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These groups are—

I. Methane.
II. The three methyl compounds.
III. Ethane and its derivatives.
IV. Propane and its derivatives.

If the members of a group have the same ratio of the specific heats,
we know, from a well-known equation in the kinetic theory of gases,
that the ratio of the internal energy absorbed by the molecule to the
total energy absorbed, per degree rise of temperature, is the same for
all. Hence we have the result that, with the single exception of
marsh gas, the compounds with similar formulee have the same
energy-absorbing power, a result which supplies a link of a kind
much needed to connect the graphic formula of a gas with the
dynamical properties of its molecules.

From the conclusion we have reached, it follows with a high
degree of probability that the atoms which can be interchanged with-
out effect on the ratio of the specific heats have themselves the same
energy-absorbing power, their mass and other special peculiarities
being of no consequence. Further, the anomalous behaviour of
methane confirms what was clear from previous determinations,
namely, that the number of atoms in the molecule is not in itself
sufficient to fix the distribution of energy, and suggests that perhaps
the configuration is the sole determining cause.

If this is so, it follows that ethane and propane have the same con-
figuration as their monohalogen derivatives, but that methane differs
from the methyl compounds, a conclusion that in no way conflicts
with the symmetry of the graphic formule of methane and its
derivatives, for this is a symmetry of reactions, not of form.

VIIL “On Operators in Physical Mathematics. Part IL.” By
OLiver HeAvisiog, F.R.S. Received June 8, 1893.

Algebraical Harmonization of the Forms of the Fundamental Bessel
Function in Ascending and Descending Series by means of the
Generalized Baponential.

27. Aspromised in § 22, Part I (‘ Roy. Soc. Proc.,’” vol. 52, p. 504),
I will now first show how the formule for the Fourier-Bessel function
inrising and descending powers of the variable may be algebraically
harmonized, without analytical operations. The algebraical conver-
sion is to be effected by means of the generalized exponential
theorem, § 20. It was, indeed, used in § 22 to generalize the ascend-
ing form of the function in question; but that use was analytical.
At present it is to be algebraical only. Thus, let
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Here A is the usual form of the Fourier-Bessel function (or, rather,
the function Io(z) instead of the oscillating function Jy(a), whose
theory is less easy), or the first solution in rising powers of a* of the
differential equation

(V*+a7'v)u = u, (%)

as in (71), (72), Part I. Also, B is a particular case, viz., (78), Part I,
of the generalization of the same series, (77), Part I, using the odd
powers of z, and going both ways, in order to complete the series.
And C is an equivalent form of the same function in a descending
series, (31), Part I, obtained analytically, before the subject of gene-
ralized differentiation was introduced. The analytical transformation
from A to C was considered in § 14. The present question is, what
relation does C bear to A and B algebraically ? It cannot be alge-
braically identical with either of them alone, on account of the radical
in C. We may, however, eliminate the radical by employing the
particular case of the generalized exponential that will introduce the
radical anew. Thus, (63), (64), Part I,

@~

e":....-l—( :’2'+i

I

%+ Foeen ®)

If we use this in (3), and carry out the multiplications, we obtain
a series in integral powers of @, positive and negative; thus,

‘F+"“>+““]' (6)

28. Now Binvolves all the odd powers of , whilst A involves only
the even positive powers. But the terms involving even negative
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powers in A are zero, if we follow the law of the cocfficients. So A
is also complete, and C must be some combination of the series A
and B. In fact, if we assume that

U=+ T+ ax+.... +hx M+ b 4., )

is a solution of the characteristic (4), and insert it therein, to find
the law of the coefficients in the usual manner, we find that the even
U’s are zcro, whilst the even a’s are connected in one way, and the odd
«’s and even b’s arve independently connected in another way. This

makes
% = aA 40D, (8)

where ¢ and b are independent multipliers. Now, judging from
common cxperience with this rule-of-thumb method of constructing
solutions of differcntial equations, we might hastily conclude that A
and B represented the two independent solutions of the characteristic.
Here, however, we know (analytically) that they are not independent,
but are equivalent. Therefore

C = aA+bB, 9)

where the sum of « and b is unity. It only remains to find the value
of a. This is casily obtainable, because the separate series in (6) are
rapidly convergent. But we need only employ the first series, viz.,
to find the coefficient of x°. Thus, the first line of (6) gives

V32
a=-—= { IR SVICE PVICR S TCR AN C R P }
1°1106
= yworn OO o

We sec, therefore, that the series C is algchraically identical with
half the sum of the series A and B.

To further verify, we sec that the coeflicient of @ in (6) should be
2/ times that of 2°. This requires

2 , .

2 X 11106 = § (4 2o (L4 2 (L 28 (een
or 07068 = 07067,
which is also-close.  Similarly, from the 2* scries we require

1°1106 -
T =4 (1 +4's (1 +¥ ¢! 4% (1 LICEETID

or 0277 = 0°277.
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The numerical tests in this example are perfectly satisfactory; and if
the numerical meaning of a divergent series could be always as easily
fixed, it would considerably facilitate the investigation of the
subject.

Condensed Generalized Notation. Generalization of the Descending
Series for the Bessel Function through the Generalized Binomial
Theorem.

29. Since the series A and B are particular cases of the general
formula (77), Part I, or of
/w'}/ 7
(&)

u:E—‘(-‘E.;, (11)

by taking 7 = 0 and » = % respectively, it may be desirable to find
the general formula of which the series C is a particular case. Notice,
in passing, the shorter notation employed in (11). Itis certainly easier
to see the meaning of a series by inspecting the written-out formula
containing several terms, when one is not familiar with the kind of
series concerned. As soon, however, as one gets used to the kind of
formula, the writing out of several terms becomes first needless, and
then tiresome. The short form (11) is then sufficient. One term
only is written, with the summation sign before it. The other terms
are got by changing » with unit step always, and both ways. The
value of 7 is arbitrary, though of course it should have the same value
in every term so far as the fractional part is concerned, so that, in
(11), » may be changed to any other number without affecting its
truth. Similarly, the exponential formula may be written

¢ = 2 (12)

with 7 arbitrary and unit step.
Now, to find the generalized formula wanted, we have, by (25),
Part I,

Expand this according to the particular form of the binomial theorem

got by taking n = —{ in (84), Part I, leaving m arbitrary. Or
writing that general formula thus:—

(1+ZL’)”— xr
= S (14)

which is compact and intelligible, according to the above explanation,
take n = —1%, and write 2v~" in place of . This malkes
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(t2v D= _ s (v

15
=% e (s
Effect the integration, and we obtain immediately
=3 L (2z)"
(=3=r’ (16
and therefore, by (13),
I (d&') = ¢* ——% (2'”)1 .
0 I__.... (] )2! I (17)

Here we see the great convenience in actual work of the condensed
notation. At the same time, it is desirable to expand sometimes and
see what the developed formula looks like. We then take the written
term as a central basis, making it a factor of all the rest. Thus,

Io(m)=Jii)7’€‘”‘—;—7§f{1+2”(_%_7)< 20(— T)<1+_. '

i ;— 7 (]_7_‘)‘ (r+1y (r —{—2)2
(22)7'r < (290)“(?—1)‘
oy <1+ s
30. Take r = 0 in this, and we have
I, () = e¢<1—m<1—§2:§ <1_°3f<1_ ., (19)

which is the same as (20), Part I, noting that laf there is z here.
But of course the exponential factor is now of no service, the
ordinary series A, equation (1) above, being the practical formula
when @ is small.

Take r = —% in (18), and we obtain -

To(e) = - 9);{ < 238w<’+3r; (1+...., (20)

which is the formula C, equation (3) above, the practical formula
when z is bigger than is suitable for rapid calculation by A, Observe
that these are the extreme cases, for the whole of the second line in
(18) goes out to make (19), and the whole of the first line, excepting
the first term, goes out to make (20). On the other hand, it fre-
quently happens that extreme cases of a generalized formula are
numerically uninterpretable.

