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The problem of the behavior of positrons and electrons in given
external potentials, neglecting their mutual interaction, is analyzed
by replacing the theory of holes by a reinterpretation of the solu-
tions of the Dirac equation. It is possible to write down a complete
solution of the problem in terms of boundary conditions on the
wave function, and this solution contains automatically all the
possibilities of virtual (and real) pair formation and annihilation
together with the ordinary scattering processes, including the
correct relative signs of the various terms.

In this solution, the “negative energy states” appear in a form
which may be pictured (as by Stiickelberg) in space-time as waves
traveling away from the external potential backwards in time.
Experimentally, such a wave corresponds to a positron approach-
ing the potential and annihilating the electron. A particle moving
forward in time (electron) in a potential may be scattered forward
in time (ordinary scattering) or backward (pair annihilation).
When moving backward (positron) it may be scattered backward

in time (positron scattering) or forward (pair production). For
such a particle the amplitude for transition from an initial to a
final state is analyzed to any order in the potential by considering
it to undergo a sequence of such scatterings.

The amplitude for a process involving many such particles is
the product of the transition amplitudes for each particle. The
exclusion principle requires that antisymmetric combinations of
amplitudes be chosen for those complete processes which differ
only by exchange of particles. It seems that a consistent interpre-
tation is only possible if the exclusion principle is adopted. The
exclusion principle need not be taken into account in intermediate
states. Vacuum problems do not arise for charges which do not
interact with one another, but these are analyzed nevertheless in
anticipation of application to quantum electrodynamics.

The results are also expressed in momentum-energy variables.
Equivalence to the second quantization theory of holes is proved
in an appendix.

1. INTRODUCTION

HIS is the first of a set of papers dealing with the
solution of problems in quantum electrodynamics.
The main principle is to deal directly with the solutions
to the Hamiltonian differential equations rather than
with these equations themselves. Here we treat simply
the motion of electrons and positrons in given external
potentials. In a second paper we consider the interactions
of these particles, that is, quantum electrodynamics.

The problem of charges in a fixed potential is usually
treated by the method of second quantization of the
electron field, using the ideas of the theory of holes.
Instead we show that by a suitable choice and inter-
pretation of the solutions of Dirac’s equation the prob-
lem may be equally well treated in a manner which is
fundamentally no more complicated than Schrédinger’s
method of dealing with one or more particles. The vari-
ous creation and annihilation operators in the conven-
tional electron field view are required because the
number of particles is not conserved, i.e., pairs may be
created or destroyed. On the other hand charge is
conserved which suggests that if we follow the charge,
not the particle, the results can be simplified.

In the approximation of classical relativistic theory
the creation of an electron pair (electron A4, positron B)
might be represented by the start of two world lines
from the point of creation, 1. The world lines of the
positron will then continue until it annihilates another
electron, C, at a world point 2. Between the times ¢
and ¢, there are then three world lines, before and after
only one. However, the world lines of C, B, and 4
together form one continuous line albeit the ‘“positron
part” B of this continuous line is directed backwards
in time. Following the charge rather than the particles
corresponds to considering this continuous world line

as a whole rather than breaking it up into its pieces.
It is as though a bombardier flying low over a road
suddenly sees three roads and it is only when two of
them come together and disappear again that he realizes
that he has simply passed over a long switchback in a
single road.

This over-all space-time point of view leads to con-
siderable simplification in many problems. One can take
into account at the same time processes which ordi-
narily would have to be considered separately. For
example, when considering the scattering of an electron
by a potential one automatically takes into account the
effects of virtual pair productions. The same equation,
Dirac’s, which describes the deflection of the world line
of an electron in a field, can also describe the deflection
(and in just as simple a manner) when it is large enough
to reverse the time-sense of the world line, and thereby
correspond to pair annihilation. Quantum mechanically
the direction of the world lines is replaced by the
direction of propagation of waves.

This view is quite different from that of the Hamil-
tonian method which considers the future as developing
continuously from out of the past. Here we imagine the
entire space-time history laid out, and that we just
become aware of increasing portions of it successively.
In a scattering problem this over-all view of the com-
plete scattering process is similar to the S-matrix view-
point of Heisenberg. The temporal order of events dur-
ing the scattering, which is analyzed in such detail by
the Hamiltonian differential equation, is irrelevant. The
relation of these viewpoints will be discussed much more
fully in the introduction to the second paper, in which
the more complicated interactions are analyzed.

The development stemmed from the idea that in non-
relativistic quantum mechanics the amplitude for a
given process can be considered as the sum of an ampli-
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tude for each space-time path available.! In view of the
fact that in classical physics positrons could be viewed
as electrons proceeding along world lines toward the
past (reference 7) the attempt was made to remove, in
the relativistic case, the restriction that the paths must
proceed always in one direction in time. It was dis-
covered that the results could be even more easily
understood from a more familiar physical viewpoint,
that of scattered waves. This viewpoint is the one used
in this paper. After the equations were worked out
physically the proof of the equivalence to the second
quantization theory was found.

First we discuss the relation of the Hamiltonian
differential equation to its solution, using for an example
the Schrédinger equation. Next we deal in an analogous
way with the Dirac equation and show how the solu-
tions may be interpreted to apply to positrons. The
interpretation seems not to be consistent unless the
electrons obey the exclusion principle. (Charges obeying
the Klein-Gordon equations can be described in an
analogous manner, but here consistency apparently
requires Bose statistics.)® A representation in momen-
tum and energy variables which is useful for the calcu-
lation of matrix elements is described. A proof of the
equivalence of the method to the theory of holes in
second quantization is given in the Appendix.

2. GREEN’S FUNCTION TREATMENT OF
SCHRODINGER’S EQUATION

We begin by a brief discussion of the relation of the
non-relativistic wave equation to its solution. The ideas
will then be extended to relativistic particles, satisfying
Dirac’s equation, and finally in the succeeding paper to
interacting relativistic particles, that is, quantum
electrodynamics.

The Schrédinger equation

idy/dt=Hy, 1)

describes the change in the wave function ¢ in an
infinitesimal time Af as due to the operation of an
operator exp(—iHAf). One can ask also, if ¥(xy, &) is
the wave function at x; at time {;, what is the wave
function at time #2>#? It can always be written as

Y (xa, 1) = f Ko, by x1, ¥ (x )1, (2)

where K is a Green’s function for the linear Eq. (1).
(We have limited ourselves to a single particle of co-
ordinate x, but the equations are obviously of greater
generality.) If H is a constant operator having eigen-
values E,, eigenfunctions ¢, so that ¥(x, /1) can be ex-
panded as Zn Cn¢n(x)) then I//(X, t?) = eXP(“iEn(tz— tl))
X Cron(x). Since Cp=JS ¢*(X1)¥(X1, {1)d°x1, one finds

1R, P. Feynman, Rev. Mod. Phys. 20, 367 (1948).

2 The equivalence of the entire procedure (including photon
interactions) with the work of Schwinger and Tomonaga has been
demonstrated by F. J. Dyson, Phys. Rev. 75, 486 (1949).

