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IV. “On Peristaltic Induction of Electric Currents.” By Pro-
fessor Wizriam Tromson, F.R.S. Received May 10, 1856.

Recent observations on the propagation of electricity through wires
in subaqueous and subterranean telegraphic cables have brought to
light phenomena of induced electric currents, which, while they are
essentially different from the phenomena of what has hitherto been
called electro-dynamic induction, are exactly such as might have been
anticipated from the well-established theory of electrical equilibrium,
bad experiment afforded the data of relation between electrostatical
and electro-dynamic units wanted for determining what dimensions
of wire would be required to render these phenomena sensible to
ordinary observation. They present a very perfect analogy with the
mutual influences of a number of elastic tubes bound together late-
rally throughout their lengths, and surrounded and filled with a
liquid which is forced through one or more of them, while the others
are left with their ends open (uninsulated), or stopped (insulated), or
subjected to any other particular conditions. The hydrostatic press-
ure applied to force the liquid through any of the tubes will cause
them to swell and to press against the others, which will thus, by
peristaltic action, compel the liquid contained in them to move, in
different parts of them, in one direction or the other. A long solid
cylinder of an incompressible elastic solid ¥, bored out symmetrically
in four, six, or more circular passages parallel to its length, will cor-
respond to an ordinary telegraph cable containing the same number
of copper wires separated from one another only by gutta-percha:
and the hydraulic motion will follow rigorously the same laws as the
electrical conduction, and will be expressed by identical language in
mathematics, provided the lateral dimensions of the bores are so
small in comparison with their lengths, or the viscosity of the liquid
so great, that the motions are not sensibly affected by énertia, and
are consequently dependent altogether on hydrostatic pressure and
fluid friction. The electrical induction now alluded to depends on
the electrostatic forces determined by Coulomb; but it would be in

* Buch as india-rubber very approximately is in reality.
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one respect a real, and in all respects an apparent, contradiction of
terms, to speak of electrostatic induction of electric currents, and I
therefore venture to introduce the term peristaltic to characterize
that kind of induction by which currents are excited in elongated
conductors through the variation of electrostatic potential in the sur-
rounding matter. On the other hand, as any inductive excitation of
electric motion might be called electro-dynamic induction, it will be
convenient to distinguish the kind of electro-dynamic induction first
discovered by Faraday, by a distinctive name ; and as the term elec-
tro-magnetic, which has been so applied, appears correctly character-
istic, I shall call electro-magnetic induction that kind of action by
which electric currents are excited, or inequalities of electric potential
sustained, in a conductor of eleetricity, by variations of magnetic or
electro-magnetic potential, or by absolute or relative motion of the
conductor itself across lines of magnetic or electro-magnetic force.

The most general problem of peristaltic induction is to determine
the motion of electricity in any number of long eonducting wires,
insulated from one another within an uninsulated tube of conducting
material, when subjected each to any prescribed electrical action at
its extremities ; without supposing any other condition regarding the
sections and relative dispositions of the conductors than—(1), that
their lateral dimensions and mutual distances are so small in propor-
tion to their lengths, that the effects of peristaltic induction are para-
mount over those of electro-magnetic induction; and (2), that the
section of the entire system of conductors, if not uniform in all parts,
varies so gradually as to be sensibly uniform through every part of
the length not a very large multiple of the largest lateral dimension.
In the present communication I shall only give the general equations
of motion by which the physical conditions to be satisfied are ex-
pressed for every case; and I shall confine the investigation of solu-
tions to certain cases of uniform and symmetrical arrangement, such
as are commonly used in the submarine telegraph cable.

At any time ¢, let ¢, ¢,, g3 &c. be the quantities of electricity
with which the different wires are charged, per unit of length of each,
at a distance @ from one extremity, O, of the conducting system ;
and let vy, vy, 95, &c. be the electrostatical potentials in the same
parts of those conductors. Let =), @,®), @ @), &e., w,), w,®,
w,, &e., w1, @2, w,®, &e. be coefficients, such that the electro-
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statical potentials (v;, v, &e,), due to stated charges (g;, ¢y &c.)
of the different wires, are expressed by the equations
=V ¢+ 7,? ¢, + @, g3+ &e.
v,=m," ¢+ @,® ¢, + @, g3+ &e.
vy=ay ") g+ @, g+ @y g5+ &e.
&e. &e. J
If the sections of all the conductors are circular, these coefficients
(=W, w, @, &c,) may be easily determined numerically to any required
degree of accuracy, in each particular case, by the method of electro-
statical images. The electromotive force per unit of length at the
position & will be, in the different wires,
dv1 dv2 alv3
de’ dx’ dax’
respectively, and therefore if 7, v,, 75 &c. denote the strength of
current at the same position, and %, %y, &, &c. the resistances to
conduction per unit of length in the different wires respectively, we
have by the law of Ohm, applied to the action of peristaltic electro-
motive force,

D).

dv dv. dv
kyn=— da:’ kz')’z’—""‘d;: ]‘37’3“"‘3—; e (2.

