z == @)=

=—14+—+ 2 cos (sw) sin bl (o IH*LILE)
b =1 » Ay b ’ (72)
Substituting (71) and (72) in (56),
= o —_ {
(a) = 4E 1 [ 3 sin [(25 — 1){xx/b)] e_((h_l)z‘rzt”(b:LG)]‘ -
L p LS (25 — 1) )
. 1 It
But operationally —= f dt
P t=0 ]
AE b2 == sin [(2s — 1){xx/b) s e s =t
; Y ~((2e—1)2x20) BPLGH
% “@ =7 ( :26) Gy o 9
) 4EGb? === sin [(2s — 1)(zx/b) ] .z s
(o) ) = 1 — e ((2e—1) =) /(b Lay |, .
r W) = — 2 Y [1—e¢ ] (75)

which is (47), a solution of (46).

The Distribution of Current Along a
‘Symmetrical Center-Driven Antennar
RONOLD KINGT, ASSOCIATE, LR.E., AND CHARLES W. HARRISON, JRr.f, ASSOCIATE, 1.R.E.

Summary—The cylindrical, center-driven antenna is analyzed
as a boundary-value problem of ele¢tromagnetic theory. An integral
equation in the current (originally obtaired in a different way by
Hallén) is derived. Its solution is outlined briefly and the general
formula is given. Complete curves for the distribution of current
for a wide range of lengths and ratios of length to radius are given.
These include curves showing the components of current in phase
with the driving potential difference and in quadrature with this,
and curves giving the magnitude of the current and its phase angle
referred to the driving potential difference. The conventionally as-
sumed sinusoidal distribution of current is shown to be a fair ap-
proximation for extremely thin antennas and for thicker antennas
which do not greatly exceed \/2 in length.

INTRODUCTION

HE distribution of current along a center-drivens:
Tsymmetrical antenna of small circular cross sec-

tion and half-length % is not the same as the
distribution along the same conductors when these are
folded together to form a closely spaced parallel-wire
line of length k. Because the conductors are actually
and identically the same in the two arrangements one
might legitimately assume that the distributions of
current would be similar. On the other hand the geo-
metrical configuration of the two wires differs in such
a fundamental way from the point of view of general
electromagnetic theory that great differences in the
distribution of current.might also be expected. The
fact is, that two parallel wires which carry equal and
opposite currents sufficiently close together in terms
of the wavelengths may be analyzed to a good approxi-
mation in terms of ordinary electric-circuit theory,
whereas the same two wires placed end to end may not.

* Decimal classification: R121. Original manuscript received
by the Institute, January 20, 1943,

1 Cruft Laboratory and Research Laboratory of Physics, Har-
vard University, Cambridge, Massachusetts.
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The criterion is this: If the resultant force acting at any .
instant on the charges in any small element of a con-
ductor due to charges moving at appropriate earlier
times in the rest of an extended circuit includes stg-
nificant contributions only from neighboring parts of
the circuit (that are not more than a very small frac-
tion of a wavelength away) then ordinary electric-cir-
cuit theory is a good approximation. In this case
radiation is neglected because it is negligible. If the
spacing b of a parallel-wire line is sufficiently small
(b <<<A) then the forces on the charges in a given.
element ds of one of the two wires due to equal and op-
posite currents and charges in parallel elements which
are more distant than ten times the spacing b practi-
cally cancel. All significant forces are due to charges
moving in immediately adjacent parts of the two
wires. In the case of the antenna no such cancellation
of forces due to moving charges which are separated
more than a small fraction of a wavelength occurs, and
ordinary electric-circuit theory is not applicable. This
is equivalent to stating that radiation is not negligible-
From the point of view of electromagnetic theory
the parallel-wire line with an open end is a special cas¢
of the center-driven antenna, and it may be analyz":d
rigorously as such. On the other hand the antenna is 1
no fundamental sense a folded-open section of trans
mission line.
Two methods of attacking the problem of the dis-
tribution of current along the center-driven antenn?
suggest themselves. In the first of these one depends
upon the similarity between the antenna and the ope™”
end parallel-wire line, and assumes that by suitably
correcting transmission-line theory a satisfactory 2P
proximation for the antenna may be devised. One
might, for example, measure the input impedance of the

October, 192
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antenna for a given value of %, and then equate this to
the general formula for the input impedance of a
terminated section of transmission line of length k. By
suitably adjusting two or more of the parameters
involved, viz., the attenuation constant ¢, the phase
constant B, the characteristic impedance Z., or the
terminal impedance Z=R+jX, an “equivalent” line
can be determined. If the value of & were varied over
a-wide range the “equivalence” which was established
at one value would be only roughly maintained but the
order of magnitude would be correctly given. One
might then assume that the distribution of current
along the “adjusted” parallel-wire line should be a
rough approximation of that along the antenna. Cor-
rection factors to be applied to line theory in order to
approximate the antenna may be devised in many
ways, both experimental and theoretical.! All such
methods are, however, essentially makeshifts which
may lead to results which are adequate for many en-
gineering purposes, but which do not actually solve the
problem. By skillfully devising enough correction fac-
tors any theory can always be made to fit any problem.
But such methods are justified only while a more rigor-
ous approach has not been carried out.
" The second method of attacking the problem of the
distribution of current along a center-driven antenna
does not attempt arbitrarily to correct a theory which
does not actually apply. It proceeds rather, from the
point of view that the antenna is a boundary-value
sproblem in its own right which can certainly be
formulated in general terms. If it cannot be solved in
closed form, it can at least be evaluated approximately
in terms of parameters which characterize the antenna
itself, parameters such as the length and radius of the
- wire, rather than in terms of a characteristic imped-
ance, an attenuation constant, or a terminal impedance
- which are essentially foreign to the antenna. The an-
tenna was investigated from this general point of view
by L. V. King? and by Hallén® using different but com-
parable methods. Both are analytically complicated.
- Actually the problem can be set up formally much
! more directly than was done by either of these two
investigators, and this will be done below. The formu-
" lation leads directly to the integral equation obtained
by Hallén, rather than to that derived by King. The
solution of this equation will be described only briefly
because it differs in no essential way from that carried
out by Hallén. Since Hallén's paper is not readily
available it seems desirable to provide at least an out-
line of the analysis.

