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Abstract  

The role of convention in various definitions of clock synchronization and simultaneity is 
investigated. We show that two principal methods of synchronization can be considered: 
system internal and system external synchronization. Synchronization by the Einstein pro- 
cedure and by slow clock transport turn out to be equivalent if and only ff the time dilata- 

2 1/2 tion factor is given by the Einstein result (I - v ) . An ether theory is constructed that 
maintains absolute simultaneity and is kinematically equivalent to special relativity. 

w Introduct ion 

In this series o f  papers we shall present a systematic approach towards a test 
theory of  special relativity. One generally has the feeling that Einstein's theory is 
in agreement with experiment to a high degree of  accuracy, but it is difficult to 
express this "high degree" in specific numbers. This is in contrast to the situation 
in general relativity, where a well developed test theory exists (see, e.g., [1, 2] ). 

Here we shall investigate the effects of  deviations from special relativity on 
the outcome of  various experiments. For this purpose a class of  rival theories has 
to be defined and to be compared with relativity. The results of  Frank and Rothe 
[3] as refined by Berzi and Gorini [4] show that the relativity principle (if as- 
sumed to be strictly valid) implies the constancy of  one fundamental velocity. 
There is little reason to doubt that this velocity is to be identified with the ve- 
locity of  light and the concept of  "small deviations" does not seem to be useful 
here. On the other hand the validity of  the relativity principle seems to be less 
evident now than, say, twenty years ago. The discovery of  the cosmic back- 
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ground radiation has shown that cosmologically a preferred system of reference 
does exist. This system is defined and singled out much more unambiguously to 
be a candidate for a possible "ether frame" than was the solar rest frame in 
Einstein's days. It seems worthwhile, therefore, to investigate possible effects of 
deviations from the relativity principle on local experiments. 

w Historical Survey  

One of the most debated problems in special relativity is the role of conven- 
tion in the definition of the simultaneity of distant events and the related ques- 
tion of first-order experiments (first order in v/c).  Around the turn of the cen- 
tury a number of experiments were designed and in part also carried out that 
attempted to measure the velocity of light in a system moving relative to the 
ether and to determine in this way the velocity of the earth in the ether. The 
assumption in these experiments was at first that the velocity of light is, in the 
simplest case, c(o) = c + o, where v is the velocity of the system considered 
(earth) with respect to the ether. By measuring the one-way velocity of light be- 
tween two points one could hope to determine o. One soon became aware of the 
fact that this experiment required the synchronization of clocks at these points. 
The only accurate method proposed for achieving this was the synchronization 
with the help of electromagnetic waves. S. Newcom [5] had shown already in 
1880 that this procedure compensates the very effect which one seeks to mea- 
sure and no anisotropy of the one-way velocity of light can be expected if this 
synchronization method is chosen. This fact was not generally known and ac- 
knowledged, as for instance the papers of Schweizer [6] and Wien [7] show. 
Other methods for synchronizing docks were discussed by Andrade [8] and 
Brinouin [91. 

In these papers "synchronization" was not discussed as a theoretical problem 
requiring a definition, but rather as an experimental difficulty to be overcome. 
H. Poincar6 seems to have been the first one to recognize the synchronization of 
distant clocks to be a fundamental problem. In a number of papers [ 10] he dis- 
cussed this problem in detail and analyzed synchronization with the help of 
optical and other (even gravitational) signals. His considerations culminated in a 
talk given in 1904 at the International Congress of the Arts and Sciences [10b] 
at St. Louis, in which he also formulated a relativity principle (see also [10e, f] ). 

Poincar6 never abandoned "absolute time." For him the ether was a reality 
and the universe consisted of "electrons, ether and nothing else" [10c]. It was 
but the generally valid principle of relativity which prevented the measurement 
of absolute time. Poincar6 was aware of the fact that clock synchronization by 
means of light signal leads to Lorentz's concept of local time. He regarded this 
procedure concerning local time to be a useful mathematical tool which per- 
mitted one to express the laws of nature in the simplest form. 
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Einstein's paper of 1905 [11] gives a different turn to the problem. Einstein 
defined simultaneity by postulating the constancy of the velocity of light. When 
docks are synchronized according to the Einstein procedure the equality of the 
velocity of light in two opposite directions is trivial and cannot be the subject of 
an experiment. 

