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moisture, or condensed gases, or to combinations of these causes.
And it affords an explanation of the details of reflection, which is
rigid, and at least as good as the representation given by the em-
pirical formulee of Cauchy, even as modified by Quincke.

VI. “On the Transformation of Optical Wave-Surfaces by
Homogeneous Strain.” By Oriver Hravisioe, F.R.S.
Received December 20, 1893.

Siinplex Tolotropy.

1. All explanations of double refraction (proximate, not ultimate)
rest upon the hypothesis that the medium in which it occurs is so
structured as to impart eolotropy to one of the two properties,
associated with potential and kinetic energy, with which the ether is
endowed in order to account for the transmission of waves through
it in the simplest manner. It may be elastic eolotropy, or it may be
something equivalent to eolotropy as regards the density. In Max-
well’s electromagnetic theory the two properties are those connecting
the electric force with the displacement, and the magnetic force with
the induction, say the permittivity and the inductivity, or ¢ and pu.
These are, in the simplest case, constants corresponding to isotropy.
The existence of eolotropy as regards either of them will cause double
refraction. Then either ¢ or u is a symmetrical linear operator, or
dyadic, as Willard Gibbs calls it. In either case the optical wave-
surface is of the Fresnel type. In either case the fluxes displace-
ment and induction are perpendicular to one another and in a
wave-front, whilst the electric and magnetic forces are also per-
pendicular to one another. But it is the magnetic force that is
in the wave-front, coincident with the induction, in case of
magnetic isotropy and electric eolotropy, the electric force being
then out of the wave-front, though in the plane of the normal and
the displacement. And in the other extreme case of electric
isotropy and magnetic eclotropy, the electric force is in the wave-
front, coincident with the displacement, whilst the magnetic force
is out of the wave-front, though in the plane of the normal and
the induction. Now, as a matter of fact, crystals may be strongly
eolotropic electrically, whilst their magnetic eolotropy, if existent, is
ingignificant. This, of course, justifies Maxwell’s ascription of double
refraction to electric eolotropy.

Properties connected with Duplex Eolotropy.

2. When duplex eolotropy, electric and magnetic, is admitted, we
obtain a more general kind of wave-surface, including the former two
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as extreme cases. It is almost a pity that magnetic eolotropy should
be insensible, because the investigation of the conditions regulating
plane waves in media possessing duplex eolotropy, and the wave-
surface associated therewith, possesses many points of interest. The
chief attraction lies in the perfectly symmetrical manner in which the
subject may be displayed, as regards the two eolotropies. This brings
out clearly properties which are not always easily visible in the case
of simplex eolotropy, when there is a one-sided and imperfect
development of the analysis concerned.

In general, the fluxes displacement and induction, although in the
wave-front, are not coperpendicular. Corresponding to this, the two
forces electric and magnetic, which are always in the plane perpen-
dicular to the ray, or the flux of energy, are not coperpendicular.
Nor are the positions of the fluxes in the wave-front conditioned by
the effective components in that plane of the forces being made to
coincide with the fluxes. There are two waves with a given normal,
and it would be impossible to satisfy this requirement for both. But
there is a sort of balance of skewness, inasmuch as the positions of
the fluxes in the wave-front are such that the angle through which
the plane containing the normal and the displacement (in either
wave) must be turned, round the normal as axis, to reach the electric
force, is equal (though in the opposite sense) to the angle through
which the plane containing the normal and the induction must be
turned to reach the magnetic force. These are merely rudimentary
properties. I have investigated the wave-surface and associated
matters in my paper “On the Electromagnetic Wave-surface”’
(‘ Phil. Mag.,” June, 1885 ; or ‘ Electrical Papers,” vol. 2, p. 1).

Effects of straining a Duplex Wave-surface.

