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greater than in air, a more powerful attraction is observed

than in air.

Ffth Experiment—Two vertical strips of tinfoil, paralle] to
each other 4 or 5 mm. apart, are immersed in water, a plate of

glass or of mica alittle wider than the strips 1s interposed, and
while the current is on, a repulsion of the strips is observed.
The electrostatic tubes coincide with the lines of electrolytic
current, and as the plate deviates the tubes uniting the

interior and opposite faces, the resultant of the attractions
becomes smaller than that of the repul- '

Si't)ns_ due to ihe tubes applied to the Fig. 8.
exterior faces. To direct the F araday

tubes so as to give preponderance to /!
those which pull the strips apart, it is w”ﬁﬂmg
‘hecessary to arrange as in fig. 8, that : .

18, to fix to the diaphragm two perpen- MAWWM |
dicular plates which do not allow the
tubes (and lines of current) to scatter
laterally ; the divergence of the leaves is-thus increased
several fold.

- Swth Laperiment.—Two vertical strips  of tinfoil are
Immersed in water (fig. 9). They are <

parallel, and as near each other as is Fig. 9.
‘possible consistent with not being drawn
together by capillarity. The pair of
strips constitutes one electrode, while
the other is a vertical metallic wire,
placed in the plane of the first electrode,
and 3 cm. distant from it. On the
passage of the current, the strips move
a little towards the wire, and at ¥the
same time diverge from each other just as
if they were in air before an electrified
condactor. -

The 4th, 5th, and 6th experiments
show the existence of the electrostatic
field inside an electrolyte.

Seventh Ezperiment.—~If the two
Imear conductors in Herz experiment
are replaced by two flexible loops 15 or
20 cm. apart, they attract each other
powerfully. Here the tubes are in motion between the linear
conductors along which they slide by their extremities, and
this is the caunse of the equality of velocity of propagation in
- the mediun: and in conductors.

- Physical Laboratory of the Academy of Sciences,
St. Petersburg.
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XII. Molecular Dynamics of a Crystal. By Lord KELvIN *.

3 1. HE object of this communication is to partially

| T realise the hope expressed at the end of my
paper of July 1 and July 15, 1889, on the ‘“Molecular
Constitution of Matter T 7:—* The mathematical investigation
must be deferred for a future communication, when 1 hope
to give it with some further developments.” The italics are
of present date. | |

]]?‘c}llowing the ideas and principles suggested in §§ 14-20
of that paper (referred to henceforth for brevity as M. C. M.),
let us first find the work required to separate all the atoms ;of
a homogeneous assemblage of a great number n of molecules
to infinite distances from one another. HFach molecule may

~be a single atom, or it may be a group of ¢ atoms (similar to

one another or dissimilar, as the case may be) which makes
the whole assemblage a group of i assemblages, each of n
single atoms. ' .
5 11§g 2. Remove now, one molecule fron_l its place in the
assemblage to an infinite distance, keeping unchanged the
configuration of its constituent atoms, and keeping Enmoved
every atom remaining in the assemblage. Let W be the
work required to do so. This is the same for all the molecules
within the assemblage, except the negligible number of those
(§ 30-.below) which .are withinr influential distance of the
surface. Hence $nW 1is the total work required to separate
all the n molecules of the assemblage to infinite distances
from one another. Add to this » times the work required
to separate the ¢ atoms of one of the molecules to infinite
distances from one another, and we have j;he whole work
required to separate all the in atoms of the given assemblage.

Another procedure, sometimes more convenient, is as
follows : —Remove any one atom from the assemblage, keeping
all the others unmoved. Let w be the work required to do
so, and let Zw denote the sum of the amounts of work
required to do this for every atom separately of the whole
assemblage. The total amount of work required to separate
all the atoms to infinite distances from one another is 2.
This (not subject to any limitation such as that stated for the
former procedure) is rigorously true for any assemblage
whatever of any number of atoms, small or large. It 1s, In
fact, the well-known theorem of potential energy in the

# From the Proceedings of the Royal Society of Edinburgh for

— unicated by the Author, | _
19?1‘%)2.0 IIH{E} Soc. nEdig., and vol. iii. of Mathematical and Physical

Papers, art. xcvil,
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dynamics of a system of mutually attracting or repelling
particles ; and from it we easily demonstrate the item inW
in the former procedure.

§ 3. In the present communication we shall consider .only _

atoms of identical quality, and only two kinds of assemblage.

I. A homogeneous assemblage of N single atoms, in which
the twelve nearest neighbours of each atom are equidistant
trom it. This, for brevity, I call an equilateral assemblage.
It 1s fully described in M. C. M., §§ 46, 50 . . . 57.