A different situation results when we consider the two-way velocity of light 
(closed light path). Here no synchronization of clocks at different points is re- 
quired and the constancy of the round trip time for light can be the subject of 
an experiment. 

Einstein's procedure to synchronize clocks at different space points is but 
one of several possible alternative conventions. Another convention which has 
been discussed frequently in the recent epistemological literature is the syn- 
chronization by (slow) clock transport [ 12, 13]. This had been considered in 
some detail by Eddington [14], who noted the conventional character of syn- 
chronization. He showed that transport synchronization is equivalent to the 
Einstein procedure within the framework of special relativity. The definitory 
character of synchronization has also been emphasized by Mandelshtam [15]. 

The role of convention in the synchronization of clocks has been advocated 
especially by Reichenbach [16], Grtinbaum [17], and also by Molchanov [18]. 
Reichenbach has even defined a method of synchronizing clocks by means of 
light signals which differs from Einstein's. 

Ives, who never acknowledged Einstein's role in the creation of relativity, 
has tried in several papers [19] to define synchronization by means of clocks 
moving at arbitrarily large velocities. 

M~bller's [20] discovery in 1957 of the possibility of new first-order experi- 
ments (due to improved experimental method) led to a renaissance of interest in 
these experiments and to new discussions about the role of convention in the 
formulation of special relativity. This epistemological discussion is summarized 
in "A panel discussion" [t3, 21]. 

In this paper we shall investigate under Which conditions the clock syn- 
chronization by slow clock transport is equivalent to the Einstein procedure. 
The importance of this result is that, if transportation is chosen as the method 
of synchronization, the one-way light velocity experiments discussed frequently 
in the recent literature [22] become nontrivial. 

Both the Einstein procedure and the transportation-synchronization will be 
called system-internal synchronization. There are other such procedures, such as 
shaft synchronization [23-26], and the problem to be solved here is the equiva- 
lence of the various synchronization procedures. This problem will be solved in 
part in this paper. 

System-internal methods of synchronization are not the only conceivable 
ones. In Section 3 we shall discuss in detail an alternative procedure belonging to 
the class of system-external synchronization methods. Here one system of refer- 
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ence is singled out ("the ether system") and clocks in all systems are synchro- 
nized by comparing them with standard clocks in the preferred system of refer- 
ence. Infinitely many inequivalent system-external synchronization procedures 
are possible. Among these, one is of special interest: A convention about clock 
synchronization can be chosen that does maintain absolute simultaneity. Based 
on this convention an ether theory can be constructed that is, as far as kine- 
matics is concerned (dynamics will be studied in a later paper in this series), 
equivalent to special relativity. In this theory measuring rods show the standard 
Fitzgerald-Lorentz contraction and clocks the standard time dilatation when 
moving relative to the ether. Such a theory would have been the logical conse- 
quence of the development along the lines of Lorentz-Larmor-Poincar6. That 
the actual development went along different lines was due to the fact that "local 
time" was introduced at the early stage in considering the covariance of the 
Maxwell equations. 

w Synchronizing Clocks in One Space Dimension 

In this section we shall study the problem of the synchronization of clocks 
in one space dimension. Several methods of synchronization will be studied, 
such as the Einstein procedure SE (synchronization by light signals) and syn- 
chronization by slow clock transport ST (the method considered in classical 
physics). 

We first restrict the class of theories considered by an assumption concerning 
the propagation of light: 

(L1) The velocity of light is independent of the motion of the source. 

Secondly, we assume that a preferred reference frame ~ ("ether frame") 
exists which is characterized by the following condition: 

(E l )  In N the synchronization method s E and s T agree. 