3. The connexion between the simplex and duplex types of wave-
surface has been interestingly illustrated lately by Dr. J. Larmor in
his paper “On the Singularities of the Optical Wave-surface,”
(* Proc. London Math. Soc.,” vol. 24, 1893). He points out, inci-
dentally, that a simplex wave-surface, when subjected to a particular
sort of homogeneous strain, becomes a duplex wave-surface of a special
kind. To more precisely state the connexion, let there be electric
eolotropy, say ¢, with magnetic isotropy. Then, if the strainer, or
strain operator, applied to the simplex wave-surface, be homologous
with ¢, given by ¢™*x constant, the result is to turn it into a duplex
wave-surface whose two eolotropies-are also homologous with the
original ¢; that is to say, the principal axes are parallel. This duplex
wave-surface is, of course, of a specially simplified kind, though not
the simplest. That occurs when the two eolotropies are not merely
homologous, but are in constant ratio. The wave-surface then re-
duces to a single ellipsoid.
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Conversely, therefore, if we start with the duplex wave-surface
corresponding to homologous permittivity and inductivity, and homo-
geneously strain it, the strainer being proportional to ¢*, we convert
it to a simplex wave-surface whose one eolotropy is homologous with
the former two.

Remembering that the equation of the duplex wave-surface is
symmetrical with respect to the two eolotropies, so that they may be
interchanged without altering the surface, it struck me on reading
Dr. Larmor’s remarks that a similar reduction to a simplex wave-
surface could be effected by a strainer proportional to ui. This was
verified on examination, and some more general transformations
presented themselves. The results are briefly these :—

Any duplex wave-surface (irrespective of homology of eolotropies),
when subjected to homogeneous strain (not necessarily pure), usually
remains a duplex wave-surface. That is, the transformed surface is
of the same type, though with different inductivity and permittivity
operators. _

But in special cases it becomes a simplex wave-surface. In one
way the strainer is ¢!/[¢!], where the square brackets indicate the
determinant of the enclosed operator. In another the strainer is
w}/[p¥]. These indicate the strain operator to be applied to the vector
of the old surface to produce that of the new one.

Now, these simplex wave-surfaces may be strained anew to their
reciprocals with respect to the unit sphere, or the corresponding
index-surfaces, which are surfaces of the same type. So we have at
least four ways of straining any duplex wave-surface to a simplex one.

Furthermore, any duplex wave-surface may be homogeneously
strained to its reciprocal, the corresponding index-surface, of the
same duplex type. The strain is pure, but is complicated, as it in-
volves both ¢ and u. The strainer is ¢'(cp™)}, divided by the
determinant of the same. This transformation is practically the
generalization for the duplex wave-surface of Pliicker’s theorem re-
lating to the Fresnel surface, for that also involves straining the wave-
surface to its reciprocal.

Instead of the single strain above mentioned, we may employ three
successive pure strains. Thus, first strain the duplex wave-surface to
a simplex surface. Secondly, strain the latter to its reciprocal.
Thirdly, strain the last to the reciprocal of the original duplex wave-
surface. There are at least two sets of three successive strains which
effect the desired transformation. The investigation follows.

Forms of the Index- and Wave-surface Equations, and the Properties of
Tnversion and Interchangeability of Operators.

4. Let the electric and magnetic forces be E and H, and the
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corresponding fluxes, the displacement and induction, be D and B,
then )
D =¢E, B = .H, ¢))

where ¢ is the permittivity and x the inductivity, to be symmetrical
linear operators in general. We have also the circuital laws

curl H = (E, —curl B = uH. 2)

Now, if we assume the existence of a plane wave, whose unit
normal is N, propagated at speed » without change of type, and apply
these equations, we find that D and B are in the wave-front, B and
H are out of it, and that there are two waves possible. We are led
directly to the velocity equation, a quadratic in +* giving the two values
of +* belonging to a given N. Next, if we put 8 = N/v, then s is the
vector of the index-surface, and its equation is

S )
s s == - 3
~1__ I —1 ¢t ’ )

o] (su8) KT T (o8)

which are, of course, equivalent to the velocity equation (¢ El. Pa.,’
vol. 2, p. 11, equations (41)). Two forms are given, for a reason
that will appear later. I employ the vector algebra and notation of
the paper referred to, and others. Sufficient to say here that ¢! and
p~' are the reciprocals of ¢ and u; and that 8cs means the scalar
product of 8 and ¢s; for example, if referred to the principal axes
of ¢,

' 8c8 = 615+ €8+ 6355, 4)

if ¢, ¢, 63 be the principal ¢’s (positive scalars, to ensure positivity of
the energy), and si, s;, s; be the components of 8. Also, [¢™'] denotes
the determinant* of ¢=, that is, (ciczcs)™.