To convert (18) to the form aA +bB algebraically, we may use the
exponential expansion in the form (12), but with » negatived, thus,

& = _a_}—_. (21)

=35
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Bmploying this in (18), we can reduce the series to one containing
integral powers only. The coefficient of a° is made to be

(22)

That this reduces correctly to a convergent series summing up to 3,
when » = —%, may be anticipated and verified. Also, that when
r = 0 we obtain unity is sufficiently evident. In these conclusions
we merely corroborate the preceding. But I have not been able to
reduce (22) to a simple formula showing plainly in what ratio the
formulee A and B are involved when » has any other valaes than 0
and § (or, any integral value, and the same plus %).

The Extreme Forms of the Binomial Theorem. Obscurities.

3l. There are some peculiarities about the extreme forms of the
binomial theorem when the exponent is negative unity (or a negative
integer) which deserve to be noticed, because they are concerned in
failures, or apparent failures, which occur in derived formuls. These
peculiarities are connected with the vanishing of the inverse factorial
for any negative integral value of the argument. Thus, in

(1+m)n e xr

take n = —1. We obtain
1+ a” .
— (' =ttt L L) } . (24)

Now, on the left side we have the vanishing factor (|—1)=".  So, on

the right side, the quantity in the big brackets should generally
vanish. This asserts that

l—pta*—aP+.... =o' =2 et =il (25)

where on the left side we have the result of -dividing 1 by 14z, and,
on the right, the result of dividing 1 by @41, or ="' by 1+a~
These series are the extreme forms of the expansion of (1)~ by .
the ordinary binomial theorem, and they are asserted to be algebraic-
ally equivalent, although the numerical equivalence, which is some-
times recognisable, is often scarcely imaginable.

But observe that if we choose » = 0 as well, we have a nullifying
factor on the right side also of (24). It is apparently the same as
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the other, and could be removed from both sides if it were finite. It
must not, however, be removed from (24). What is asserted is that
0x (142)~' = 0x0, where the first 0 on the right is (|—1)77, and
also the 0 on the left. o

~ Again, if we put 7 = 0 first in (23), making

( 1 +q )" Hig qﬁ"'l ‘‘‘‘‘‘ ,'.—2
’“ - | + ll )n—»l+ !u-i-l l—-l+ =5+ (26)

and then put 2 = —1, we get 0 = 0. DBut if we multiply (26) by |z,
making -

Q+2)=1+ne+ '"('Zl ——) o RN

— —2
a! a

+ (n+1) |:_l+ (n+1) (n42)|—2

Foenn, @7

we sce that the descending series vanishes when » is any negative
integer. That is, it is asserted that

(14+2)* = 14 nw+- (” ’) Bteenn, (28)

unless n is negatively integral. But when it is a negative integer
there are additional terms, though always in indeterminate form ; for
instance, co X0 when n = —1 and 2 is finite. It would appecar, how-
ever, that the value is zcro, because there is every reason to think
(28) correct (as a particular form) in the limit.

On the other hand, if we multiply (26) by |—1, and so make it
cancel the |—1, |—2, &c., in the denominators, we get, when n is —1,

(1+2)' =1—a+a'— ... +2' =2+ —, ..., (29)

which is quite inadmissible, since the right member is the sum of
two series previously found to be equivalent to one another, and to
the left member. The right member is therefore twice as great as
the lcft.

Improved Statement of the Binomial Theorem with Integral Negative
Index.

32. A consideration of the above obscurities suggests the following
way of avoiding thom. We should recognize that the zeros ('n)~
and 7, when we take # = —1 and r = 0, are indepcndent, and may
have any ratio we plcasc. Thus, first put n = —1+s in (23),
making
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(4a)*s _ ar 1 { ——1+s——7"< —2+s5—7
[—i+s |7 e\t a<1+....

AP =1
+-Lw <1+(5#7)(1+8 5 <1+.... } (30)
This being general, let » and s be both infinitely small, but without

any connexion. We know that the rate of increase of the inverse
factorial with n# is 1 when # is —1. It follows that

1
B s &
These, used in (30), make it become
s(1+1)*‘+3=,—(s——r){1+——3+3 ...
___,)_.__ =1 T(T—_l) .._2 } ¢
+s~-—7“:b +(s——a)(1+s 7) Foeee g (32)

TUltimately, therefore, we obtain in a clear manner

(14a)y = <1——Z—> <1——w+ =t .. >+;—<w*1—m“2+ ... > (33)

This seems to be the proper limiting form of the binomial theorem
when the index is negative unity. It asserts that the two extreme
equivalent forms may be combined in any ratio we please, since 7/s
may have any value. If =0, we have the ascending series only.
If 7 = s, then the descending series only. If s = 27, we obtain half
their sum. The expansion is indeterminate, but the degree of indeter-
minateness appears to be merely conditioned by the size of the
ratio 7/s.

We may also notice that the suppositions that s is infinitely small
and r is finite, so that

1 a 1 1
—iys [—ids—r  |—=1-7’

used in (30), lead us to

(1+a) ]—-1——1‘ s

{1-w+aﬂ——w’+~.. .o
— T R L } ; (34)

that is, the difference of the two extreme equivalent series divided
by 0, which is, of course, indeterminate.
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Consideration of a more general Operator, (L+v=")*.  Suggested
Derived Equivalences.

33. Some years since, after noticing first the analytical and then
later the numerical equivalence of the different formule for the
Fourier-Bessel function arising immediately from the operator
(14+v™)t by the use of the two extreme forms of the binomial
theorem (the only forms then known to me), I endeavoured to extend
the results by substituting the operator (1+wv~')®, which includes
the former, and comparing the extreme forms. Thus, calling « the
series in ascending powers of vy, and v the descending series, so
that

n(n—1) o

u—1+nv"‘+ ! S SN (35)

v=y" <1+nv+ﬁ(—n|;—‘1) V2+---'>a (36)

and integrating (with a° for operand, as usual when no operand is
written), we obtain

(n ——i)wg_{_n(n—l) (n 2)

w=1+net+ - BB B ’3 e, (37)
o n? n*(n—1? n¥(n—1)*(n—2)* .
U—E<1+;"_+ 52 + = +....>; (38)

and the suggestion is that these are equivalent. If this equivalence
is analytical, and we substitute v~ for z and integrate a second time,
we obtain

e e e (39)
n? L3(n-——1)3 n*(n—1)*(n—2)> .
AL S SN FRCD

and obvious repetitions of the same process lead us to

n(n—1) n(n—1)(n—2)

_— 7 2 I N 3 41

14 nz (lz)m & (|_3_)m i 41)
o n(n—1)"  wm(n-—1)m(n—2)y"

_@_1{ +24 Mty s bo@

which are clearly the cases » =0 and r = n of the general expres-
sion

a'n 43
VOL. LIV. I
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provided n is not a negative integer, when we know that closer ex-
amination is required.

Apparent Failure of Numerical Equivalence in certain Cases.