(N1) implies that the velocity of light, as measured by s T synchronized clocks is 
isotropic in N. We shall set the velocity of light in ~ equal to 1 by an appropriate 
choice of units. (N1) will, in general, not define 2; uniquely. In this case any 
reference frame that fulfils (~1) can be chosen to be the ether system. 

We now consider a second reference frame S with a relative velocity v < c 
with respect to 1~, i.e., the origin of S moves with velocity v when measured with 
standard rods and docks in N. In S a number of docks and rods with the same 
internal constitution as those in 2; are assumed to exist. 

We also note explicitly the following assumption (which is usually tacitly 
made) that two measuring rods of different composition which agree in length in 
~; also agree in length in S. Finally we assume that two clocks that have the same 
period in N also do have the same period when brought into system S. These as- 
sumptions are by no means trivial. 
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Note that no procedure for synchronizing clocks in S has been specified yet. 
One of our aims is to determine the influence of various conventions about syn- 
chronization on the transformation (generalized Lorentz transformation) be- 
tween E and S. 

Standard arguments (which we shall criticize later) imply that the transfor- 
mation between the space-time coordinates T, X in E and t, x in S has to be 
linear. The following choice of the coefficients of the transformation will turn 
out to be suitable for our purposes: 

t = aT+ ex 
(3.1) 

x = b ( X -  vT) 

here a, b, and e are arbitrary functions of v, which are to be determined either 
by experiment or by theoretical reasoning. The coefficients 1/a(v) and b(v) are 
the time-dilatation and length contraction factors, which are to be determined 
either theoretically or by experiments such as the Michelson-Morley, Kennedy- 
Thorndike, and Ives-Stilwell experiments. We shall adopt the point of  view 
here, however, that these factors have not been determined exactly to be given 
by their relativistic values 

1 1 
a(v) = b(o) = (1 - o2)  1/~ ( 3 . 2 )  

because of the limited accuracy of all experiments. We shall explore the conse- 
quences of possible deviations of a and b from the values predicted by special 
relativity. 

While a and b can thus be determined by experiment the situation is very 
different as far as e is concerned, e is determined by the convention about clock 
synchronization, and arbitrary values of  e can be achieved by defining a suitable 
synchronization mechanism. 

If  we take, for example, special relativity to be our starting point the values 
of a, b are given by (3.2) and e = -v.  Resynchronizing clocks by some other 
prescription (for which we shall give explicit examples later) in special relativity 
amounts to replacing 

t -+ t + f ( x ,  v) (3.3) 

where f ( x ,  v) characterizes the synchronization procedure chosen. The substitu- 
tion (3.3) amounts to readjusting clocks in each inertial system at each position 
x by a specified amount f ( x ,  v). If  we start, for example, from the Lorentz 
transformation 

t = ( 1 -  v2) 1/2 T -  vx 

1 (3.4) 
x - (1 - v2) 1/2 ( X -  vT) 
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and choose to readjust our docks according to 

f ( x ,  v )  = - o x  

we obtain [28] 

(3.5) 

t = ( 1 - v 2 )  1/2 T 

1 (3.6) 
x = (1 - o2) 1/2 ( X -  vT) 

This transformation is-as far as the prediction of experimental results is con- 
cerned-completely equivalent to (3.4) [i.e., if the result of an experiment can 
be predicted correctly with the help of (3.4) it can also be predicted correctly 
using (3.6)]. The only difference is that one inertial system Z has been singled 
out arbitrarily to be the ether system (X, T) and clocks have been synchronized 
in this system only by means of the Einstein synchronization. In all other sys- 
tems clock synchronization can be thought of as being achieved in two different 
ways: 

(a) First Einstein synchronization is carried out and then clocks are read- 
justed according to (3.3) and (3.5), where v is the velocity of the system con- 
sidered with respect to the (arbitrarily chosen) ether system ~. 

