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shorter period merely sufficed to diminish the depression.
Probably elosely connected with this aetion is the gradual
decrease Quincke * has observed that time produces in the
form of a bubble of gns in a liquid, and of a drop of mercury.
To this class of facts-uro also nearly related the decrease 1n
the intensity of Quinckae'st electrical diaphragm-currents,
and that which § I havo shown to take place in the electro-

motive force produced when water is forced through capillary

tubes. Elster § has rocontly extended the observation to a
similar variation in the olontromotive force set up by liquids
flowing over the surfucen of solids. Dorn| has investigated

at some length the cause of this nction in the case of tubes,

and has shown that it is eapable of modification in various ways,
some of which apponr enpablo of exercising a corresponding
control ovoer the nhovo-doseribod dopression of a liquid in a

capillary tube ut u temperaturs noar the critical.

t is proposed to continue the still incomplete portions of

this inquiry in a paper to the Socicty noxt session.

In conclusion 1 beg leave to express my thanks to Professor
McLeod, not only for having advised me to extend my obser-
vations to higher temperatures than thoso ut first employed,
but also for the willingness he has always shown to aid me
with valuable suggestions.

Summary of Contenis.

1. When a tube enclosing a capillary tabe dip}i]in%] into
aloohol, ether, or sulphurous anhydride is heated, the liquid
sinks in the capillary, and rises by expansion in the outer
tube. Between 2° and 3° C, below the critical temperatures of
these liquids both surfaces become level; and on continuing
to heat, the concave meniscus in the capillary tube is seen
below that in the cxternal tube. The extent of this de-
pression depends on the dinmeter &c. of tho capillary tube,
and on the nature of its internal surface. When the end of
a capillary tuboe dips very aliﬁhtly below the surface of the
liquid, it is level in the eapillary and external tubes at the
disappearance of the liquid.

2. In some capillary tubex the liquid is not depressed, but
disappeors nt thﬂl]m_'gl of the liquid in which th are immersed
on grsh heating. Onco hoented, long contact between liquid
and tube is necessnry to prevent the formation of the depression
* Poge. Ann, Bd. clx, B, 674, + Ibid. Bd. ex. 8. 56.

+ Ihid. 1877, S. 345, o
% Inaugural-Dissertation ither dic in freien Wasserstrahlen aufiretenden
electromotorischen Kréfto, lwipzig, 1870,

| Wiedemann's Ann. B, ix. 1880, S, 523, Compare elso llelmholtz,
Wied. Ann, vii. p. 837 (18/9).
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on again heating. For two tubos which wore examined, this
time was in each onso aubout 20 hours ; a shorter period
meroly sufficed to diminisk the depresion. The depression 1s
the result of an aotion hotwoen the liquid and the inner gluss
surface of tho capillnry tube.

3. Indications that surfuces exercise a slight action in dolor-
mining the position ut. which the liquid condenses in the ex-
ternal tubo }uwu hoon observed.

4. By roflocting u bright line of light from the apparently
convox ol Wl‘!”-lﬁaﬁllﬁd surface of ether in a tube of 20 millims,
diamotor nt o temperature near the critical, it may be inferrecd
to romnin concave until it loses the power of reflecting when
it is plane. The apparent convexity is the result of refraction,
or, porhaps, of an action resembling mirage.

5. The black ill-defined which immediately succeeds
tho disappearance of the liquid surface is the result of too
rapid heating, and possibly due to the mixing of liquid and
vapour when they are of nearly equal density. When very
slowly heated, as described, the defined concave surface is gra-
dually obliterated, and is last seen as a fine and often waving
line. . Under this condition also the volume of the liquid at its
disappearance is greater than when it is rapidly heated. When
the liquid is vaporized by rapid heating, it has a higher tem-
perature and larger volume at the time of disappearance than
it has when first condensed by cooling; slowly heated and
cooled, these volumes and temperatures are more nearly the
same.
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XX1V. Vibrations of a Columnar Vortea.
By Sir WiLLiam THOMSON".

