Exact solution of Schrödinger equation in the case of reduction to Riccati type of ODE.

Sergey V. Ershkov
Institute for Time Nature Explorations, M.V. Lomonosov's Moscow State University, Leninskie gory, 1-12, Moscow 119991, Russia.

Keywords: Schrödinger equation, quantum state of physical system, wavefunction, particle potential in position space, total energy of quantum system, Riccati type of ordinary differential equations, Bessel functions, Legendre spherical functions.

Here is presented a new type of exact solution of Schrödinger equation in the case of it's reduction to Riccati type of ordinary differential equations.

Due to a very special character of Riccati's type equation, it's general solution is proved to have a proper gap of components of the particle wavefunction (which is known to be determining a proper quantum state of the particle).

It means a possibility of sudden transformation or transmutation of quantum state of the particle (from one meaning of wavefunction to another), at definite moment of parametrical time.

Besides, in the case of spherical symmetry of particle potential V in position space, as well as spherical symmetry of quantum system E total energy, such a solution is proved to be a multiplying of Bessel function (for radial component) \& Legendre spherical function (for angle component), in spherical coordinate system.

In accordance with [1-4], Schrödinger equation describes the quantum state of a physical system changing in time or how the wavefunction of a proper particle evolves over time. We observe below only the time-independent solutions $(\partial / \partial t=0)$ of Schrödinger equation [5-6], for the reason that in case of time-independent particle potential V in position space, the general solutions of Schrödinger equation could be obtained from time-independent solutions by multiplying it on a proper time-coefficient $e^{-\frac{i}{\hbar} \cdot E \cdot t}$, where $E-$ is a total energy of quantum system, $i=\sqrt{-1}$ - is the imaginary unit, \hbar - is h-bar.

Pic.1. Spherical coordinate system R, θ, φ.

Schrödinger equation for a single particle in the 3-dimensional case in the presence of a potential V, should be represented [5] in a spherical coordinate system R, θ, φ (Pic.1):

$$
\begin{equation*}
\frac{\hbar^{2}}{2 m} \Delta \psi=U \psi, \tag{1.1}
\end{equation*}
$$

- here m - is the mass of particle, $m=$ const $\neq 0 ; \psi$ - the wavefunction of particle in position space, which is known to be the most complete description of particle quantum mechanical behavior, $\psi=\psi(R, \theta, \varphi) ; U=(V-E)$, where V - is the potential of the particle in position space, E - is a quantum system total energy, $U=U(R, \theta, \varphi) ; \hbar-$ is the reduced Planck constant.

Besides, in spherical coordinate system:

$$
\Delta \psi=\frac{\partial^{2} \psi}{\partial R^{2}}+\frac{2}{R} \frac{\partial \psi}{\partial R}+\frac{1}{R^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \varphi^{2}}+\frac{1}{R^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}}+\frac{1}{R^{2}} \operatorname{ctg} \theta \frac{\partial \psi}{\partial \theta}
$$

Also it should be taken into consideration that the square of wavefunction ψ is known to be a proper probability amplitude to detect such a particle in position space (per unit of volume of such a space).

In accordance with [5-6], we should find an exact solution of above equation (1.1) in a form below:

$$
\begin{align*}
& \psi(R, \theta, \varphi)=\psi(R) \cdot \psi(\theta) \cdot \psi(\varphi) \tag{1.2}\\
& U(R, \theta, \varphi)=U(R) \cdot U(\theta) \cdot U(\varphi)
\end{align*}
$$