34. Now, although the equations following (35), (36) (excepting
(43)) are deducible from them by the process used immediately and
without trouble, there is considerable difficulty in finding out their
meaning.  Considering (37) and (38), I knew that in the case
n = —% the equivalence was satisfactory all round, though not very
understandable. When = is 0, or integral, it is also satisfactory, for
then we have merely a perversion of terms in passing from u to v.
But when I tried the case » = —%, and subjected it to numerical
calculation, with the expectation of finding numerical equivalence to
the extent permitted by the initial convergence of the divergent
series, I found a glaring discrepancy between % and v. Furthermore,
on taking n = —1, we produce

u = €7, (44)

— 2 1 1_+_|?;+E+
v_}——l tete e ) (45)
which show no sort of numerical equivalence whatever. Similarly,
n = —2 gives

3 4
u = 1—2w+'—2—m2——T3—m3+ ) (46)
=? 2t 2% 2%3%?

which also do not show any numerical equivalence. I was therefore
led to think that the equivalence in the case of the Fourier-Bessel
function was due to some peculiarity of that function, and it is a fact
that the function is the meeting-place of many remarkabilities. The
matter was therefore put on one side for the time. But, more
recently, independent evidence in other directions showed me that
there was no particular reason to expect such a complete failure.
And, in fact, on returning to the discrepant calculations relating to
n= —+, I found an important numerical error. When corrected,
the results for » and v agreed as fairly as could be expected.
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Probable Satisfaction of Numerical Hquivalence by Im’tia,l Convergence

within a certain Range for n, viz., n = —% to +1.
35. Thus, » = —% in (37), (38) produces
1.5 1.5.9 [2V
v=1- +1z|z<>‘ 6+ “9
a7 1 1%5* 1%5%9?
v = E<1+-1—6§+]W?_(16m)2+[—§—(ﬂ3w—)3+”“>‘ (49)

Here take = 4. Then
u=1—11—2(1—-11—-13(1-3L(1—-...., (50)

1 1 81 169
_%E{l'f'&(l 3. 64<1+§“-@<1+m<1+..-. . (51)

This was the test case which failed, the error arising from the
numerical -equality of two consecutive terms, and then, a little later,
of another two consecutive terms, which caused a skipping. I now
make

s 10216
w = 05880, - ;il———; .
Their equivalence requires that o

1 0588014142
—r= = 0814,
[~ roz16

I

which is about right.
When z = 2, we have

w= 13+ (= (=3 -3 =1 0= o

v = { S (1+2s +g%(1+....},
giving % = 0706, V=
which requires ) ‘

And when 2 = 1.we have

w=1—f+55(1—F% =33 Q=2 (1—.... ,

(1+ s(A+23(+85(14....;
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.. 1'0625
ging % = 0'8123, V=T
—z
. 1 )
requiring —1 = 0'76.

4

Of course with such a small value of 2, we cannot expect more
than a very rough agreement, because the convergence of the v series
is confined to the first and second terms, and we may expect an error
of magnitade of the ratio of the second to the first term.

36. Now take n = % We have

@ 1.8.7 3 1.3.7.11/2x\¢
4 ( > I3 [3 <‘> - 'f% l_é <Z> +.0ee 3 (52)
a* 1 9 3.7 )
: —g{”mﬂ_z G6ap T (oay T }s (53)
and in case of x = 1 we have
u=1+; (1= (1= =33 (0—T (1= .t (54)
,1{1+16(1+32(1+ (1+..,..}; (55)
which make w = 1°2109, v = EI?
4

]

and therefore = 1'024.

RI=]

Now this shows a large error, for the value is about 1-11. This
excess in v is, however, made a deficit by not counting the smallest
term in the v series (the third term). Omitting it, we make

1
1;_—_10?2 and 7 = 1'14.
Iz Es
Again, with # = 2, we have
= 1+—f5 (1= Q-3 Q-3 O 1 0~.e e

ok
o= (1B QA HEGHRA ]
making u = 1'365, v = —y— X 2,

. 1 1365
This makes e e T
\g; 104 X 118

which is very good.
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37. Now passing to the case of a bigger =, viz., 4, we may remark

that this differs from the known good case n = — } by an integral
differentiation, so we may expect good results again. We have
@ @ @ 52 T2
1L_1+§(\1—g<1~-(5—<1—é—2- <;—% <1—..,.. , (56)
2ot 1 1 /
=""(1+ — — veee .
v 7r"‘< 4w<1+8m<1 12m< +16w( + 67
Taking # = 1 first, giving
w=1+51—-$Q—5Q—FH 00— .., (58)
v {1+ A+ +20+220+. .., (59)
we find w = 14464, v =20 _ 1 gaee,
1772

by not counting the last convergent, that is, the smallest term in the
v series. Its inclusion makes v appreciably. too big, viz. 1-46.
Next take 2 = 2. Then

u=1+1—3 (1=} (1= (1= A~ (=3 A—unn ,  (60)
2./2
o= O QO O 5 (s (6D
giving u = 1'81275, v= ———— = 1'812,

again not counting the smallest term.
Lastly, with = 8, we have
e I NCE TYCERTYCE TACE T TCER )

17—-2%"{14-12(1—’-24(1-}— Q+33Q+% SA+E0A+. .0 (63)

giving u = 2'1260, v = 2'1256,

again neglecting the smallest term in v, though it is of little moment
in this example. The tendency for v tobe too big when the smallest
term is fully counted should be noted.

38. A further increase of = to § gives good results, and likewise
+%. Thus, for 1% we have

w=1+%r(l-He(l—ite(1—2se(1—&hz(1—...., (64)

o=|mf’{1+ o < +——< 4 ( 2 by (65)

2 1002 2002 300 4002

xg
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giving in the case of z =1,

1880, 1815 1 1'880 1°035

=1 V= 5 e Ty = oo = 1°085.

it [N [ ~ 1815

Thus we have practically gone over the ground from n = — Jto=1

with good results, so far as the limited examples are concerned, and
there can be, so far, scarcely a doubt of the existence of numerical equi-
valence, in the same sense as before with respect to the ascending and
descending series for the Fourier-Bessel function. Itremains to examine
cases between n = —% and —1. This is important on account of the
complete failure in the latter case of the numerical equivalence when
estimated in the above manner. From the already shown indeter-
minateness of the binomial expansion when n = —1, we have the
suggestion of a partial explanation, because we should arrive at the
form au + bv, wherea 4+ b = 1. But there remains the fact in-
dicated that the extreme forms of the binomial expansion are
equivalent, so that we should expect » and v to be equivalent. Since,
however, the numerical equivalence of the different forms of (1 4 )*
becomes very unsatisfactory when 7 is or is near —1, so we should
not be surprised to find that the unsatisfactoriness becomes empha-
sized in the case of w and v. Suchis, in fact, the case.

Failure of Numerical Equivalence of Derived Series reckoned by Initial
Convergence, at first slight, and later complete, when n approaches a
Negative Integer.

39. Take n = —% in (37),(38). Then

3z Ta 11@"( 152 192
= 1— 1— 1— 1— —_— 66
v 4 < 16< 36 64 <1 100’ (66)

49 / 121
v= aﬁ[ { +16£<1+321\ +48w< +} (67)
When 2 = 1, we find that
u = 0497, p =02 or 0
i :
according as we do mnot, or do, count the smallest term inv. That is,
0'4597
0'25 or 039

1 —
=
T

Now the first gives far too great a result, whilst the other, though not
so bad, is still too great. That is, the v series gives too small a
result, when the smallest term is fully included. A part of the next
term is needed, to come to u.
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When 2 = 2 we deduce that

1 4X2 X028 1°88

©w =028 = H
’ [ 128o0r 149 128 or 149’

the first case being without, ana the second with, the smallest term
in ». Both results are too great, though the error is less than the last
term counted. But this rule breaks down when we pass to z =3,
when we conclude that

0'175 X 4 x 8¢

= . = 1'3437 or 1°2454;

°u = 0175
i 11875 or 12813

Al

I
the former case being without, and the latter with, the smallest term
in . But the result is too big, and the error rule just mentioned

fails. For if we add on the smallest term a second time, we obtain
1-1604, which is still too big.

40. Since the case n = —#% is bad, we may expect n = —-2; to be
worse. We have
92z , 9.19/2\* 9.19.29/2\? .
=1t o () =R D 6
=T RR <\10> B <1O> oo (“8)
1 81 " 81.361
) = e e ai T et P 69
T |_.1{§{ 1+ 100w+|_2_ ooay: } (9

Here take = 1, then we conclude that

42
[ gg r 181"

u = 0'42,

But it cannot lie between these limits, being only a little over
unity. So add on tov the next term, the third in the v series. This
will give

which is still too great, and, of course, the error rule is wrong, as we
suspected just now.