3 These are special examples of the general relation of spin and
statistics deduced by W. Pauli, Phys. Rev. 58, 716 (1940).
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(where we write 1 for xy, £; and 2 for Xy, #) in this case
K2, 1)=2% ¢a(X2)$a*(x1) exp(—iE.(t—1)), (3)

for £,>t;. We shall find it convenient for £,<#; to define
K(2,1)=0 (Eq. (2) is then not valid for ,<#). It is
then readily shown that in general K can be defined by
that solution of

(19/9t,— H2)K (2, 1)=18(2, 1), C))

which is zero for t,<t;, where 6(2, 1) =68(ta—11)8(x2—x,)
X 8(y2—91)8(za—21) and the subscript 2 on H, means
that the operator acts on the variables of 2 of K(2, 1).
When H is not constant, (2) and (4) are valid but K is
less easy to evaluate than (3).4

We can call K(2,1) the total amplitude for arrival
at Xs, /o starting from xy, #;. (It results from adding an
amplitude, expzS, for each space time path between these
points, where S is the action along the path.!) The
transition amplitude for finding a particle in state
x(Xs, £2) at time fy, if at 4; it was in (x4, #1), is

f QK Dy (Ddxdse. )

A quantum mechanical system is described equally well
by specifying the function K, or by specifying the
Hamiltonian H from which it results. For some purposes
the specification in terms of K is easier to use and
visualize. We desire eventually to discuss quantum
electrodynamics from this point of view.

To gain a greater familiarity with the K function and
the point of view it suggests, we consider a simple
perturbation problem. Imagine we have a particle in
a weak potential U(x, ¢), a function of position and
time. We wish to calculate K(2,1) if U differs from
zero only for ¢ between ¢; and ¢,. We shall expand K in
increasing powers of U:

K(2,1)=Ko(2, )+K®(2, )+ K2, 1)+---. (6)
To zero order in U, K is that for a free particle, Ko(2,1).*
To study the first order correction K®(2, 1), first con-
sider the case that U differs from zero only for the
infinitesimal time interval Af; between some time i3
and {3+ At3(¢1<t3<t2). Then if (1) is the wave function
at Xy, /1, the wave function at x, #3 is

V@)= f Ko3, Dy(D)dx, @)

since from ?; to f; the particle is free. For the short
interval A¢; we solve (1) as

¢(X, i3+ Al3) = exp(—-iHAta)xﬁ(x, la)
= (1 -iHoAts—iUAlg)ll/(X, l;;),

4For a non-relativistic free particle, where ¢,.=exp(ip-x),
E,=p*/ 2m, (3) gives, as is well known
K(2, 1)=f exp[— (4p-x1—ip- X2) —ip2(fa—11) /2m Jd3p(2w) ™3
= (2xim 1(t2— 1))} exp(Fim(Xa— x1)2(Lr—£1) ™)
for fz>11, and Ko=0 for <ty
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where we put H=H,+ U, H, being the Hamiltonian
of a free particle. Thus y¥(x, 3+ Al;) differs from
what it would be if the potential were zero (namely
(1—1iH,At3)¥(x, t3)) by the extra piece

Ay= —iU(xs, ta) (X3, L3) Als, (8)

which we shall call the amplitude scattered by the
potential. The wave function at 2 is given by

V(xe, 1) = fKo(xz, to; X3, ta+ Al (X, t3+ Atg)d’Xs,

since after /34-Af; the particle is again free. Therefore
the change in the wave function at 2 brought about by
the potential is (substitute (7) into (8) and (8) into
the equation for ¥(x,, 2)):

AY(2)=—i f Ko(2, 3UB)Ko(3, 1) (Ddx.d*x,AL,.

In the case that the potential exists for an extended
time, it may be looked upon as a sum of effects from
each interval Af; so that the total effect is obtained by
integrating over /3 as well as x3. From the definition (2)
of K then, we find

K"(2,1)= —ifKo(Z, 3)U(3)Ko(3, 1)drs, )

where the integral can now be extended over all space
and time, dr3=d%x3dl;. Automatically there will be no
contribution if {3 is outside the range /, to ¢, because of
our definition, K¢(2, 1)=0 for {,<1,.

We can understand the result (6), (9) this way. We
can imagine that a particle travels as a free particle
from point to point, but is scatteted by the potential U.
Thus the total amplitude for arrival at 2 from 1 can
be considered as the sum of the amplitudes for various
alternative routes. It may go directly from 1 to 2
(amplitude Ko(2, 1), giving the zero order term in (6)).
Or (see Fig. 1(a)) it may go from 1 to 3 (amplitude
Ko(3, 1)), get scattered there by the potential (scatter-
ing amplitude —iU(3) per unit volume and time) and
then go from 3 to 2 (amplitude K(2, 3)). This may
occur for any point 3 so that summing over these
alternatives gives (9).

Again, it may be scattered twice by the potential
(Fig. 1(b)). It goes from 1 to 3 (Ko(3, 1)), gets scattered
there (—i0/(3)) then proceeds to some other point, 4,
in space time (amplitude Ko(4,3)) is scattered again
(—iU4)) and then proceeds to 2 (Ko(2,4)). Summing
over all possible places and times for 3, 4 find that the
second order contribution to the total amplitude
K®(2,1) is

(=i f f Ko, U@ Ko, 3)

X U(3)Ko(3, Ddrdrs. (10)

This can be readily verified directly from (1) just as (9)

SCATTERED
WAVE K (2,3)

mE—-—

‘I'INCIDENT WAVES

SPACE
(a) FIRST ORDER,EQ (9) (b) SECOND ORDER, EQ (10)

F16. 1. The Schrédinger (and Dirac) equation can be visualized
as describing the fact that plane waves are scattered successively
by a potential. Figure 1 (a) illustrates the situation in first order.
Ko(2,3) is the amplitude for a free particle starting at point 3
to arrive at 2. The shaded region indicates the presence of the
potential A which scatters at 3 with amplitude —:A(3) per
cm¥sec. (Eq. (9)). In (b) is illustrated the second order process
(Eq. (10)), the waves scattered at 3 are scattered again at 4. How-
ever, in Dirac one-electron theory Ko(4, 3) would represent elec-
trons both of positive and of negative energies proceeding from
3 to 4. This is remedied by choosing a different scattering kernel
K,(4,3), Fig. 2.

was. One can in this way obviously write down any of
the terms of the expansion (6).5

3. TREATMENT OF THE DIRAC EQUATION

We shall now extend the method of the last section
to apply to the Dirac equation. All that would seem
to be necessary in the previous equations is to consider
I as the Dirac Hamiltonian, ¢ as a symbol with four
indices (for each particle). Then K, can still be defined
by (3) or (4) and is now a 4-4 matrix which operating
on the initial wave function, gives the final wave func-
tion. In (10), U(3) can be generalized to A4(3) —ea-A(3)
where A4, A are the scalar and vector potential (times e,
the electron charge) and « are Dirac matrices.