Now unless the strength of current be uniform along any one of the
wires, the charge of electricity will experience accumulation or dimi-
nution in any part of it by either more or less electricity flowing in
on one side than out on the other; and the mathematical expression
of these circumstances is clearly

dgy — _dny dgy.. _dvy dgg_ _ dy, 3)..

dt de ~ dt dz’ dt de 7

Using in these equations the values of v, v, 7, &c. given by (2),
and then substituting for vy, g g &c. their expressions (1), we
obtain

‘lql _‘i{ 1 d(@Vg) 1 d(=,"¢;) id(wlm 93) 4 & } ]
@k dr TE dn TE o T
d92 d {1 d@,Mg) 1 d@,%g;) 1 d@,g,) & }
=w\k'~ @ Th' T da th o4 Tl
dga i{ 1 d(wd(l)QI) 1. d(@,Pq,) _l_d(ws 'g5) & }
—d de +k2 dx +/c3 dz +ae
J

which are the general equations of motion required.
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It is to be observed that %, 4, &e., w,(V), @@, w,1), &e. will be
functions of # if the section of the conducting system is hetero-
geneous in different positions along it ; but in all casesin which each
conductor is uniform, and uniformly situated with reference to the
others along the whole length, these coefficients will be constant, and
the equations become reduced to

dg, _m,0dq, @® gy 'Wl( ' 9&
Uy dat T dr Ty ic3
dg, @M dq, @, d d
Egzl:_/fl‘aﬁ“* T, ot T dg; Fhe L sy
dyy_w, dg, @ by w0y
dt = ky dat U ky da® T &y da®

+ &e.

The most obvicus general method of treatment for integrating
these equations, is to find elementary solutions by assuming

g=Aw, q¢=Au, q¢=Au ..... g=Ax, . . (6),
where u satisfies the equation

du du
P Tk B V) R

This will reduce the differential equations (5) to a set of linear equa-
tions among the coefficients A,, A,, . ... A, giving by elimination
an algebraic equation of the sth degree having ¢ real roots, to deter-
mine %.  The particular form of elementary solution of the equation
(7) to be used may be chosen from among those given by Fourier,
according to convenience, for satisfying the terminal conditions for
the different wires.

In thinking on some applications of the preceding theory, I have
been led to consider the following general question regarding the
mutual influence of electrified conductors :—If, of a system of de-
tached insulated conductors, one only be electrified with a given ab-
solute charge of electricity, will the potential ewcited in any one of
the others be equal to that which the communication of an equal
absolute charge to this other would excite in the first? I now find
that a general theorem communicated by myself to the Cambridge
Matheinatical Journal, and published in the Numbers for November
1842 and February 1843, but, as I afterwards (Jan. 1845) learned,
first given by Green in his Essay on the Mathematical Theory of



125

Electricity and Magnetism (Nottingham, 1828), leads to an affirmative
answer to this question.

" The general theorem to which I refer is, that if, considering the
forces due respectively to two different distributions of matter (whether
real, or such as is imagined in theories of electricity and magnetism),
we denote by N,, N, their normal components at any point of a closed
surface, or group of closed surfaces, S, containing all parts of each dis-
tribution of matter, and by V,, V, the potentials at the same point
due respectively to the two distributions, and if ds be an element of
the surface 8, the value of /f N,V,dsis the same as that of /f N,V ds
(each being equal to the integral / / / R R, sin 0 do dy de extended