1 See, for example, S. A. Schelkunoff and C. B. Feldman, “On
radiation from antennas,” Proc. LR.E., vol. 30, pp. 511-516;
November, 1942, . )

2 L. V. King, “On the radiation field of a perfectly conducting
base-insulated cylindrical antenna over a perfectly conducting plane

| earth, and the calculation of radiation resistance and reactance”
Phil. Trans. Royal Soc. (London), vol. 236, pp. 381-422; Novem-
ber 2, 1937. .

3 E. Hallén, “Theoretical investigations into the transmitting

and receiving qualities of antennas,” Nova Acta, Royal Soc. Sci-
ences, (Uppsala) vol. 11, pp. 1-44, November, 1938.
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TaE DIFFERENTIAL EQUATION

The analytical problem for the determination of the
distribution of current in a cylindrical antenna of half-
length % and radius ¢ may be formulated in terms of
the general boundary condition which requires con-
tinuity of the tangential component of the electric field
across any boundary surface between two media. If the
axis of the antenna is made to fall along the z axis of a
system of cylindrical co-ordinates, r, 8, 2, the following
boundary conditions obtain:

(E:%rma = (E.9)r=s on the cylindrical surface  (la)

(B min = (EY,=11 on the end faces. (1b)
The superscript ¢ refers to the interior of the condiictor,
the superscript 0 to space outside the conductor. The
electric field in the conductor everywhere satisfies the
relation

i=oE. . (2)
Here ¢ is the conductivity and 7 is the volume density
of current. In the idealized case of a perfect conductor
the tangential components of E would vanish on the

surface. If the end-faces are required to be small so that

the following conditions are fulfilled:

a<kh (3a)
Ba = (2rae/N\) KL 1, (3b)
then the average electric field (E,)._ss at the end faces
must be less than the average field (E.),~. along the
cylindrical surface. This follows because 4, near the
end faces must vanish at # =a, and with (3b) it cannot
reach a large amplitude between r=0 and r=a. Ac-
cordingly nothing of significance is neglected in so far
as the antenna as a whole is concerned if no account is
taken of the end faces and hence of (E,),_1s. Thus one
may assume the current to vanish at z= +4 without
flowing radially inward on the end faces. (Note added in
proof : The significance of the end faces and of the ap-
proximations involved in neglecting them has been
considered by L. Brillouin in a paper which formulates
the antenna problem in a mathematically more precise
but very much more intricate way. For very thick
cylindrical antennas this is important; for moderately
thin ones as required by (3). The end faces can cer-
tainly have no greater effect than that due to an in-
crease in % by a.)

In carrying out the analysis it will be taken for
granted that the cross-sectional and axial distributions
of current are mutually independent. This is always
true to a very high degree of approximation in a good
conductor provided (3) is fulfilled. It is commonly as-
sumed in the derivation of the interval impedance per
unit length z* due to skin effect; it is also assumed in
the derivation of the transmission-line equations. Ac-
cordingly, one may write

(EiYrma = 2L (4a)

Here I, is the total current in the conductor at the
cross section z, 2¢ is the internal impedance in ohms per
meter. At high frequencies it is
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g 1/ wrll (4b)
27a 20
Here Il =47 X107 henry per meter; o is the conduc-
tivity in mhos per meter; ¢ the radius in meters, u the
relative permeability of the antenna.
The electric field at outside points is conveniently
calculated from the vector potential defined by

curl4 = B (5a)
divd = — j(w/c® ¢ (5b)
using the relation defining the scalar potential ¢. Itis
— grad ¢ = E + jwA. (6)
This may be written in the form,
E=— !—62—<grad div4 + w—zA) (7
: w c? 7

if ¢ is eliminated from (6) using (5b).
Except at points very near the end faces one can
write ‘

Ar << A z- (83.)
One also has at all points, ‘
Ay = 0. (8b)

Accordingly the z component of the electric field has
the following value except very near the end faces:

£ - L <d2A, ey ) 9
T B2\ dz?: A ©)
: Lt ‘
Here : g2 = = (10)
¢

Upon substituting (9) and (4) in (1) the following dif-
ferential equation in the vector potential is obtained:

d24.,0 g2
—+ B24.,0 = j:z‘l,. (11)

The vector potential is thus seen to satisfy a one-
dimensional wave equation which is homogeneous in
the idealized case of an antenna which is a perfect con-
ductor so that z¢=0. It is readily verified using (5b)
that the scalar potential satisfies an entirely similar
equation. The total current does not satisfy such a
simple equation as will be shown directly.

THE FORMAL SOLUTION OF THE EQUATION

The differential equation (11) is a nonhomogeneous
equation which has a general solution involving the
sum of a complementary function 4.°and a particular
integral 4,°% The former may be written in the form

—J

A = —= [Cy cos Bz + C, sin Bs] (125.)
¢

with ¢ and C, arbitrary constants of integration.
A particular integral is

A0 = ];f I(s) sin B(z — s)ds.
4

0

(12b)

It is readily verified by substituting (12b) in (11) that
it satisfies the equation. Thus the general solution of
(11) is
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Octobey
A0 = ;]—(Cl cos Bz + C: sin Bz
c

— g fo ’ I(s) sin B(z — s)ds]- (13)

Let it be required that the antenna under consideration
be symmetrical with respect to a pair of closely spaced
driving points 0 and 0’ at its center in such a way that
the following symmetry conditions obtain:

I(z) = I(—2);  A%) = A%(— 2). (14)
The relation (13) is easily specialized to satisfy (14) by -
writing | z| for zin sin 8z. Thus

A0 -—-_—J[Cl éosﬁz-{—Cz sinBl z|
c

— zif zI(s) sin B(z — s)ds]. (15) |

It is readily verified that (15) is unchanged if —z is
everywhere written for z. (In the integral the variable
is changed by writing s = —u after writing —z for z.)

