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This paper examines a modified form of Maxwell's equations, one designed to produce anisotropic light
propagation in a vacuum. The equations predict anisotropies in the speed of light that behave as cos P and
cos2$, where tI5 is the angle between the actual direction of propagation and some single preferred direction
in space. The predicted index of refraction also has terms that behave as cos P and cos2$.

I. INTRODUCTION

In the preceding paper„' we discussed an ex-
periment designed to measure anisotropies in
the speed of light. It is difficult to use Maxwell's
equations to justify the assumptions made in the
earlier paper because Maxwell's equations do not
predict an anisotropy in the speed of light in a
vacuum. This paper will examine a modified form
of Maxwell's equations which predict an anisotropy
of interest. The index of refraction, phase velo-
city, and optical path length will be discussed.

dl.

is the number of wavelengths contained in the
optical path between points & and D. When one
uses the fundamental relationship

c(P)
(e)

= phase velocity,

Eq. (1) becomes

II. THE OPTICAL PATH LENGTH

L, v &(0)[c(4') ]

In these equations A. is the wavelength, and v is
the frequency of the monochromatic light under
consideration. Now if glass is present, the index
of refraction can be written as its vacuum value,
1, plus a term due to the glass, g(Q):

In Ref. 1 the extra optical. path length due to a
piece of glass was used to search for an anisotropy
in the speed of light. This anisotropy has the form
c(Q) =co(1+b,cosg) ', where c(Q) is the vacuum
phase velocity of light, c, is a constant, b, is a
small number which determines the size of the
anisotropy, and Q is the angle between the actual
direction of light propagation and some single
preferred direction p. The interferometer used
always passes the light through exactly the same
portion of the glass. The entire interferometer
is periodically rotated, however, and it is possible
that the index of refraction, n(Q), might change
due to the rotation of the glass. If the index
changes in a perverse manner, the change could
just cancel the effect due to the cosQ anisotropy.
To examine what this perverse form is, consider
the optical path length,

(4)

Equation (3) now becomes
D D

v[c(g)] '1dl+ v[c(y)] 'g(P) dl .
A

The anisotropy in the first term integrates to zero
(to first order in b, ) when the integral is over a
closed path, as pertains to most interferometers
(see Sec. II of Ref. 1). The second integral is non-
zero only over the portions of the path containing
glass. Unless g(&t&) has exactly the same form as
c{ ), the second integral can be arranged so it has



ANISOTROPIC MODIFICATION OF MAXWELL' S EQUATIONS 3327

III. AN ANISOTROPIC MODIFICATION
OF MAXWELL'S EQUATIONS

The modified form of Maxwell's equations is

V E =4',
VB=O,

1
Vx (E+h p, xB)= ——

c et'
0

4m - 1 ~E
Vx(B+h pxE)= —J+ ——.

C0 C0

(7)

(8)

(9)

E and 8 are the electric and magnetic fields, and

p and J are the charge density and current density.
The constants h, and h, are small dimensionless
numbers that are a measure of the size of the
anisotropy, and c0 is a constant which turns out to
be the average of c(Q). The vector p is a unit
vector along some preferred direction in space.

Though there are a number of ways to modify
Mmovell's equations to give an anisotropy in the
speed of light, the above form was used for sev-
eral reasons. First, these equations predict a
cosQ anisotropy, the form that interests us. Sec-
ond, it was desired to have a single preferred
direction, p, to keep the equations as simple as
possible. Third, these equations predict conser-
vation of charge. This is easily shown by taking
the time derivative of Eq. (7} and the divergence
of Eq. (10):

a nonvanishing dependence. As long as the second
term has a Q dependence, the interferometer de-
scribed in the companion paper can detect the cos Q

anisotropy.
The next section will solve a modified form of

Mmnvell's equations for a traveling plane wave.
Once the phase velocity in a vacuum, c(Q), and
the phase velocity in the glass, c, (Q), are known,

the index of refraction is easily calculated:

(8)

The index calculated below is not of the perverse
form that cancels the effect of the cos@ anisotropy.

where a is a real proportionality constant.