(b) According to (3.6) T = 0 implies t = 0. This means that the synchroniza- 
tion procedure given above can be carried out simply by choosing one system to 
be the ether system, synchronizing clocks according to the Einstein procedure in 
this system, and then synchronizing clocks in all other systems moving past ~ by 
adjusting these docks to t = 0 whenever they fly past a clock in ~ which shows 
T = 0. Such a synchronization procedure, in which docks in a system S are syn- 
chronized by comparing them with docks in an ether system ~ will be called 
external synchronization. The special external synchronization given by (3.6) 
will be called sA (A stands for absolute simultaneity). External synchronization 
is a possible, but not very meaningful, synchronization procedure in special rela- 
tivity. By singling out arbitrarily one system Z to be the ether system one de- 
stroys the equivalence of all inertial systems by choosing a different clock syn- 
chronization procedure (3.5) in each system. 

If we intend to compare special relativity with various ether theories, how- 
ever (as is our intention here), one has to study all possible conventions about 
clock synchronization in order to determine the possible empirical equivalence 
of theories which differ greatly in their basic concepts (theoretical terms). 

Before we enter into a detailed discussion of how one has to readjust space- 
time diagrams if one wishes to work with (3.6) instead of the usual Lorentz 
transformation we mention one other peculiar fact. Usually it is stated tlaat the 
transformation connecting two inertial systems has to be linear [4, 27]. The 
reason for this is, that the world-line of a body undergoing force free motion has 
to be a straight line in space-time in each inertial system (rectilinear and uniform 
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motion). This presupposes, however, that the uniformity of the motion of the 
body is determined by comparing the motion with clocks at the various instan- 
taneous positions of the body. In order for this procedure to be possible a num- 
ber of clocks have to exist that are synchronized, for example, in the way pre- 
scribed by Einstein. The existence of such a class of  clocks is, however, by no 
means necessary in order to determine uniform motion. If one clock only is 
given in an inertial system the uniformity of the motion of a body can also be 
determined by having it emit a standard signal towards the dock whenever it 
arrives at a number of equidistant space points. If  these signals (e.g., light signals) 
are received at regular intervals at the clock, the motion of the body is defined 
to be uniform. (An equivalent way would be to carry along a second clock with 
the moving body and to emit signals at standard time intervals towards the clock 
at rest in the inertial system. In this way one determines in fact the uniformity 
of the motion of a space ship without having to have synchronized clocks all 
over space.) 

w Relativity without Relativity 

In this section we shall discuss in some detail the much debated question of 
the equivalence of special relativity and ether theories. We have already seen 
that the transformation 

t - - (1  - v2) 1/2 T 

1 (4.1) 
x -  (1 - v2) '1~ ( X -  vT) 

differs from the Lorentz transformation only insofar as the convention about 
the synchronization of clocks is concerned. We shall investigate here how the re- 
sults of various experiments, which are usually considered to be tests of special 
relativity, can be interpreted using (4.1). 

The transformation (4.1) is the very relation one would write down if one 
has to formulate an ether theory in which rods shrink by a factor (1 - v2) 1/2 
and clocks are slow by a factor (1 - v2) 1/2 when moving with respect to the 
ether. Note that (4.1) implies the existence of absolute simultaneity since 
AT = 0 implies At = 0. We thus arrive at the remarkable result that a theory 
maintaining absolute simultaneity is equivalent to speeial relativity. 

To illustrate this fact let us draw the diagram corresponding to the trans- 
formation (4.1) (Figure 1). The main difference between this space-time diagram 
and the standard disgrams well known from special relativity is that the x axis is 
not rotated with respect to the X -axis. This expresses the fact that (4.1) main- 
rains the concept of absolute simultaneity. The only difference between Figure 1 
and diagrams corresponding to Galilei transformations is the position of the unit 
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a l  X 

Fig. 1. Space-time diagram corresponding to transformation (4.1). 

points on the x, t axis. These are found from (4.1) to be at the positions shown 
with a = (1 - 02) 1/2, whereas for the Galilei transformation we would have a = 1. 