The operators in the denominators of (3) may be treated, for our
purpose, as linear operators themselves. But it is their reciprocals
that occur. For example, the first form of (3) may be written

[ m) =0 Q

agserting that the vectors 8 and [...]™'s are perpendicular. The
expansion of (3) to Cartesian form may be done immediately if ¢ and
u are homologous, for then we may take the reference axes i, j, k
parallel to those of ¢ and u, and at once produce

# Tt occurs to me in reading the proof that the use of [¢] to denote the deter-
minant of ¢, which is plainer to read in combination with other symbols than [e|.
is in conflict with the ordinary use of square brackets, as in (5) and some equations
near the end. But there will be no confusion on this account in the present paper.

YOL. LV, D
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+ - =0, (6)

where 8us is as in (4), with x written for ¢. Similarly as regards the
second form of (3). When the operators are not homologous, the
complication of the form of the constituents of the inverse operators
makes the expansion less easy.

As regards the second form of (3), it is obtained from the first
form by interchanging p and ¢. It represents the same surface. The
transformation from one form to the other, if done by ordinary
algebra, without the use of vectors and linear operators, is very
troublesome in the general case. But in the electromagnetic theory
the equivalence can be seen to be true and predicted beforehand.
For consider the circuital equations (2). If we eliminate H, we

obtain
—curl x4 curl B = ¢E, ©

whilst if we eliminate B, we obtain
—curl ¢ curl H = /u,H (8)

These are the characteristic equations of E and M respectively in
a dielectric with duplex eolotropy, and we see that they only differ
in the interchange of ¢ and w. When, therefore, we apply one of
them, say that of K, to a plane wave to make the velocity equation,
in which process E is eliminated, we can see that a precisely similar
investigation applies to the H equation, provided x and ¢ be inter-
changed. So, if the E equation leads to the first form in (3), the H
equation must lead to the second form. They therefore represent the
same surface. The same property applies to any equation obtained
from the circuital equations with the electrical variables eliminated,
the equation of the wave-surface, for example. If we have obtained
one special form, a second is got by interchanging the eolotropies.
The index equation being what we are naturally led to from the
characteristic equation, it is merely a matter of mathematical work
to derive the corresponding wave-surface. For s is the reciprocal
of the perpendicular upon the tangent plane to the wave-surface, so
that
rs =1, ©)

if v is the vector of the wave-surface; and from the equation of s
and its connexion with ¥, we may derive the equation of r itself. I
have shown (loe. cit., vol. 2, pp. 12—16) that the result is expressed
by simply inverting the operators in the index equation. Thus, the
equation of the wave-surface is
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.._,____Illu__ =0= r____r_c_.__ s (]_O)
“T ] (ta) K T (e

where, as before, two forms are given. Now, the final equivalence of
this transition from the index to wave-equation to mere inversion of
the two eolotropic operators is such a simple result that one would
think there should be a very simple way of exhibiting how the transi-
tion comes about. Nevertheless, I am not aware of any simple in-
vestigation, and, in fact, found the transition rather difficult, and by
no means obvious at first. I effected the transformation by taking
advantage of symmetrical relations between the forces and fluxes ;
in particular proving, first, that YE = 0 =rH, or that the ray is
perpendicular to the electric and magnetic forces, comparing this
with the analogous property sD = 0 = sB, and constructing a pro-
cess for leading from the former to the wave-equation analogous to
that leading from the latter to the index equation. It then goes
easily. However, we are not concerned with these details here.