Having substituted (1.2) into (1.1), we obtain:

$$
\begin{aligned}
& \frac{1}{\psi(R)} \cdot \frac{d^{2} \psi(R)}{d R^{2}}+\frac{2}{R} \cdot\left(\frac{1}{\psi(R)}\right) \cdot \frac{d \psi(R)}{d R}+\frac{1}{R^{2} \sin ^{2} \theta} \cdot\left(\frac{1}{\psi(\varphi)}\right) \cdot \frac{d^{2} \psi(\varphi)}{d \varphi^{2}}+ \\
& +\frac{1}{R^{2}} \cdot\left(\frac{1}{\psi(\theta)}\right) \cdot \frac{d^{2} \psi(\theta)}{d \theta^{2}}+\frac{\operatorname{ctg} \theta}{R^{2}} \cdot\left(\frac{1}{\psi(\theta)}\right) \cdot \frac{d \psi(\theta)}{d \theta}=\frac{2 m}{\hbar^{2}} \cdot U(R) \cdot U(\theta) \cdot U(\varphi)
\end{aligned}
$$

Let's make a proper replacement of variables $v=\psi^{\prime} / \psi$ over all the arguments R, θ, φ :

$$
\begin{align*}
& \left(v^{2}(R)+v^{\prime}(R)\right)+\frac{2}{R} \cdot v(R)+\frac{1}{R^{2} \cdot \sin ^{2} \theta} \cdot\left(v^{2}(\varphi)+v^{\prime}(\varphi)\right)+ \tag{1.3}\\
& +\frac{1}{R^{2}} \cdot\left(v^{2}(\theta)+v^{\prime}(\theta)\right)+\frac{\operatorname{ctg} \theta}{R^{2}} \cdot v(\theta)=\frac{2 m}{\hbar^{2}} \cdot U(R) \cdot U(\theta) \cdot U(\varphi)
\end{align*}
$$

The main idea is to find the solution of (1.1) like Riccati's type [7], that's why let's make an additional assumption below:

$$
\begin{align*}
& \left(v^{2}(R)+v^{\prime}(R)\right)=f_{1}(R), \\
& \left(v^{2}(\theta)+v^{\prime}(\theta)\right)=f_{2}(\theta), \tag{1.4}\\
& \left(v^{2}(\varphi)+v^{\prime}(\varphi)\right)=f_{3}(\varphi) .
\end{align*}
$$

Having substituted (1.4) into (1.3), we obtain an equation below:

$$
\begin{aligned}
& f_{1}(R)+\frac{2}{R} \cdot v(R)+\frac{1}{R^{2} \cdot \sin ^{2} \theta} \cdot f_{3}(\varphi)+ \\
& +\frac{1}{R^{2}} \cdot f_{2}(\theta)+\frac{\operatorname{ctg} \theta}{R^{2}} \cdot v(\theta)=\frac{2 m}{\hbar^{2}} \cdot U(R) \cdot U(\theta) \cdot U(\varphi) .
\end{aligned}
$$

According to [6], we will present a function $U=(V-E)$ in the axe-symmetrical form. It means that $\partial U / \partial \varphi=0$

$$
U(\varphi)=\text { const }=C_{0} \neq 0 .
$$

Thus, from the last equation we obtain (in the axe-symmetrical case):

$$
\begin{align*}
& f_{1}(R)+\frac{2}{R} \cdot v(R)+\frac{1}{R^{2} \cdot \sin ^{2} \theta} \cdot f_{3}(\varphi)+ \tag{1.5}\\
& +\frac{1}{R^{2}} \cdot f_{2}(\theta)+\frac{\operatorname{ctg} \theta}{R^{2}} \cdot v(\theta)=\frac{2 m \cdot C_{0}}{\hbar^{2}} \cdot U(R) \cdot U(\theta) .
\end{align*}
$$

To separate a proper variables in (1.5), we should make an assumption (below $C_{1} \neq 0$):

$$
\begin{equation*}
f_{3}(\varphi)=\text { const }=C_{1} \tag{1.6}
\end{equation*}
$$