The position of the unit point on the t axis shows that the rate of clocks 
moving with respect to the ether system is decreased by the standard factor as 
compared to clocks in the (T, X) system. Seen from the moving systems the 
the clocks in the ether system are, however, fast by a factor T2 = t/(1 - v2) 1/2. 
The relation between the clocks in the moving and the ether system is thus not 
reciprocal as usual. This is due to the fact that we have singled out one system 
with the help of  the synchronization procedure. 

Let us consider the clock paradox from the point of view chosen here 
(Figure 2). I f  twin A remains at rest in the ether system for two years and twin B 
travels into space and returns with velocity v then B will be aged T2 = 2(1 - v2) m 
upon return. The reason for this is that in the ether theory clocks moving with 
respect to the ether are slow. Next consider a clock in B moving uniformly with 
velocity o with respect to the ether as shown in Figure 2b. Clock A is first at rest 
in the ether system and thus is fast as seen from the moving clock B (this state- 
ment does depend on a definition of simultaneity, e.g., on the convention about 
synchronization). At the time sl = T = (1 - v2) 1/2 clock A starts to move uni- 

T ~ t 2/a 

B 

1 1 
Cl 

X,x 

T 
. . . .  --~ll  2 t 

/ / , !  

[2v/a 
b 

x,x 

Fig. 2. The twin paradox considered from the point of view of ether theory [a = (1 - v2)l/~]. 
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formly towards clock B with velocity w = 2 v /a (2 /a  - a)  -1 such as to reach clock 
B at time t = 2. Using (4.1) one easily finds that the proper time interval (as 
measured by A) s2 = (1 - 02) 1/2 is spent by A on its way towards twin B. Twin A 
spends the same (proper) time moving away from B as towards 2, so that the 
situation is analogous to Figure 2a. Owing to the very fast motion of A on the 
second part of  her trip through space-time, A ages very little on.the second part 
of the trip and thus arrives at the meeting point with B after a proper time in- 
terval s = 2(1 - 02) 1/2 ~ 2 has elapsed. We thus arrive (not surprisingly) at a re- 
sult completely equivalent to the standard result of special relativity. Here how- 
ever we have to distinguish carefully between the case of the twin remaining at 
rest in the ether system or a twin moving with constant velocity through space- 
time (Figures 2a and 2b, respectively). The explanation is completely different 
in the two cases when we use the convention about simultaneity chosen here. 
From the point of view of the transformation (4.1) the agreement of  the final 
results in both cases appears as a fortunate coincidence without deeper reason. 
This fact is very reminiscent of the old, prerelativistic theories and shows how 
the choice of unsuitable conventions can destroy the internal symmetry of a 
physical theory. 

As a second example we consider Lorentz contraction. Figure 1 shows 
clearly that a measuring rod moving with respect to the ether does show the 
standard length contraction. A measuring rod at rest in the ether does appear, 
however, to be elongated from a moving system of reference rather than con- 
tracted. This is due to the fact that the definition of length measurement does 
depend on the definition of simultaneity and thus on the convention on clock 
synchronization. The Lorentz dilatation obtained here is thus in no contradic- 
tion with any experiments but simply reflects our different choice of 
conventions. 

Summarizing these results we may say that the following statement is in 
perfect agreement with all experimental evidence: A preferred system of refer- 
ence, the ether system, exists. Clocks are slow when moving with respect to the 
ether system and measuring rods shrink. As seen from a moving system clocks in 
the ether system are fast and measuring rods elongated. 

As a final example of the influence of a nonstandard clock synchronization 
on physical laws we discuss the velocity addition theorem. Putting x = ut ,  

X = w T  in (4.1) we obtain for the velocity w (as measured in the ether system) 
of an object moving with velocity u in system S 

w = v + u ( 1  - v 2) (4.2) 

One easily sees that this modified velocity addition theorem does not ex- 
clude super light velocities and in fact does predict unisotropic light propagation 
in all frames except G. Starting from here we can study the influence of various 
conventions on experiments attempting to measure the one-way velocity of  
light. This will be done in the next paper in this series (Paper II, [22] ). 
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w System Internal Synchronization 

In order to arrive at a test theory of special relativity we shall abandon the 
assumption that the values of a, b are given by their special relativistic values 
(3.2). 

