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It is shown that the recent modifications of Maxwell's equations proposed by Trimmer and Baierlein do not
allow one to discuss energy conservation of the electromagnetic field from the point of view of a
generalization of Poynting's theorem.

Trimmer and Baierlein' have recently examined
the plane-wave solutions of a modified set of Max-
well equations. This work was no doubt stimulated
by their experimental search' for an anisotropy
in the speed of light, and these equations were
presumably invented in order to emphasize the
kinds of new' features that may arise if the speed
of light were not isotropic. Of course, their equa-
tions have implications for the character of elec-
tromagnetic phenomena' in situations other than
those encompassed by interferometer experi-
ments. '4 Thus, it is appropriate to ask what
kinds of experiments would set the most stringent
upper limits on the small parameters in the theory.

On the other hand, one might study the equations
further to see which of the conventional ideas about
electromagnetism must be modified. As the be-
ginning of such an effort, we present below the
derivation of a theorem that forms the basis for a
discussion of energy conservation. We illustrate
some of the features of the new terms that arise
with the example of plane waves.

First, we record the modified Maxwell equations
utilized by Trimmer and Baierlein:

E =4np,

V'B=O

B ' (VxE) —E ' (VxB)

+QiB ~ Vx (P,xB)—/g~E ~ V x (ij. x E)

~B - ~E 4m+E' — E'J. (5)bt c,
Next, making use of the vector identities

V (ExB)=B'(VxE)—E (VxB)

8 BB BE——(E +&)=B' +E'
2 et at et '

B Vx(i xB)=-B.(j V)B

we obtain the following intermediate result:

V (ExB)+Ij.,B vx(ij, xB) ij,E Vx(~xE)
1 & 2 2 4n—(E'+B')+ E J =0. (6)2c0 ~t c0

Let us consider B ~ Vx(ju, xB). The curl may be
computed as follows:

Vx(j xB)=l(V B)-B(V j) (B+'V)r -(u 'V)B

But B is divergenceless and p is constant. Thus

V x (p x B) = (5 ' V)—B.
Hence we have

V x (E ~ gq ij, x B) =—
0

4m 1 &EVx(B+jl juxE)= J+-
"dt

Here E and B have the usual interpretation as
electric and magnetic fields in the limit that h,
and h, vanish. The constant un. it vector p charac-
terizes the preferred direction in space that intro-
duces the anisotropy in the speed of light, while
C0 denotes the vacuum speed of light in the absence
of any preferred direction. We now derive an
"energy integral" of Eqs. (1)-(4). First, take the
dot product of Eq. (S) with B. From the result we
subract the dot product of Eq. (4) with E. These
operations yield, after rearrangement of terms,

The last step may readily be verified by using the
Cartesian components of B and ~. However, when
the same procedure is applied to the analogous
term involving E in Eq. (6), we do not obtain quite
the same result. The difference is due to the non-
vanishing of the divergence of the electric field.
We state the result, namely,

E ' V x (p, x E ) = 471p p, E ——V ~ (Q p)

Thus, using Eqs. (7}and (6) in Eq. (6) and collect-
ing terms, we find that

=-J E +scopy E, (9)
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which embodies the theorem that we wished to
establish. Taking the limits h, -0 and h, -0 we
may recover Poynting's theorem. '

Equation (9) contains several features not en-
countered in the conventional theory of electro-
magnetism. The most troublesome of these arise
from the last term. For example, the last term
would seem to prevent one from considering the
charges, currents, and fields as an isolated sys-
tem. If one attempts to combine the two terms on
the right-hand side of Eq. (9) by introducing an
effective current S' =J —k,c,pp, then this current
is not conserved. If this is not done, then the last
term seems to represent an energy gain or loss at
those points in space where the charge density is
not zero. It is interesting to note, however, "
that the integral of the last term is equal to zero
for any static charge distribution. Thus, the ener-
gy content of the fields surrounding a static charge
distribution would not change although there would
be local effects due to this term. Another implica-
tion of the last term may be a new means of com-
munication between an electromagnetic wave and
a charge. It would presumably have to be taken
into account in the scattering of a beam of light
from a charged particle in addition to the usual
mechanism where the light accelerates the charged
particle and the charged particle emits radiation.
These features, of course, would not arise if h,
=0.

Tentatively, we identify the first term in Eq.
(9) as the divergence of a modified Poynting vector
S and the second term as the time rate of change
of the usual energy density U. Now we calculate
these two quantities for plane waves in free space.
As Trimmer and Baierlein' show, Eq. (2) implies
that

(10)

where is the frequency and k is the wave vector.
One may use their dispersion relation [Eq. (25)
of Ref. 1] to solve for the phase velocities,

v ' = ~, /k = c,[o' ~ p + (1 + P') '] (11)

where o.'=-h, p, k and p=(k, +k, )p. k/2. Using Eq.
(10) for B, the energy density takes the form

&&')
8+ [P ~ (1 P2)1/2]2

1 (12)

where the angular brackets refer to an average of
the square of the electric field over one complete
oscillation. The calculation of the modified Poyn-
ting vector is also straightforward, and the ratio
of its component in the direction of k to the energy
density is given by

S.k,
U~

We have found that this ratio does not reduce to the
phase velocity unless the parameters are re-
stricted. If h, =0, then it is equal to
c,[-P + (1+P') '], the phase velocity. Similarly,
if k, =0, then it is equal to co[/ +(1+P')'~'], the
phase velocity in this case. If h, =h, 40, then the
ratio bears no simple relation to the phase veloc-
ity. Thus, if the conventional idea that the phase
velocity is the velocity of energy transport in the
direction of k is to be retained the parameters of
the theory must be restricted.

In conclusion, we have found that two peculiar
features of the equations studied by Trimmer and
Baierlein can be eliminated if h,, =0.
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