Above (1.0) leads us to equality below:

$$
f_{1}(R)+\frac{2}{R} \cdot v(R)+\frac{C_{1}}{R^{2} \cdot \sin ^{2} \theta}+\frac{1}{R^{2}} \cdot f_{2}(\theta)+\frac{\operatorname{ctg} \theta}{R^{2}} \cdot v(\theta)=\frac{2 m \cdot C_{0}}{\hbar^{2}} \cdot U(R) \cdot U(\theta),
$$

- or:

$$
U(\theta) \cdot\left(\frac{2 m \cdot C_{0}}{\hbar^{2}}\right) \cdot U(R) \cdot R^{2}-\left(R^{2} \cdot f_{1}(R)+2 R \cdot v(R)\right)=\frac{C_{1}}{\sin ^{2} \theta}+f_{2}(\theta)+\operatorname{ctg} \theta \cdot v(\theta) .
$$

From equality above we conclude that variables in (1.5) could be separated only in cases:

$$
\begin{aligned}
& \text { 1) } U(\theta)=\text { const }=C_{2} \neq 0 \\
& \text { 2) } U(R) \cdot R^{2}=\text { const }=C_{3} \neq 0 .
\end{aligned}
$$

Above 2) case was considered in [5]. Besides, as for the expression $U(R)=C_{3} / R^{2}$ itself: presense of it means that meaning of the particle potential V is proved to differ from a total energy of quantum system E (at given locus of position space) on a proper term $\sim\left(1 / R^{2}\right)$, which could be associated with a proper influence on a particle the field of centrifugal forces.

Let's consider above 1) case: as for the condition $U(\theta)=$ const $=C_{2}$, it means we explore the case of stationary, spherical symmetry of particle potential V, as well as case of stationary, spherical symmetry of total energy of quantum system E.

In such an assumptions, last equation could be represented in form below:

$$
\frac{2 m \cdot C_{0} \cdot C_{2}}{\hbar^{2}} \cdot U(R) \cdot R^{2}-\left(R^{2} \cdot f_{l}(R)+2 R \cdot v(R)\right)=\frac{C_{1}}{\sin ^{2} \theta}+f_{2}(\theta)+\operatorname{ctg} \theta \cdot v(\theta)
$$

- or

$$
-R^{2} \cdot\left(-\frac{2 m \cdot C_{0} \cdot C_{2}}{\hbar^{2}} \cdot U(R)+f_{1}(R)\right)-2 R \cdot v(R)=\frac{C_{1}}{\sin ^{2} \theta}+f_{2}(\theta)+\operatorname{ctg} \theta \cdot v(\theta) .
$$

To separate a proper variables (R, θ) in above equality, we should make a conclusion

$$
\begin{gather*}
-R^{2} \cdot\left(-\frac{2 m \cdot C_{0} \cdot C_{2}}{\hbar^{2}} \cdot U(R)+f_{1}(R)\right)-2 R \cdot v(R)=\text { const }=\tau \tag{1.7}\\
\frac{C_{1}}{\sin ^{2} \theta}+f_{2}(\theta)+\operatorname{ctg} \theta \cdot v(\theta)=\text { const }=\tau .
\end{gather*}
$$

If we determine the functions $f_{1}(R) \& f_{2}(\theta)$ from an equalities (1.7), then substituting of such a functions into (1.4), we should obtain:

$$
\begin{aligned}
& \left(v^{2}(R)+v^{\prime}(R)\right)=f_{1}(R)=-\frac{\tau}{R^{2}}-\frac{2 v(R)}{R}+\frac{2 m \cdot C_{0} \cdot C_{2}}{\hbar^{2}} \cdot U(R) \\
& \left(v^{2}(\theta)+v^{\prime}(\theta)\right)=f_{2}(\theta)=\tau-\operatorname{ctg} \theta \cdot v(\theta)-\frac{C_{1}}{\sin ^{2} \theta}
\end{aligned}
$$

- or

$$
\begin{align*}
& v^{\prime}(R)=-v^{2}(R)-\frac{2}{R} \cdot v(R)-\left(\frac{\tau}{R^{2}}-\frac{2 m \cdot C_{0} \cdot C_{2}}{\hbar^{2}} \cdot U(R)\right) \\
& v^{\prime}(\theta)=-v^{2}(\theta)-\operatorname{ctg} \theta \cdot v(\theta)+\left(\tau-\frac{C_{1}}{\sin ^{2} \theta}\right) \tag{1.8}
\end{align*}
$$

In accordance with previous assumption, we obtain a proper system of Riccati equations [7] in regard to the functions $v=\psi^{\prime} / \psi$ (which are functions of R, θ, respectively).