A caution is necessary regarding the interchangeability of u and e.
They should be fully operative as linear operators. If one of them
be a constant initially, and therefore all through, we may not then
interchange them in the simplified equations which result. For
example, let u be constant in (10). 'We have now

r P r
r _i_o_rw—————-—_ — [eh))
pt® H T e

The first form is what we are naturally led to by initial assumption
of constancy of u. Now observe that the interchange of u and ¢ in
the second form gives us the first form, after a little reduction,
remembering that [u] is now u’. But the same interchange in the
first form does not produce the second, because it is more general.
So we have gained a relative simplicity of form at the cost of
generality. The extra complication of the duplex wave-surface is
accompanied by geuneral analytical extensions which make the
working operations more powerful. . The equivalence of the two
forms in (11) may be established by the use of Hamilton’s general
cubic equation of a linear operator, as done in Tait’s work. Though
not difficult to carry out, the operations are rather recondite. On the
other hand, the much more general equivalence (10) is, as we saw for
the reason following (7) and (8), obviously true. This suggests that
some other transformations involving the general cubic may be
made plainer by generalizing it, employing a pair of linear operators.

D 2
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General Transformation of Wave-surface by Homogeneous Strain.

5. Now apply a homogeneous strain to the wave-surface. Let
P
q = —-T. 12
(%] a

‘We need not suppose that the strain is pure. Use (12) in the first
of (10). It becomes

—~1

¢q P ‘;1[ = (18)

IR CAC Ry
Now the use of vectors and linear operators produces such a concise
exhibition of the essentially significant properties, freed from the
artificial elaboration of coordinates, that a practised worker may
readily see his way to the following results by mere inspection of
equation (13), or with little more. I give, however, much of the
detailed work that would then be done silently, believing that the
spread of vector analysis is not encouraged by the quaternionist’s

practice of leaving out too many of the steps.
In the first place, ¢p—'q is the same as q¢'~?, if ¢’ is the conjugate

of . So

R s R A (14)

in the denominator. Also, the first ¢~'q in (13) may be written g¢'~',
and the postfactor ¢'~! may then be transferred to the denominator.
To do this, it must be inverted, of course, and then brought in as a
postfactor. Similarly, the ¢ in the numerator may be merged in
the denominator by inversion first, and then bringing it in as a pre-
factor. We may see why this is to be done by the elementary formula

a7t = (cba)™, (15)

where @, b, ¢ are any linear operators. So (13) becomes

9 —
(Z)M(z)/ =0. (16)

[n] [p)(ap™"r'g7'q)

Now introduce some simplifications of form. Let

q

o' —

got = b, B = . (7
It follows from the second, and by (15), that
¢ = (ug) Tt = AN (18)

Woe also have [A] = [w] [0] 19)
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These three, (17) to (19), reduce (16) to

q___ﬂ_{__=o=q__ﬂ_b__, (20)

NI AN ICU)

where the second form is got from the first by interchanging \ and b,
which is permissible on account of the interchangeability of x and ¢.
Comparing (20) with (10), we see that there is identity of form.
Consequently (20) represents a duplex wave-surface whose operators
are b and N, provided they are self-conjugate. They are, for, by

the elementary formula
(abe) = c'b'd/, 21

it follows that peg) = (gpeg’)’, (22)

and similarly for the other one.

In case the strain is a pure rotation, we may take the form of ¢
(following Gibbs) as .
¢ =Li+J.j+K.k, (23)

where i, j, k is one, and I, J, K another set of coperpendicular unit
vectors. For, obviously, this makes

¢r = Lir4+J.jr+ K.kr = Iz +Jy+ Ko, (24)

Special Cases of Reduction to & Simplex Wave-surface.

6. Now take some special forms of ¢. We see, by inspection of
(17), that we can reduce either of b or N to a constant. Thus, first,

¢ = u A=1, b= plep (25)
Then (20) reduces to
a-% —omq—2% (26)
b—— 1= e
q* (6] (ab~"q)

showing that the original duplex wave-surface is reduced to a simplex
one involving eolotropy b, given by (25).
Similarly, a second way is

¢ =c b=1, A = ¢ tuc, 27
which reduces (20) to the simplex wave-surface
q.——-—-—-——q'x—————-z():q_———ql ) (28)
AT A——
(M (ara) Q@

involving the eolotropy \.
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The new surfaces (26), (28) may now be strained to their reci-
procals. Thus, take the first of (26), and put

bt
This makes bip vp =0
Pk 30
~ (v'p)?