THIS is a case of fluid-motion, in which the stream-lines
aro approximately circles, with their centres in one line
‘the axis of the vortex) and the velocities approximately con-
stant, and approximately equal at equal dI;)iﬂta.nnes from the
axis, As n proliminary to treating it, it is convenient to ex-
ress the equations of motion of a homogeneous incompressible
inviscid fluid (tho description of fluid to which the present in-
vestigation is cunfined) in terms of “ columnar eoordinates,”
r, 0, z—that is, coordinates such that r cos 0=, rsin =y,
If we call tho donsity unity, and if we denote by @, , z the
velocity-components of the fluid particle which at timo ¢ is

18;0 From the Proceedings of the Royal Society of Edinburgh, March 1,
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: : d d d d ;.
passing through the point (z,y, 2), and by & a5 A dz dif-
ferentiations respectivoly on the supposition of z, y, 2 constant,
t, y, 2 constant, ¢, 2, 2 constunt, and ¢, #z,y constant, the ordi-
nary equations of motion uro

dp da .dx .dx .dz

“do ™t 7% +ycTy T

dy dt " dw dy '~ dz’
dp _db . dy L dE dz
dz ‘wt?w-'-ydy T2

and

dy dy s
P P e O

To transform to the columnar coordinatos, wo have
x=rcosl, y=rging,)

z = r cos §—r0sinb,

y = # sin 0+ 6 cos 6, )
. d d d l

=3 CO8 93; — 8In eﬁf—ﬂ’

d . ,d d
33/_ gin 6 T + cosﬂm.J

The transformed oquations are
dp _dir .y (¢0)  Ldr | .dF
Tar A T d ”T+9d7+zdz’ 1
dp d0 . d(»6) d(r8) :i(rﬁ)
- . —— ,J

= 0= T gy TR0y i

dp 2 o
Tz = dt +

(4)

cdz

C 3.9
Wz

(o3
r +6 @ +
and j .
dr v d(r0) | diE _
7 i i S + =00 e e ()
Now let tho motion bo approximately in circles round Oz,
with velocity ovorywhore approximately equal to T, a func-
tion of »; and to fulfil there conditions, assume

r=p cog mzsin (nt—10), +0="T + T cos mz cos (nt—i6),
g=wsin mesin (nt—1i60), p =P +wcosmz cos(nt—1ih), (6)
with P= j".['“d?'

ininini——

pe )
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where p, T, w, and = are functions of », each infinitaly small
in comparigon with T. Substituting in (4) and (8) und nog-
lectiélgdsquares and products of the infinitely small quantities,
we fin

d?" _( 1"Jr' P q-t.r’
15T T T dT°
— e T e — ) — — R . » 7
P " ZT)T-I- ,-r+dr P; (7)
+ mor= (n——ig)w,
T

do  p T,
§+;+-;+m1£?—0- s » . L « 9 . . (8)

Taking (7), eliminating =, and resolving for p, 7, we find

BN YT T
P= mD r] ‘vlar ~ r\s dr)w’

Crae
= and G -5+ [ -(=D e bt

vheo - p ST 4Dy _(, Ty
r \r dr »

For the particular case of m=0, or motion in two dimen-
sions (», @), it is convenient to put

—Z=¢. . .. ... 10

m
In this case the motion which superimposed on #=0and #="T
gives the disturbed motion is irrotational, and ¢ sin (nt—18)
is its velocity-potential. It is also fo be remarked that, when
m does not vanish, the superimposed motion is irrotational
where, if at all, and only where T=const./»; and that when-
ever it is irrotational, ¢, as given by (10), is its velocity-
potential. '

Eliminating p and 7 from (8) by (9), we have a linear dif-
ferential equation of the second order for w. The integration
of this, and substitution of the result in (9), give w, p, and 7
in terms of », and the two arbitrary constants of integration
which, with m, n, and 7, are to be determined to fulfil what-
ever surface-conditions, or initial conditions, or conditions of
maintenance ure proscribed for any particular problem.