TBE DRIVING-POTENTIAL DIFFERENCE

Let it be assumed that a driving-potential difference
Vot 1s maintained between the two terminals 0 and 0" °
which are assumed to be separated an infinitesimal dis-
tance. In practice, terminals are always separated a
finite distance but it is here postulated that it is in any
case a negligible fraction of a wavelength. The actual
case is readily reduced to the assumed one as shown in
Fig. 1. The actual terminals are 4 and B and a trans-
mission line is connected to them, as shown on the left.
By filling the gap between 4 and B in the manner
shown on the right, the equal and opposite currents in
the indefinitely close parallel conductors from B’ to 0
and from A’ to 0 completely cancel in so far as could
be determined at outside points. Thus the antenna
may be assumed to extend without break across 4 B; it
includes a point generator maintaining the potential
difference V¢ across its terminals. In the same way
the transmission line may be taken to extend from 4’
to B’ without break with a point load concentrated
midway between 4’ and B’.

The boundary condition on the scalar potential is

Vet = lim {¢°(+ 2) — ¢°(— 2)}. (16
z—0
From (5b) one has, since 4,<4,, 4¢=0,
04.° 3 L@ (173)
oz I ct ¢
A0 .
Also, fArs J -t ¢'(+ %) (17b)
9z ct ,
aAz() —
( ___Z)_ = _j_"f.d,o(_ z) (17¢)
—~ 92 c?
. 2 aA,U — .
so that ¢%(— 2) = — ¢%(z) = j— il (18)
w 0z
' 2j¢? 4.0
and Ve = 2 lim ¢%(+ 2) = 7 lim (+2) (19)

2—0 W z-0 0z
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Upon differentiating (15) with respect to z and allow-

ing z to approach zero one has

. aA za — 7
m( > _ ¥, (20)
‘ z—0 0z ¢
so that with 8=w/c, one obtains
; Cs = 3V (21)

THE INTEGRAL EQuaTION
It is shown in Appendix I that the vector potentlal

' at all points outside a cylindrical conductor (including

[+ e
I,
Y

its surface) except those within distances of an end face
comparable with its radius is given to a good approxi-

mation by
bi +h
—_— I:’

drd _n

e~ bR

At = dz’. (22)
Here R is the distance from the point (7, 8, 2) outside
the conductor where A% is calculated to the center of

the element dz’ at 2’ on the axis. That is,

- VETITF A (23)
The universal magnetic constant is
Il = 47 X 107 henry per meter. T (24)

If the integral (15) is specialized to the surface of the

{ antenna, i.e., to 7=g, and is then substituted in (13)

one obtains

fan e PR
j— dz’ = Cycos Bz + 3V smﬁ|zl
4x
—Q‘f I(s) sin Bz — s5)ds. (25)
0
In terms of the fundamental electric constant
A = 8.85 X 102 farad per meter (26)
and theﬁinagnetic constant defined in (24) one has
c = '———— = 3 X 10% meters per s comi 27a
i per se (27a)
and, 1/—— = ¢Il = 376.7 ohms. {27b)
| Then l/4x = R./4r = 30 ohms. (28)

This may be substituted in (25). The notation in terms

1of R, (ohms) will be retained so that simple dimen-

sional relations are at all times in view.
As a first step in the solution, the integral on the left
in (25) may be expanded in the following way:
— 38R
ds’

+h o dg thoIJSe B — T,
# [ e
-» R Y R

The first iiltegral on the right can now be evaluated
directly. Itis

N xS RN
f_h z-b [\/(h s ey R z)]' 30)

=1, dz'.  (29)

With the notation,

2k
e
a

(31)
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mea
WG+ )

Equation (30) may be written as follows:

+h gy
f ?=Q+ln(1——zz/h2)+6.

—n

- 2/

(33)

It is to be noted that § is negligible except very near
the ends of the antenna and that (30), (which includes

Fig. 1—Actual method of feeding and ' analytically
equivalent method.

d8) is everywhere finite reducing to the followmg value

at the ends:
f“‘ dz']
l: -» R ;ih B

Upon substituting (33) in (29) and then inserting’
(29) in (25) one readily obtains :

— jAw

QR.

10+ 1n2. (34)

I,=

{C; cos Bz + 1V, sin ﬂ[ z|
—z | I() sin Bz — 5)d
b4 j; (s) sin B(z — s) s}

1
- _S—Z—{I'hl (1~ 2%k + 1.5

(——~I it )dz } (35)

Since the current vamshes at the ends and
In(1 —22/k%) 48 remains finite according to (33)and (34),
one has, with z=h,

— jarw

{C1 cos Bk + 1V,° sin 84}

c

— {J%z'f I{s) sin B(h — s)ds

+h
— I

~h h

=+/(h — 2)2 + o

e~ 18Ry

dz’} . (36)

Here 37
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If (36) is subtracted from (35) one has
— jé=x
QR,

I.=

{C;(cos Bz — cos Bh)
+ 1Vo(sin 8| 2| — sin gA)}
! {I, In (1 — 22/k%) + 1.5

)
th ISR — T,
—_—)d7’
+ - ( "R )
jhwzt 2 . ,
- f I(s) sin B(z — s)ds
Rc 0

1 +h g—iBRA
+ ——{ I’ ds’
—h R
Jhmat
R,

This expression is the same as that originally derived
by Hallén in a somewhat different way. Since its evalu-
ation from this point on follows in all essential respects
the method used by Hallén it will not be reproduced in
- detail. A brief outline is given in Appendix II because

Hallén's paper is not generally available at the present
time.

THE FIRsT-ORDER SOLUTION

By the method of successive approximations out-
lined in Appendix 11, (38) may be expressed in the form
of a series in the small quantity 1/Q. By substituting
this series in (36) the constant of integration Ci1 may be
evaluated. The zeroth and first-order terms in the solu-

tion are
, 32Vt (sing(h— || )+(1/9) [M1'+jM1"l} (39)
"R . cospr+(1/9) [Ad+jAn] )

Terms inwolving factors of order 1/, 1/Q3, etc., are
neglected in (39), The real functions M,f, M, 4,7,
and 4,7, which are functions of % and z only and not
at all of the radius @, are defined as follows in terms of
the complex F and G functions given in Appendix II.

M + jM T = Fy(z) sin Bh — Fy(h) sin 8] 2|
+ Gi(k) cos Bz — Gi(z) cos Bk (40)
AJ + jAT = F(k). (41)

These have been computed for several values of % as
shown graphically in Figs. 2 to 6.