Here the initial and final #*’s may be removed to the denominator,
and, since we also have

(b'p)* = bipb'p = Pip, (31)
we bring the first of (26) to
p—F — =o (32)

R
Now compare this with the second form of the same (26). They
are identical, except that b is now inverted. Consequently (32) re-
presents the index-surface corresponding to the wave-surface repre-
sented by the second of (26), and therefore by the first, since they
are the same. In a similar manner the strain (29) applied to the
second of (26) leads to the reciprocal of the first form.
In like manner the simplex surface (28) is strained to its re-
ciprocal by
At
P =5 (33)
Applied to the first form of (28), we get the second form with \ in-
verted ; and, applied to the second form, we get the first, with \
inverted. These inversions of simplex wave-surfaces by homogeneous
strain are equivalent to Pliicker’s theorem showing that the Fresnel
wave-surface is its own reciprocal with respect to a certain ellipsoid
(Tait, ¢ Quaternions,” 3rd Ed., p. 342).

Transformation from Duplex Wave- to Index-surface by o Pure Strain.

7. What is of greater interest here is the generalization of this pro-
perty for the duplex wave-surface itself. Take

b= (o) (34)
Then we obtain

pep = ¢! ((Ju,_l)%cc_1 (™) = pu (35)
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Ppp = = (o) pe (epT)t = o7 (36)
the first of which is obvious, whilst in the second we make use of
pe™t = (ep™) 7N 37

There are other ways in which this ¢ may be expressed, viz.,

= (on ) = o (uo)i = (o)t = (), (38)
all of which lead to o = 1. (39)

If this ¢ is self-conjugate, we see, by (17) and (35), that its use in
(20) brings us to

q ! =0o=q-—0u% | (40)

S W Y 2
RN TCTS)) ERYSICTT))

That is, the strain converts the first of (10) to the first of (40), and
the second of (10) to the second of (40). But the first of (40) is the
same as the second of (10) with u and ¢ inverted, and the second of
(40) is the same as the first of (10) with the same inversions. In
other words, the strain has converted the duplex wave-surface to its
corresponding index-surface. Observe that the crossing over from
first to second form is an essential part of the demonstration, which is
the reason I have employed two forms.

In full, the strainer to be applied to r of the wave-surface to pro-
duce the vector 8 of the index-surface (or ¢ in (40) ) is

2_ — 37 1 ~1)4,

[qﬁ]—[ 106 (on™) (41)
But to complete the demonstration it should be shown that this strain
is pure, because we have just assumed ¢ = ¢' in equation (20) to
obtain (40). Now the purity of this strain is not obvious in the form
(41), nor in any of the similar forms in (38). But we may change
the expression for ¢ to such a form as will explicitly show its purity.
Thus, we have

o
identically, and this may be expanded to

T= ¢ ctuet . o}

ot = ot (et beek (et )i,

the right member reducing to the left by obvious cancellations.

Therefore
(on)t = oot tet)o?,

by taking the square root. So, finally,
¢ =ct (epw™)t = cH (ctuet)det, 42) .
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This is of the form ¢, where ¢, is pure. Its conjugate is there-
fore ¢¢'y¢. This reduces to ¢ itself if ¢ is pure. But ¢, is pure,
because it is also of the form 6,6,0,, where 6; and 6, are both pure.
So our single strain depending on ¢ is pure.

Substitution of three successive Pure Strains for one. Two ways.

8. This is dry mathematics. But it is at once endowed with in-
terest if we consider the meaning of the expression of the strain ¢ as
equivalent to the three successive strains ¢y, ¢, and ¢,. First, the
strain

o ¢
- Y= —7 (413)
1T el T
converts the duplex wave-surface to a simplex surface. This was
done before, equation (28). Next, the strain

e (ctuch)t
pP= L d= i (44)
(] = [ef]lw]
converts the simplex surface ¢ to another simplex surface whose
vector is P, and which is the index-surface corresponding to the
wave-surface . This strain (44) is, in fact, the same as (33), and
the result is

p——~.—1°F——=o=le° -~ (45)
e Tl
1 (eap) . P

where N = ¢~#uc~?.  Finally, the strain
H ¢t
= = p
[#1] ]
converts the simplex surface P to a duplex surface 8, which is the
reciprocal of the original duplex wave-surface, the result being (40).