. Crowds of exceedingly interesting cases present themselves.
Taking one of the simplest to begin:—

Cask L.
Let T=er (wcomst.), . . . . . . . . (11)

1

-
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*=¢ cos mz 8in (nt—16) when approximately r=q,
== ¢ Co8 mz sin (nt—i0) ” ’s r=a,% . (12)

¢, ¢, m, n, a, &/ being uny given quantities and ¢
any given intogor.

The condition T=ewr simplifies (9) to
: - \dw 2 )
(:n.—-w){ (n—w ———----—w}

P= mide’ —(n—iw)®} ’ l~ . (13)

f

(n—im){ 2w o _ 1(?1_}@@} J

—— ofr |
- m{dm“---- (1 —tw)?*}

‘and the elimination of p und = by those from (8) gives

dw 1 dw  the 24-&)"-—(?1-1}222
or
2 2
z%?;f pldw v e,
r r dr 7 (15)
Wherﬂ Y =m :4m2-(n“iﬂf. . ’ ' . |
o (n—iw)* °’
or
2
@ + -:!: aw _ %—;ﬁ—a’%:O
dr* " rdr 7 ’ 18
where — Q-im)ﬂ_4wﬁ o o« (1)
7= /\/ (n—iw)? °

Hence if J, 9, denote Bessel’s functions of order ¢, and of the
first and second kinds* (that isto say, J; finite or zero for in-
finitely small values of », and $; finite or zero for infinitely

great values of 7),and if' I, and ¥#; denote tho corresponding real
functions with v imaginary, wo have

w=C0J(v)+€P,(vr), - . . . (A7)

w=Cl(or)+Clor), . . . . (18)

~ where C and € denote arbitrury constants, to be determined in
the present case by tho oquations of condition (12). These are
equivalent to p=¢ when r=qu,and p=¢ when r=a, and, when
(16) is used for w in (13), givo two simple equations to deter-
mine C and .

* Compare ‘ Proceedings,’ March 17, 1879, “ Gravitational Oscillations

of Rotating Watﬁi ' Solution 11, (Case of Clircular Basins). I’hil, Mag.
80, p. 114.

or
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I'he problem thus solvad in tho linding ot the poriodie disturb-
nnoo 1 the motion of rotuling liquid in a space betweon two
houndurios which are concontrio circular eylindric whon un-
disburhbed, produced by infinitoly small simple harmanio normal
molion of those houndarios, distributed over them accordin
Lo the siniple harmonio law in respect to the coordinaton &, (5{
Tho moat intoresting Nubease 1s had by supposing the inner
houndary evanosoont (a=0), and the liquid continuous and
undisturbod throughout the space contained by the outer cy-
lindrie boundary of radius a. This, as is easily seen, makos
w={) whon »=0, oxcept for the case i==1, and essentially,
withoul excoption, requires that ¢ be zero. Thus the solution
{or 1w becomos

w=0Jd(v»r), . . . . . . (19)
w=Cli(er); . . . . . . (20)
and the condition p=¢ when r=a gives, by (13),

W va)~ 210 3 (va)

—1i0)a

or

or the corresponding I formula.

By summation after the manner of Fourier, we find the
solution for any arbitrary distribution of the generative dis-
turbance over the cylindric surface (or over each of the two if
we do not confine ourselves to the Subcase), and for any arbi-
trary periodic function of the time. It is to be remarked that
(6) represents an undulation travelling round the cylinder
with linear velocity na/: at the surface, or angular velocity
n /1 throughout, ']X.Yo find the interior effect of a standing vi-
bration produced at the surface, we must add to the solution
(6), or any sum of solutions of the same type, a solution, or a
sum of solutions, in all respects the same, except with —n in
place of n.

It is also to be remarked . that great enough values of ¢ make
v’ negative, and therefore ¥ imaginary ; and for such the solu-
tions in terms of o and the 1, ¥; functions must be used.