Let the numerator in the brace of (39) be denoted by

NT 4 jNU = Nein (42a)
with
NI =sin B(h — | 2|) + ML1/Q; N7 = M7/Q. (42b)
Similarly let the denominator in (39) be

DI + DI = Deivp (42¢)
with  Df = cos Bk + A,7/Q; DI = AJ1/Q.  (42d)
Also let ' = Ncos ¥p — ¢¥n) (42¢)

f" = Nsin (¥p — ¢n). (42f)
Both f” and f* are functions of z, while D is not. With
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th(s) sin 8(h — s)ds} . (38)

October

this notation, (39) reduces to

22Ve® ,, . . Vo® o ’
: = )= (" . (43
1 QR,D(f +if" 609D(f (43)
In amplitude-phase-angle form one has

Vet .

L= — VTGP (449
o o+
fl
with - @ = tan™! (};> (45)
If the applied vbltage varies according to

70¢ = Vo° sin wf (46)

then the instantaneous current at a distance 2 from the
center of the symmetrical center-driven antenna is

Vo®
- 600D ‘
The distribution of current along a cylindrical an-

1, =

VTFEF () sin @t + 0. (47)

tenna which satisfies the condition

P> 1 (48)
has thus been obtained.
If (48) is interpreted to mean
ez 10, (49)
one can also write as an equivalent
3
' — =175 (50)
a

Curves showing the functions f’ and f’ for use with the
formula (43) are reproduced in Figs. 7 to 12 for several
lengths and three different thicknesses covering most
of the practical range. Actually it is merely necessary
to multiply the values of f or f' in the curves by
1/60QD in order to obtain the corresponding compo-
nents of current in amperes per input volt. Numerinil
values of this factor for the several cases plotted in
the figures are given in Table I. Curves giving
V() and 6= tan™ (f'/f'") for use with (44) are
shown in Figs. 13 to 18. Thus Figs. 7 to 18 togethejr
with (43) and (44) completely characterize the distri-
bution of current along a typical center-fed antenna of
circular cross section with radius ¢ and of length A. Be-
fore discussing these general results it is well to consider
first the input impedance and then two special cases.

Tre INPUT IMPEDANCE

In considering the significance of the distributton
curves for current it is instructive to examine simul-

taneously the input impedance of the antenna. This 15

defined simply as the potential difference V,® main-
tained at the input terminals divided by the input cur”
rent. It may be obtained directly from (39) by writing
z=0. Thus

Ve  — jOR. (cos Bk (1/2) (4T + j4.7) } (50
Zo =T {sin 8h+ (1/9) (B! + jBiD)

with

BJ + iBdT = Fy(0) sin Bk + Ga(k) — G1(0) cos Bk (52)
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“ TABLE I
h P 1
— —_— i =3 =Gos —1. i —2
N (radians) 0D {multiply all numbers by 1073) Yu=Gou—jBu (in mhos X1073)
g=10 | g=20 Q=30 =10 | 2=20 Q=30
0.2425 1.538 13.396 14.094 13.805 15.54 —j3.67 15.36 —j0.0 13.8  +43.67
0.25 1.571 11.819 11.815 11.810 12.74 —35.9 11.39 —35.90 11.04 —75.9
0.375 2.356 2.320 1.176 0.785 0.992 —31.443 0.255 ~70.805 0.115 —70.552
0.50 3141 1.820 0.870 0.589 0.574-+70.423 0.140+70.095 0.066-+70.041
0.625 3.927 2.806 1.284 0.830 0.834-+72.806 0.174451.11 0.073 450.675
0.75 4.712 8.670 10.2° -73.54

This is exactly the expression from which curves for
the input impedance have been computed.*

TaE DISTRIBUTION OF CURRENT FOR AN .
INDEFINITELY THIN ANTENNA

The distribution of current along an indefinitely
thin antenna is obtained from (39) by allowing the

in both numerator and denominator in (39) and in (51)
are large compared with the magnitudes of the factors
involving 1/Q.)

The distribution of current along an indefinitely thin
antenna is seen to be very simple in form. Referred to
the input current I, defined by '

(It is to be noted that (53) and (54) are actually good
approximations for an antenna of very small but non-
vanishing radius over those limited parts of the ranges
of 84 and B(k— l z] ) for which the trigonometric factors

4 Ronold King and F. G. Blake, “The self-impedance of a sym-
metrical antenna,” Proc. L.LR.E., vol. 30, pp. 335-349; July, 1942.

radius a to approach zero. This is equivalent to allow-, Io=j 2xVo can Bh 55)
ing the parameter { to approach infinity. Let the ap- )R,
R i e
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Fig. 2—The function A1/, 4,7, My, and M for H=1.538.
plied potential difference V® be increased with & so itis I =1 sin (% — | z|) . (56)
that the ratio Vo*/ remains finite. One then has -t ’ sin 84 '
' I, = j2nVet sinpk —|z|) . - (53) Orin terms of the maximum value defined by
; . Q-R.c ) cos 6h Imax = Io/sin ﬁh (S?
The input impedance is formally expressed by . .
. . it is I, = Inex sin B(k — { z[ )- (58)
Zoo = ]Xoo = - ]Q (R,;/Z’lr) cot ﬂk (54-)

The current Im.. is fictitious in all antennas for which
h is shorter than A\ /4.

The distribution (56), or its equivalent (58), is the
one usually assumed for all straight antennas regard-
less of radius. It is here shown to be strictly correct for
an antenna of indefinitely small radius. Distribution
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Fig. 3—The functions 4,7, 4,11, My, and M,/ for H=x/2.

curves computed from (58) are well known. A few are
shown in Figs. 13 to 18 marked sine curve.

The input impedance of an infinitely thin antenna as
given by (54) with Q increasing without limit requires
X0 to be negatively infinite for Sk between 0 and 7/2,
m and 37/2, etc., and positively infinite for 8% between
w/2 and m, 3r/2 and 2w, etc. The values at Bh=x/2,
m, 3w/2, etc., are indeterminate. The formula (54)
would be a good approximation for an extremely thin
antenna except near the values of Bk listed above. It is
not a good approximation for thick antennas.

Fig, 4—The functions 4.7, 4,1, M,!, and M, for H=3x/4.