1. Two simple homogeneous assemblages of LN single
atoms, placed together so that one atom of each assemblage
1s at the centre of a quartet of nearest neighbours of the
others. '

For assemblage II., as well as for assemblage I., w is the
same for all the atoms, except the negligible number of those
within influential distance of the boundary. N eglecting
these, we therefore have Sw=Nuw, and therefore the whole
work required to separate all the atoms to infinite distances is—

tNw . . . . . . . . ().

§ 4. Let ¢(D) be the work required to increase the distance
between two atoms from D to o ; and let f(D) be the
attraction between them at distance D. We have :

'f(D)=—d%¢(D). A ¢ )

For either assemblage L, or assemblage 1I. we have

-

w=¢(D) + $(D") +$(D") +ete. . . . (3)3

where D, D/, D/, etc., denote the distances from any one

atom of all neighbours, including the farthest in the assem-
blage, which exercise any force upon it.

¢ 9. To find as many as we desire of these distances for
assemblage I.look at figs. 1 and 2. Fig. 1 shows an atom A,
and neighbours in one plane in circles of nearest, next-nearest,
next-next-nearest, etc. Fig. 2 shows an equilateral triangle
of three nearest neighbours, and concentric circles of neigh-
bours in the same plane round it. The circles corresponding
to 7, and rg of § 7 below, are not drawn in fig. 2. In all
that follows the side of each of the equilateral triangles is
‘denoted by A.

¢ 6. All the neighbours in assemblage I. are found by aid
of the diagrams as follows :—

(a) The atoms of the net shown in fig. 1. The plane of
this net we shall call our ‘“middle plane.” Let lines be
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i it through th d the points

drawn endicular to it through the atom A, and ‘ .
marke(f) {;I:;, to guide the placing of nets of atoms in parallel

blanes on its two sides. ) B
' (b) Two nets of atoms at equal distances AV % on the two

sides of the “ middle plane.”” These nets are so placed that

an atom of one of them, say the near one as we look at the

-diagram, is in the guide line  ; and an atom of the far one

is in the guide hine ¢.

Ig. 1.

(¢) Two parallel nets of atoms at eqt:al distances, 2\ V',
on the two sides of the “middle plane,” so placed that an
atom of the near one is in the guide line ¢, and an atom of
the far one is in the guide line . ‘

(d) A third pair of parallel Planes at equal Idlsta,nges,
SA4/2, from the “middle plane,” and each of them having

an atom in guide line A. - .
(e) Succegssive triplets of parallel nets with their atoms

] ter
welically arranged Abec Abc . . at greater and grea
{&J{stanceg from A on the near side of the paper, and Aqb

~ Aeb . . at greater and greater distances on the far side.

- § 7. Let , g3 - « . be the radii of the c_ircle’s shown in
ﬁn'? 1, and az:,rz,z rgg. . . be the radii of the circles shown 1n
&
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fig. 2; and for brevity denote A+/2 by «. The distances

from A of all the neighbours around it are :— _

In our “middle plane ™ : 6 each equal to ¢; ; 6, ¢2; 6, ¢y ;
125 .-1; 6: By o & o ¢ - - |

Ig the gwoparallel nets at distances « from middle : 6
each equal to V(K477 ; 6, v (&+77); 12, V(2 +7r?);
12, v (&2 +78°) 5 U0, V(24175 12, V(2 +72); 6, MK +77).

In the two parallel nets at distances 2« from middle : the
same as (B) allered by taking 2« everywhere in place of «.

Fig. 2.

T~

B4 74VANAS N
VO avaN AN
NN

&

\~Z
\"

In the two parallel nets at distances 3« from centre : the
same as (A) altered by taking v/ (942 +¢,2), (9«2 + ¢.2), etc.,
in place of ¢y, ¢., ete. '

In nets at distances on each side greater than 3« : distances
of atoms from A, found as above, according to the cycle of
atomic configuration described in (e) of § 6.

§ 8. By geometry we find

¢:=A; ¢,= NIA=1T32N; 9, =2X\; ¢, = VTA=2:646\; ¢.=3\: |
1= NIA="BTTA; 7, =2 NIA=T"154N; ry= NIA=1'B27A; 7= ¥ PA=2:082X; | (4)
rs=4 NEA=28308X; r,= ¥V 2A=2517A; r.=5 vEN=2887)\. - ]
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§ 9. Denoting now, for assemblage I., distances from atom
A of its nearest neighbours, its next-nearests, i1ts next-next-
nearests, etc., by D;, Ds, D,, etc., and their . numbers by
J1s J2s 735 ete., we find by §§ 7, 8 for distances up to 2\, for
use in § 12 below, '

- Dj=2, - Dy=1414\, D,=1732, D,=2\,
Nh=1235 jy=b6; 73=18; 7,=0.