To discuss this we shall define a convenient rela-
tivistic notation. We represent four-vectors like x, ¢ by
a symbol x,, where u=1, 2, 3, 4 and x4=1 is real. Thus
the vector and scalar potential (times e¢) A, A, is 4,.
The four matrices Be, 8 can be considered as transform-
ing as a four vector v, (our v, differs from Pauli’s by a
factor ¢ for p=1, 2, 3). We use the summation conven-
tion aub,=asbs— a1by—axba—azb;=a-b. In particular if
a, is any four vector (but not a matrix) we write
a=a,y, so that a is a matrix associated with a vector
(a will often be used in place of a, as a symbol for the
vector). The v, satisfy ¥,v,+v,v,=28,, where 8:s=+1,
811=09=033=—1, and the other §,, are zero. As &
consequence of our summation convention u:d»=du
and 6,,=4. Note that ab+ba=2a-b and that qif:u;ﬂh
=a-a is a purc number. The symbol 9, dx, will mean
d/dt for u=4, and —9/dx, —a4/dy, —3 J5 o0 4= L
2,3. Call V=1v,0/dx,= 39,0+ Ba- V. We shall imagine

B Are i colvi , UCCESSiVe 2 oximations an integral
We are simply solving by successive appr: W+ U and (4)

equation (deducible directly from (1) with
with [T=1H,),

v =—i[Ky2, HURW@drst [Ku2 D¥(Ddx,

where the first integral extends over all space and all times #;
greater than the ¢, appearing in the second term, and (2>,
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2\ K,(2,3),P0S €

mZ——

(a) FIRST ORDER, EQ(I3)

2 MOTION OF

POSITRON
4)

(4,3)
conmug’odu POS. E.

d

(b) VIRTUAL SCATTERING (c) VIRTUAL PAIR
ta>13 te<ts
SECOND ORDER, EQ. (14)

F1G. 2. The Dirac equation permits another solution K (2, 1)
if one considers that waves scattered by the potential can proceed
backwards in time as in Fig. 2 (a). This is interpreted in the second
order processes (b), (c), by noting that there is now the possi-
bility (c) of virtual pair production at 4, the positron going to 3
to be annihilated. This can be pictured as similar to ordinary
scattering (b) except that the electron is scattered backwards in
time from 3 to 4. The waves scattered from 3 to 2’ in (a) represent
the possibility of a positron arriving at 3 from 2’ and annihilating
the electron from 1. This view is proved equivalent to hole theory:
electrons traveling backwards in time are recognized as positrons.

hereafter, purely for relativistic convenience, that ¢,*
in (3) is replaced by its adjoint ¢.=¢,.*8.

Thus the Dirac equation for a particle, mass », in an
external field A=Ay, is

(V—m)y= A4y, (11)

and Eq. (4) determining the propagation of a free
particle becomes

(iVa—m) K, (2, 1)=18(2, 1), (12)

the index 2 on V, indicating differentiation with respect
to the coordinates x,, which are represented as 2 in
K.(2,1) and 6(2, 1).

The function K, (2, 1) is defined in the absence of a
field. If a potential A is acting a similar function, say
K, (2, 1) can be defined. It differs from K;(2, 1) by a
first order correction given by the analogue of (9)
namely

K 02, 1)= —ifo(Z, 3AQB)K (3, )dr;, (13)
representing the amplitude to go from 1 to 3 as a free
particle, get scattered there by the potential (now the

matrix A(3) instead of U(3)) and continue to 2 as free.
The second order correction, analogous to (10) is

K00, 0=- [ [K.2 940

XK. (4, 3)AQ)K (3, 1)dridrs;, (14)
and so on. In general K, satisfies
(iVa— A(2)—m)K, (2, 1)=15(2, 1), (15)

and the successive terms (13), (14) are the power series
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expansion of the integral equation
K2, 1)=K;(2,1)
~i [ Ky 9AGK D6, Vi, (10

which it also satisfies.

We would now expect to choose, for the special solu-
tion of (12), K=K, where K(2, 1) vanishes for {,</,
and for ;> 1, is given by (3) where ¢, and E, are the
eigenfunctions and energy values of a particle satis-
fying Dirac’s equation, and ¢,* is replaced by ¢.,.

The formulas arising from this choice, however, suffer
from the drawback that they apply to the one electron
theory of Dirac rather than to the hole theory of the
positron. For example, consider as in Fig. 1(a) an
electron after being scattered by a potential in a small
region 3 of space time. The one electron theory says
(as does (3) with K= K) that the scattered amplitude
at another point 2 will proceed toward positive times
with both positive and negative energies, that is with
both positive and negative rates of change of phase. No
wave Is scattered to times previous to the time of
scattering. These are just the properties of Ky(2, 3).

On the other hand, according to the positron theory
negative energy states are not available to the electron
after the scattering. Therefore the choice K,=K, is
unsatisfactory. But there are other solutions of (12).
We shall choose the solution defining K, (2, 1) so that
K2, 1) for 1> 1, is the sum of (3) over positive energy
states only. Now this new solution must satisfy (12) for
all times in order that the representation be complete.
It must therefore differ from the old solution Ky by a
solution of the homogeneous Dirac equation. It is clear
from the definition that the difference Ko— K, is the
sum of (3) over all negative energy states, as long as
12> 1;. But this difference must be a solution of the
homogeneous Dirac equation for all times and must
therefore be represented by the same sum over negative
energy states also for #;<#;. Since Ko=0 in this case,
it follows that our new kernel, K, (2, 1), for t,<t, is the
negalive of the sum (3) over negative energy states. That is,

Ki(2,1)=2pos &, ¢n(2) (1)
Xexp(—iE,.(tg—tl)) for 12>11

=—2_NEG E, $n(2)$a(1)
Xexp(—iEn(t2—tl)) fOl' t2<!1.

17)

With this choice of K our equations such as (13) and
(14) will now give results equivalent to those of the
positron hole theory.

That (14), for example, is the correct second order
expression for finding at 2 an electron originally at 1
according to the positron theory may be seen as follows
(Fig. 2). Assume as a special example that £,> and
that the potential vanishes except in interval fo—1/; so
that ¢4 and #; both lie between ¢, and #,.

First suppose #,>{; (Fig. 2(b)). Then (since t3>1)
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the electron assumed originally in a positive energy
state propagates in that state (by K4(3, 1)) to position
3 where it gets scattered (4(3)). It then proceeds to 4,
which it must do as a positive energy electron. This is
correctly described by (14) for K, (4, 3) contains only
positive energy components in its expansion, as 4> 1.
After being scattered at 4 it then proceeds on to 2,
again necessarily in a positive energy state, as f5> /4.

In positron theory there is an additional contribution
due to the possibility of virtual pair production (Fig.
2(c)). A pair could be created by the potential A(4)
at 4, the electron of which is that found later at 2. The
positron (or rather, the hole) proceeds to 3 where it
annihilates the electron which has arrived there from 1.

This alternative is already included in (14) as con-
tributions for which #,<(3, and its study will lead us to
an interpretation of Ki(4,3) for #4<t;. The factor
K. (2,4) describes the electron (after the pair produc-
tion at 4) proceeding from 4 to 2. Likewise K, (3, 1)
represents the electron proceeding from 1 to 3. K, (4, 3)
must therefore represent the propagation of the positron
or hole from 4 to 3. That it does so is clear. The fact
that in hole theory the hole proceeds in the manner of
and electron of negative energy is reflected in the fact
that K,(4,3) for t;<t; is (minus) the sum of only
negative energy components. In hole theory the real
energy of these intermediate states is, of course,
positive. This is true here too, since in the phases
exp(—iE,(ta—t3)) defining K, (4, 3) in (17), E,, is nega-
tive but so is #s—¢5. That is, the contributions vary with
I3 as exp(—i| E,| (f3—1s)) as they would if the energy
of the intermediate state were | E,|. The fact that the
entire sum is taken as negative in computing K, (4, 3)
is reflected in the fact that in hole theory the amplitude
has its sign reversed in accordance with the Pauli
principle and the fact that the electron arriving at 2
has been exchanged with one in the sea.® To this, and
to higher orders, all processes involving virtual pairs
are correctly described in this way.