THE DISTRIBUTION OF CURRENT FOR AN ANTENNA
APPROXIMATELY A HALF WAVELENGTH LONG

The simple sinusoidal form (53) for the distribution
of current and the equally simple expression (54) for
the input impedance are not ¥eful at S =nr/2 with »
any integer even for indefinitely thin antennas. At
Bh=nwr/2, one has from (39) and (51)

727V { cos Bz + (1/Q) [M + jM ]
Rc A II + ]A 1'"

I,

)

— jR. { Af + jAT }

Zuo = N .
2r |14 (1/9) (B + jByIY)

These formulas are limited only by (48).

Since the functions 4, B, and M appearing in (59)
and (60) depend upon the radius e only through terms
involving the ohmic resistance (which are negligible
in good conductors), it follows that (59) and (60) de-
pend upon the radius only through the one term in
which 1/Q appears as a factor. That means that the
distribution of current (59) and the input impedance
(60) of antennas for which k=\/4 will vary only
slightly with radius as compared with antennas of
other lengths which depend on the general expressions
(39) and (51) that have £ as a factor in all terms, Thus,
one might expect that a reasonably satisfactory ap-
proximation for a moderately thin antenna would be
given by neglecting the terms in 1/Q in (59) and (60)-
If this is done one obtains formulas which are inde-
pendent of the radius, and which are strictly accuraté
in the limit as the radius is made increasingly small

(60)
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Fig. 11—The distribution functions f’ and f*’ for H=57/4.
-

after Bh has been fixed at nr/2. It can be seen from the
left half of Fig. 8 in footnote reference 4 that as the
ratio a/N becomes smaller and staller the input-re-
actance curve approaches the vertical and its intersec-
tion with the Xopp=0 axis moves to the right. Just
before one passes to the actual limit, =0, the react-
ance curve intersects the Xgo=0 axis an infinitesimal
distance to the left of Sk=x/2, while its value at
Bk=m/2 is just a trifle below Xg40=42.5. In the limit,
the reactance curve is a vertical line from — © to -+
at Bh=m/2, so that values 'of,Xoo=0 or Xoo=42.5 are
equally correct but actually meaningless. The formulas
which apply to Bk==n/2 with the radius a approach-
ing, but not quite reaching, zero are given below. They
are not correct for the condition of resonance X¢p=0,
which occurs indefinitely near Sh=w/2, as a—0 but
considerably below this value even for small radii.

I, = (V*/Zoo) cos Bz (61)
with~ Zoo = Roo + jXoo = (R./27) (A1 — jA). (62)
For Bh=7/2 the numerical value is
Zop = 73.13 4+ j42.5 = 84.5430‘:.2. (63)
The formula (61) is as simple in form as (53) and
permits writing
I, = I,cos Bz (64)

with I, now complex and given by
Io = Voc/Zuo (65)

instead of the pure imaginary defined by (55). Thus
(56) and (58) apply to an almost infinitely thin an-
tenna with 8% =m/2 and with Iy =I,,. defined above.
The simple formula (61) is not strictly applicable to
antennas of practical thickness any more than is (53)-
However, because 1/Q appears in the more correct
formula (59) only in one small term, (61) is a better
approximation for the case Bh=w/2 than is (53) for
other values of Bk. Indeed, an examination of Figs. 8
and 14, (which give the distribution of current along an-
tennas for which Bk =m/2 and Q has the values 10, 20,
and 30) reveals that even for the thickest antenna
(Q=10), I, does not differ greatly from a simple cosiné
as given by-(61), but with Zye standing for the actual
input impedance calculated from (60). These are
Q =10, Zoo = 64.8+j29.7 =71.2,224°6  (663)
Q =20, Zo = 69.6 + j35.7 = 78.6£27°.2  (66b)
Q =30, Zoo=70.3+ 737.6=79.8228°2  (66c)

Although the phase angle 8 of the current as shown if
Fig. 14 is not perfectly constant over the length of the
antenna it varies only a few degrees from the value at
the input terminals.
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ANTENNAS IN GENERAL

If an antenna differs even slightly in half length from
,quarter wavelength for which 84 =m/2 it is not at all
jear from (39) that an approximate formula of the
E«/pe (61) or (53) may be used umnless the antenna is
sfinitely thin. Because the term in 1/Q in the de-
‘ominator of (39) is small, the term cos B& will be sig-
ifficant even though Bk differs very little from =/2.
the impedance formula (51) also changes very rapidly
4 the vicinity of Bhk=w/2. Nevertheless the actual
smputation of I, for Bk sufficiently below /2 so that
s antenna for which €=20 is self-resonant with
Tw=0 (Figs. 7 and 13) shows that | [,| differs but little
om a sine curve measured from the upper ends with
»{z[ as variable, and that the phase angle 6 stays
Jery nearly constant at a value near that for Iy even
or thick antennas. On the other hand, antennas which
re sufficiently long so that 8k appreciably exceeds
(2, as in Figs. 15 to 18, | Z,| cannot be represented
,-ery satisfactorily by a simple sine curve nor does the
‘Ihase angle 8 remain constant at anywhere near its
;alue for I;. One must conclude, therefore, that the
IStI’lbuthﬂ of current along antennas only of such
engths that B does not exceed appreciably the value
i/2 may be represented with fair accuracy by

‘ 1 1. = IOM (67)
i sin Bk
ith C To = Vo /28 (68)

fere Zgo is the input impedance computed from the
\ccurate formula (51) or obtained from the curves
wen in footnote reference 4. If the half-length of the
mtenria is much greater than )\/4 in partxcular if it
!pproaches or exceeds A/2, a representation in terms of
§7) and (68) is not satisfactory.