. § 10. Look back now to § 5, and proceed similarly 1n
respect to assemblage 1I., to find distances from any atom A
to a limited number of its neighbours. Consider first only
the neighbours forming with A a single equilateral assemblage:
we have the same set of distances as we had in § 9. Consider
next the neighbours which belong to the other equilateral
assemblage. Of these, the four nearest (being the corners of
a tetrahedron having A at its centre) are each at distance
2 /22, and these are A’s nearest neighbours of all the double
assemblage II. Three of these four are situated in alnet

“whose plane is at the distance /%A on one side of our

““ middle plane ”’ through A, and having one of its atoms on
either of the guide lines & or ¢. The distances from A of all
the atoms in this net are, according to fig. 2,

vV (e 117, V(HeK ), ete. oo L (D)

The remaining one of the four nearests is on a net at
distance 2 42\ from our “middle plane,” having one of its
atoms on the guide line through A. The distances from A
of all the atoms in this net are, according to fig. 1,

v A, W (_19@"‘2'!‘?12): v Tgt—;"g'l'gzz): etc. . . (6).

- All the other atoms of the equilateral assemblage to which
A does not belong lie in nets at successive distances «, 2«, 3«,
etc., beyond the two nets we have already considered on the two
sides of our “middle plane” ; the atoms of each net placed
of course according to the cyclical law described in (e)
of § ©. |

§ 11. Working out for the double assemblage II. for A’s
nearest neighbours according to § 10, we find four nearest
neighbours at equal distances §4/3A='613\; twelve next-
nearests at equal distances A ; and twelve next-next-nearests at
equal distances 1LIA=1'173\. These suffice for § 12 below.
It is easy and tedious, and not at present usetul, to work out

for Dy, D;, De, ete.
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§ 12. Using now §$ 9, 11 in (3) of § 4 we find,—
for assemblage 1., - _
w=12¢(A) + 6 (1-4140) + 18¢(1-T32\) + 6d(2A) + . | _
for assemblage 11. - .
w=4¢("613N) +126(\) +12¢(1-1730)+ . . . .

These formulas prepare us for working out in detail the
- practical dynamics of each assemblage, guided by the following
statements taken from §§ 18, 16 of M. C. M.

§ 13. Every infinite homogeneous assemblage of Boscovich
atoms is in equilibrium. So, therefore, is every finite homo-
geneous assemblage, provided that extrameous forces be
applied to all within influential distance of the frontier, equal
to the forces which a homogeneous continuation of the
~assemblage through influential distance beyond the frontier
would exert on them. The investigation of these extraneous
forces for any given homogeneous assemblage of single atoms—
or groups of atoms as explained above (§ 1)—constitutes the
Boscovich equilibrium-theory of elastic solids.

- Fig. 3.
z-
. w
N '
{ ¢!
{ ’ ﬁi’
clJ
l -0 It
— L L e
3 2 -2 -3 14 ] I-& -7 g 1
|
| (/

It is wonderful how much towards explaining the ecrystallo-
graphy and elasticity of solids, and the thermo-elastic
properties of solids, liquids, and gases, we find; without
assuming, in the Boscovichian law of force, more than one
transition from attraction to repulsion. Suppose, for instance,
that the mutual force between two atoms is zero for all
distances exceeding a certain distance I, which we shall call
the diameter of the sphere of influence ; is repulsive when
the distance between them is <&'; zero when the distance is
=¢; and attractive when the distance is >& and <.

§ 14. Two different examples are represented on the two
curves of fig. 3, drawn arbitrarily to obtain markedly diverse
conditions of equilibrium for the monatomic equilateral

N
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assemblage (I.), and also for the diatomic assemblage (IL.).

The abscissa (#) of each diagram, reckoned from a zero out-
side the diagram on the left, represents the distance between
centres of two atoms: the ordinates (y) represent the
work required to separate them from this distance to .

Hence 2y represents the mutual attraction at diStanee Z.

da
This we see by each curve 18 —<o (infinite repulsion) at
distance 1-0, which means that the atom is an ideal hard ball
of diameter 1'0. For distances increasing from 1-0 the'force
is repulsive as far as 1'61 in curve 1, and 155 in curve 2.

At these distances the mutual force 1s zero; and at greater

Fig. 4.

277

|
7oA

] o !

7y /amé’sg; Ve

77’ |

7w for Ass. L.
-1 |
8 9 10 2 V3 1A 1 46 17 b8

Law of Force according to Curve 1.

distances up to 1'8 in curve 1, and 1'9 in curve 2, the force
is attractive. The force is zero for all greater distances than
the last mentioned in the two examples respectively. Thus,
according to my old notation, we have {=161, =18 1n
curve 13 and £=1'55, I=1'9 in curve 2. The distances for
maximum attractive force (as shown by the points of inflection
of the two curves) are 168 for curve 1, and 1-76 for curve 2.