over the whole of space external to the surface S, at any point
(=, y, 2) of which external space the two resultants are denoted by
R,, R, respectively, and the angle between their directions by 6).
To apply this with reference to the proposed question, let the first
distribution of matter consist of a certain charge, ¢, communicated to
one of a group of insulated conductors, and the inductive electrifica-
tions of the others, not one of which has any absolute charge; let
the second distribution of matter consist of the electrifications of the
same group of conductors when an equal quantity ¢ is given to a
second of them, and all the others are destitute of absolute charges ;
and let surfaceSbe the group of the surfaces of the different conductors.
Since the potential is constant through each separate conductor, the
integral [/ N,V, ds will be equal to the sum of a set of terms of the
form [V,][ /f N,ds], where [V,] denotes the value in any of these
conductors of the potential of the second distribution, and [ //‘ N, ds]
an integral including the whole surface of the same conductor, but
no part of that of any of the others. Now by a well-known theorem,
first given by Green, [ / / N,ds] is equal to 4wq if ¢ denote the abso-

lute quantity of matter within the surface of the integral (as is the case
for the first group of conductors), and vanishes if there be no distri-
bution of matter, or (as is the case with each of the other conductors)
if there be equal quantities of positive and negative matter within the
surface over which the integral is extended. Hence if [V,], denote
the potential in the first conductor due to the second distribution of
matter, we have

fleV,ds=47r[V2] 2
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Similarly, we have

f / N,V ds=4w[V,],q.
Hence, by the general theorem, we conclude [V,],=[V,],, and so
demonstrate the affirmative answer to the question stated above.

I think it unnecessary to enter on details suited to the particular
case of lateral electrostatic influence between neighbouring parts of a
number of wires insulated from one another under a common con-
ducting sheath, when uniform or varying electric currents are sent
through by them ; for which a particular demonstration in geometry
of two dimensions, analogous to the demonstration of Green’s theorem
to which I have referred as involving the consideration of a triple
integral for space of three dimensions, may be readily given ; but, as
a particular case of the general theorem I have now demonstrated, it
is obviously true that the potential in one wire due to a certain quan-
tity of electricity per unit of length in the neighbouring parts of an-
other under the same sheath, is equal to the potential in this other,
due to an equal electrification of the first.

Hence the following relations must necessarily subsist among the
coefficients of mutual peristaltic induction in the general equations
given above,

@-I(Z):wg(l) ; @-1(3):@-3(1) ; w2<3)=w3(2) ; &e.

On the Solution of the Equations of Peristaltic Induction in symme-
trical systems of Submarine Telegraph Wires.

The general method which has just been indicated for resolving
the equations of electrical motion in any number of linear conductors
subject to mutual peristaltic influence, fails when these conductors
are symmetrically arranged within a symmetrical conducting sheath
(and therefore actually in the case of any ordinary multiple wire tele-
graph cable), from the determinantal equation having sets of equal
roots. Regular analytical methods are well known by which the solu-
tions for such particular cases may be derived from the failing general
solutions ; but it is nevertheless interesting to investigate each par-
ticular case specially, so as to obtain its proper solution by a synthe-
tical process, the simplest possible for the one case considered alone.
In the present communication, the problem of peristaltic induction
is thus treated for some of the most common cases of actual sub-
marine telegraph cables, in which two or more wires of equal dimen-
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sions are insulated in symmetrical positions within a cylindrical con-
ducting sheath of circular section.

Case L.—Two-wire Cable.
In the general equations (according to the notation of the first part
of this communication) we have &y =k, ; @,(V=w,®; and w,(V=1w,®:
and it will be convenient now to denote the values of the members of

these three equations by Z, l, and A respectively ; that is, to express
¢ ¢

by % the galvanic resistance in each wire per unit of length, by ¢ the
electrostatical capacity of each per unit of length when the other is
prevented from acquiring an absolute charge, and by f the propor-
tion in which this exceeds the electrostatical capacity of each when
the other has a charge equal to its own ; or in other words, to assume
¢ and f so that

1 S
v1:791+—c“92 "
S 1 ’
Vo= ?91“‘?‘ 72

if v, and v, be the potentials in the two wires in any part of the
cable where they are charged with quantities of electricity respectively
¢, and g, per unit of length. The equations of electrical conduction
along the two wires then become

@_}_ dv, M)
kc(dyc2 da?

