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Here is presented a new type of exact solution of Schrödinger equation in the case of 

it’s reduction to Riccati type of ordinary differential equations.

Due to a very special character of Riccati’s type equation, it’s general solution is 

proved to have a proper gap of components of the particle wavefunction (which is

known to be determining a proper quantum state of the particle).

It means a possibility of sudden transformation or transmutation of quantum state of 

the particle (from one meaning of wavefunction to another), at definite moment of 

parametrical time.

Besides, in the case of spherical symmetry of particle potential V in position space, as 

well as spherical symmetry of quantum system E total energy, such a solution is proved

to be a multiplying of Bessel function (for radial component) & Legendre spherical 

function (for angle component), in spherical coordinate system.  
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In accordance with [1-4], Schrödinger equation describes the quantum state of a physical

system changing in time or how the wavefunction of a proper particle evolves over time.

We observe below only the time-independent solutions ( / t = 0) of Schrödinger

equation [5-6], for the reason that in case of time-independent particle potential V in 

position space, the general solutions of Schrödinger equation could be obtained from

time-independent solutions by multiplying it on a proper time-coefficient
tE

i

e


 , where

E – is a total energy of quantum system,  i = 1 -  is the imaginary unit, ħ - is h-bar.

Pic.1. Spherical coordinate system R, , .

Schrödinger equation for a single particle in the 3-dimensional case in the presence of a 

potential V, should be represented [5] in a spherical coordinate system R, ,   (Pic.1): 
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- here m - is the mass of particle, m = const  0;   - the wavefunction of particle in 

position space, which is known to be the most complete description of particle quantum 

mechanical behavior,  =  (R, , );  U = (V – E), where V – is the potential of the 

particle in position space, E – is a quantum system total energy,  U = U (R, , );  ħ – is 

the reduced Planck constant.

Besides, in spherical coordinate system:

Also it should be taken into consideration that the square of wavefunction   is known to 

be a proper probability amplitude to detect such a particle in position space (per unit of 

volume of such a space).

In accordance with [5-6], we should find an exact solution of above equation (1.1) in a 

form below:

Having substituted (1.2) into (1.1), we obtain:

Let’s make a proper replacement of variables  v = ψ / ψ  over all the arguments R, , :
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The main idea is to find the solution of (1.1) like Riccati’s type [7], that’s why let’s make 

an additional assumption below:  

Having substituted (1.4) into (1.3), we obtain an equation below:

According to [6], we will present a function U = (V – E) in the axe-symmetrical form. It 

means that  U/ = 0

U() = const = C₀ ≠ 0.

Thus, from the last equation we obtain (in the axe-symmetrical case):

To separate a proper variables in (1.5), we should make an assumption (below C₁ ≠ 0):

Above (1.6) leads us to equality below:
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- or:

From equality above we conclude that variables in (1.5) could be separated only in cases:

1) U() = const = C₂ ≠ 0;

2)  U(R) ∙ R 2 = const = C₃ ≠ 0.

Above 2) case was considered in [5]. Besides, as for the expression U(R) = C₃ / R 2

itself: presense of it means that meaning of the particle potential V is proved to differ

from a total energy of quantum system E (at given locus of position space) on a proper term 

 (1/R2), which could be associated with a proper influence on a particle the field of 

centrifugal forces.

Let’s consider above 1) case: as for the condition U() = const = C₂, it means we

explore the case of stationary, spherical symmetry of particle potential V, as well as case 

of stationary, spherical symmetry of total energy of quantum system E .

In such an assumptions, last equation could be represented in form below:

- or

To separate a proper variables (R, ) in above equality, we should make a conclusion
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If we determine the functions f₁(R) & f₂() from an equalities (1.7), then substituting of 

such a functions into (1.4), we should obtain: 

- or

In accordance with previous assumption, we obtain a proper system of Riccati equations

[7] in regard to the functions v = ψ / ψ (which are functions of R,  , respectively).

Due to a very special character of such an equations, it’s general solution is known to 

have a proper gap of above components of such a functions v = ψ / ψ [7].

It means a possibility of sudden transformation or transmutation of quantum mechanical 

state of the particle (from one meaning of wavefunction to another) at definite moment of 

parametrical time, or existence of such a continuous solution only at some definite, 

restricted range of parameter t [8].

Expressing of functions ψ from equality v = ψ / ψ in regard to R,   in (1.8), we obtain:

  

     ,
sin

C
vctg)(f)(vv

,)R(U
CCm2

R

)R(v2

R
)R(f)R(vRv

2

1
2

2

2

20

21
2














 

 

    .
sin

C
vctgv)(v

8.1

,)R(U
CCm2

R
)R(v

R

2
Rv)R(v

2

12

2

20

2
2
































 

  .0)(
sin

C
ctg)(

9.1

,0)R()R(U
CCm2

R
)R(

R

2
)R(

2

1

2

20

2




































7

The 1-st of equations (1.9) ( ≠ 0, U ≠ 0) – is known to be the Bessel ordinary 

differential equation, it’s solutions are a proper Bessel functions (Pic.2; besides, see for 

example 2.162, 1а [7]):

Pic.2. Bessel functions.

The 2-nd equation of (1.9) – is known to be the Legendre ordinary differential equation,

it’s solutions are a proper Legendre spherical functions (Pic.3; see for example 2.240 [7]):

Pic.3. Legendre (spherical) functions.
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Besides, we could make a conclusion that for function U (R) = V(R) – E(R)  are valid an 

equalities below:

- where m ≠ 0. Such an assumption has a real physical sense: indeed, potential V very 

often has a form V(R) ~ 1/R  (as in the case of gravitational field or case of electric charge

field distribution), but a total energy E corresponds to the case of a proper set of discrete

energy levels, which are known to be reproduced by harmonic oscillator:  E(R) ~  1 / R 2.

Besides, in accordance to [7] solutions of 1-st of (1.9) could be expressed in terms of 

elementary transcendental functions only in case if U(R) = 0 or when (n = 0, 1, 2, …):

 = 1/4 – (1/4)∙(2n+1)2

Let’s choose as a basic model the case of accordance of total energy of quantum system E

to a proper set of discrete energy levels, which are known to be reproduced by a 

harmonic oscillator (in spherical coordinate system):

- also let’s choose a constants C₀ & C₂ as below

- then we obtain from (1.9)

- or, having chosen of a proper constant in representation of function V(R), we obtain:

- if we take into consideration (1.10).

 10.1,R~)R(E,R~)R(V 22m 

  
,

R4

1
)R(E

2




212n

,1
CCm2

2
20 






 



,0)R()R(V)R(
R

2
)R( 






 

,0)R(R)R(R2)R(R m2  



9

The last equation is a classical case of Bessel ordinary differential equation [7] (m ≠ 0):

If m = 1, then from above we obtain: V(R) ~ - 1/R.

In such a case, solution of the 1-st equation of (1.9) should be represented as below:

As for the function v = ψ/ ψ in regard to the argument , taking into consideration (1.4)

& (1.6), we obtain [5-6]:

Besides, the requiring of limitation of such a solution for all   [0, 2n], nN, leads 

us to an equality below [5-6]:

- where C₁  0.

As mentioned above, we should take into consideration a requiring that the square of 

wavefunction   is to be a proper probability amplitude to detect such a particle in 

position space (per unit of volume).

It means that calculating of square of wavefunction   over all the volume of position 

space must be equal to unit = 1. Such a requiring is used to restrict the choosing of a

constants of solution to be constructed. Besides, in the case of divergence of meanings of 

wavefunction  in calculating over the variables R, , , such a wavefunction   should 

be normalized to a proper Dirac –function [6].
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