According to our notation of § 4 we have y=¢(D), 1t
v==D in each curve.

$ 15. The two formulas (7), § 12, are represented in fig. 4
for curve 1, and in fig. 5 for curve 2 ; with 2= for Ass. L.
and £=-613\ for Ass. IT. In each diagram the abscissa, 2,

Phil. Mag. S. 6. Vol. 4. No. 19. July 19072. L
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 is distance between nearest atoms of the assemblage. The

heavy portions of the curves represent the values of w calcu-

lated from (7). The light portions of the curves, and their

continuations in heavy curves, represent 4¢(z) and 12¢(z)
respectively in each diagram. The point where the light

curve passes into the heavy curve in each case corresponds
to the least distance between neighhours at which next-nearests
are beyond range of mutual force. All the diagrams here
reproduced ‘were drawn first on a large scale on squared
paper for use in the calculations from (7); which included
accurate determinations of the maximum and minimum
values of w and the corresponding distances between nearest
neighbours in each assemblage. The corresponding densities,
given in the last column of the following table of results,

g, 6
m"
ml’ff
|
i
wyordssH,

'8 9 0 “/, 12 1.3 14 15 16 -7 18 1
q.' -

Law of Force according to Curve 2.

are calculated by the formula ./2/A\® for assemblage I,
and 24/ 2/A% for assemblage 11.; “density”’ being in each case
number of atoms per cube of the unit of abscissas of the
diagram. This unit is (§ 14) equal to the diameter of the
“atom. For simplicity we assume the atom to be an infinitely
hard ball exerting (§ 13) on neighbouring atoms, not in contact
with it, repulsion at distance between centres less than & and
attraction at any distance between ¢ and 1. '

§ 16. To interpret these results, suppose all the atoms of
the assemblage to be subjected to guidance constraining them
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either to the equilateral homogeneousness of assemblage L., or
to the diatomic homogeneousness of assemblage 1l., with
each atom of one constituent assemblage at the centre of an
equilateral quartet of the other constituent assemblage. It is
easy to construct ideally mechanism by which this may be

done ; and we need not occupy our minds with it at present.
It is enough to know that it can be done. If the system,
subject to the prescribed constraining guidance, be left to
itself at any given density, the condition for equilibrium
without extraneous force 1s that w 18 either a maximum or
a minimum ; the equilibrium 1s stable when w is a maximum,

Assemblage I. . Assemblage TI.
| | I |
Distances be- | i Distances be-
tween centres | ' tween centres
~ of nearest |Maximumand ~ ofnearest |Maximumand
atoms for | minimumn Densities.; atomsfor ! minimum |Densities.
maximum and| values of w. | maximum and| values of w.
minimum | - minimum
values of w. | - values of w.

Law of Force aceording to Curve 1. |

; _ *
116 828 (max.) ! 904 ! 1-00 11°52 (max.) | -652 !
1-25 522 (min.) | 759 | 1-10 76 (min.) ‘490 |
1-61 1476 (max.) | 338 :1 1:61 492 (max.) | 158
. | A |

. —

1:00 11-58 (max.) | 1414 1-00 12-36 (max.) | 652 ‘
107 378 (min.) | 1146 1-15 0-16 (min.) | 433
122 1044 (max.) | 774 1-53 520 (mnax.) | -184
- 1-28 9-36 (nin.) 671
| 1:53 1560 (max.) | 393
. X

—

unstable when a minimuam. It 1s interesting to see the two
stable equilibriums of assemblage 1. according to law of force
1, and the three according to law of force 2 ; and the two
stable equilibriums for assemblage 11. with each of these laws
of force. '

§ 17. But we must not forget that it is only with the
specified constraining guidance (§ 16) that we are sure of
these equilibriums being stable. It is quite certain, however,
that without guidance the monatomic assemblage would be

“stable for the small density corresponding to the point m of

L2
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each of the diagrams, because for infinitesimal deviations

each atom experiences forces only from its twelve nearest
neighbours, and these forces are each of them zero for
equilibrium. It may conceivably be that each of the
maximums of w, whether for the monatomic or the diatomie
assemblage, is stable without guidance. But it seems more
probable that, for assemblage I. and law of force 2, the

intermediate maximum 2’ (close to a minimum) is unstable.

If it is =0, the assemblage left to itself in this configuration
would fall away, and would (in virtue of energy lost by waves
through ether, that is to say, radiation of heat) settle in stable
equilibrium corresponding to the maximum m {single-assem-
blage), or either of the maximums m/ (single assemblage), or
m" (double assemblage). It is also possible that for law of
torce 1 the maximum ' for the single assemblage is unstable.
If s0, the system left to itself in this configuration would fall
away and settle in either of the configurations m (single
assemblage) or m’" (double assemblage). Or it is possible
Cthat with either of our arbitrarily assumed laws of force
there mayv be stable configurations of equilibrium with the
atoms in simple cubic order (§ 21 below): and in double
cubic order ; that is to say, with each atum i the centre
of 1 cube of which the eight corners ave its nearest neighbours.