. (2.
dv2 (fd v, dyz)
T ke \! da® de

From these we have, bv addition and subtraction,

d&_l—}—fd%?r d dw _ 1—f dw

= & ™ =% o 0 O
where & and w are such that

1=%4w, v=9—w . . . . . . . &)

If both wires reached to an infinite distance in each direction, the
conditions to be satisfied in integrating the equations of motion would
be simply that the initial distribution of electricity along each must
be whatever is prescribed ; that is, that

v,=0,(»), andv2-:.:¢2(m)} Y

when t=0
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¢, and @, denoting two arbitrary functions. Hence, according to
Fourier, we have, for the integrals of the equations (3),

N P
- 4(1+f)1r‘t f {¢1(E)+¢2(£)IE dg L
ke(—a) (6)

= _.ic___ -% S0=5t g
/\/4(1-f)7rt j_ {0, O —e(H)}e EJ

and the solution of the problem is expressed in terms of these inte-
grals by (4).

If now we suppose the cable to have one end at a finite distance
from the part considered, for instance at the point O from which is
reckoned, and if at this end each wire is subjected to electric action
s0 as to make its potential vary arbitrarily with the time, there will
be the additional condition

y]=\pl(t),andvg=‘4/z(t):} N (R

when =0

to be fulfilled. In the other conditions, (5), only positive values of
@ have now to be considered, but they must be fulfilled in such a way
as not to interfere with the prescribed values of the potentials at the
ends of the wires ; which may be done according to the principle of
images, by still supposing the wires to extend indefinitely in both
directions, and in the beginning to be symmetrically electrified with
contrary electricities on the two sides of O. To express the new
condition (7), a form of integral, investigated in a communication to
the Royal Society (‘Proceedings,” May 10, 1855, p. 385), may be
used ; and we thus have for the integrals of equations (3),

ke(§—a)? ke(§+a)? 1

V= \/4(1 +f)7r'[ _éf 518 (E)+<P(E)}{s TOFFE g ZW{}(IE

it‘lz dg
+J EACERAC A H)(t-—e)%]

ke(§—a)? ke(é+a)? - (8)

‘”‘"\/4(1 f)vr[‘“f S0 ®p— B He 0mNf — TN g

lf(‘.ﬂ a9
A RGO 0)-2]

Lastly, instead of the cable extending indefinitely on one bl(](, of
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the end O, let it be actually limited at a point E. If the ends of the
two wires at E be subjected to electric action, so as to make each
vary arbitrarily with the time, the new conditions to be satisfied, in
addition to the others, (5) and (7), will be

v, =, (£) and v,= (%) }

when z=a

),

if o¢; and %, denote two arbitrary functions, and « the length OE.
Or, on the other hand, if they be connected together, so that a cur-

rent may go from O to E along one and return along the other, the
new conditions will be

when r=a

Either of these requirements may be fulfilled in an obvious way

by the method of successive images, and we so obtain the following
respective solutions :—

\/ m’fm“ [t"*fa%WEH%(E)}FVKE, t)dg
s[5 OO =04 5 + @)= 1-0)] |

'\/?;(T__f);[t_aj‘ = 0.E)— 0O} F=p (&, t)dE
(t_ . [mb (0) =Y (0) }F(—py(@: t—0) += {xl(e) %2(0) YdF(~pla— wt—@):’:] J

.(10)

= \/4(l+f)1r f ~{@(E) + 0.() B s (8, 1)dE X
+5;-§{%(0)+¢2(e)}@(f)(m, ) 9)2]
=k “*j‘a-;-{ 0.5 — 058 e (5 10y,
+{ 8OO -0 2T |

where F, JF, E, @ denote for brevity the following functions :—
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i=o ke(a+2ia~§)2 ke(w+2ia+§)? .
FipE =2 {e 0+F —g 4+ }

==

ke +2ia)?

Mf)(%’,t“@):fz (au,_gmxe 1TEAE0) = Q+f/3§t_.i){F(f)(§,t—-—())+£}5~_0

®» . ke(r+2ia—§&)2 ke(v4-2ia+§)2
B =2 (—1){e 0wN —g” 4as/t }
—

Cke(z+2ia)?

€ (o, 1—0)=2 (=1)i(a+2ia)e" w0300 = IO, 6 e—0) e |

Each of the functions F and I is clearly the difference hetween
two periodical functions of (§—=) and (¢ +) ; and each of the func-
tions Jf and € is a periodical function of # simply. The expressions
for these four functions, obtained by the ordinary formulee for the
expression of periodical functions in trigonometrical series, are as
follows : —

w _En(141)E i 5
Fery(&s t)=§- \/Ml ke sin Y smz_”_E

i=1 a

N 4(1+f)7r(t——6):|%°° _PRUENE) i
,(D?(f)(-%',l 0)——2a [F————]Ec——————— X ake sin P

b (12).