IV. THE INDEX OF REFRACTION

First, the traveling-wave solution to these
equations will be found. For a plane wave in a,

region containing no net charge, assume the so-
lution

f(Q & -tA+ p) (18)

If arelationshipbetween k and & can be found which
satisfies the modified equations, then a traveling
wave solution exists. Equations (7) and (8) become

ik ~ E =0

ik B =O.

(17)

(18)

variance of Maxwell's equations under the parity
opera, tion.

Finally, the equations also predict a null result
for the Cavendish experiment. Initially, consider
a solid conducting body, which may have a nonzero
charge. There is no E field in the interior since
a steady state E field cannot exist in a conductor.
Equation (7) then implies that there is zero charge
density inside the body, and the central region can
be hollowed out without changing the boundary
conditions. The resulting hollow conducting body
has no interior steady state E field. This is
equivalent to a null Cavendish experiment.

To examine the index of refraction in glass, one
must also assume specific force laws for the
electrons in the glass. The force law assumed in
this paper is the standard Lorentz force, F =q(E
+c, 'v x B). In glass, the electrons behave as
linear harmonic oscillators, oscillating below
their natural frequency. Hence, the dipole mo-
ments are proportional to the instantaneous elec-
tric field, and the current is proportional to the
derivative of E:

(14)

Bt Bt
—V E =4m —p

4g 1—V J+ ——V E=O,
C0 C0

which yield the statement of conservation of
charge,

8J + —p=O
Bt

(12)

Hence, E is perpendicular to k and 8 is perpen-
dicular to k. Equations (9) and (10) become

i kx (E +h, yx B)=i&sea B,

ik x (B+h~ pxE) =4@co ~ J —i&sea E. (20)

When one uses Eq. (14}and the triple cross prod-
uct relationship

Fourth, the equations preserve much of the sym-
metry between E and B. And fifth, the equations
are linear in E and B and also maintain the in-

Ax(BxC)= B(A C) —C(A B),
these equations become
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k x E = [(()co + k~(k p)] B,
k x B = [- (4wo. +l)(oc, '+h, (k )[()]E.

(21)

(22)

cg ((])))= (ok ',
c~(p) =cop "'+co(h, —ph, )(2p) 'cos&

+c,(8P"') '(h, P+ h, )' cos'(I)

(26)

For convenience set

p =47(n+1. (23)

Crossing k into Eq. (21) and substituting k x B
from Eq. (22), one has

—O'E= [(uc, '+h, (k p)][-P(dco '+h, (k P)]E,

to quadratic order in the h's. The phase velocity
has an anisotropy that behaves both as cosQ and
as cos2$ (because cos'Q = ~cos2$+ ~). These
remain if P is set to unity in order to represent
the situation in vacuum.

Since h, and h, can reasonably be expected to be
small numbers, terms of order /P will be neglected:

(24) c, (P) =c,P "'[1+-,'P "'(h, Ph, )—coPs]. (27)

-h, h2cos'P-1 K=0. (25)

The cos(I) is the cosine of the angle between k and
P. Solving this quadratic equation in ((()/@co), one
can find the expression for the phase velocity
c ((I)) ~

The index of refraction & can now be calculated
from Eq. (6):

n =c(4)/c, (4)
=P"'+(P"'[(P'"—1)P, +(1-P "')I,]cosp.

(28)

As a result, this theory predicts a refractive
index that has a Q dependence. The second inte-
gral in Eq. (5) becomes

u))(()[c(()] 'dl. = f v(()'~ —l)c '[ +'-)( + )'))h)cosd]d). (29)

So long as h, 40, the integration through the glass
gives a nonzero integral, and hence the interferom-
eter described in Ref. I would detect the anisotropy
induced by the h, term in the modified Maxwell's
equations.

V. CONCLUSION

The modified Maxwell's equations discussed
in this paper predict two anisotropies in the speed

of light. One that behaves as cosg and is first
order in the h's. The other behaves as cos'P or
equivalently cos2$, and is second order in the h's.
Here Q is the angle between a preferred direction
in space and the direction of light propagation.
The refractive index has an anisotropy term that
behaves as cosP. Such anisotropy could be detect-
ed by the interferometer described in Ref. 1.
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