We start from the transformation 

t = a(o) T+ e ( v ) x  
(5.1) 

x = b (v) (X  - vT) 

where a(v) and b(v) remain unspecified at first. 
Our first task will be to determine the values e(v) corresponding to various 

conventions about clock synchronization. Since no relativity principle will be 
assumed to be valid in this section, there will be in general only one preferred 
ether frame ]~, in which synchronization by slow clock transport and by the 
Einstein procedure will agree. 

Consider a clock in the system S, IS is the (t, x )  system] moving with a 
small velocity u along the x axis. This clock will be used (in the limit of in- 
finitesimal u) to synchronize all other clocks in S. Using x = ut and (5.1) we 
obtain 

X = T  b(1--eu) +v ~ T  - - +  = : w T  (5.2) 

if we neglect terms of order u 2 and higher. In (5.2) w is the velocity of the clock 
relative to E. If we consider this clock to be at rest at the origin of the system 
S' :(t', x') moving with velocity w relative to Z we obtain for the time t' which 
the moving clock shows 

t' Ix'=o = a (w) T + e (w) x' Ix'=o = a (w) T (5.3) 

Synchronizing clocks by slow clock transport means that we require t ' (x)  = t(x). 
Therefore we have 

a(v) T+ e ( v ) x  = a(w) T (5.4) 

where 

x = b(v)  ( X -  oT) = b(v) (w - v) T = ua(v) T (5.5) 

Inserting this into (5.4) we obtain 

a(O u da 
a(v) uer = a (w) -  a ( v ) -  

b(v) dv 

1 da(v) 
e T - b ( v )  dv 

(5.6) 
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The index T indicates that the value of  e given by (5.6) refers to transport syn- 
chronization of  clocks. Assuming the special relativistic values for a, b we obtain 
the well-known relativistic result e = -v. 

Next we shall consider the convention for clock synchronization proposed 
by Einstein and we shall calculate the factor eE for this case. Consider two 
clocks A and B at rest in the system S as shown in Figure 3. At t = 0 we send a 
light signal from A to B, where it arrives at time t~ and is sent back to A, where 
it is received at time t2. According to the Einstein procedure we shall define 

t2 = 2t l .  
Since the clock A is at rest at the origin of  S we have according to (5.1) 

t2 =a(v)  T2 + eEX Ix=0 =a(v ) / ' 2  (5.7) 

and furthermore 

tl =a (v)  T1 + eEXl = �89 = �89 r~ (5.8) 

where Xl = b(v) (X1 - vT1). The isotropy of  the propagation of  light in N im- 
plies X1 = T1 and therefore we obtain from (5.7) and (5.8) 

a(v) r l  + eEb(V) (1 - v) r l  = �89 T2 (5.9) 

Now consider clock A, for which X2 = vT2. Inserting this and X1 - X2 =/ '2  - 7"i 
(propagation of  light) into (5.9) we obtain 

va(v) 
eE = -  (1 - ve)b(v) (5.10) 

We thus arrive at the important result that the Einstein procedure in general 
differs from the synchronization by clock transport. The equality of  both pro- 
cedures is neither trivial nor logically cogent. 

If  we require the equality of  eT and eE we have 

a(v) = (1 - v2) 1/2 (5.11) 

T 

t2 

X 
A B 

Fig. 3. Einstein synchronization of clocks. 
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Thus clock synchronization by clock transport and by the Einstein procedure 
agree i f  and only i f  the time dilatation factor is given exactly by the special rela- 
tivistic value a(v) = (1 - 02) 1/2. 