Whilst there does not appear to be any departure from numerical
equivalence of # and v in the sense used between » = —4 and
n = +1, it appears that when # is below —%, there is a tendency for
the v series (convergent part) to give too small a result. This ten-
dency, which is at first small, becomes pronounced when » is down to
— %, at least for small values of z. It is likely that for large values,
the rule in question might still hold good. But sinking below — £
towards —1 makes the tendency become a marked characteristic, and,
in the end the rule wholly fails except for an infinite value of .
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Success of Alternative Method of Representation by Harmonic Analysis.
41. We may then adopt another method. Thus, (44) and (45)

arise from
%= 1—y 4 v Ii—vi4t.. .., (70)

V= V=V V=Vt (71)

With unit operand, the » series is immediately integrable without
any obscurity, giving ¢ The v series leads to an unintelligible re-
sult. But let the unit operand be replaced by its simple harmonic
equivalent. Then

1—-v 1

— - 2 —
= (1-V+V—....)V = =

00
J' cos max dm

0 1 {*cos ma
=(1=V) ;L 1+m?
= (1-V)3ev? =2, [(72)
when z is positive, which is the required result. We are only con-
cerned with positive @, but it is worth noting that when 2 is negative,
this method makes v zero. This is also in accordance with the
analytical method, or (70) directly integrated, for we suppose the
operand to start when @ = 0, and to.be zero for negative x, which
makes  also zero then.

42, As regards the derived formula (39) to (42), although I have
not examined them thoroughly to ascertain. limits within which the
suspected numerical equivalence may obtain, I find there is a rough
agreement between (41) and (42) when n = % and m = 38, even with
@ == 1, and the convergency confined to the first three terms of v, the
results being

AT T\t T 73
U 1+ 2 <1 6 <1 o4< S K1 73)
@ 1 1/ 27
= e e A ———— —-— . 74
(5)2{1+8w<1 16w(1 vy <1 e (74)
which, when 2 = 1, give
w = 147, v = 141,

Again, with the much larger value # = 9, we have
% = 3'88, v = 387,

which is a very close agreement.
This is promising as regards further numerical agreement when m
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is made larger, but the promlse is not fulfilled when m is as big as 10.
Take n = % and m = 10 in the series (41), (42), so that

@/ @ 3z
u = 1+§(1_2__§ﬁ)<1 P 310<1_ , (75)

} 1 ?10
v = \I )9{1+21(j < +2210_a;<1+3 210 <1+ ceae . (76)

Here @ = 1 makes u a little less than 1}, while the first term of v is
2:965, which is very little changed by the next two. But observe a
fresh peculiarity in the v series. The change from convergency to
divergency at the fourth term is so immensely rapid that this fact
alone might render the series quite wunsuitable for approximate
numerical calenlation. A portion of the term following the least
term might be required (though not in the last example), but when
this term is a large multiple of the least term, no definite information
is obtainable.

What is the Meaning of Equivalence ?  Sketch of Gradual Development
of Ideas concerning Hquivalence and Divergent Series (up to § 49).

43. In the preceding, I have purposely avoided giving any de-
finition of ¢ equivalence.” Believingin example rather than precept,
I have preferred to let the formule, and the method of obtaining
them, speak for themselves. Besides that, I could not give a satis-
factory definition which I could feel sure would not require subse-
quent revision. Mathematics is an experimental science, and
definitions do not come first, but later on. They make themselves,
when the nature of the subject has developed itself. It would be
absurd to lay down the law beforehand. Perhaps, therefore, the best
thing I can do is to describe briefly several successive stages of
knowledge relating to equivalent and divergent series, being approxi-
mately representative of personal experience.

(a). Complete ignorance.

(b). A convergent series has a limit, and therefore a definite
value. A divergent series, on the contrary, is of infinite value, of
course. So all solutions of physical problems must be in finite terms
or in convergent series. Otherwise nonsense is made.

The Use of Alternating Divergent Series. Boole’s Rejection of
Continuous Divergent Series.

44. (c). Eye-opening. But in some physical problems divergent
series are actually used for calculation. A notable example is
Btokes’s divergent formula for the oscillating function J.(x). He
showed that the error was less than the last term included. Now
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series of this kind have the terms alternately positive and negative.
This seems to give a clue to the numerical meaning. The terms get
bigger and bigger, but the alternation of sign prevents the assump-
tion of an infinite value, either positive or negative. It is possible to
imagine a finite quantity split up into parts alternately positive and
negative, and of successively increasing magnitude (after a certain
point, for example). It is a bad arrangement of parts, certainly, but
understandable roughly by the initial convergence. So the use of
alternating divergent series may be justified by numerical convenience
in an approximate calculation of the value of the function.

But, by the same reasoning, a direct divergent scries, with all terms
of one sign, is of infinite value, and therefore out of court. It cannot
have a finite value, and cannot be the solution of a physical problem
involving finite values. This seems to be what Boole meant in his
remark on p. 475 of his ¢ Differential Equations’ (8rd edition) :—* It
is known that in the employment of divergent series an important
distinction exists between the cases in which the terms of the series
are ultimately all positive, and alternately positive and negative. In
the latter case we are, according to a known law, permitted to employ
that portion of the series which is convergent for the calculation of
the entire value.” He proceeded to exemplify this by Petzval’s in-
tegrals. The argument is equivalent to this. Change the sign of
in the Series C, equation (3) above. Let the result be C'. Then we
must use the Series C' when z is positive, and C when z is negative.
This amounts to excluding the direct divergent series altogether, and
using only the alternating. That is, we have one solution, not two.
Professor Boole did not say what the “known law ” was. His above
authoritative rejection of direct divergent series led me away from the
truth for many years. The plaunsibility of the argumentis evident, as
evident as that the value of a direct divergent series is infinity.

Divergent Series as Differentiating Operators.

45. (d). Later oun, divergent series presented themselves in an
entirely different manner. In the solution of physical problems by
means of differentiating or analytical operators, the operators them-
selves may be either convergent, or alternatingly divergent, or directly
divergent. That is, they are so when regarded algebraically, with a
differentiator regarded as a quantity. When the operations indicated
by the operator are carried out upon a function of the variable, the
solution of the problem arises, and in a convergent form. Here, then,
we have the secret of the direct divergent series at last. It is nume-
rically meaningless, when considered algebraically, with a quantity
and its powers involved. But analytically considered, the question
of divergency does not arise. The proper use of divergent series is as
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analytical operators to obtain convergent algebraical solutions. The
series C and O’ above referred to are then truly the two independent
solutions of a certain differential equation, and neither should be
rejected, for they are natural companions.

Disappearance of the Distinction between Direct and Alternating
Divergent Series.

46. (¢). But, still pursuing the subject along the same lines, this
view is soon found to be imperfect. For a given operator leading to
a convergent solution one way may lead to a divergent solution by
another. Or it may lead to the same algebraical function by diverse
ways. These and other considerations show that divesgent series,
even when continuously divergent, must be considered numerically
as well as algebraically and analytically. But in the analytical use
of a direct or continuously divergent series every term must be used,
if the result is a.convergent series. Yet it is plain that we cannot count
the whole divergent series numerically, because it has no limit. And
on examination we find that the initial convergent part of the con-
tinuously divergent series gives the value of the function in the same
sense as an alternatingly divergent scries. In the latter case we
come nearest to the value by stopping at the smallest term, where
the oscillation is least. If we now make all terms positive, so that
the series is continuously divergent, and treat it in the same way,
and stop when the addition made by a fresh term is the smallest,
we come near the true valne.

We now seem to have something like a distinet theory of divergent
series. The supposed distinction between the alternating and the
continuous divergent series has disappeared. Analytical equivalence
of two series, one convergent, the other divergent, may require all
terms in the divergent one to be counted. Numerical equivalence
exists also, but is governed by the initial convergency.

Broader and Deeper Views obtatned by the Generalized Calculus.
Analytical, Numerical, and Algebraical Hquivalences. FHquivalence
not necessarily Identity.

