perhaps lead to uscful suggestions, that I
forward the accompanying chart. (Plate 11). Tt has been printed
with moveable types, which 1 designed and caused to be cast ; and
I am much indebted to Mr. W. Spottiswoode, who printed 1t, for
his aid in carrying out my ideas. The map simply Incorporates
the newspaper data of the day to which it refers, and was printed,
not with any scientific object, but solely for the purpose of
experiment.

Explanation of the Symbols.
- The shade signifies cloud, of an amount proportional to its

depth. The types with lines round them, , stand for rain.

Cloud types have been interpolated where obscrvations were
* Communicated by the Author.

On the Curves situate on a Surface of the Second Order, 80

wanting. The horseshoes show the direction of the wind cure
rent: thus, = means wind from the west. An included spot

“>»,orline =y, or cross oy, respectively signify that the wind
i rentle, moderate, or strong ; where neither dot, line, nor Cross
ure inserted, the force of the wind isunknown. Thermometrical
dufu are expressed by figures, printed below the wind symbols.
I'he first two figures of each set stand for the height of the ordi-
nary thermometer, and the last figure (in a different type) for
the difference between this and the thermometer with a wetted
hulb.  To save confusion of figures, barometer heights are not
inscrted on the face of the present map; but lines of equal baro-
metric pressure have been deduced from the existing observations,

and the places where lines corresponding to each integral one-
(enth of an inch cut the marginal columns, have been marked.

Thus a straight line joining the pair of figures, 29'7, 1s approxi-
mately the line of that pressure. _
I do not consider the types here employed as forming a com-
plete series.  An additional shade for cloud is especially wanted.
It will be observed that no space would be lost by this mode
of representation, supposing we possessed obscrvations corre-
sponding to every type space of the map,

42 Rutland Gate, 8.W,

e =

VI. On the Curves situate on a Surface of the Second Order.
By A. CayrLEy, EsqX*

SURFACE of the second order has on it a double system
A— of generating lines, real or imaginary ; and any two gene-
rating lines of the first kind form with any two generating lines

of the second kind a skew quadrangle. 1f the equations of the
planes containing respectively the first and second, second and
third, third and fourth, fourth and first sides of the quadrangle
are 2=0, y=0, z=0, w=0, and if the constant multiphers
which are implicitly contained in z, y, 2, w vespectively are suit-
ably determined, then the equation of the surface of the second
order (or say for shortness the quadric surface) is aw—yz=0.

Assume 3.___% f:—.;, then % ;, or say (A, m, v, p), may be
x x _
regarded as the coordinates of a point on the quadric surface;

LV ;
we in fact have 2 : y: z: w=1 L 22 or what is the same

* Communicated by the Author.
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