§ 18. It 1s important to remark further, that certainly a
law of force fulfilling the conditions of § 15 may he found,
according to which even the simple cubic order is n stable
confizuration ; though perhaps not the only stable configura-
tion. . The double cubic order, which has hitherto not aot as
el consideration as it deserves in the molecular theory of
crystals,, is certainly stable for some laws of force which would
render the simple cubic order unstable. Meantime 1t 1s
exceedingly probable that there are in nature crystals of
elementary substances, such as metals, or frozen oxygep or
nitrogen or argon, of the simple cubic, and double cubic, and
simple equilateral, and double equilateral, classes. It is also
probable that the crystalline molecules in erystals of compound
chemical substance are in many cases simply the chemical
molecules, and in many cases are composed of groups of the
chemical molecules.  The crystalline molecules,” however
constituted, are, in crystals of the cubic class, probably

arranged either in simple cubic, or double cubic, or in simple

cquilateral, or double equilateral, order.

§ 19. It will be an interesting further development of the
molecular theory to find some illustrative cases of chemical
compound molecules (that 1s to say, groups of atoms presenting
difforent laws of force, whether between two atoms of the
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<ame kind or between atoms of different kinds), which are,
and others which are mnot, in stable equilibrium at some
density or densities of- equilateral assemblage. -In this last
class of cases the molecules make up crystals not of the cubic
class. . This certainly can be arranged for by compound
molecules with law of force between any two atoms fulfilling

" the condition of § 13 and it can be done even for a mona-

tomic homogeneous assemblage very easily, if we leave the
simplicity of § 18 n our assumption as to law of force.

—

§ 20. The mathematical theory wants development n

'Lreapect'to the conditions for stability. If, with the constraining

guidance of § 16, w is either a maximum or a minimum,
there-is equilibrium with or without the guidance.  For w a
maximum the equilibrium 1s stable with the guidance; but may
be stable or unstable without the ouidance. A criterion of
stability which will answer this last question is much wanted;
and it seems to me that though the number of atoms 18 quasl
infinite the wanted criterion may be finite in every case 1n
which the number of aloms exerting force on any one atom
is finite. To find it generally for the equilibrium of any
homogeneous assemblage of homogeneous groups, each of a
fnite number of atoms, is a worthy object for mathematical
consideration. Its difficulty and complexity 1s iHustrated 1n
§§ 21, 22 for the particularly simple case of similar atoms
arranged in simple cabic order ; and in §§ 23-29 for a shll

simpler case.

§ 21. Considera group of eight particles at the eight corners

of a cube (edge A) mutually acting on one another with forces

.

all varying according to the same law of distance. Let the
magnitudes of the forces be such that there 1is equilibrium ;
and in the first place let the law of variation of the forces be

‘cuch that the equilibrium is stable. Build up now a quasi
nfinite number of such cubes with coincident corners to form

one large cube or a crystal of any other shape. Join ideally,
to make one atom, each set of eight particles in contact which

we find ‘in this structure. The whole system is in stable

equilibrium. The four forces in each set of four coincident
edges of the primitive cubes become one force equal to the
force between atom and atom at distance \. The two forces
in either diagonal of the coincident square faces of two cubes
s contact make one force equal to the force between atoms

at distance A+ 2. The single force in each body-diagonal of

‘any one of the cubes 1s the force between atom and atom at
distance Av/3. The three moduluses of elasticity (compressi-

bility-modulus, modulus with reference to change of angles
of the square faces, and modulus with reference to change of
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angles between their diagonals) are all reasi]y found by

consideration of the dynamics of a single primitive cube, or

they may be found by the general method given in *“ On the

Elasticity of a Crystal according to Boscovich”*, (In

passing, remark that neither in this nor in other cases is it to

be assumed without proof that stability is ensured by positive
values of the elasticity moduluses.)

§ 22. Now while it is obvious that our cubic system is in

stable equilibrium if the eight particles constituting a detached

primitive cube are in stable equilibrium, 1t 1s not obvious
without proof that this condition, though sufficient, 1s neces-
sary for the stability of the combined assemblage. It might
be that though each primitive cube by itself is unstable, the
combined assemblage is stable In virtue of mutual support
given by the joinings of eight particles into one at the corners
- of the cubes which we have put together.