47. (f). The last view is a distinct advance, and it is certainly
true in the case of many equivalences, including some which are of
importance in mathematical physics. But, again, further examina-
tion shows that the last word has not been said. For on seeking to
explain the meaning and origin of equivalent series, we are led to a
theory of generalized differentiation, involving the inverse factorial
as a completely continuous function both ways, and to methods of
multiplying equivalent forms to any extent, and in a generalized
manner, all previous examples being merely special extreme cases of
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the general results, We also come to confirm the idea we have
recognized that equivalence may be understood in three distinct senses.
viz., analytical, algebraical, and numerical. The first use made by me
of equivalent series, one of which is continuously divergent, was
analytical only. The second use was numerical. The third is alge-
braical, through the generalized algebraical theorems. We also see
that equivalence does not necessarily or usually mean identity,
Thus the series A, B, C are analytically, algebraically, and numeri-
cally equivalent with a positive. But they are not algebraically
identical. The identity is given by C = 4(A+B). This point is
rather important in some transformations, and explains some pre-
viously inexplicable peculiarities. Thus, the series A is real whether
2 be real or a pure imaginary. In the latter case, we get the oscil-
lating function Jo(«), the original Fourier cylinder function. But
the equivalent series C becomes complex by the same transformation.
The above-mentioned identity explains it. The second solution of
the oscillating kind is brought in, as will appear a little later (§ 70).

Partial Failure of Interpretation of Numerical Value of Divergent Series
by Initial Convergence. Further Baplanation yet required.

48. (g). But whilst we thus greatly extend our views concerning
divergent series, the question of numerical equivalence, which just
now in (f) seemed to be about settled, becomes again obscured. The
property that the value of a divergent series, including the con-
tinunously divergent, may be estimated by the initially convergent
part, is a very valuable one. But the property is not generally true,
and, in fact, sometimes fails in a very marked manner. We must,
therefore, reserve for the present the question of numerical equiva-
lence in general, and let the explanation evolve itself in course of
time. If definitely understandable numerical equivalence of series
were imperative under all circumstances, then I am afraid that the
study of the subject would be of doubtful value. But the matter has
not this limited range, a very important application of divergent
series being their analytical use, which is free from the numerical
difficulty. For example, the extreme forms of the binomial theorem
may, when considered numerically equivalent, be utterly nseless. Yet
they may be employed to lead to other series, either convergent, or it
may be divergent, but with a satisfactory initial convergence con-
trasting with the original. Note that the series may sometimes take
the form of definite integrals, apparently of jnfinite or of indefinite
value. In any case we should not be misled by apparent unintel-
ligibility to ignore the subject. That is not the way to get on. We
have seen the error fallen into by Boole and others on the subject of
divergent series. It is not so long ago, either, since mathematicians
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of the highest repute could not see the validity of investigations based
upon the use of the algebraic imaginary. The results reached were,
according to them, to be regarded as suggestive merely, and required
proof by methods not involving the imaginary. But familiarity has
bred contempt, and at the present day the imaginary is a generally
used powerful engine, which I should think most mathematicians
consider can be trusted (if well treated) to give valid proofs, though
it certainly does meed cautious treatment sometimes, and perhaps
auxiliary aid.*

Application of Generalized Binomial Theorem to obiain a Generalized
Formula for log .

49. Let us now pass on to view the logarithm in its generalized
aspect. One way of generalizing log« is to regard it as the limit
of (d/dn)a® when n=0. Now, using the generalized binomial
theorem
2|n

(+ar=3 (1)

—
[7jn—7
where r has any value and the step is unity, we obtain by this process

log (1+2) = 2%%( e ><n=0)

fn—r

where the accent means differentiation to n, after which the special
values are given to the argument. Or, since

. ' ' ’
if f () is the inverse factorial, therefore
siner [ f1 (—r (o
But also e =2 rr <‘} ((“""))—. .ffg(); > %0
f() =1,  f(0)=C = 05772, 3 ar i‘;;tl =1,
by § 17 and equation (94), Part I. So we reduce to
log (142) = —C+3 af (r) f'(—r). (81)

* Perhaps we may fairly regard the theory of generalized analysis as being now
in the same stage of development as the theory of the imaginary was before the
development of the modern theory of functions. Not that I know much about the
latter ; the big book lately turned out by Forsyth reveals to me quite unexpected
developments.
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50. To obtain the common formula for the logarithm, take » = 0.
Then, since

F=0=1 f(==-1, fl=9=p F(-9=—p &,
we reduce (81) to
log (1+a) = —C+f'(0)+wf’(~1)+!zf( 2)+ f’( 8)+....
=ae—g@®+ it —fat+.... . (82)
‘When » =  in (81), we have

log (142) = —C+~ {J( ) %m%ﬂzg%-{-%mg‘f,(“%)—,,

I (3)
F&)

Now here all the differential coefficients of the inverse factorials
may be put in terms of f'(—%) by means of the formula

JF @) +nf'(n) = f'(n—1), (84)

+

1
§T

+%w—§f’@—.... [ G

which follows from
nf (n) = f(n—1); (85)

but since the resulting formula does not seem to be useful, and is
complicated, it need not be given here.

Deduction of Formula for (14 ).
51. If we differentiate (81) with respect to z, we obtain

1

5= STV e-Df (=)
=3 af () f (=r=1), (86)

where the second form of the series is got by increasing » by unity in
the first. Here note that we have a definite expansion, whereas in
§ 32 we found the binomial expansion to be indeterminate. = When
r =0 in (86) we have, of course, the special form 1—az+a’—.... .
It is also right when » = 3.

Deduction of Formula for e=,

52. Now regard (86) as true analytically, and we can obtain a
formula for =%, For, first put v~ for @, giving
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e = IO S (—r—). €
Integrating, we obtain
=3 o [T (—r—0). (88)
This is quite correct when r = 0, when we obtain the ordinary
formula 1—x+.... . Another form of (88) is
e = = (| —p—ry BELEDT (89)

Now when r =, the square of the sine equals unity throughout,
giving

1 ’ 5\/ .8 5
== ;{(ﬁg)’w—w(l—_ﬁ) (=Dt +( =D e+ ...

+ () et () 2+ (13 2+ . } (90)

Since we also have
ot ad e

[i+ S +Fil+"" , (91)
the product of (90) and (91) should be unity. That is,

Y o e (o
== UL e T T e

(', ()" (28) }

(=¥, 1= (=2 (Y (idy

+‘”{ e} '+ T e Ty 13%'“‘}
(=3 =1y =2y ()

+a { 121 1% lj@ "+l3l~+ ]4_<+--~}

Feeee . (92)

Going by the ordinary principles of the algebra of convergent
series, we should conclude that the coefficient of #° was —#? and that
the coefficients of the other powers of z were zero. But this rule is
not generally true in series of the present kind, as we have already
exemplified. Therefore, to see how it goes in the immediate case, I
have calculated the value of the coefficient of 2°. By (84) we have
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1+f'(") Hn—1) (93)

HOREICEDN

and from this we may derive, when r is a positive integer,

_LO+y 1 f(=bH o4
TRy TEHERERRR oy (99)
and also
S(=r—1}) 1 L =
p e— T+1+ Fope b= (99)

Therefore, when r is positively integral, we have
Fo+d) _ f(=r—13) (06
FeED T i) )
which makes the coefficient of 2° in (92) become
—2F4(3—2) =P + =D +2—D)+ -1 C+i+2-F)+....,

where, for brevity, F stands for f'(—3)/f(—%). It is readily seen
that the complete coefficient of F vanishes, and the remainder reduces
to

4 4 4 . \
_<4+§+52+§§+....> =-T. o7

Therefore the coefficient of 2° in (92) contributes.one-half of the total,
and the other half must be given by (or rather, be equivalent to) the
sum of the terms involving . Although I have not thoroughly
investigated this, there did not appear to be any inconsistency.