The expressions such as (14) can still be described as
a passage of the electron from 1 to 3 (K (3, 1)), scatter-
ing at 3 by A(3), proceeding to 4 (K (4, 3)), scattering
again, A(4), arriving finally at 2. The scatterings may,
however, be toward both future and past times, an
electron propagating backwards in time being recog-
nized as a positron.

This therefore suggests that negative energy com-
ponents created by scattering in a potential be con-
sidered as waves propagating from the scattering point
toward the past, and that such waves represent the
propagation of a positron annihilating the electron in
the potential.?

8 It has often been noted that the one-electron theory apparently
gives the same matrix elements for this process as does hole theory.
The problem is one of interpretation, especially in a way that will
also give correct results for other processes, e.g., self-energy.

7 The idea that positrons can be represented as electrons with
proper time reversed relative to true time has been discussed by
the author and others, particularly by Stiickelberg. E. C. C.
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With this interpretation real pair production is also
described correctly (see Fig. 3). For example in (13) if
11 <t3<ty the equation gives the amplitude that if at
time #; one electron is present at 1, then at time #; just
one electron will be present (having been scattered at 3)
and it will be at 2. On the other hand if ¢, is less than /3,
for example, if t,=1,<{3, the same expression gives the
amplitude that a pair, electron at 1, positron at 2 will
annihilate at 3, and subsequently no particles will be
present. Likewise if ¢, and ¢ exceed /3 we have (minus)
the amplitude for finding a single pair, electron at 2,
positron at 1 created by A(3) from a vacuum. If
ti>1t3>1ts, (13) describes the scattering of a positron.
All these amplitudes are relative to the amplitude that
a vacuum will remain a vacuum, which is taken as
unity. (This will be discussed more fully later.)

The analogue of (2) can be easily worked out.? It is,

2= f K2, DNOp()Ts, (18)

where 43V, is the volume element of the closed 3-
dimensional surface of a region of space time containing

F16. 3. Several different processes can be described by the same
formula depending on the time relations of the variables ¢,, .
Thus P,|K,(4(2,1)|2 is the probability that: (a) An electron at
1 will be scattered at 2 (and no other pairs form in vacuum).
(b) Electron at 1 and positron at 2 annihilate leaving nothing.
(c) A single pair at 1 and 2 is created from vacuum. (d) A positron
at 2 is scattered to 1. (K, (2,1) is the sum of the effects of
scattering in the potential to all orders. P, is a normalizing
constant.)

Stiickelberg, Helv. Phys. Acta 15, 23 (1942); R. P. Feynman,
Phys. Rev. 74, 939 (1948). The fact that classically the action
(proper time) increases continuously as one follows a trajectory
is reflected in quantum mechanics in the fact that the phase, which
is | En| [t2—#], always increases as the particle proceeds from one
scattering point to the next.

8 By multiplying (12) on the right by (—iVi;—m) and noting
that v18(2, 1)=—V,8(2,1) show that K,(2,1) also satisfies
K,(2,1)(—iV1—m)=45(2, 1), where the V, operates on variable
lin K(2, 1) but is written after that function to keep the correct
order of the v matrices. Multiply this equation by ¥(1) and Eq.
(11) (with A=0, calling the variables 1) by K.(2, 1), subtract
and integrate over a region of space-time. The integral on the left-
hand side can be transformed to an integral over the surface of
the region. The right-hand side is ¥(2) if the point 2 lies within
the region, and is zero otherwise. (What happens when the 3-
surface contains a light line and hence has no unique normal need
not concern us as these points can be made to occur so far away
from 2 that their contribution vanishes.)
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point 2, and N(1) is N,(1)vy, where N,(1) is the inward
drawn unit normal to the surface at the point 1. That
is, the wave function ¢(2) (in this case for a free par-
ticle) is determined at any point inside a four-dimen-
sional region if its values on the surface of that region
are specified.

To interpret this, consider the case that the 3-surface
consists essentially of all space at some time say ¢{=0
previous to Z5, and of all space at the time 7">{,. The
cylinder connecting these to complete the closure of the
surface may be very distant from x so that it gives no
appreciable contribution (as K, (2, 1) decreases expo-
nentially in space-like directions). Hence, if v4= 3, since
the inward drawn normals N will be 8 and —3,

v(2)= f K42, )BY(1)dx,
- f Ki(2, 1)80(V)dxe, (19)

where #;=0, ¢{=T. Only positive energy (electron)
components in (1) contribute to the first integral and
only negative energy (positron) components of ¢(1’) to
the second. That is, the amplitude for finding a charge
at 2 is determined both by the amplitude for finding
an electron previous to the measurement and by the
amplitude for finding a positron after the measurement.
This might be interpreted as meaning that even in a
problem involving but one charge the amplitude for
finding the charge at 2 is not determined when the only
thing known in the amplitude for finding an electron
(or a positron) at an earlier time. There may have been
no electron present initially but a pair was created in
the measurement (or also by other external fields). The
amplitude for this contingency is specified by the
amplitude for finding a positron in the future.

We can also obtain expressions for transition ampli-
tudes, like (5). For example if at /=0 we have an elec-
tron present in a state with (positive energy) wave
function f(x), what is the amplitude for finding it at
t=T with the (positive energy) wave function g(x)?
The amplitude for finding the electron anywhere after
t=0 is given by (19) with ¥(1) replaced by f(x), the
second integral vanishing. Hence, the transition ele-
ment to find it in state g(x) is, in analogy to (5), just
(=T, ,=0)

[oosr,, vesodPxax,  20)
since g*=gB.

If a potential acts somewhere in the interval between
0 and T, K, is replaced by K. Thus the first order
effect on the transition amplitude is, from (13),

—ifg(xz)BK+(2, NAB)K (3, 1)Bf(x1)Pxid?x2.  (21)

Expressions such as this can be simplified and the
3-surface integrals, which are inconvenient for rela-
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tivistic calculations, can be removed as follows. Instead
of defining a state by the wave function f(x), which it
has at a given time {,=0, we define the state by the
function f(1) of four variables x;, #; which is a solution
of the free particle equation for all ¢ and is f(x;) for
t1=0. The final state is likewise defined by a function
£(2) over-all space-time. Then our surface integrals can
be performed since K, (3,1)8/(x1)d*;=f(3) and
S §(x2)Bd*x:K (2, 3)= §(3). There results

~i [ 0)4) i (22
the integral now being over-all space-time. The transi-
tion amplitude to second order (from (14)) is

- f f IQAQK, 2, DA/ (Vdridrs,  (23)

for the particle arriving at 1 with amplitude f(1) is
scattered (A(1)), progresses to 2, (K.(2,1)), and is
scattered again (A(2)), and we then ask for the ampli-
tude that it is in state g(2). If g(2) is a negative energy
state we are solving a problem of annihilation of elec-
tron in f(1), positron in g(2), etc.