§ 23. The simplest possible illustration of the stability
question of § 20 is presented by the exceedingly interesting
problem of the equilibrium of an infinite row of similar
particles, free to move only in a straight line. The considera-
tion of this linear problem we shall find also useful (§§ 28,

29 below) for investigation of the distutbance from homo-

geneousness in the neighbourhood of the bounding surface,
experienced by a three-dimensional homogeneous assemblage
in equilibrium. First let us find a, the distance, or one of
the distances, from atom to atom at which the atoms must be
placed for equilibrium ; and after that try to find whether
the equilibrium is stable or unstable. |

§ 24. Calling (D) (as in § 4) the attraction between atom
and atom at distance D, we have for the sum, P, of attractions
between all the atoms on one side of any point in their line,
and all” the atoms on the other side, the following finite
expression having essentially a finite number of terms, greater
the smaller i1s a:

fl@)+2f(2a) +3f(3a)+ . ... =P . . . (8).

Hence a, for equilibrium with no extraneous force, is given
by the tunctional equation ' |

ey +2/R2a)+3/Ba)+ ... .=0. . . (9);
which, according to the law of force, may give one or two or
any number of values for @: or may even give no value (all
roots imaginary) if the force at greatest distance for which
there is force at all, is repulsive. The solution or all the
solutions of this equation are readily found by calculating

# Proe. R.S.L., vol. 54, June 8, 1893,
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from the Boscovich curve representative of f(D) a table of
values of P, and plotting them on a curve, 1.))7 formula (8),
for values of a from a==1 (the limit above which the force 1s
zero for all distances) downwards to the value which makes

= —w, or to zero if there 1s no infinite repulsion. The -

u .

. q:—.
e l

Fig. 6.
3

o

Ze

accompanying diagrmn, fig. 6, copied from fig. 1 ot _Boscovi_c}l’s
great book *, with slight modifications (including positive
instead of negative ordinates to indicate attraction) to suit

% Theoria Philosophiee Naturalis redacta ad unicam legem virium in
natura existentium, auctore P. Rogerio Josepho qucpvlch, Societatis
Jesu, nunc ab ipso perpolita, et aucta, ac a plurimis preecedentium
editionum mendis expurgata. Editio Veneta prima 1pso auctore prasente,
et corrigente, Venetiis, MDCCLXIII. Ex Typographia Remondiniana,

superiorum permissu, ac privilegio.
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our present purpose, _s'hdws for this particular curve three of
the solutions of ‘equation (8). (There are obviously several
other solutions.) In two of the solutions, respectively, A,, A’,

and Ay, A", are consecutive atoms at distances at which the

force between them is: zero. These are configurations of
equilibrium, because A B, the extreme distance at which
there is mutual action, i1s less than twice Ay A/, and less than
twice AjA”. In the other of the solutions shown, A,, A,, A,
Ag, Ay, A;, Ag are seven equidistant consecutive atoms of an
infinite row in equilibrium in which Aj; is within range of
the force of A, and Ag is beyond it. The algebraic sum of the
ordinates with their proper multipliers is zero, and .so the
diagram represents a solution of equation (9). _

S 25. In the general linear problem to find whether the
equilibrium is stable or not for equal consecutive distances, a,
let (as In § 4) ¢(D) be the work required to increase the
distance between two atoms from D to oo. Suppose now the

atoms to be displaced from equal distances, a, to consecutive
unequal distances—

The equilibrium will be stable or unstable according as the
work required to produce this displacement is, or is not, positive

for all infinitely small values of . . . : u,_,, u, u, 1y . -

Its amount 18 Wy— W ; where W denotes the total amount
of work required to separate all the atoms from the con-
figuration (10) to infinite mutual distances.

According to § 2 above W is given by
TV:'%( . . "L+wi-—1.+u’£+wi+1+ ¢ v -). . (1]—).;

where

w, =¢(a+u,) ?'+qb(2a+tfi;_l+u;} +o(Batu,_,+u, , +u) o
+¢(a+u£+'1);+§ﬁ(2a+ui+l+’u;1-+2)+¢(3a+%i+1 SaC A T I
P | co . (12).

-}~

Eixpanding each term by Taylor’s theorem as far as terms of
the second order, and remarking that the sum of terms of the
first order is zero for equilibrium * at equal distances, a, and

* It 1s interesting and instructive to verify this analytically by selecting
adaw
. du;
to zero, for zero values of ., . u;_1, %, %11, ...gives equation (9) of
the text. . |

all the terms in  which contain u,, and thus finding This equated |

Molecular Dynamics of a Crystal. 153
putting ¢''(D) = —f' (D), we find

Wo— W=13{f"(a) (u + %)

+f (20) [(#y + )"+ (g +%45)"]
+F(3) [ (g Uiy + )+ (Upyy + Uy F i)
+ = etc. eLe. ete. etc.'} (13) 3

where ¥ denotes summation for all values of 7, except those
corresponding to the small numbers of atoms (8§ 28, 29
below) within influential distances of the two ends of the row.