Due to a very special character of such an equations, it's general solution is known to have a proper gap of above components of such a functions $v=\psi^{\prime} / \psi[7]$.

It means a possibility of sudden transformation or transmutation of quantum mechanical state of the particle (from one meaning of wavefunction to another) at definite moment of parametrical time, or existence of such a continuous solution only at some definite, restricted range of parameter t [8].

Expressing of functions ψ from equality $v=\psi^{\prime} / \psi$ in regard to R, θ in (1.8), we obtain:

$$
\begin{align*}
& \psi^{\prime \prime}(R)+\frac{2}{R} \cdot \psi^{\prime}(R)+\left(\frac{\tau}{R^{2}}-\frac{2 m \cdot C_{0} \cdot C_{2}}{\hbar^{2}} \cdot U(R)\right) \cdot \psi(R)=0, \tag{1.9}\\
& \psi^{\prime \prime}(\theta)+\operatorname{ctg} \theta \cdot \psi^{\prime}(\theta)+\left(\frac{C_{1}}{\sin ^{2} \theta}-\tau\right) \cdot \psi(\theta)=0 .
\end{align*}
$$

The 1 -st of equations $(1.9)(\tau \neq 0, U \neq 0)$ - is known to be the Bessel ordinary differential equation, it's solutions are a proper Bessel functions (Pic.2; besides, see for example 2.162, 1a [7]):

Pic.2. Bessel functions.

The 2-nd equation of (1.9) - is known to be the Legendre ordinary differential equation, it's solutions are a proper Legendre spherical functions (Pic.3; see for example 2.240 [7]):

Pic.3. Legendre (spherical) functions.

Besides, we could make a conclusion that for function $U(R)=V(R)-E(R)$ are valid an equalities below:

$$
\begin{equation*}
V(R) \sim R^{m-2}, \quad E(R) \sim R^{-2} \tag{1.10}
\end{equation*}
$$

- where $m \neq 0$. Such an assumption has a real physical sense: indeed, potential V very often has a form $V(R) \sim 1 / R$ (as in the case of gravitational field or case of electric charge field distribution), but a total energy E corresponds to the case of a proper set of discrete energy levels, which are known to be reproduced by harmonic oscillator: $E(R) \sim 1 / R^{2}$.

Besides, in accordance to [7] solutions of 1-st of (1.9) could be expressed in terms of elementary transcendental functions only in case if $U(R)=0$ or when $(n=0,1,2, \ldots)$:

$$
\tau=1 / 4-(1 / 4) \cdot(2 n+1)^{2}
$$

Let's choose as a basic model the case of accordance of total energy of quantum system E to a proper set of discrete energy levels, which are known to be reproduced by a harmonic oscillator (in spherical coordinate system):

$$
E(R)=\frac{\left((2 n+1)^{2}-1\right)}{4 R^{2}}
$$

- also let's choose a constants $C_{o} \& C_{2}$ as below

$$
\left(\frac{2 m \cdot C_{0} \cdot C_{2}}{\hbar^{2}}\right)=1
$$

- then we obtain from (1.9)

$$
\psi^{\prime \prime}(R)+\left(\frac{2}{R}\right) \cdot \psi^{\prime}(R)-V(R) \cdot \psi(R)=0
$$

- or, having chosen of a proper constant in representation of function $V(R)$, we obtain:

$$
R^{2} \cdot \psi^{\prime \prime}(R)+2 R \cdot \psi^{\prime}(R)+R^{m} \cdot \psi(R)=0
$$

- if we take into consideration (1.10).