w Synchronization in Three Dimensions 

We now turn to the full three-dimensional case. Here the most general linear 
transformation between the ether system ~ and a moving system S involves 16 
coefficients, which have tO be determined by kinematics, convention (synchro- 
nization), and physics. It  is instructive to present the stages of  simplification of  
the transformation in some detail, since a number of  assumptions become trans- 
parent that are usually tacitly made. Our starting point is the general linear 
transformation 

t = aT + ex + e2y + e3z 

x = b l T + b X +  b 2 Y + b 3 Z  
(6.1) 

y = d l T + d 2 X + d Y + d a Z  

z = e l T + e 2 X + e 3 Y + e Z  

The first kinematical restriction is that the x and X axes slide along one another, 
i .e.,  

VT, X: y = z = 0  , Y = Z = 0  (6.2) (Kin 1) 

From this we obtain 

dl = d2 = el = e2 = 0 (6.3) 

Secondly, we postulate that the (x, z) and the (X, Z)  planes coincide at all times, 
i.e., the systems ~ and S slide along these planes: 

(Kin 2) VT, X, Z: y = 0 - Y = 0 (6.4) 

whereupon we obtain 

d3 = 0. 

The third requirement is that  the origin of  S moves with velocity v with respect 
to ~: 

(Kin 3) X = vT, Y = Z = 0 > x = y = z = 0 (6.6) 

This leaves us with the transformation 

t =aT+ ex + e2y + eaz 

x = b(X - vT)+ b2 Y + baZ 
(6.7) 

y = d Y  

z = e Z + e a Y  
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This exhausts the possible kinematical conditions and leaves us with a trans- 
formation containing t en  arbitrary coefficients, three of  which we understand 
to be determined by synchronization requirements (synchronization along three 
axes). 

The other seven coefficients are to be determined either experimentally or 
by restricting the class of  theories considered. We shall assume the following 
here 

(S1) There is no preferred direction in G. 

The assumptions (S1) and (G 1) imply in the three-dimensional case that the 
velocity of  light is isotropic in ~. [(S1) also implies that the only preferred di- 
rection, as far as the system S seen from ~ is concerned, is v.] 

The importance of  these assumptions is illustrated in an example in Figure 4. 
A possible tilt of  the (x, y )  plane with respect to the (X, Y) plane is described by 
e3 ~ 0. No such tilt can exist, because v is a vector (rather than a pseudovector, 
needed to construct a rotation) and no other vectors (preferred direction) can be 
used to construct the transformation. Thus 

(S1) ----+ e3 = 0 (6.8) 

Similarly one shows that also 

(S1)--"-+b2 =b3 = 0 ,  e = d  

This leaves us with the transformation 

t = a(v)  T +  ex + e2y + e3z 

x = b(v) ( x -  vT) 
(6.10) 

y = d(v)  r 

z=d(v)Z 

Here e, e~, e3 are determined by synchronization procedures and a (v), b (v), 
d(v)  by theory (e.g., relativity) or experiment. 

The (x, y)- and (X, Y)- 
planes will be tilted with 
respect to one another 
in general (e 3 4: 0). / 

/ 
Z 

Y 

The (x, z)- and (X, Z)- 
planes coincide (Kin 2). 

Fig. 4. The meaning of e3 in equation (6.8). 
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Calculations analogous to those performed in Section 4 lead to 

eT =a'/b, e2T = e a t  = 0 (6.11) 

for transport synchronization and 

ao 
eE = b(1 - v2) ' e2E = eaE = 0 (6.12) 

for the Einstein procedure, while external synchronization with the help of  
clocks in the ether system leads to 

eExt = e2Ext = eaExt = 0 (6.13) 

The arguments given above can be summarized in an abbreviated manner as 
follows: I f  no preferred directions exist in space (only a preferred rest system ~, 
the ether system), then the transformation between ~ and S has to be of  the 
general form 

t = a T +  ~ ex  

x = d X +  ~ - ~  v(vx) - bvT (6.14) 

since only v can be used to construct the transformation coefficient. (6.14) 
contains the functions a(v), b(v), d(v)  (physics) and ~(v) = (e, e2, ea) 

(synchronization). 
Neither transport synchronization nor Einstein synchronization introduce 

preferred directions into (6.14) so that in these cases e c~ v, as we have seen be- 
fore. This leaves us with (6.10), with e2 = e3 = 0. 