We have been emphasizing scattering problems, but
obviously the motion in a fixed potential V, say in a
hydrogen atom, can also be dealt with. If it is first
viewed as a scattering problem we can ask for the
amplitude, ¢x(1), that an electron with original free
wave function was scattered %k times in the potential V
either forward or backward in time to arrive at 1. Then
the amplitude after one more scattering is

ben(2)=—i f K@ DVWéDdr.  (24)

An equation for the total amplitude

¢(1,)=§0 ée(1)

for arriving at 1 either directly or after any number of
scatterings is obtained by summing (24) over all & from
Oto x;

V(2= ¢o(2)—i f K2 )VDp()dr.  (25)

Viewed as a steady state problem we may wish, for
example, to find that initial condition ¢, (or better just
the ¢) which leads to a periodic motion of y. This is
most practically done, of course, by solving the Dirac

equation,
V—m)y(1)=V(D)¢(1), (26)

deduced from (25) by operating on both sides by :V,—m,
thereby eliminating the ¢, and using (12). This illus-
trates the relation between the points of view.

For many problems the total potential A4V may be
split conveniently into a fixed one, V, and another, 4,
considered as a perturbation. If K, is defined as in
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(16) with V for 4, expressions such as (23) are valid
and useful with K replaced by K"’ and the functions
f(1), g(2) replaced by solutions for all space and time
of the Dirac Eq. (26) in the potential V (rather than
free particle wave functions).

4. PROBLEMS INVOLVING SEVERAL CHARGES

We wish next to consider the case that there are two
(or more) distinct charges (in addition to pairs they may
produce in virtual states). In a succeeding paper we
discuss the interaction between such charges. Here we
assume that they do not interact. In this case each
particle behaves independently of the other. We can
expect that if we have two particles @ and b, the ampli-
tude that particle ¢ goes from x; at {1, to X; at £; while
b goes from x; at f; to X4 at ¢4 is the product

K(3) 4; 1) 2)=K+a(3; 1)K+b(47 2)

The symbols @, b simply indicate that the matrices
appearing in the K apply to the Dirac four component
spinors corresponding to particle ¢ or b respectively (the
wave function now having 16 indices). In a potential
K., and Ky, become K., and K,;4 where K,
is defined and calculated as for a single particle. They
commute. Hereafter the a, b can be omitted; the space
time variable appearing in the kernels suffice to define
on what they operate.

The particles are identical however and satisfy the
exclusion principle. The principle requires only that one
calculate K(3,4;1,2)—K(4,3;1,2) to get the net
amplitude for arrival of charges at 3, 4. (It is normalized
assuming that when an integral is performed over points
3 and 4, for example, since the electrons represented are
identical, one divides by 2.) This expression is correct
for positrons also (Fig. 4). For example the amplitude
that an electron and a positron found initially at x; and
x4 (say #;=ts) are later found at x; and x, (with
ly=13>1) is given by the same expression

K9, DKL (4,2) - K (4, DK™, 2). (27)

The first term represents the amplitude that the electron
proceeds from 1 to 3 and the positron from 4 to 2 (Fig.
4(c)), while the second term represents the interfering
amplitude that the pair at 1, 4 annihilate and what is
found at 3, 2 is a pair newly created in the potential.
The generalization to several particles is clear. There is
an additional factor K4 for each particle, and anti-
symmetric combinations are always taken.

No account need be taken of the exclusion principle
in intermediate states. As an example consider again
expression (14) for #> ¢, and suppose #4<1f; so that the
situation represented (Fig. 2(c)) is that a pair is made
at 4 with the electron proceeding to 2, and the positron
to 3 where it annihilates the electron arriving from 1.
It may be objected that if it happens that the electron
created at 4 is in the same state as the one coming from
1, then the process cannot occur because of the exclusion
principle and we should not have included it in our

POSITRONS 755

(7]
»
(7]
b

w
~
E
[°d
]
S

OR
1 (b)
3 2 3 2
OR
] 4 () ! 4

F1G. 4. Some problems involving two distinct charges (in addi-
tion to virtual pairs they may produce): P,| K, (4/(3, 1)K (4 (4, 2)
— K, (4, 1)K, (3, 2)|? is the probability that: (a) Electrons
at 1 and 2 are scattered to 3,4 (and no pairs are formed). (b)
Starting with an electron at 1 a single pair is formed, positron at 2,
electrons at 3, 4. (c) A pair at 1, 4 is found at 3, 2, etc. The exclu-
sion principle requires that the amplitudes for processes involving
exchange of two electrons be subtracted.

term (14). We shall see, however, that considering the
exclusion principle also requires another change which
reinstates the quantity.

For we are computing amplitudes relative to the
amplitude that a vacuum at £, will still be a vacuum at
t5. We are interested in the alteration in this amplitude
due to the presence of an electron at 1. Now one process
that can be visualized as occurring in the vacuum is the
creation of a pair at 4 followed by a re-annihilation of
the same pair at 3 (a process which we shall call a closed
loop path). But if a real electron is present in a certain
state 1, those pairs for which the electron was created
in state 1 in the vacuum must now be excluded. We
must therefore subtract from our relative amplitude the
term corresponding to this process. But this just rein-
states the quantity which it was argued should not
have been included in (14), the necessary minus sign
coming automatically from the definition of K. It is
obviously simpler to disregard the exclusion principle
completely in the intermediate states.

All the amplitudes are relative and their squares give
the relative probabilities of the various phenomena.
Absolute probabilities result if one multiplies each of
the probabilities by P,, the true probability that if one
has no particles present initially there will be none
finally. This quantity P, can be calculated by normal-
izing the relative probabilities such that the sum of the
probabilities of all mutually exclusive alternatives is
unity. (For example if one starts with a vacuum one can
calculate the relative probability that there remains a
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vacuum (unity), or one pair is created, or two pairs, etc.
The sum is P,~L.) Put in this form the theory is com-
plete and there are no divergence problems. Real proc-
esses are completely independent of what goes on in
the vacuum.

When we come, in the succeeding paper, to deal with
interactions between charges, however, the situation is
not so simple. There is the possibility that virtual elec-
trons in the vacuum may interact electromagnetically
with the real electrons. For that reason processes occur-
ing in the vacuum are analyzed in the next section, in
which an independent method of obtaining P, is
discussed.

5. VACUUM PROBLEMS

An alternative way of obtaining absolute amplitudes
is to multiply all amplitudes by C,, the vacuum to
vacuum amplitude, that is, the absolute amplitude that
there be no particles both initially and finally. We can
assume C,=1 if no potential is present during the
interval, and otherwise we compute it as follows. It
differs from unity because, for example, a pair could be
created which eventually annihilates itself again. Such
a path would appear as a closed loop on a space-time
diagram. The sum of the amplitudes resulting from all
such single closed loops we call L. To a first approxima-
tion L is

i |
ro=— | [ser.2, 040

XK, (1,2)AQ2)Jdrdrs. (28)

For a pair could be created say at 1, the electron and
positron could both go on to 2 and there annihilate.
The spur, Sp, is taken since one has to sum over all
possible spins for the pair. The factor } arises from the
fact that the same loop could be considered as starting
at either potential, and the minus sign results since the
interactors are each —iA. The next order term would be®

o=+a/3) [ [ [str.enaw
XK. (1, 3)AR)K, (3, 2)A(2) [dridrodrs,

etc. The sum of all such terms gives L.1

9 This term actually vanishes as can be seen as follows. In any
spur the sign of all y matrices may be reversed. Reversing the
sign of v in K,(2,1) changes it to the transpose of K.(1,2) so
that the order of all factors and variables is reversed. Since the
integral is taken over all 7, 75, and 73 this has no effect and we are
left with (—1)? from changing the sign of A. Thus the spur equals
its negative. Loops with an odd number of potential interactors
give zero. Physically this is because for each loop the electron can
go around one way or in the opposite direction and we must add
these amplitudes. But reversing the motion of an electron makes
it behave like a positive charge thus changing the sign of each
potential interaction, so that the sum is zero if the number of
interactions is odd. This theorem is due to W. H. Furry, Phys.
Rev. 51, 125 (1937).