Remarks on Hquivalences in Factorial Formule. Verifications.
53. If it is given that
F(a) =3 a'p (), (98)

it does not, as already remarked in effect, follow that ¢(r) is a
definitely unique function of ». But it is sometimes true, and then
the equation

0=73 arep(r) (99)

may require the vanishing of every coefficient. For example, using
(88) above, if we differentiate it to & we obtain

—e7=3 a7 f (r—1) f () f(—r—1)
=3 w"[f(r)]zﬂ;jr—'li2 . (100)
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Therefore, by adding this equation to (88), we obtain

7'2)

0= 3 [P { fi(—r—n)+ LD

(101)

Now it is a fact that this is true, term by term, when » = 0, 1, 2, 3,
&e. But (101) is not true in the same manner generally. Only
when f(n) = 0, that is, when = is a negative integer, do we have

nf'(n) = f'(n—1), (102)
by (93), which is general. Put'n = —r—1 to suit (101). Bat

- 3

—r—1 cr+1

f’(—’)'—'l)——f,(_r—2) ___f(—’f"—l) (103)

by (92). Therefore (101) is the same as

o=satimPGE =3 TREEDT gy

which does not vanish term by term, except for the special values of
r indicated. Integrating (104), we obtain

constant = 3, lc? i‘i;ﬁf . (105)
T

54, The case » = 0 we have already had, when the constant is 1,
so it should be 1 generally. The cdse » = § is represented by

2 [at ot 3t at x5 i
1=..{... T _> <_, L, (06

3 =z

and the following is a verification :—The right member is

2 1 s 5 3 5 F
(VTR T Vi gvi—LL L)
— 2 (tan —' y—i4 ta’nb——l 3 = Et -1 V i‘f'Vé
T v V=g 1—vyiy
2 —1
= ;tnn co=1. (107)

Although the validity of this process of evaluation may be doubted
there is no inconsistency exhibited.
655. The other formula of a similar kind, viz.,

tl

1=3 Y s SnT (108)

VOL. L1V, K
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when similarly treated, gives
1=3v'f(—=r) =2 V[ () =¢ (109)

That is, €1 = 1, which is a case of Taylor’s theorem, if we do not go
too. close to the boundary where the operand begins. That is,
regarding the operand as F (x), it is turned to F (@ +1).

Application of Generalized Eaponential to obtain other Generalized
Formulee tnvolving the Logarithm.
56. Now return to the fundamental exponential formula
=73 w’f(’r), (110)

and derive from it some other logarithmic formule. Differentiate to
7, then

0= eloga+3 a'f’ (v). (111)
A second differentiation to r gives
0 = —c(log 2)*+ 3% «'f"(r). (112)
A third differentiation gives
0= cr(log e+ " (7, (113)

and so on. Or, all together,

_ 2w Zaf () Zaf () _
logz = TSaft) T TS af(n  Safin) (114)
Now combine them to see if they fit. Thus, we have the elementary
formula

)2
et = ew{1+ 1ogw+<]—°i—’“l+.... } (115)
and this, by the use of (llzl), becomes
S o f—f +E_ TR ), (116)

which, by Taylor’s theorem, is the same as

Saf(r—1) = a3 af(r) = aev, (117)
as required.
57. Again, differentiate (111) to 2. We obtain

0 = eflog x+e*a + 3, rar=if' (r)
= =3 &f' (")t + 3 ar(r+ 1) f (r+ 1), (118)
by using (111) again, and (110). So
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=3ty (r) =% o (r+1)f'(r+1)
=3 o {f'(r—1)—2f'()}. (119)

Here the factor of 2’ is identical with f(r), by (84), which corrobor-

ates.
58. Returning to (111), if we try to make a series for logz in

powers of 2 we obtain

—logz =3 mf<1-m+|”§—. ... >f'('r)

=3 {f’('l’)—f’(’f—l) _’_é f’(7—2)-—l:—:f'(’r—3) + e } (120

This is done by making 2" be the representative power throughout,
by reducing the value of 7 by unity in the second term in the first
series, by two in the third term, and so on. Or

—sol {f(q.)__f(y_l)+éf(r—2)-—§f(r—3)+.. . b e

L = gy .
' _Exd—y—-lz . (122)

This is striking, but not usable.
Also, if we try to get a series for 2! we fail. The property (84)
comes in, and brings us to ™' = 2~ in the end. This failure is not
obvious a priort in factorial mathematics.

Deduction of a Special Logarithmic Formula.

59. Now let the formula (111) be specialized by taking r =0. We
then have

—logx = *[f'(0) +af (1) +2*'(2) +....
+a ' (=)t (—2)+.... 1. (123)
Here, for the negative values of n we have
S(=D=1 f(=2)=—1 f(=8) =2, f(—49=— (124
and so on, whilst for the positive we have
J'©© =06 f)=C-1 f()=3(C-1-%),

j’(n):l%{C—- <1+71-+g-+....+:;>}, (125)
- K 2
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by (84). TUsing these in (123) we obtain

—(logz+C) = _’<iz %+%—§4+>
—”{ ‘ (1+1)+f3 (14+3+1 )+....}. (126)

The first series is the ordinary expression for 2! with the terms
inverted, whilst the latter contains a reminiscence of the companion
to the Fourier cylinder function.

60. To see whether there is a notable convergency for calculation,
take # = 2. Then

~2 = 01353,
T WSS SO
x g
This is evidently about ¢ by the look of it, especially when diagram-
matically represented. Also

|2 (1+2)+.... = 9"7479.
So (126) gives
log 2 = 0'1853 X 9'7479 — 0'5772—0375 X 0'1353
= 0'6909.
By common logarithmic tables we find log 2 = 06923. The differ-

ence is 000014, Doing it another way, we may prove by multiplication
that

e { (1+ )+I%(l+1+ D+ }
e \“"3—[% , (127)

which is an inferesting transformation. This, with @ = 2, gives
1:3208, and produces a much closer agreement. It is probably for-
tuitous.

Independent Hstablishment of the Last.
61. We can establish (126) independently thus:—We have

1of = (128)

£ € @

o z 2 2

T 2

——— 9
. B |i+""' (129)
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Integrate to . Then

1 |2

/1
logz +C= —e—“’K%——-;‘Z-}-‘B-—.. ..>+m——-§-

@
when O is some constaut introduced by the integration. To find it,
note that the series with the exponential factor vanishes when @ is
infinite ; so (130) gives
3
C=a— ! + 3=
It is not immediately obvious that the function preceding the
logarithm in (181) increases infinitely with 2. DBut by (127) we may
regard it as the ratio

.. —loga, with 2 = co. (131)

+5 (1+‘)+| (134D +en

: (132)
1+w+ +

1‘%+

and we see that the terms in the numerator become infinitely greater

than those to correspond in the denominator.

A Formula for Buler's Constant.

62. Next examine whether (131) gives a rapid approximation to
the value of C. When z = 1 we get

1—g+ds—5%+.... —0 =077, say.
When # = 2 we get 18203 — 0°6908 = 0°6300.
When 2 = 3 we get 16888 —1'1098 = 0°5790.

So with @ = 3 the error is about ;15 only. The usual formula
1 .
C=14+1+1+.... +;-—-10gr, with 7 = co,

is very slow. Ten terms make 0'62. Twenty make about 0:602,
which is still far wrong. We see that (131) will give C pretty
quickly with a moderate value of .
63. In passing, we may note that the function
&+| (1+2)+ (1+ +3)+.... (133)

is represented by

R RS Raa (RS S Y (134)
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and also by

2 m3

€x<mf%%+%g_....> = (vIi—3vi+iv7r—....) (135)

v
v—1

— —1\ — \% — v
= log (1+v™) = log (V-—1>Gz log S (136)

which may be useful later.

Deduction of Second Kind of Bessel Function, K,(z), from the Generalized
Formula of the First Kind.

64. A similar treatment of the generalized formula for the Fourier-
Bessel function leads to the companion function. Thus, take

L(@) =2y [f ("], (137
as in (76) Part I, the value of y being fa* Differentiate to ».
Then

0 = Io(z) log y +23 v f(r) f(v). (138)

Here take the special case r = 0. Then we have
0 = To(2) logy

+2{ Oy~ >(W<o 2>+(,)2<c e

{ll__ ?£_|1+ :’, } (139)

1|2

The third line is apparently zero. But it must, as we shall see,
be retained, though in a changed form. Or

S
—1 _—I1+l:3 (‘2)2(1+2)+

(IJ)Z(I+ +3/

~Ty(z) (log 3+ C). (140)

Another way. Automatic Standardization.