{Since a single distribution function with a constant
3hase angle is not in general adequate, one is faced
ith the necessity of complicating the representation.
learly a much better approximation at the expense of
'u]y a small increase 1n complex1ty would result if each
tomponent I'and I.” .

i I.=1" 43I, + 57
; 7 6OQD i
lere separately represented by a simple trigonometric
}“nctlon This is actually possible to a very satisfactory
*gree of approx1matxon The representation is the

(69)

Mowing :
-7 [G (cos Bz — cos
e o 1—cos H
. sin (H — Blz]|) i
— jBoo (————l*—l‘-)] (70)
sin &

tre H =Bh, Goo is the input conductance, and By, the
but susceptance of the antenna in question. The ad-
fittance, 1/Zoo= Yoo =Gqo—7j Boo, for each of the sev-
4l lengths considered above is given in Table I. In
Jder to show that (70) is a good representation of the

]
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Fig. 12—The distribution functions f’ and f"” for H=3x/2.

actual distribution one notes in the first place that the
input current I, is exactly right for all lengths. The
distribution along the antenna given by (70) may be
compared with the actual distributions using Figs. 19
and 20. These show the true distribution functions, f
and f/, as obtained from Figs. 8 to 12 each plotted with
the appropriate trigonometric function which is sup-
posed to represent it approximately in (70). (In Figs.
19 and 20, f* and f” have been adjusted in scale so-that
the values at 2=0 coincide. Actually the admittance
factors Gop and — By in (70) serve to change the scales
of the trigonometric functions respectively to give the
correct values at z=0. For purposes of plotting and
comparison it was more convenient to adjust f* and f-
to the trigonometric functions rather than vice versa.)
It is seen that the representation of the analytically
extremely complex functions f’ and f” in terms of the
simple trigonometric functions is surprisingly good
over practically the entire range of lengths shown. The
poorest approximation is near A=3% for €=10. Some
difficulty in representing f” is encountered at A=X\/2, as
shown in Fig. 19. Because no antenna of physically
realizable radius is antiresonant at A =X\/2, Bg does not
vanish and the imaginary term in (70) becomes infinite.

- This difficulty can be avoided by introducing a fictitious



Fig. 14—The amplitude function {f| and

the phase function ¢ for H==/2.
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Fig. 17—The amplitude function {f| and the phase function ¢ for H=35x/4.

and slightly greater length 4’ in the form BA' =H'
for H'in (70), and adjusting 4’ so that sin (H’— 3| z‘ )/
(sin H’) crosses the axis at or near the point where f’
crosses it. (H’—H should be approximately equal to
w/2—H, where H, is the value of H producing anti-
resonance for the particular choice of Q. It may be ob-
tained from Fig. 12 or equation (29b) in footnote refer-
ence 4.) At antiresonance, both By and sin H’ must
vanish. The indeterminate form (V¢* Bgo)/(sin H’)must
then be replaced by the maximum value of I,/. This
always occurs near z=4—(A/4).

For purposes of calculating electromagnetic fields
due to antennas of practically encountered thicknesses
the distribution function (70) is a very much better
approximation than the form (67) with (68) which is
unsatisfactory over most of the range. (Itis to be noted
that at H=nwr/2 with n odd (70) reduces exactly to
(67).) The application of (70) in computing electro-
magnetic fields is reserved for a later paper.

RADIATION RESISTANCE REFERRED TO
MaxiMuM CURRENT

A common method of estimating the total power
radiated from an antenna is to integrate the Poynting
vector over a spherical surface in the far zone of the

antenna. The calculation of the Poynting vector from
the electric and magnetic fields is based on- the as-
sumption that the distribution of current has the sim-
ple sinusoidal form which is strictly accurate only for
an indefinitely thin antenna. The total power so com-
puted is then divided by the square of the maximum
current (at A\/4 from the end of the antenna) to obtain
the radiation resistance referred to maximum current.
The curve marked Q= in Fig. 21 is that obtained
and commonly reproduced for the sinusoidal distribl'-l-
tion of current. Because the distribution of current 10
practical antennas is never exactly sinusoidal, even for
h=X/4 where the approximation is best, the radiation
resistance so obtained is not accurate for them. Its cor-
rect value (neglecting power consumed in heating the
antenna which is less than 3 per cent for copper antef”
nas) can be determined as follows: Let the radiatio?
resistance referred to maximum current be defined by

Py (1)
[ In]2
Here P, is the power supplied to the antenna at its %~

put terminals and, neglecting power consumed in heat-
ing the conductor, also the power radiated.

[ In]t = (VT + 1% | max-

Ru® =

(72)
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Fig. 19—The function sin (H—Blz|)/sin H compared with the distribution function f’ reduced to the same value at z=0,
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F ig. 20—The function (cos 8z—~cos H)/(1—~cos H) compared with the distribution function /" reduced to the same

able points is not sufficient to determine accurately the
resulting curves near their maxima and minima, the
general shape and position relative to the familiar curve

564
value at z=0.
Since Py = | Io|%Rgq (73)
I |2
one has R, = T Ry (74)

Since | Io| and |I..| are readily determined from Figs.
13 to 18 and Ry may be computed directly from (11a),
using Table I in footnote reference 4 for the particular
value of Q, R,,* may be determined. The values so com-
puted for the several lengths for which current data are
available are shown plotted in small circles in Fig. 21
for a relatively thin antenna (2= 30) and a moderately
thick antenna (2=10). Although the number of avail-

for the simple sine distribution (2= «) 'are correctly
given. It is clear that the curve based on the sine dis-
tribution is not at all a good approximation for even
moderately thick antennas except for lengths with H
near H=nnr/2 with n odd where the sinusoidal distri-
bution is least in error. Even here it may be in error by
as much as 50 per cent for very thick antennas. Actu-
ally R,¢ is completely unnecessary if the input imped-
ance of an antenna is known.

.
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Fig. 21—The radiation resistance Rn* referred to maximum current Z,. The curve marked Q= = is accurately
computed throughout. The curves marked ©=10 and ©=30 are estimated using only the insufficient number

of accurately computed points shown by small circles.
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ArPENDIX I

The complex amplitude of the vector potential de-
fined by (5) satisfies the Helmholtz equation
' VIA + B2A = {IL (75)
Here 1 is the volume density of current flowing, in this
case, in the antenna. The Helmholtz integral which
satisfies (75) is
I i
A= — — g~ BBy
41!' r R1
‘Here 7 is the volume of the cylindrical antenna, dr’ is
an element of 1, 7’ is the current density at dr’, and R;
'is the distance between the point (r, 6, z) where A is
‘computed and the element d7’ at (v/, #, 3’). Since the
‘radial component 4, can be due to ¢, only, the inequal-
ity (8a) is readily verified. The z component is
‘ a i,
A, =— — e~ BBy,
! T Rl
It is to be proved that A, evaluated from (22) on the
%cylindfical surface of the antenna differs by a negligible
amount from A. computed from the exact formula
i(75). I/ in (22) is defined by

a 2% a
= f f i/ rdrdd = 21rf i rdr (78)
o Yo 0

isince rotational symmetry may be assumed. Thus it
must be shown that the following dlfference is vanish-

mgly small.
f f — e“’ﬁerdB’dr’ ds’

@ - f L wa,
-» R

14

Here R is the distance from any point outside the an-
'tenna and not near the end faces where 4 is to be cal-
cculated, in particular a point on its cylindrical surface,
to the element dz’ on the axis of the antenna. R, is the
distance from the same outside point to an element
1d0’dr'd7’ in a cross section of the antenna at the center
of which dz’ is defined. This is illustrated in Fig. 22.