Finally we turn to the expression for the velocity of  light in the system S. 
The velocity of  a light ray propagating in an angle 0 with respect to the x axis 
is given by 

c(O) = {cos 0 eb (1 - 0 2) + va cos 0 + e2(1 - v 2) b sin 0 

- a [cos 2 0 + b2d2(1 - v 2) sin 2 0] 1/2 } [c0s 2 0 (e2b 
(6.15) 

- e2bv 2 - a2/b + 2eva) + sin 2 0 (e~b - v2e~b - d2ba 2) 

+ 2 sin 0 cos 0 X e2(eb - v2eb + va)]-I 

This rather lengthy expression is obtained by transforming the light cone 
X 2 - T 2 = 0 into S [for simplicity we have assumed 6 2 = e a in (6.1 5)]. Various 
special cases are contained in (6.15): 

(A) First order effects result if transport synchronization o f  clocks is used. 
In this case we expand 

a = l + a v 2 +  ' ' ' ,  b " d ~ l ,  e = e T = a ' / b = 2 a v ,  e 2 = O  
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and obtain 

c(O) = 1 - v(1 + 2a) cos 0 (6.16) 

The one-way velocity of  light is a measurable quantity in this case and is direc- 
tion dependent if c~ v~ - �89 

(B) In'the case of Einstein synchronization we obtain (in all orders in v) 

b ( 1 -  0 2) 
c(O) = ( 6 . 1 7 )  

a [cos 2 0 + b2d2(1 - v 2) sin 2 0] 1/2 

Here e(0 + rr) = c(O) so that the velocity of light does not depend on the sense in 
which the light ray moves. No first-order effects exist in this case and for the 
second-order effects we obtain 

l /e(0)  = 1 +( /3+6 - •  2 sin 2 0 +(o~-/3+ 1)v 2 (6.18) 2 

where/3 and 6 are the coefficients in the expansions 

b = 1 +/302 + " ' ,  d= 1 +6v 2 + " "  (6.19) 

The term cc/3 + 6 - �89 is tested by the Michelson-Morley experiment, while the 
Kennedy-Thorndike experiment measures c~ -/?, + 1 (see Paper III, [31 ] ). 

w Conclusion 

In order to arrive at a test theory of special relativity a class of rival theories 
has to be chosen, with which the theory is to be compared. In this series of  
papers we consider theories where a privileged system of reference ("ether") 
exists. This ether system is defined by the requirements that the Einstein and 
the transport synchronization of clocks agree and that, furthermore, light 
propagation is isotropic in the ether system. 

The synchronization of clocks in other systems will then in general be de- 
fined by a synchronization function f ( x ,  v) such that t = a(v)T + f ( x ,  v). While 
f c a n  in principle be nonlinear in x, only linear functions f ( x ,  v) = e(v)x turn 
out to be of practical importance. The three synchronization coefficients ~ = 
(e, e2, e3) are characteristic for the synchronization method considered. 

The possible methods of synchronization can be divided into two classes: 
External synchronization sets the clocks in S by comparing C(S) with C(N), 

the set of clocks in the ether system N. 
Internal synchronization does not require that ~ be known and makes use 

only of operations defined in S. Einstein and transport synchronization are in- 
ternal synchronization procedures. 
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Of special interest is the external synchronization SA (absolute synchro- 
nization) for which f ( x ,  v = -vx .  This is achieved by  setting the docks  in S to 
zero when they pass a clock in ~ showing T = 0. A theory maintaining the con- 
cept of  absolute simultaneity can be obtained in this way which is [when the co- 
efficients a (v) and b (v) are chosen appropriately]  empirically equivalent to 
special relativity, at least as far as kinematics is concerned. Thus the much de- 
bated question [29, 30] concerning the empirical equivalence of  special rela- 
tivity and an ether theory taking into account t ime dilatation and length con- 
traction but  maintaining absolute simultaneity can be answered affirmatively. 
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