65. Now the right member is certainly not zero, for it represents
the companion of Iy(z), as may be proved in various ways, classical
and unclassical. -One way is from the formula for I,(x), thus,

— ?/i Y T B .
L(x) = n <1+ll (1+n)+|_2_(1+n)(2+n)+....>. (141)
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When # is not an integer, 1,(z) and I_,(z) are different, and repre-
sent two independent solutions of the characteristic differential equa-
tion. But when = is any integer, positive or negative, they become
identical, so only one solution is got. Then another is (when n = 0)
represented by the rate of variation of I,(z) with % when = = o.
Thus, :

dlL, () 1 f'(n)
1 1
n y2< -+ — >
;I{E K 1+’)’ln 2 +n . 1’ 142
+@ {Ll_(l+n)2+ 2 (1+71)(2+n)+ | (142)

which, when #n = 0, is by inspection the function on the right side of
(140). Notice that this method of obtaining the second solution,
like the just preceding method, gives it immediately in the form
properly standardized so as to vanish at infinity. The constant C
‘comes in automatically, and requires no separate evaluation.

The Operator producing K,(z).

66. But our immediate object of attention should be the function
on the left side of (140). How it can be equivalent to the right
member is a mystery. It is certainly an extreme form, if correct.
We may write it in the form

2—AY3 ..., (143)
where A is d/dy. Now the other function Iy(2) is

A1 A2 A-S
I R E Mt
+ i -i-B +|§_

Feenn, (144)
without any mystery, and we see at once that these forms are ana-
logous to

€= A=A+ A—A L, (145)

@ =1+A"H+ATH+ARH L, (146)

the latter, corresponding to (144), being obvious, whilst the former,
analogous to (143), is an extreme form already considered and ex-
plained ; see equations (71), (72). The unintelligibility of (143} is no
evidence of its 1uacuula,cy More puzzling things than it have been
cleared up.

67. We may also employ the special formula (126), of which we
had separate verifications. Multiply it by ¢ and then write A~ for
2. Thus,
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0=(C+logA~")ed "+ (A—AY1+AY2— AR+, ...)
A—Z
-—<A“+—|E—(1+%)+....>, (147)

where we see that the operator (143) appears. Integrating, we
have

2
A—A"14.... = y+(~r’2«)~2(1+§)+.... —(C+ log A1) Ty(2), (148)

comparing which with (140), we see that
(log A™) Ty(2) = T,() log f;" ; (149)

for which a verification wounld be desirable.

Companion Formule, Hy(qz) and K,(qz), derived from Cumpanion
Operators, empressed in Descending Sertes.  Also tn Ascending
Sertes.

68. Passing, however, at present to more manageable operators
involving the two solutions and different forms thereof, it will be
convenient to introduce a mnotation and standardization which shall
exhibit the symmetry of relations most clearly. Thus, let

2 14
(ge) = (s (1:0)
2
Ko(g@) = ¢z ——V'vﬁ' (151)

Here ¢ is a constant and v is d/da. Superficially considered, these
functions only differ in one being 7 times the other. But the common
theory of the imaginary does mot hold good here, or in operators
generally. TIn a descending series we have

2 \t 1 1% 1°8%? 1
T \ = el [ R e Wttt
Hy(ga) = ¢ <W> {1+8gw+'3(8w+E(ng)3+.... boasy
as already shown. It is twice the function C, equation (3). Simi-
larly, we may integrate (1561). Introduce the factor ¢4, thus,

\Y%

K (g2) = cte e 5 o

2y 9
o — [
(*—v*)4 (29

At/
vV—v

= 2¢

) (153)

qu
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Expand in ascending powers of vy, and then integrate ; then

D) — ez vy, 1.8.5 2\ <4,
Ky(qu) = ¢7¢ {1+4(J+|2 K4Q>+ ,,_3 < >+ “'}<7rgw>' (154)

"(x/ 2\ 1 1232_ 123252 )
=t (\W{Zw> {1~8gw+|_f_{(8qw)2 E(gg,@s'i'“ oo } . (155)

Thus the function Ky(qa) only differs from Hy(¢z) in the changed
sign of gw, except under the radical. These are the most primitive
solutions of the characteristic equation, and are useful as operators
relating to inward and outward going cylindrical waves, as well as
for numerical purposes. The function K,(gx) is also expressed by

DL (1)t

2
K(q2) = ;{ + 2242

2°4%6*
~T,(qz) (log %§+c>} . (156)

By Ty(qz) here and later should be understood merely the ascending
series

X
L(gz) = 1+ 17 _2242+2({426, ceee . (15D

Transformation from Ky(qa) to the Companion Osecillating Functions
Jo(sz) and Gy(sx), both in Ascending and Descending Series.

69. The conmection between these functions H, and K, and the
oscillatory functions is very important, but was in one respect
exceedingly obscure to me until lately. Thus (157) and (156) are
usually reckoned to be companion solutions (unless as regards the
numerical factor). But if we take ¢ = s¢ in (157), the function
remains real, and becomes the oscillatory function, the original
cylinder function of Fourier. Thus

2 2 6.,,6

T,(gw) = Jo(sw) = l_fzzi"';zzz st (158)

On the other hand, the same transformation in (156) makes it com-
plex, on account of the logarithm. Thus, using

log g& = log siz = log sz + log © = log sz + % 4=, (159)
by the well-known formula for €72 we convert (156) to

Ko(qz) = Go(sz) —iJo(sz), (160)
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where Jy(sz) is the same as in (158), and G,(sz) is its oscillatory com-
panion given by*

s*?

Gro(sw)zi{ i _42( 41

MG‘ Dt

—Jo(s) <log 2y 0)} .6l

What is obscure here is the getting of only one oscillating function
from I,(qz),and of two from Ko(qz). In corresponding forms of the
first and second solutions we should expect both oscillating solutions
to arise in both cases. However this be, the transformation (160) is
in agreement with the other form (155). For, if we make the change
q = st in it, we obtain the same formula (160), provided J, and G, are
given by

Jo(sz) _Q ! > [:R(('os—}-sm) sz+ St (sin—cos) sz |, (162)
Go(sz) = ;2;) [R(cos—sin) sw+8i (cos+sin)sa |, (163)

where R and S¢ are the real functions of sz given by

178* 123%%77 1238 1%3%?
R—1+E@W+E(8g$)i o0 e —-l'_!:{_('s—'s‘g)_?" @W_.... 9
(164)
1 123%2 1/ 1 123%5% .
= st Gt = 1le pesr ) (e

Now here (162) is Stokes’s formula for Jy(sz), known to be equi-
valent to (158).  And (163) shows that this kind of formula for the
oscillating functions allows us to obtain the second solution from tvhe
first by the change of sin to cos and cos to —sin. The function
Gh(sz) of (163) may be shown to be equivalent to the Go(sz) ot (161)
by other means, and certainly verifications are desirable, because
transformations involving the square root of the imaginary are some-
times treacherous.

Transformation from Ho(qz) to the same Jo(sw) and Go(sz). Faplaia-
tion of Apparent Discrepancies.

70. Now as regards the changed form of the Hy(qa) function of

(152), there is a real and once apparently insurmountable difficulty.