& 26. Hence the equilibrivm is stable if f” (a), [ (2a),

1" (3a), cte., are all positive ; but it can be stable with some

of them negative. Thus, according to the Boscovich diagram,
a condition ensuring stability is that the position of each atom

~ be on an up-slope of the curve showing attractions at increasing

distances. We see that each of the atoms m each of our
three equilibriums for fig. 6 fulfils this condition. .

§ 27. Fig. 7 shows a simple Boscovich curve drawn arbi-
trarily to fulfil the condition of § 13 above, and with the
further simplification for our present purpose, of limiting the
sphere of inflience so as not to extend be}:(}nd t}le next-nearest
neighbours in a row of equidistant particles 1 equilibrium,
with repulsions between nearests and attractions between
next-nearests. The distance, @, between nearests 13 deter-
mined by . . _
fla)+2/(2¢)=0 . . . . . (14),

being what (9) of § 24 becomes when there 1s no ll}utual. force
except between nearests and next-nearests. There1s obviously
one stable solation of this equation in which one atom 1s at
the zero of the scale of abscissas (not shown in the dmgram)}
and its nearest neighbour on the right is at A, the pomt of
zero force with attraction for greater distances and repulsion
for less distances. The only other configuration of stable
equilibrium is found by solution of (14) according to the plan
described in § 24, which gives a="680. It 1s shown on fig. 7
by A, A,,,, as consecutive atoms In the row. | |
§ 28. Consider now the equilibrium in the neighbourhood of
either end of a rectilinear row of a very large number of atoms
which, beyond influential distance from either end,'Tare at
equal consecutive distances a satisfying § 27 (14). We shall
take for simplicity the case of equilibrium in which there 1s
no extraneous force applied to any of the atoms, :‘a_l‘]d no
mutual force between any two atoms except the positive or
negative attraction f(D). DBut suppose first that ties or struts
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are placed between consecutive atoms near each end of the

row so as to keep all their consecutive distances exactly equal - *

to a. For brevity we shall call them ties, though in ordinary

language any one of them would be called a strut if its force

1s push instead of pull on the atoms to which it is appliec
' | : 1ed.

Calling ’AI, A_g, Aj, . ..the atoms at one end of thgprowT

suppose the tie between A; and A, to be removed, and A,

Fig. 7.
4+
Ir
2k
ml
0
‘ 10 ¥l | P’
Z ¢ Aifr P

-2

allowed to take its position of equilibrium. A single equation
gives the altered distatce A;A, which we shall denote by
‘a+q2;. Let an altered tie be placed between A, and A, to
keep them at this altered distance during the operations which
foll'?w. Next remove the tie between A, and A;, and find by
a single equation the altered distance a+,2,. After that
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remove the tie between Az and A, and find, still by a single
equation, the altered distance a +,x;, and so on till we find
17 OF 1 or 1@, small enough to be negligible. 'Thus found,
1815 189y 1834 « « o » 18; ZIVE & first approximation to the devi-
ations from equality of distance for complete equilibrium.‘

Repeat the process of removing the ties in order and replacing
-each one by the altered length as in the first set of approxi-

mations, and we find a second set y2y, oy, a2 « + « « Go on
similarly to a third, fourth, fifth, sixth . . . . approximation
till we find no change by a repetition of the process. Thus,
by a process essentially convergent it the equilibrium with
which we started is stable, we find the deviations from equality
of consecutive distances required for equilibrium when the
system is left free in the neighbourhood of each end, and all
through the row (except always the constraint to remain in a
straight line). By this proceeding applied to the curve of
fiz. 7 and the case of equilibrium a="630, the following

successive approximations were found :—

| . | ,.

X | S S i & T4 ¥s Lg Tq

. :

| 1st Approximation . |4+°018 -—'009!+'OO-L --002 |[4+'001 |—-001| -000
" 2nd i . 4026 ' —-014 4007 |—003 | + 002

- 3rd s . 4031 —018 +'009 | —005 |+"003

 4th 'y . 14034 | —020 . +011 | —006 | -

- H5th 's . 14036 —-022 4012 |—-007

 Gth 'y . |4+037 ' —-023 +013 |

' 7th o, i 4038 | —024

I_ 8th ’y . +U39 ! |
. 1 | |

Thus our final solution, with a="680, 13

By = T '039,, Lo == _'024, Xs= ‘013, 2= _--0075 Z5= - '003?
- 2g= —001, 2;="000.

$ 29. It is exceedingly interesting to remark that the
deviations of the successive distances from a are alternately
positive and negative, and that they only become less than
one-seventh per cent. of a for the distance between A; and As.
Thus, if we agree to neglect anything less than one-seventh
per cent. in the distance between atom and atom, the influential
distance from either end is 7a, although the mutual force
between atom and atom is null at all distances exceeding 2-2a.