. Because of rotational symmetry ¢, is independent
of 8/ and may be removed outside the sign of integra-
tion with respect to ’. Thus with (78)

+h 2x [~ g—ifRy e~ 18R
D—f d,.f z, rdrf [ _ldO' (80a)
0 R J

1t follows directly from (3) or from Fig. 22 that R can
‘differ from R at most by magnitudes of the order of the
fadius @ of the cylinder. If R, and R are large compared
with @, they will differ from each other by a negligible
amount and the difference in the brackets in (6) will
be vanishingly small. Accordingly, significant contri-
butions to D for points on the surface of the antenna
vhere ¥ =a can come only from that part of the inte-
fration with respect to 3’ for which (3 —2') is not large
tompared with a, i.e., from sections of the surface
Which are very close to the circumference at z’. It fol-
bws that the distribution of current at more distant

(76)

(77)

(79)
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points and even the length of the antenna can make
no difference in the integral except at points very near
the ends. Thus one may integrate from — « to +
and assume 4,” independent of the integration with re-
spect to z’. Furthermore, since significant contributions

Fig. 22—A section through the antenna.

are obtained only for distances comparable in magni-
tude with ¢, and since with (3) e~7#¢=1, the two ex-
ponentials may be set equal to unity in the range of
significant contributions. This leaves

D= f i iy’ f i fj (—_— E) 42/, (80b)

The 1ntegra1 with respect to 2’ can be integrated di-
rectly into In (a/71)? with r; indicated in Fig. 22. If this
is integrated with respect to 8’ the integral vanishes.
Thus D is entirely negligible except at points within
distances of the ends of the antenna comparable with
a. The contributions of these short sections were made
negligible by imposing (3a).

(It is interesting to note that the rigorous derivation

of the transmission-line equations for parallel wires

from fundamental electromagnetic theory depends
t1pon exactly the same demonstration in that (22) is as-
sumed valid on the surface of each parallel wire.)

ArpENDIX I1

In order to derive the solution (39) from the integral
equation (38) it is convenient to introduce the follow-
ing shorthand notation:

Fy(z) = cos Bz; Gy(z) = sin B] z\ (81)

Fo. = Fo(z) — Fo(h); Go. = Go(z) — Go(h).  (82)

The first brace in (38) will be denoted by (I,),. Using
the above notation it is

— j4r
(Iz)D = {CIFOZ - %VOGGOz}-

¢

(83)

It may be regarded as a zeroth order approximation for
L. If it is substituted in the rest of the terms in (38), all -
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of which include the current as a factor, terms will be
obtained which are multiplied by 1/Q. They will be
denoted by (I.))o. They are

— 4o
U = —LT (G, — 176Gr] (89)
with »
Fi. = F1(z) — Fi(h); G = G:i(z) — Gi(k) (85)
and
ZZ
F}(Z) = ‘-Fo; ln (1 - —}‘1‘2> +Fo¢5
+hFﬂz,e_jBR - FO:
- —_—— gy
—h R
Jdwzt .
{-— f Fye sin 8(z — s)ds} (86)
Rc 0 '

+h e—jﬁRh
Fu(k) = ~ { f Foi dz’

—k &

Jlxzt ok . P
- f Fu, sin Bk — s)ds}. - (87)
Rc [

Gi(2) is exactly like Fi(z) with G written for F
throughout. (88)
Gi(h) 1s exactly like Fi(kh) with G written for F
throughout. . (89)
The first-order approximation for I, is now given by

(Iz)lE (I:)D+(Iz’)0

I o [t 2] v [ Got 22 90)

=2k, 1 o;+-6- +§0.[0z+9 } (

If this expression is substituted for I, on the right in
(38) a second-order approximation may be obtained.
This may be substituted back in (38) to obtain a third-
order solution. The process may be continued indefi-
nitely to obtain a series solution of the form

— jix {C [F Fy, " F,, n ]
QRC 1 0z Q 92

R ¥/

I,=

Glz + Gh' + :l} (91)
Q Q2 '

The constant of integration Cj, can now be evaluated
directly by substituting the solution (91) for I, in (36).
If this is done one has

ol + 10 ]

+ —§~Vo¢[Go(h) + E—é—hz + - ]} (92)

+ %VOG [G()z +

0 =

“Lic

This can be solved for () as follows:
Go(h 1/Q)Gi(h) 4 - - -
_%Ifoe{ olB) + (1/9Q) Gi(h) + } 03)
Fo(k) + (1/Q) Fa(B) + - - -

If this is inserted in (91) one has the solution for I,. It
is

Cl"—‘
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After rearranging using (82) and (85) one has precisely
(39).

In carrying out the evaluation of the function
Fi(2), Fi(k), Gi(2), and Gi(k) as defined in (86) and (87),
advantage can be taken of the fact that a? is negligible
compared with (5—2)? and (k+432)? except for points
very near the ends of the antenna. At the ends errors
as large as 50 per cent are involved. However, since the
current necessarily vanishes at the ends, the distribu-
tion of current is actually not significantly affected. At
most the current within distances of the ends compara-
ble with the radius ¢ may be in error by an appreciable
amount, but this error becomes negligible at distances
of three or four times the radius from the end. Actually
in computing the current, points need not be taken
within distances of the ends comparable with the ra-
dius ¢ and a curve connecting points at distances of
5a¢ or more from the ends to zero values at the ends
must give the correct distribution. Accordingly the
term in & may be neglected and one may write

- R=|7 —g| 95)
in the integrals. It is especially important to note that
the approximations here introduced are extremely good
for the current at all points except near the ends where
it is known to vanish. In particular, the input current,
and hence the input impedance, is in no way affected if
(3) is fulfilled. )

If one makes use of (95) all integrals in (86) to (89)
are readily evaluated without further approximations
in terms of trigonometric functions or the integral
functions defined below.

fbl;cﬁ-s—’idu=?:‘i(b)—“c‘i(a) (96)
a - U .