10 A closed expression for L in terms of K4 is hard to obtain
because of the factor (1/#) in the nth term. However, the per-
turbation in Z, AL due to a small change in potential A4, is easy
to express. The (1/n) is canceled by the fact that A4 can appear
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In addition to these single loops we have the possi-
bility that two independent pairs may be created and
each pair may annihilate itself again. That is, there may
be formed in the vacuum two closed loops, and the
contribution in amplitude from this alternative is just
the product of the contribution from each of the loops
considered singly. The total contribution from all such
pairs of loops (it is still consistent to disregard the
exclusion principle for these virtual states) is L2/2 for
in L? we count every pair of loops twice. The total
vacuum-vacuum amplitude is then

Co=1-L+L?/2—-L%/6+---=exp(—L), (30)

the successive terms representing the amplitude from
zero, one, two, etc., loops. The fact that the contribu-
tion to C, of single loops is — L is a consequence of the
Pauli principle. For example, consider a situation in
which two pairs of particles are created. Then these
pairs later destroy themselves so that we have two
loops. The electrons could, at a given time, be inter-
changed forming a kind of figure eight which is a single
loop. The fact that the interchange must change the
sign of the contribution requires that the terms in C,
appear with alternate signs. (The exclusion principle is
also responsible in a similar way for the fact that the
amplitude for a pair creation is — K, rather than +K,.)
Symmetrical statistics would lead to

Co=14+L+L*/2=exp(+L).

The quantity L has an infinite imaginary part (from
L®, higher orders are finite). We will discuss this in
connection with vacuum polarization in the succeeding
paper. This has no effect on the normalization constant
for the probability that a vacuum remain vacuum is
given by

P,=|C,|*=exp(—2-real part of L),

from (30). This value agrees with the one calculated
directly by renormalizing probabilities. The real part
of L appears to be positive as a consequence of the Dirac
equation and properties of K so that P, is less than
one. Bose statistics gives C,=exp(+L) and conse-
quently a value of P, greater than unity which appears
meaningless if the quantities are interpreted as we have
done here. Our choice of K, apparently requires the
exclusion principle.

Charges obeying the Klein-Gordon equation can be
equally well treated by the methods which are dis-
cussed here for the Dirac electrons. How this is done is
discussed in more detail in the succeeding paper. The
real part of L comes out negative for this equation so
that in this case Bose statistics appear to be required
for consistency.?

in any of the # potentials. The result after summing over n by
(13), (14) and using (16) is

AL=—i ['SPLK, (1, D= K4(1, 1) A1) Jdr.

The term K,(1, 1) actually integrates to zero.

(29)
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6. ENERGY-MOMENTUM REPRESENTATION

The practical evaluation of the matrix elements in
some problems is often simplified by working with
momentum and energy variables rather than space and
time. This is because the function K,(2,1) is fairly
complicated but we shall find that its Fourier transform
is very simple, namely (i/47%)(p—m)~! that is

K.(2, 1)=(i/41r2)f(p—m)‘1 exp(—ip-xn)d'p, (31)

where p-291=p-x2— P+ %1= Pu¥o— Pu¥1u, P=Puys, and
d*p means (2m)~2dpidp.dpsdps, the integral over all p.
That this is true can be seen immediately from (12),
for the representation of the operator :V—m in energy
(ps) and momentum (1,2, 3) space is p—m and the trans-
form of 8(2,1) is a constant. The reciprocal matrix
(p—m)~! can be interpreted as (p+m)(p2—m?) for
P*—m?=(p—m)(p+m) is a pure number not involving
v matrices. Hence if one wishes one can write

K (2,1)=1i(iVo+m) (2, 1),
where

L.(2, 1) = (2n) f (P —m2) exp(—ip-an)dtp, (32)

is not a matrix operator but a function satisfying
D221+(2) 1)_m21+(2) 1)= 6(21 1))

where —Dz = (V2)2= (a/axg,.) (6/8x2,‘)

The integrals (31) and (32) are not yet completely
defined for there are poles in the integrand when
p*—m?=0. We can define how these poles are to be
evaluated by the rule that m s considered lo have an
infinitesimal negative imaginary part. That is m, is re-
placed by m—16 and the limit taken as 6—0 from above.
This can be seen by imagining that we calculate K, by
integrating on ps first. If we call E=- (m*+p2
+ po2+ p2)} then the integrals involve p, essentially as
S exp(—ipa(ta—141))dps(p2—E*)~! which has poles at
ps=—+E and ps=— E. The replacement of m by m—1ié
means that E has a small negative imaginary part; the
first pole is below, the second above the real axis. Now
if {,—{;>0 the contour can be completed around the
semicircle below the real axis thus giving a residue from
the ps=—+E pole, or —(2E)' exp(—iE(la—1ty1)). If
1,—1;<0 the upper semicircle must be used, and
ps=—E at the pole, so that the function varies in each
case as required by the other definition (17).

Other solutions of (12) result from other prescrip-
tions. For example if $, in the factor (p*—m?)~! is con-
sidered to have a positive imaginary part K, becomes
replaced by K, the Dirac one-electron kernel, zero for
t.<t1. Explicitly the function is" (X, t=x21,)

I.(x,t)=—(47)"16(s®)+ (m/8ws)H,® (ms), (34)
where s=-+ (2—x%)?} for #£>x? and s= —i(a2—£2)?} for

uJ.(x, t)—_is (24)"Y(Dy(x, t)—iD(x, ¢)) where D; and D are the
functions defined by W. Pauli, Rev. Mod. Phys. 13, 203 (1941).

(33)
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£<x?, H,® is the Hankel function and §(s?) is the
Dirac delta function of s%. It behaves asymptotically
as exp(—ims), decaying exponentially in space-like
directions.?

By means of such transforms the matrix elements
like (22), (23) are easily worked out. A free particle
wave function for an electron of momentum p, is
1y exp(—ip1-x) where u, is a constant spinor satisfying
the Dirac equation pyu;=mu; so that p,’=m? The
matrix element (22) for going from a state py, u; to a
state of momentum pg, spinor #,, is —4n%(@.a(q)u;)
where we have imagined A expanded in a Fourier
integral

AQ)= f a(g) exp(—ig-m)ds,

and we select the component of momentum g=p,— p;.
The second order term (23) is the matrix element
between %; and %, of

4% f (a(pa—pr— @) (Dr+-q—m)a(q)dq, (35)

since the electron of momentum p; may pick up ¢ from
the potential a(g), propagate with momentum p;+¢q
(factor (p1+g—m)™") until it is scattered again by the
potential, a(p.— p1—¢), picking up the remaining mo-
mentum, p.— p1—¢q, to bring the total to p.. Since all
values of ¢ are possible, one integrates over gq.

These same matrices apply directly to positron prob-
lems, for if the time component of, say, p; is negative
the state represents a positron of four-momentum — p;,
and we are describing pair production if p, is an elec-
tron, i.e., has positive time component, etc.