CasE Il.—ZLlollow Irrotational Vortex in a fixed Cylindric
-~ Tube,
(Conditions :—-

T=-; =0 when r=gq;

md - py p=0 for the disturbed orbit, a~=a+Sfi'aclt,

<10

(22)
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a and a being the radii of the hollow cylindric interior, or free
boundary, and of the external fixed boundary, and #, the value

of » when » is n(y:’%roxima,tely equal to a. The condition

T=c¢/r simplifies und (14) to
1 dw w
M — ﬂ;,. R‘;’, ﬂnd T— ﬂT‘}:’ . : » - (23)

dw ldw 2w
7

and by (7) wo have
1 10 |
T == ;‘}1 ('"-"""' "‘5) ?U- . . . » . » (25)

w=Cl(mr)+Ch(mr); . . . . . (26)

and the equation of condition for the fixed boundary (radial
velocity zero there) gives

Hence

CI’i(ma)+@Fi(ma)=0. N 1

To find the other equation of condition, wo must first find an
expression for the disturbance from circular figuro of the free

inner boundary. Let for a moment », @ be the coordinates of
one and the same particle of fluid. We shall have

6=5‘5'dt ; and r=j‘i'dt-+ro,

where 7, denotes the radius of the “mean cirele  of the par-
ticle’s path.

Hence, to a first approximation,

¢l
9: ,;3; * ¢ e & e . e ¢ e (28)
and therefore, by (6),
7= p CO8 M2 8in ('n— 5):,

whence _
»=1y— _Lu' cos mz cos (nt—i6). ., (29)

n-— —
74

Hence the equation of the free boundary is

r:u—ﬁ('_';icoa (nt-—z’ﬂ), e« « . (30)

where

¢
= E."ji ] " " . * v v ¢ ¢ . (31)

W"'%da-""_‘f"mg“"; e oo (24)
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Honoo at (#, 8, &) of this surfnoo wo have, from P=§ , of

(1) uhovo, r
o
1" ma . (r—a)
- (;':Elcos mz cos (nt—10) (32)
Ao — i T

Hineo, and by (4), und (26), and (25), and (23), the condition
I’} =) it tho free boundary gives

LU, ) + &k ()] + L= [OLma) + @ (ma)) =00
A ™ C e . (33)

lliminuding C/€ from this by (27), we get an equation to
dolormine », by which we find

nmalEyN), o oo o (30)

whoro N is an essentially positive numeric,

1I.—SuBcaAsE.

A vory interesting’ Subcase is that of a=0, which, by
(27), makes C=0, and therefore, by (33), gives

T — g — ¥ (ma) 5
N—ﬂlaw. v ® e & s (3 )
Whether in Case II. or Subcase II., we see that the dis-
turbance consists of an undulation travelling round the cylin-
dor with angtil_ar ‘mlocity |

&1(1+-\1€—N-. or co(l-—- ”;.N), .

or of two such undulations superimposed on one another, tra-
volling round the eylinder mt% angular velocities greater than
nnd (al §ebra.ica,lly) less than the angular velocity of the mass
of the liquid at its free surfaces by equal differences.. The
propagation of the wave of greater velocity is in the same di-
roction ns that in which the%quid revolves ; the propagation
of the othor is in the contrary direction when N> (as it
cortainly is in some cases). _ 3

If the freo surfuce be started in motion with one or other of
the two principul angular velocities (84), or linear velocities

Aw (1 + --V-%Ii , and tho liquid be then left to itself, it will por-

form the simplo harmonic undulatory movement reprosontod

by (6), (26), (23). DButif the free surface be displaced to the
corrugated form (80), and then left free either at rost or with

Plal. Mag. B, 5. Vol, 10, No. 61, Sept. 1880, N
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any other distribution of normal velocity than either of those,
the corrugation will, as it were, split into two sets of waves

travelling with the two different velocities aw (Ii “/%.N).

The case i=0 is cloarly exceptional, and can present no

undulations travelling round the cylinder. It will be consi-
dered later.