(97)

5 sinu
f -du = Si(b) — Si(a).
s U

The final forms are

F1(z) = — (cos Bz—cos Bk) In (1—~3z%/k?)
+3% cos 8z[Ci 28(k+2)+Ci 28(h~2)
+j Si 28(h+3)+7 Si 28(h—3)]
—1 sin Bz[Si 28(k-+2)—Si 28(h—2)
—j Ci28(h+2)+j Ci28(h—2)]
—cos pk[Ci B(k+12)+Ci (h—2)
+j SiBh+2)+] SiB(h—2)]

4 drzih [ z 8 cos Bk
— sin Bz—
&

—_ 98
- o (1 cosﬂz)] (98)

Gi(z) = —(sin 8| 2| —sin B%) In (1—32/k2)
—1 cos Bz[Si 28(k+2)+Si 28(k—2z)
—2 8i (28] 5| )—j Ci 28(h+2)
—j Ci 28(k—2)+2j Ci (282)]
—1 sin Bz[Ci 28(h+2)—Ci 28(h~3) .
5 Si 28(h+2)—j Si 28(h—2)—2j Si (269)]

[Fo:+Fr/Q+ - - - |[Go(B)+Gu(B)/ Q2+ - -

z

jz‘n'Vo‘{
" QR.

= GutGuef0t - JFs PR/ 2 - ] b9
Fo(B)+Fy(B)/Q+ - - -



~

i

Kl

—sin B4[Ci 8(h+2)+Ci 8(h—1)

+j SiB(h+2)+j Siplh—z)]
Ang'h [sin 8| 3| | z] cos Bz

pymfanple]

R. 28k 24
S0 bl g )] (99)
Bh cos B3

Fa(k) =} cos BR[CT (48%)+7 Si (48%)]
| —1 sin BR[Si (48k)—j CI (48%)]
—cos Bk[Ci (28k)+j Si (26k)]

+_47rz"h [sin Bk cos Bk R ﬁh)] (100)
- z 2 B cos
Gi(k)=—1% cos Br[Si (48h)—2 Si (28k)
—j Ci (48k)+-2; Ci (28%)]
—1 sin g1[Ci (48k) +] Si (48h)
—2§ Si (28%)—2 Ci (28k) —4 In 2]
~sin BA[CT (28%)+j Si (284)]
Amzih [sin Bh_}_; gh sin 8% cos ﬂh]
- cos Bh — —————
TR, L2 i
The terms in 2* were neglected in computing the curves
of Figs. 2 to 6. They are entirely negligible if the an-
tenna is a good conductor.

(101)

It has been planned to present in the PROCEED-
| m¥Gs of the I.R.E. instructional material of timely
| “interest. This procedure was instituted some time
ago, and here continues by the publication, in suc-
cessive issues of the PROCEEDINGs, of a series of co-

i —

ordinated parts, together entitled “Some Aspects of
Radio Reception at Ultra-High Frequency” by
Messrs. E. W. Herold and L. Malter. Parts IV and
V of the five parts are here presented. Each Part is
preceded by its own related summary. The Editor

Summary —This paper presents a general survey of the prob-
lems encountered in the mixer or converter stage of superheterodyne
receivers, particularly at ultra-high frequencies. The application of
& strong local-oscillator voltage causes a periodic variation of the
signal-electrode transconductance as a consequence of which inter-
mediate-frequency-current components appear in the output.circuit
when a signal is also impressed upon the signal electrode. It is
demonstrated that intermediate-frequency-current components are
wesent in the cutput, which differ from the signal frequency by in-
tegral multiplés of the local-oscillator frequency, if the Fourier analy-
sis of the signal-electrode transconductance contains components
which are integral multiples of the local-oscillator frequency. Methods
of determining the conversion transconductance for so-called funda-
mental and harmonic conversion are given.
It is shown that the noise output and input loading of a mixer
Stage are given by averaging these quantities over a local-oscillator
Gyele. A discussion of mixer gain is included, with a demonstration
fat the gain of a mixer stage is given approximately by the product
ofthe conversion transconductance and the impedance of the output
tircuit (for high-output-impedance tubes).

Considerations regarding image rejection and the undesirability
*f radiation of oscillator power lead to the conclusion that high inter-
Nediate frequencies are desirable. )
- An extended discussion of whether to use an amplifier or mixer
Stage in the first stage of a superheterodyne receiver is included. If

* Decimal classification: R361.2. Original manuscript received by
the Institute, August 2, 1943.
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tor Division, Radio Corporation of America, Lancaster, Pa.
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the received signal is strong, one should convert immediately, unless

.image rejection or the prevention of oscillator radiation necessitate
the use of radio-frequency stages. If the received signal is weak, an
amplifier stage should be used below a certain frequency and a mixer
above, the transition frequency depending upon the characteristics
of the tubes available and the bandwidth required. In general the
transition frequency occurs at the point where available tubes will
no longer give appreciable radio-frequency gain for the bandwidth
required. ) .
' ' I. INTRODUCTION _

"N PART Il of this series we concerned ourselves

I[ primarily with the case wherein the signal voltages
applied to the circuits and tubes. of a receiver are
"so low in amplitude that the tubes can be considered as
linear devices, wherein the output voltage or current is
proportional to the signal-electrode voltage. This case
will be recognized as being precisely that of the linear
amplifier. , R ,

It is frequently convenient, however, to make use of
the superheterodyne principle in receivers. In receivers
of this type, the incoming signal is combined with a
locally produced oscillation of different frequency to
produce a third signal at a frequency referred to as the
intermediate frequency, which is related to both the
frequencies of the incoming signal and the locally pro-
duced oscillation. It is an essential characteristic of any
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