The last equation is a classical case of Bessel ordinary differential equation [7] $(m \neq 0)$:

$$
\psi(R)=\left(\frac{1}{R^{1 / 2}}\right) \cdot Z_{v}\left(\frac{2}{m} \cdot R^{\frac{m}{2}}\right), \quad v=\frac{1}{m} .
$$

If $m=1$, then from above we obtain: $V(R) \sim-1 / R$.

In such a case, solution of the 1 -st equation of (1.9) should be represented as below:

$$
\psi(R)=\left(\frac{1}{R^{1 / 2}}\right) \cdot Z_{1}(2 \sqrt{R}) .
$$

As for the function $v=\psi^{\prime} / \psi$ in regard to the argument φ, taking into consideration (1.4) \& (1.6), we obtain [5-6]:

$$
v^{\prime}(\varphi)+v^{2}(\varphi)=C_{1} .
$$

Besides, the requiring of limitation of such a solution for all $\varphi \in[0,2 \pi \cdot n], n \in N$, leads us to an equality below [5-6]:

$$
\begin{gathered}
\psi^{\prime \prime}(\varphi)-C_{1} \cdot \psi(\varphi)=0 \\
\psi(\varphi)=C_{01} \cdot \cos \left(\varphi \cdot \sqrt{\left|C_{1}\right|}\right)+C_{02} \cdot \sin \left(\varphi \cdot \sqrt{\left|C_{1}\right|}\right) .
\end{gathered}
$$

- where $C_{1}<0$.

As mentioned above, we should take into consideration a requiring that the square of wavefunction ψ is to be a proper probability amplitude to detect such a particle in position space (per unit of volume).

It means that calculating of square of wavefunction ψ over all the volume of position space must be equal to unit $=1$. Such a requiring is used to restrict the choosing of a constants of solution to be constructed. Besides, in the case of divergence of meanings of wavefunction ψ in calculating over the variables R, θ, φ, such a wavefunction ψ should be normalized to a proper Dirac δ-function [6].

References:

1. Schrödinger, Erwin (December 1926). "An Undulatory Theory of the Mechanics of Atoms and Molecules". Phys. Rev. 28 (6) 28: 1049-1070. doi:10.1103/PhysRev.28.1049.
2. Paul Adrien Maurice Dirac (1958). The Principles of Quantum Mechanics (4th ed.). Oxford University Press.
3. David J. Griffiths (2004). Introduction to Quantum Mechanics (2nd ed.). Benjamin Cummings. ISBN 0131244051.
4. Serway, Moses, and Moyer (2004). Modern Physics (3rd ed.). Brooks Cole.

ISBN 0534493408. See also:
http://scienceworld.wolfram.com/physics/SchroedingerEquation.html
5. Ershkov S.V. Self-similar solutions of Schroedinger equation. Part I // Moscow State University, proceedings of seminar on Temporology exploring (2005) (in Russian): http://www.chronos.msu.ru/RREPORTS/yershkov_parametricheskaya.pdf.
6. Ershkov S.V. Self-similar solutions of Schroedinger equation. Part II // Moscow State University, proceedings of seminar on Temporology exploring (2005) (in Russian):
http://www.chronos.msu.ru/RREPORTS/yershkov_uravnenie.pdf.
7. Dr. E.Kamke. Hand-book for ordinary differential equations // Moscow: "Science" (1971).
8. Ershkov S.V., Schennikov V.V. Self-Similar Solutions to the Complete System of Navier-Stokes Equations for Axially Symmetric Swirling Viscous Compressible Gas Flow // Comput. Math. and Math. Phys. J. (2001) Vol.41, № 7. P.1117-1124.