4(1 tw _@mpm ANt (2i—1)re , (2i—1)w
E(f)(E )= _\/__(_j—f)'n‘ ; 4a2ke sm( Qa) sin % £

(2i—1)272(1 +f) (£ —0)

[4(1 +f)vr(t 9)] (2 e e (2= D

€sy(2, 1—0)= iy

Either (11) or (12) may be used to obtain explicit expressions for
the solutions (10) and (10)', in convergent series; but of the series
so obtained, (11) converge very rapidly and (12) very slowly when ¢
is small ; and, on the contrary, (11) very slowly and (12) very rapidly
when ¢ is large. It is satisfactory, that, as # increases, the first set
of series (11) do not cease to be, before the second set (12) become,
convergent enough to be extremely convenient for practical compu-
tation.

The solutions obtained by using (12), in (10) and (10), are the
same as wonld have been found by applying Foarier’s ordinary pro-
cess to derive from the elementary integral e~"¢sin nx the effects of
the initial arbitrary electrification of the wires, and employing a
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method given by Professor Stokes™ to express the effects of the va-
riations arbitrarily applied at the free ends of the wires.

Case II.—Three-wire Cable.

The equations of mutual influence between the wires may be clearly
put under the forms

en=a+Ae:+e6) v=¢+AG+9), =+ Aa+e);

and the equations of electrical motion along them arethen as follows:—

dgl d* s fgg d® 93) k dg, &’ @°q, dqs | d* 91)
koG = +f(dw2+dz T +f(dmz+dm2
d93 d293 g | &gy
ke +f( rl:r2 )

If we assume
o=q+ s+ 95 W20~ 0 s Wy=205— 05— Ws=203—q1— (s>
which give

1 1 1
“= §°‘+w1’ =3 otwy,  ¢3= §”+“’3’

€

and require that w, 4 w,+w,;=0, we find by addition and subtraction,
among the equations of conduction,

k27 = (142) 7

and
d%w

=2’

ke (1) T2

where for w may be substituted either w,, w,, or w,.

Casg ILI.—Four-wire Cuble.
The equations of mutual influence being

0=+ A%+ 9.) +9%
and other fpur symmetrical with this; and the equations of motion,

dq, _d% d’q,  d%q d?
kol = Z 11 LR @qs
¢ dt dx? +f( ) tg dx®’

&e. &e. &e.,

* See Cambridge Phil. Trans. vol. viii. p. 533, “ On the Critical Values
of the sums of Periodic Series.”
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we may assume
Hhteta+a=0 g¢—g¢=w,

. . O—+B—0=S —g,=w,;
which give

1 1
‘11=2<a+3+2w1); %ZZ("'_S‘FQW‘Z);
¢,= l(o’—i—&—-Qw,); ¢,= £(¢~8_2w2);

4 4

and we find from the equations of conduction,

d d’w.
ke = (L4274 ) 0% W = (1-249) 0T ko= (1-0) T

Case IV.—Cable of six wires symmetrically arranged.
Equations of mutual influence,
=g +/(%+¢6) +9(¢5+9:) + g
&e. &e. &e.
Equations of conduction,
kccilgtl d91+f d’ !Iz_}_d 96>+ (d 93+d 95>+1‘fiq;
Then assuming
N+ttt e+ 6=
—Gt B9+ 65— R=
3(itg)—o=w; (g +g)—0=wy; 3(g+¢)—o=wy;
3(i—g)—9=pi; 3(6s—9)—F=ps; 3(es— ) —F=ps;
which require that
w,+w,+w,=0, and p,+p,+p;=0;
we have

kc—m—[1+2(f+g)+h]d(r kcds

d 3 =[1—2(f—g)— h]d 7
B =[1— (fg)+ 1) T2 kc”"’ . =[14(f—9) 1] 2.

These equations, integrated by the usual process to fulfil the pre-
scribed conditions, determine o, 3, w,, w,, wy, py, ps ps; and we then
have, for the solution of the problem,

1
91’:%(0"}‘34‘“’1-}—?1); 9= %(0’4‘8‘*“”2"‘}’2); 9= E(7+S+ws+95);

1 1
9= %'(a——&‘*'wl_Fl); 96=E(¢"3+w2—P2) PSS 6(“"‘"3"'“’3_?3)-