% T have changed the sign of K, and G from that used in my ¢ Electrical
Papers’ (in particular, vol. 2, p. 445), in order to make them positive at the
origin,



1893.] On Operators in Physical Mathematics. 139

‘We know that He(g2) and 21,(g2) are equivalent, both analytically and
numerically. Why, then, does the first become complex, whilst the
second remains real when we take ¢ =si? They cannot be both true
in changed form. Thus (152) becomes (doing it in detail)

<.7’z > ?(R+8) = ( 2 > %/T_g (cos+isin) sz. (R—1. )

- <7731§>$ (cos +i sin)sz . { (R—S1) —i(R +80) }
= <7rs > [:R(cos—i—sm)sm-&-Sz (sin—cos) sw]

—z( > I:R(cos—-—sm) sw-{-Sz (cos +sin) sw:| (166)

That is, using the functions (162), (163) again, we have the trans-
formation

Hy(gz) = Jo(sz) —1Go(s2), (167)

whereas 2Iy(g2) becomes 2Ji(sz). This was formerly a perfect
mystery, indicative of an imperfection in the theory of the Bessel
functions. But the reader who has gone through Part I and §§ 27, 28
of Part II will have little trouble in understanding the meaning of
(167). The functions H, and 21,, though equivalent (with positive
argument), are not algebraically identical. To have identity we
require to use a second equivalent form, so that, as in § 28,

123%
Hy(g2) = To(ge) +- {qﬁw st TS

. } (168)

In this form we may take ¢ = s/, and still have agreement in the
changed form. We obtain the relation (167), provided that

1 1 1%8°  1%%° st sfab
Go(sz) = {“—.T‘ﬁ"?“s— . —set g } .

s s’ s s'a’ 1288 1%8%°
(169)

As T mentioned before in § 22, this formula for Gy(sz) may be de-
duced from formulse in Lord Rayleigh’s ¢ Sound,” derived by a method
due to Lipschitz, which investigation, however, I find it rather
difficult to follow.

We have, therefore, three principal forms of the first solution with
g real and positive, viz., Iy(gz), $Ho(qz), and the intermediate form
(168). We have also three forms of the oscillatory function Go(sxz),
viz., (161), (163), and (169). But we have only employed two forms
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of Ko(gz), and two of Jy(sx), in obtaining and harmonizing the pre-
vious three forms. Tt would therefore appear probable that there is
an additional principal formula for Ky(gz), and another for Jo(sz), not
yet investigated. ’

Conjugate Property of Companion Functions.

71. The conjugate property of the oscillating functions is
d d 2
Jo(sz) 7n Go(sz) —Go(sz) d—wJO(m) =-——, (170)

using the pair (162), (163), or the pair (158), (161). And, similarly
3 p ) p ) Vs

d a 4
H,(q2) iz Ko(g2)—Ko(g) @Hn(qx) = "oz 171)
But, in the transition from (171) to (170) by the relation ¢ = s/, it is
indifferent whether we take Ho(q#) = 2l,(qz) = 2J,(sz), or else =
Jo(sz) —1Gy(s2). This conjugate property is of some importance in
the treatment of cylindrical problems by the operators.

Operators with two Differentiators leading to Hy and K, and showing

thetr Mutual Connections compactly wn reference to Cylindrical
Waves.

72. The fundamental mutual relations of H, and K, are exhibited
concisely ‘in the following, employing operators containing two
differentiators, say v and g, viz.,

vq

B e 72

(v

Here it should be understood that either ¥ or ¢ may be passive, when
it may be regarded as a constant. DBut wheun both are active; there
are two independent operands, one for vy and the other for q. In a
cylinder problem relating to elastic waves, we may regard v as being
d/dr, where 7 is distance from the axis, and ¢ as d/d(vt), where ¢ is the
time, and v the speed of propagation. We have
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[P].... (vag) = qo(qr)s eenen[a] )

= pqr<2g+ > q = LqH,(¢r), ....[D]

= e |1 Vo = LK, (ot ! 173
= )V LvKo(vtv),. .. [c] &, (173)

1 .
= ;(T‘——Z——_"Egﬁ—)é, .o [Cl:’

= %IO(CtV)%,“ [e]J

where the letters in square brackets are for the purpose of concise
reference. Similarly, we have this other set,

N

[Ql.... @%ﬁ—ﬁ = v, (viv), ...[A]

3
oty <_‘l_?l > v = WH,(etv), .. [B]

— e-—-qrq<~_—g——->& = $9Ko(q7), ... [C:I e (174)

1

= rpyioer [P]

=L(g) s .. (8] |
The first set is usually, though not essentially, concerned with an
inward-going, and the second set with an outward-going wave. The
exchange of » and vf and of v and ¢, transforms one set to the other,
so that the proof of one set proves the other.

In obtaining [a] from [P] we regard ¢ as a constant, or at any
rate, as passive for the time, expand [P] in descending powers of v,
and integrate directly with the result [a], as in § 13, equations
(28), (29).

To obtain [b], introduce the factor e to [P], and expand the
transformed operator in descending powers of ¢, as in '§ 14, equations
(30), (31).

To obtain [¢], we make ¢ passive, and introduce the factor e=*tv.
Then expand the transformed operator in descending powers of v,
and integrate as in § 68, eqautions (153), (155) (only there the
operator is ¢, making the case [C]).
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Details concerning the above Relations.

73. As regards [d4], it may be obtained from [a], [b], or [c].
These have not yet been done, so a little detail is now given. Thus,
from [b] to [d]:—

1 = 1,1 }__1__
3gH(qr) = (27r)t { 1+ 8gr+|3(8 g?')2+' 0T S (wot)t

P . 2 1
= ¢ {1+’2—§;‘ _é?|5<§_7_'> +““}-7-7'——(~2—1—}¥’;5i

el 1 1

i (vt)* (2r—wt)? = 7 (PP — o)t (173)

In the first line we expand the function H,; to get the second
line we integrate with unit operand; and, finally, let e/ operate to
get (175).

74. Next, from [¢] to [d] :—

LK (ot AN U 1232 )
3VEo(utv) = (2m)*{ smv+|3(smv_)2_”“ }V

¢ty r\ 1.3/ rV
Sy PR EAT T .
 (27vt) 2vt)  2%2 \2v¢

eV 1 1
T Tw ettt T r(P—vE)E’

(176)

which needs no explanation, as the course is similar to the previous
leading to (175).

75. As regards deriving [d] from [a], this may be done by har-
monic decomposition, thus,

@

qTo(qr) = Lo(g7) %j cos svtds = ;J Jo(sr)cosswtds,  (177)
0 0

the value of which is known to be (175). Conversely, we may
evaluate the definite integral by turning it to the analytical form
qTo(g7). which may be done by inspection, and then integrating
through the equivalent operator H,(g»)1q. But this definite in-
tegral is only one of several that may be immediately derived from
the operators in (173), (174) by harmonic decomposition, and it
will be more convenient to consider them separately in later sec-
tions along with applications and extensions of the preceding.
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COylindrical BElastic, Wave compared with corresponding Dwuswe Wave
through the Operators.

76. The formule [e] and [E] are of a somewhat different kind,
since the operand is the reciprocal of the independent variable.
They are proved at once by carrying out the differentiations. Thus,

for [E], .
r
L(gr) < +“ +§w+ >52

B YL AN f‘_>" } 1
= (1B (o) +E (2 s
1
(4]%2 2 )i (178)
So, by [C] and [E] we have
T 1
5 Ko(gr)q = Io(gr) ('L’2t2 72)i (179)

There is an interesting analogue to this transformation from K, to
I, occurring in the theory of pure diffusion. Change the meaning
of ¢ from d/d(vt) to {d/d (vt)}}, that is, to its square root. Then we
shall have

e |4t

T 1

5 Kolgn) g = 1o(gr) 50 = — - (180)
The quantity » is no longer a velocity, however. In the theory of

heat diffusion it is the ratio of the conductivity to the capacity.

This example belongs to cylindrical diffusion, and is only put here to

compare with the preceding example, which belongs to the corre-

sponding problem with elastic waves without local dissipation.

IX. «“On a Failure of the Law in Photography that when the
Products of the Intensity of the Light acting and of the
Time of Exposure are Equal, Equal Amounts of Chemical
Action will be produced.” By Captain W. DE W. ABNEY,
C.B., F.R.S. Received June 13, 1893.

It has been generally assumed that when the products of the intensity
of light acting on a sensitive surface and the time of exposure are
eqnal similar amounts of chemical action are produced, and with thé
ordinary exposures and intensities of light employed such, no doubt,
is practically the case, and any methods of measurement hitherto
practicable have been insufficiently delicate to discover any departure
from this law, if such departure existed. In some recent experiments