The probability of an event whose matrix element is
(#:Mwu,) is proportional to the absolute square. This
may also be written (@.Mus)(@:Mu,), where M is M
with the operators written in opposite order and explicit
appearance of 7 changed to —i(M is B times the complex
conjugate transpose of BM). For many problems we are
not concerned about the spin of the final state. Then we
can sum the probability over the two #; corresponding
to the two spin directions. This is not a complete set be-
cause p. has another eigenvalue, —m. To permit sum-
ming over all states we can insert the projection operator
(2m)~1(ps+m) and so obtain (2m)~L(w@M (potm)Mu,)
for the probability of transition from p, ui, to p, with
arbitrary spin. If the incident state is unpolarized we
can sum on its spins too, and obtain

2m)2SpL(p1+m) M (pot+m) M ] (36)

for (twice) the probability that an electron of arbitrary
spin with momentum p; will make transition to p.. The
expressions are all valid for positrons when p’s with

2 If the —48 is kept with m here too the function I, approaches
zero for infinite positive and negative times. This may be useful
in general analyses in avoiding complications from infinitely
remote surfaces.
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negative energies are inserted, and the situation inter-
preted in accordance with the timing relations discussed
above. (We have used functions normalized to () =1
instead of the conventional (#Bu)= (#*u)=1. On our
scale (@fu)=energy/m so the probabilities must be
corrected by the appropriate factors.)

The author has many people to thank for fruitful
conversations about this subject, particularly H. A.
Bethe and F. J. Dyson.

APPENDIX

a. Deduction from Second Quantization

In this section we shall show the equivalence of this theory with
the hole theory of the positron.2 According to the theory of second
quantization of the electron field in a given potential,3 the state
of this field at any time is represented by a wave function x
satisfying

1dx/dt=Hx,

where H= fV*(x)(a: (—iW—A)+A+mB)¥(x)d*x and ¥(x) is
an operator annihilating an electron at position x, while ¥*(x) is
the corresponding creation operator. We contemplate a situation
in which at =0 we have present some electrons in states repre-
sented by ordinary spinor functions fi(x), fa(x), --- assumed
orthogonal, and some positrons. These are described as holes in
the negative energy sea, the electrons which would normally fill the
holes having wave functions p,(x), p2(x), - --. We ask, at time T
what is the amplitude that we find electrons in states gi(x),
ga(x), - - - and holes at ¢i(x), ga(x), - - -. If the initial and final state
vectors representing this situation are x; and xy respectively, we
wish to calculate the matrix element

R= (xr* eXP( —i ‘[; "H d‘)Xi) =(xs*Sxi)-

We assume that the potential 4 differs from zero only for times
between 0 and T so that a vacuum can be defined at these times.
If xo represents the vacuum state (that is, all negative energy
states filled, all positive energies empty), the amplitude for having
a vacuum at time 7', if we had one at ¢=0, is

Co= (x0*Sx0) s (38)

writing S for exp(—i3T"Hdt). Our problem is to evaluate R and

show that it is a simple factor times C,, and that the factor involves

the K4 functions in the way discussed in the previous sections.
To do this we first express x; in terms of xo. The operator

d>*=f\ll*(x)d>(x)d3x,

creates an electron with wave function ¢(x). Likewise &= f"¢*(x)
X ¥(x)d’x annihilates one with wave function ¢(x). Hence state
Xi 18 xo=F*Fy*. - - P P,- - -xo while the final state is Gy*Go*- - -
X Q1Qz- - - xo where F;, Gy, P;, Q; are operators defined like ®, in
(39), but with f;, g, p:, ¢: replacing ¢; for the initial state would
result from the vacuum if we created the electrons in fi, fa, - -
and annihilated those in g1, ps, - - -. Hence we must find
R=(xo*--Qs*Q1*: - :GsG\SF *Fy*- - - P1Py- - - x0).  (40)
To simplify this we shall have to use commutation relations be-
tween a ®* operator and S. To this end consider exp(—i fytHdt')d*
Xexp(+i/o'Hdt') and expand this quantity in terms of ¥*(x),
giving S ¥*(x)¢(x, £)d*k, (which defines ¢(x,?)). Now multiply
this equation by exp(4i/5tHdY')- - -exp(—i fotHdt') and find

S @oin= [v(x, atx, nax, €%
where we have defined ¥(x,#) by W¥(x, t)=exp(+i/fotHdt')¥(x)
13 See, for example, G. Wentzel, Einfuhrung in die Quanten-

theo%ic der Wellenfelder (Franz Deuticke, Leipzig, 1943), Chap-
ter V.

(37

(39)
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Xexp(—ifotHdY'). As is well known W(x, {) satisfies the Dirac
equation, (differentiate ¥(x, £) with respect to ¢ and use commuta-
tion relations of H and ¥)

i0¥(x, ) /ot= (- (—iV—A)+A+mB)¥(x, 1). (42)

Consequently ¢(x, £) must also satisfy the Dirac equation (differ-
entiate (41) with respect to ¢, use (42) and integrate by parts).

That is, if ¢(x, T') is that solution of the Dirac equation at time
T which is ¢(x) at t=0, and if we define &*= /" ¥*(x)¢(x)d*x and
"*= fW*(x)¢(x, T)d3x then &*=S5&*S~1, or

S&*=@'*S. (43)

The principle on which the proof will be based can now be
illustrated by a simple example. Suppose we have just one electron
initially and finally and ask for

r=(xo*GSF*xq). 44

We might try putting F* through the operator S using (43),
SF*=F'*S, where f' in F'*= f"¥*(x)f'(x)d?x is the wave function
at T arising from f(x) at 0. Then

r=(x"GF*Sxo) = [ ¢*(x)f (x)d%: Co— (xi*F*GSxs), (45)

where the second expression has been obtained by use of the defi-
nition (38) of C, and the general commutation relation

GP*+ F*G= [ g (x)f(x)d%,

which is a consequence of the properties of ¥(x) (the others are
FG= —GF and F*G*= —G*F*). Now x¢*F’* in the last term in
(45) is the complex conjugate of F’'xo. Thus if f’ contained only
positive energy components, F'xo would vanish and we would have
reduced 7 to a factor times C,. But F’, as worked out here, does
contain negative energy components created in the potential A
and the method must be slightly modified.

Before putting F* through the operator we shall add to it
another operator F'’* arising from a function f"'(x) containing only
negative energy components and so chosen that the resulting f”
has only positive ones. That is we want

S(Fpos*‘l‘Fneg”*) = Fposl*Sy (46)

where the “pos” and ‘“neg’” serve as reminders of the sign of the
energy components contained in the operators. This we can now

use in the form
SFpos*=Fpos*S —SFneg’*. 47)

In our one electron problem this substitution replaces r by two

terms
r= (XO*GFpoa'*SXO) - (Xﬂ*GSFnezn*Xo)«

The first of these reduces to

r= [ ¢*@)fper ®)dx-C.,

as above, for Fpoes’'xo is now zero, while the second is zero since the
creation operator Frnep''* gives zero when acting on the vacuum
state as all negative energies are full. This is the central idea of
the demonstration.