The case =1 ia particularly important and interesting. To
evaluate N for it, romark that

LiGr)= I (mr) | 36
and ¥, i) =W, (onr), >+ e (36)

Now the general solution of (24) is

PR 4.1
w=(E+Dlog fi?;)(' + "+ gop o)

24,

. (36*
D m?,rﬁ S ?n&rﬁ S & }’ ( )
+ ("‘gr 1+ g O+ &C. ),

where B and D are constants. Hence, according to our nota-
tion,
' 2..2 4.4

L(mr)=1+ "5+ g5+ &o, . . . (37)

the constant factor being taken so as to make I,(0)=1.
Stokes* investigated the relation between E and D to make
w=0 when =0, and found it to be

or, to 20 places, |
E/D='11593 15156 58412 44881.

Hence, and by convenient assumption for constant factor,

9.2 4,4
f,(mr)=log 7%—;' 1+ ﬂ—%—:—- %—’;ﬂq + &c.)
' ¢t (39)

-E/D=1log 8 +m—iIVi= + 2'079442:-1'963510=-11593;} (38)

4

It is to be remarked that the series in (36) and (89) are
convergent, howover groat bo mr; though for values of mr

mir? O

* “On the Efloot of Internal Friction on the Motion of Pendulums,”
equations (93) and (100), (Camb. Phil. Trans. Dee. 1850.)
- P.S—1 am informed by Mr, J. W. L. Glaisher that Gauss, in section 82

of his ¢ Disquisitiones Uenorales circa seriem infinitam 1+.;‘15_'.Ea:+ &e.,”

(Opera, vol. iii. p. 165), gives the value of ~&~31"}, or —4;(': $), in his
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nxacoding 6 or 7 the semleonvorgoent ox{:reﬂsions"’ will give

the values of the funetiony nearly m]ou%l for most practical
|nul'lmmas, with much loww nrithimotical labour.

Irom (37) and (39) wo find, by differentiation,

| ety mbr®
Li(mr)m "y + ) T+ g7 g + &0, 1
| . [ ] l . (['l())

Smépt Byt

or4 T o g e

V()= 5I§'+

mm»

1 o
b(mr)= - — T —1+2(8;+1159315)]

mSpd

+ 33 [—1+2(8; ++1159315)] + &e.

1 /mr m3® mnbyS

—lgr T tagt et ), )
()= — o3[ ~3+2(S; + 1159315)]
2, |
[T —G6(S,—"1159315)] + &

1 (1 dmr®  Bmbpt
log e\g+ g + 22.4?.6"'&0')'

For an illustration of Case II, with ¢=1, su ose ma to be
very small. Remarking that S;=1, we have PP

- 22 1 o
N —ma¥; (ma) H m; [log_;ﬁ -%+'1159]
-7 [logg—?—ﬁ +3+ 1159]

~ 1 1150) --
=1 +m%y’ (log ma T -1159). . (42)

Hence in this case, at all ovents, N>4?; and the ang};liar velo-
city of the slow wave, in the reverse direction to that of the

notation, to 23 places as follows 1~

196351 00260 21428 47944 099,

Thus it appears that the last figure in Stokes’s result (108) ought. as in
the text, to be O instead of 2. In Callet's Tables we ﬁng ) ought,

log, 8=2:07044 15416 79835 92825 ;

nnd subtracting the former number from this, we have the value of I to
20 places given the text.

-
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liguid’s revolution, is
~n=jomta® (log - +1159). . . . (@43

This i very small in comparison with
; +-1159), L. (44)

ma
the angular velocity of the direct wave; and therefore clearly,
if the initial nommrvulmait.y of the surface when left free after
being displaced from its cylindrical figure of equilibrium be
zero or any thing small, tho amplitude of the quicker direct
wave will ﬁe very small in proportion to that of the reverse

slow one.