The interchangeability of u and ¢ shows that we may also strain
from ¥ to 8 by a second set of three successive pure strains, thus,

b= Gy, )

This is the same as first straining the surface ¥ to the simplex surface
(26) ; then inverting the latter, which brings us to the simplex sur-
face (32); and finally straining the last to the duplex surface s.

s (46)

Transformation of Characteristic Hquation by Strain.

9. In connexion with the above transformations, it may be worth
while to show how they work out when applied to the characteristic
equation itself of E or H. Thus, take the form (7), or
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—cE = Vyu'VVE, (48)
and let r=fr, v=fv%, E=f"F, - (49)
so that (48) becomes
—f B = Vi VR (50)
Now employ Hamilton’s formula
Vmn = @7_%%21}, (51)

¢ being here any self-conjugate operator. Take ¢ = f, and we
transform (50) to

— B = ViV VYR X [f1] (52)
= VOV () VOB X [f]. (53)
In this use Hamilton’s formula again, with ¢ = f~! and we obtain
= FVY (=) VVE x [/ (54)

Or, more conveniently written,
_(%3{5_’) o g Vv’(—ff%ﬁ. VVE. (55)

So far, fis any pure strainer; we can now make various special-
izations. For example, to get rid of u~' from the right side of (48),
and substitute ¢c. Take

FF —y hen S ;
T U T ) 6
] T %
which brings (55) to the form
—p B = Vy VY, (57)

which should be compared with the other characteristic, that of H,
which ig (8), or .
—pH = Vv 'VyH. (58)

The above process is analogous to our transformation from the
duplex wave-surface to its reciprocal. As then, we have an inver-
sion of operators and also a crossing over from one form to another.

Dertvation of Indew Hquation from Characteristic.

10. We may also, in conclusion, exhibit how the index-surface
arises from the characteristic, when done in terms of v up to the last
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moment. Start from the last equation (58). Hamilton’s formula
(51) makes it become

—[e]uH = VvyVeycH. (59)
The elementary formula in vector algebra,
VaVbe = b (ca)—c (ab), (60)
transforms (59) to
—[e]pH = ov (veH) — (vov) oH, (61)
or [(vow) o= [0y | B = ov (vem), ©2)
from which
o = [ (ov) o= [eln g | ow (o). (©3)

So far we have merely a changed form of the characteristic. But
the induction uH is circuital. Therefore, taking the divergence of
(63), we obtain

0=vu [(ch) c—[c] /Lg;z] Ty (veH), (64)

or, which is the same,

2

0=1v [(ch)lu—l._ [e]c™ C%] _IV (vcH). (65)

Here vcH is the divergence of ¢cH. It is the same as (ev)H.

Now (65) only differs from the velocity equation (for plane waves)
in containing v instead of the unit normal N and d?/d#* instead of ¢?,
v being the wave-velocity. Thus, let

H= f(Z—-Ut),

Ly

then we shall have v*'v'H = ¥r

where, however, Vv is specialized, being only v or &*/d*. We
therefore put v*vy* for d*/di* and Ny, for v in equation (65), thus
making

- -1
0= Ny, | (NveNw) ' [c]c—wwﬂ Nv, (NyeH)  (66)
We may now cancel out'all the vy's except the last, making

0=N [(NGN) 1 [o]c--w] T N(NveH). (67)
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Now throw away the operand NvycH, and we get the velocity
equation pure and simple, and the index equation (3) then comes by
s = Ny,

But, although the above manipulation of the characteristic equa-
tion has some analytical interest, the process cannot be always re-
commended on the score of simplicity. It is, on the contrary, usually
easier and simpler to work upon the component equations npon which
the characteristic is founded.

Presents, January 18, 1894.
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