The problem presented by (46) is this: Given a function fpes(x)
at time 0, to find the amount, fneg”, of negative energy component
which must be added in order that the solution of Dirac’s equa-
tion at time 7" will have only positive energy components, fpos'.
This is a boundary value problem for which the kernel K, is
designed. We know the positive energy components initially, fpos,
and the negative ones finally (zero). The positive ones finally are
therefore (using (19))

Foor (9= [ KD, Dbfposlxdn, (48)
where £,=T, ¢, =0. Similarly, the negative ones initially are
Jneg” (X2) =fK+(A)(27 1)Bfpos(x1)d%x1 — fpos(X2), (49)

where £, approaches zero from above, and #,=0. The fyos(x2) is
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subtracted to keep in fneg'’(x2) only those waves which return
from the potential and not those arriving directly at ¢, from the
K,(2,1) part of K,(2, 1), as t—0. We could also have written

Joeg” (x2) = f [K(2, 1) = K42, 1) IBfpos(x)d?x1.  (50)

Therefore the one-electron problem, r= fg*(x) fpos' (X)d3x- Cx,
gives by (48)

r=Co [ g(x) K, 02, Df(x)did*x,

as expected in accordance with the reasoning of the previous sec-
tions (i.e., (20) with K4 replacing K ).

The proof is readily extended to the more general expression R,
(40), which can be analyzed by induction. First one replaces F;*
by a relation such as (47) obtaining two terms

R= (XD*' . ‘Qz*Ql*' . .GZGlFlp“’*SFQ*. - PPy - XO)
—(xo*' . 'Qz*Ql*' . 'G2GISFlneg”*F2*' --P\P;y-- 'Xo)-

In the first term the order of Fipos'* and G, is then interchanged,
producing an additional term /" g1*(X) f1p0s'(X)d?x times an expres-
sion with one less electron in initial and final state. Next it is
exchanged with G: producing an addition — f"go*(X)fipos (X)d3x
times a similar term, etc. Finally on reaching the Q,* with which
it anticommutes it can be simply moved over to juxtaposition
with xo* where it gives zero. The second term is similarly handled
by moving Fineg””* through anti commuting F,*, etc., until it
reaches P;. Then it is exchanged with P; to produce an addi-
tional simpler term with a factor F/p1*(X)fines” (X)d%x or
?:fj)l*(xg)KJA)(Z, 1)ﬂf1(xl)d3X1dEX2 from (49), with to=bH= 0 (the
extra fi(x») in (49) gives zero as it is orthogonal to p1(x.)). This
describes in the expected manner the annihilation of the pair,
electron fy, positron p1. The Fpep'’* is moved in this way succes-
sively through the P’s until it gives zero when acting on xo. Thus
R is reduced, with the expected factors (and with alternating signs
as required by the exclusion principle), to simpler terms containing
two less operators which may in turn be further reduced by using
F5* in a similar manner, etc. After all the F* are used the Q*'s
can be reduced in a similar manner. They are moved through the
S in the opposite direction in such a manner as to produce a purely
negative energy operator at time 0, using relations analogous to
(46) to (49). After all this is done we are left simply with the ex-
pected factor times C, (assuming the net charge is the same in
initial and final state.)

In this way we have written the solution to the general problem
of the motion of electrons in given potentials. The factor C» is
obtained by normalization. However for photon fields it is desir-
able to have an explicit form for C, in terms of the potentials.
This is given by (30) and (29) and it is readily demonstrated that
this also is correct according to second quantization.

b. Analysis of the Vacuum Problem

We shall calculate C» from second quantization by induction
considering a series of problems each containing a potential dis-
tribution more nearly like the one we wish. Suppose we know C,
for a problem like the one we want and having the same potentials
for time ¢ between some # and T, but having potential zero for
times from O to #. Call this C.(%), the corresponding Hamiltonian
Hto and the sum of contributions for all single loops, L(fo). Then
for to=T we have zero potential at all times, no pairs can be
produced, L(T)=0 and C.(T)=1. For £,=0 we have the com-
plete problem, so that C,(0) is what is defined as C, in (38).
Generally we have,

Cy(to) =(xo* exp(—i j; ) H todl)xo)
(o o4 o))

since Hyto is identical to the constant vacuum Hamiltonian Hr for
t<tp and xo is an eigenfunction of Hr with an eigenvalue (energy
of vacuum) which we can take as zero.
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The value of Co(fy— Alp) arises from the Hamiltonian Hto— Aty
which differs from Ht, just by having an extra potential during
the short interval At,. Hence, to first order in Afy, we have

Cu(to—Alo) = (xo* exp( -1 j: :_ ato Hiy —Atodl)xo)

=(Xo* exp( ~if : Hlodt)[l—iAto [ x)

X (~ e A, 44,6, 1) Y@ |x0);

we therefore obtain for the derivative of C, the expression
—dCo(to) /dte= —i(xo* exp( —i f r Htodt)
to

X [ ¥ WBA, ¥ WPxxs), (51)

which will be reduced to a simple factor times C.(f) by methods
analogous to those used in reducing R. The operator ¥ can be
imagined to be split into two pieces ¥pos and Wpeg Operating on
positive and negative energy states respectively. The W0, 0n xo
gives zero so we are left with two terms in the current density,
Wpos*BA¥neg and Wneg*BAW e, The latter Wpep*B4AW e, is just
the expectation value of B4 taken over all negative energy states
(minus WoeeBA¥ne,* which gives zero acting on xo). This is the
effect of the vacuum expectation current of the electrons in the
sea which we should have subtracted from our original Hamil-
tonian in the customary way.

The remaining term Wy05*BA ¥ e, Or its equivalent Wyos*BAY
can be considered as ¥*(x)f,0s(x) where fp05(x) is written for the
positive energy component of the operator BA¥(x). Now this
operator, ¥*(x)fp0s(x), or more precisely just the ¥*(x) part of it,
can be pushed through the exp(—i/%7”Hdt) in a manner exactly
analogous to (47) when f is a function. (An alternative derivation
results from the consideration that the operator ¥(x,#) which
satisfies the Dirac equation also satisfies the linear integral equa-
tions which are equivalent to it.) That is, (51) can be written
by (48), (50),

—dCo(to)/dto= —i(xo* f W (x2) K, (2, 1)

Xexp(—i f' 0’ Hdt)A(l)\I/(xl)deld3X2Xo)

+i(xo* exp( —i j" : Hdt) f f W (x) (K42, 1)
—K.(2, l)jA(l)\Il(xl)d*”xld‘xgxo)’

where in the first term {=7T, and in the second fy—ty=%;. The
(4) in K, refers to that part of the potential 4 after #. The
first term vanishes for it involves (from the K,4)(2,1)) only
positive energy components of ¥*, which give zero operating into
xo*. In the second term only negative components of ¥*(xs)
appear. If, then ¥*(x,) is interchanged in order with ¥(x,) it will
give zero operating on xo, and only the term,

—dC.()/dto=+i [ SPL(E D1, 1)
— K1, D)AD WX Cult), (52)

will remain, from the usual commutation relation of ¥* and W.

The factor of C»(fp) in (52) times —A#, is, according to (29)
(reference 10), just L(fo—Atp) —L(fo) since this difference arises
from the extra potential AA=A4 during the short time interval
Aty. Hence —dCy(to)/dto=+ (dL(to)/dto)Cu(o) so that integration
from f=T to £,=0 establishes (30).

Starting from the theory of the electromagnetic field in second
quantization, a deduction of the equations for quantum electro-
dynamics which appear in the succeeding paper may be worked
out using very similar principles. The Pauli-Weisskopf theory of
the Klein-Gordon equation can apparently be analyzed in essen-
tially the same way as that used here for Dirac electrons.