20 + §wm’a’ (log

Uasg 111,

A slightly disturbed vortox column in liquid extedin

through all space botwoen two parallel planes; the undisturbe
column consisting of a core of uniform vorticity (that is to
say, rotating like a solid), surrounded by irrotationally revol-
ving liquid with no slip at the eylindric intertaco. Denoting
by a the radius of this cylinder, we have

and 2
| T=w '?:' ‘” > QA
Henece (13), (14) hold for » <a, and (23), (24) for r>a.

Gloing back to the form of assumption (6), we see that it
suits the condition of rigid boundary planes if Oz be perpen-
dicular to them, O in one of them, and the distance between
them o /m. '

The conditions to be fulfilled at the interface between core
and surrounding liquid are that p and w must have the same
values on the two sides of it: it is ecasily proved that this
implies also equal values of = on the two sides. The eauality

T=wr when r<a,
} (45)

of p on the two sides of the interface gives, by (13) and (23),
('iﬂl—U) [(’E&) —-?‘t) QE + ..2..‘?. w] internal external
e *d?. _r - (id.g e (46)

do*—@w—n) (T \ar/__, ’ °

and from this and the equality of w on the two sides we have

. . (lw \\nternal 9.,
(w — ﬂ) [(“" """ n)(,t éil?-') T a [ dw )ltturn.:

re=a

——Eeeieptnean. T r
__

4? — (iw—n)? WAt ) s (47)

$ ) ) '
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The condition that the liguid exjonds {o infinity all round
Mitho e () whon r=w ., llonee the propor intogral of (24)
6 ol the form ;1 and tho condition of undisturbed continuit

throngh the axis shows thut tho proper integrul of (18) v of
the form J.  Honce POl g (18) v 0

w=CJ (vr) for r<a,

b e

o w=Ck(mr) ,, r>a,

hy which (47) becomes

(iw --w,) [(w;_.n) Eg’i(za) + ?_gf’_] .
) 4:.,2-(::@;?(;;2 L. J;%;%i) 3 (49)

Ji(g) . i _ —¥(ma)
qJ;(g)“LE’i“mai:((:z); + o+« (50)

4

or by (15),

wliore
 tw—n | ' .
_ ME e e e e (BD)
nnd ' T
122 , * -
— m26£2 "‘iﬂ"" » 5 e ® s . . (52

Romarking that Ji(¢) is the same for positive and negative
vulues of ¢, and that it passes from positive through zero to a
linite negative maximum, thence through zero to a finite po-
Mitlve maximum, and 8o on an infinite number of times, while q
in increased from 0 to o, we see that while A is increased from
—1 to 0, the first member of (50) passes an infinite number
ol times continaously through all real values from —oo to
4o, and that it does the same when A is diminished from
+1to 0. Hence (50), regarded as a transcendental equation
in A, has an infinite number of roots between —1 and 0 and an
infinite number between 0 and + 1. And it has no roots éxc&piii
hotween —1 and + 1, because its second member is eleéﬂy pe-
nitive, whatover be ma ; and its first member is essentially real
ind negative for all real values of A except between —1 and
+1, as wo soc by remarking that when A?>1 —-i"is real
'H“.l positive, and —J’;(¢)/¢J:(g) is real and >i/€)—- “}; while
:iq‘h,'}v(hethge)r positive or negative, is of less a ?ute value
han 1/ (—¢°).

Hach of the infinite number of values of A yielded b 30)
Rives, by (51) and (13), a solution of the problem of nSing
simple harmonic vibrations of a columnar vortex, with » of
uny assumed value. All possible simple harmonic vibrations
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are thus found : and summation, after the manner of Fourier,
for different values of m, with different amplitudes and dif-
ferent epochs, gives overy possible motion, deviating infinitely
little from the undisturbed motion in cireular orbits.