§ 30. If, instead of f(D) denoting the force between two
atoms in a rectilinear row, it denotes the mutual force between

‘two parallel plane nets in a Bravais homogeneous assemblage
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of single atoms, the work of §§ 27, 28 remains valid ; and
thus we arrive at the very important and interesting conclusion
that when there is repulsion between nearest nets, attraction
between next-nearests, and no force between next-nexi-
nearests or any farther, the disturbance from homogeneous-
ness in.the neighbourhood of the bounding plane consists in
alternate dimmutions and augmentations of density becoming

less and less as we travel inwards, but remaining sensible at

dista_nc,es from the boundary amounting to several times the
distance from net to net.

XL, On Spectra arising from the Dissociation of Water
Vapour and the Presence of Dark Lines in Gaseous Spectra.
By JoaN TROWBRIDGE *, '

| [ Plate III]
ﬁ‘ases

IN passing from the study of the light emitted by g
under the effect of electrical discharges to the investi-
gation of the light produced by discharges of great quantity,
one enters a new field of research. In previous papers on
the spectra of hydrogen I have stated my convictions of the
importance of the réle played by water-vapour in glass
spectrum-tubes. The results of further study emphasize these
convictions. With powerful discharges in hydrogen, oxygen,
and rarefied air, even when these gases are dried with the
utmost care, 1 always obtain the same spectrum, which I
regard as that arising from the dissociation of water-vapour
which 1s always present in glass tubes. The bright-line
spectrum, moreover, at high temperatures is accompanied by a
faint continuous spectrum on which are dark lines which
indicate a” selective reversibility in the silver salt. This re-

versibility, 1t seems to me, 1s of great significance in the

apphication of photography to astrophysics.

It has long been recognized that spectrum analysis is
an extremely delicate method of recognizing the presence of
a gas or the vapour ot a metal under the excitation of heat ;
and when the improvements in photography enabled us to
obtain permanent records of the spectra of gases, it was sup-
posed that we had a means of escaping from the fallacies of
eye-observations which arose from personal idiosyneracies.
If the photographic plate were a perfect Instrument for

recording the infinite number of vibrations which light can
- communicate to atoms of matter, we should certainly feel
that we had made a great advance in physical science. When
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we refiect, however, on the supposition that 6111111510118 COn-
taining silver salts are capable of responding and giving a
permanent record of all waves of light, even in the portion of
the spectrum considered most actinic, when the waves e_xceedﬂ
4 certain intensity, we are conscious that we rely without
proof upon an infinite range of photochemical action ; and
indeed I show in this paper the existence of a selective rever-

sibility produced on- j:he pl}otogmphic plate by powertul
discharges producing light of gréat mntensity. | |

Realizing the 1importance ?f Sigud_\,_«*mg the behaviour ?f_
onses under different forms of excitation, I have collec‘ted n
the rooms devoted to spectrum analysis in this laboratory
three forms of appamtus: an inductlon-c?]:l :1ptuated_ by: a
verv efficient liquid break,_ giwng a S__park of _3)0 1inches 1n ar 3
QL St"ep-"iup transformer, excited by an altermhtmg current, pro-
ducing with olass gondensers of - abput ‘3 mwrofarad dis-
charges of an inch m len ath of great body; and a storage-
battery of twenty thnumud_ cells. A plant of this nature 1
conceive to be mnecessary in the present stage of spectrum
analysis ; for molecular Illt)t-ion;:'s exmt_ed in rarefied gases vary
greatly with the kind of electrical dlscha}rge. ‘I.n the qpph-
cation of photography to spectrum analysis qne 1s immediately
confronted with the necessity of submitting the gas to a com-

paratively long electrical stimulus in order to obtain a negative.
Even with a concave grating of short focus several discharges
are necessary with a narrow slit.  Hach dlscha:rge 18 c_apable
of modifying the condition .of -the gas. This fact 1s well
recognized by taking successive photographs upon the same
plate with different strengths of current. A simple form ot
plate-holder enables this to be done. One obtains a striking
example of the instability of a spectrum-tube filled, apparently,
with dry hydrogen when one subjects 1t first to very powerful

discharges from a glass condenser of 6 microfarad charged
by a storage-battery of twenty thousand cells, with p‘mc‘_clcally_
no self-induction in the circuit, and follow_s this excitation by
an alternating current of mach less quantity. T__[‘he powertul
discharge gives what.I term the spectrum arising from the-
dissociation of water-vapour; and the alternating current
oives the spectra of argon. This results, I suppose, from
e oxidization of traces of air in the tube under the action
of the dissociation of the water-vapour. The presence of
hydrogen is concealed. On cooling, the tube again shows
the four-line spectrum of hydrogen. The period of the con-
denser-discharges which I have employed varied from one
fve-hundred thousandth of a second to one millionth. The

practically instantaneous current, therefore, varied from five