__ The simplest Subcaso, that of i=0, is curiously interesting.
For it (50), (51), (52) give '

Jy(9) _ —¥o(ma) 3
o(g) — maﬂ'{;(ﬂm)’ o OB

and
Qma

SoREEAY - - (6D

The successivo roots of (H3), rogarded as a transcendental
equation in ¢, liec botween the 1st, 3rd, 5th... roots of
Jo(g)=0, in order of usconding values of ¢, and the next
reator roots of J/;(¢)=l), coming noarer and nearer down to
tghe roots of J, tho greater thoy are. They are easily calou-
lated by nid of Hansen’s Tablos of Bessel’s functions Jy and
Jy (which is equal to J’y) from ¢=0 to g=20*. When ma
1s a small fraction of unity, the second member of (53) is a
large number; and even the smallest root exceods by but a
small fraction the first root of Jo(¢)=0, whicli, according to
Hansen’s Table, is 24049, or, apiioximately enough for the
present, 2:4. In every case in which ¢ is very large in com-
parison with ma, whether ma is small or not, (54) gives

2eoma

1 —

Now, going back to (6), we see that the summation of two
solutions to constitute waves propagated along the len gth of
the column gives :—

'r=—psin (nt—mz); rf=T+rcos (nt—mz); _ -
e=wcos (nt—mz); p=+w cos (nt—mz). } (55)

The velocity of propagation of those waves is n/m. Hence,
when ¢ is large in comparison with me, the velocity of longi-
tudinal waves is 2wa/¢, or 2 /q of the translational velocity of
the surfaco of the core in its circular orbit. This is 1/1+2, or
# of the translational velocity, in the case of ma small, and the
mode 'corresiwnding to tho smallest root of (53). A full ex-
amination of tho intornul motion of the core, as expressed by
(85), (13), (48), (1) is most interesting and instractive. It
mugt form a moro doveloped communication to the Royal

Society.
* Republished in Limmel's Besselsche Functionen, Leipzig, 1868,
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Tho Bubeaso of se 1, and mg vory small, is porticularly

Intorosting and important,  In it we have, by (42), for the
rocond mombor of ’ B0), npproximately,

' .
_ﬂ l(?"“‘) - __"“n' ; [l e g”w{{? (IOg -:E—- + '1159 ]l ' (56)
'll

madhy(ma) ma

In this cuwo the smallost root, g, is comparable with ma, und
wll the othors ure lurge in comparison with ma. To find the

snnllont, romark that when ¢ is very small we have, to n
socond approximation,

J1(q) _ 1 1

S (X

¢Ji(e) ¢ 4 ) 67
Honeo (50), with i=1, becomes, to a first approximation,

17,, 1y 1

?(1-1. 'i)___"_m'aﬂ' T (1)
This and (52), used to find the two unknowns A and ¢?, give

r=4%, and ¢’=3m?a?,

for a first approximation. Now, with i=1, (5 1)l becomes

7\.=J§(1-— -7—1-),

W

und therefore 7/ is infinitely small. Hence (52) gives for
a second approximation,

q*=8m?a’ (1 + %), N 1)
and we have
1 2 1 dn: _
E‘“"_R—FS_W(I_%. . » . . (60)
Using now (37), (59), (60), and (56) in (50), we find, to a

second approximation,

1 8nY) 1 2 _on
3o (1-“ 3w/ 4T 3ma"(1-f 3o -
= ﬂT%g [1 + m’a’? (log F:E + ‘1159)]:
whence |
St =gmia(log s+ +1159). . . (61)

w ma = 4
Compare this result with (43) above. The fact that, as in (48),

—n 18 positive in (1), shows that in this case also the diroc-
tion in which the disturbance travels round the cylinder is
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retrograde (or opposite to that of the translation of fluid in the
undisturbed vortex) ; and, as was to be expected, the values of
—n are approximately equal in the two cases when ma is small
enough ; but it is smaller by a relatively small difference in
(8012h’t£han in (43), ns was also to be expected.

- The case of ma small and i>1 has a particularly simple ap-
proximate solution for the smallest g-root of the transcendental
(50). 'With any valuo of ¢ instead of unity we still have gf) 8),
asa first approximation for ¢ small. Eliminating ¢?/m?a? be-
“tween this and (H2), wo still find A=} ; bat instead of =0
by (51), we now luve n=(i—1)w. Thus is proved the solu-
tion for waves of doformation of sectional figure travelling
round a cylindricul vortox, unnounced thirteen years ago with-
out proof in my first article respecting Vortex Motion*.
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XXV, On the Diaiqo*ammatic and Mechanical Representa~ -
tion of Propositions and Reasonings.

Lo the Editors of the Philosophical Magazine and Journal,

(XENTLEMEN,
R. VENN has kindly sent me a copy of his very inter-
esting paper in the Philoaﬂphicaf) Magazine for July,
in which he explains a method which he has invented for sol-
ving logical problems by means of diagrams. The method is
certainly ingenious, and for verifying analytical solutions of
eagy and elementary problems it would, I think, be useful in
the hands of a teacher ;- but I cannot agree with its inventor’s
estimate of its practical utility in other respects, much less
with his opinion as to its superiority over rival methods.

Speaking of his diagram for five-letter problems, Mr. Venn -

BAYyS t—

“ It must be admitted that such a diagram is not quite so simpls
to draw as one might wish it to be; but then we must remember
what are the alternatives before any one who wishes to grapple
effectively with five terms and all the thirty-two possibilities wgich
they yield. Zle must either writs down, or in some way or other huave
set before him, all those thirty-two compouuds of which X Y Z'W Y is
a sample ; that 13, he must contemplate the array produced by 160
letters.” - . '

Fom the words in italics it is evident that Mr. Venn doos
not yet appreciato tho advantages of my own method, which
 assuredly lays one under no such onerous obligation as o

mentions, Lt grapples offoctively, not merely with problems
* &Vortex Atoms,” I'roc, Roy. Soc. Edinb, Feb, 18, 1867,
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of five terms, but with problems of six, seven, cighi, or avon
more terms ; and it does so because it does not ohlign one to
tuke into separate consideration all those perploxing powibili-
ties with which Mr, Venn’s and similar methods tll‘lﬁlllm[u'll'l!(l.
That the readers of this Magazine may be able to judgo fuirly
us to the respective capabilities of Mr. Venn’s mothod nnd
mine, 1 will first solve one of his four-letter proMems, nin
then a six-letter problem of my own, which though oxcoedl-
ingly easy by my method, would, if I am not greatly mistakon,
subject his diagranmimatic method to a severe strain.

‘“Hvery X 1s cither Y or Z; every Y is either Z or W ;
overy Z is either W or X; and every W is either X or Y:
what further condition, if any, is needed to ensure that every
XY shall be W27 _

This is a special case of the following more general pro-
blem :— - '

(riven a series of implications, A : @, B:b, C:¢, &o.; what
is the weakest implication that need be added to these data to

justify the inference m : n?.

The answer is mn': Aa’+ BY +Cd +...

When A, a, B, b, &c. are complex expressions involving m
or n or both, great simplification may be effected by substitu-
ting in these expressions 1 for m and #/, and therefore O for m’
and n. In Mr. Venn's problem the data are (when expressed
in my notation)

and the weakest addition to the premises to justify the infer-
ence 2y : w is therefore v

ayw' 2 2y Z +yZw + 2w’ +waly .

Substituting 1 for every «, y, and «’ (and therefore O for every
', 3/, and w) in the consequent of this implication, the impli-
cation becomes xyw’: 2/, which is equivalent to ayw'z: 0, or
zyz : w, the result required. In actual practical working these
substitutions of unity and zero would be made mentally while
writing down the consequent of the required implication, so
that the result may fairly be said to follow directly from mero
inspection of the data. |
I'mis and the other problems given by Mr. Venn are much
too easy : tho following problem, involving six letters, would
be a fairer test of tho power of his method ; and I should muc)
like to see his solution of it.

Taking ax+0by : cd’ as the symbolical expression of {he
statement ‘‘ whenever the event A happens with X, or I3 with
Y, then C happens without ID,”” and so on for similar state-




