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PART II.

In order to complete the theory of resonators, it is necessary to determine the value
of ¢, which occurs in all the results of Part 1., for different forms of mouths. This we
now proceed to do. Frequent use will be made of a principle which might be called
that of minimum vis vive, and which it may be well to state clearly at the outset.

Imagine a portion of incompressible fluid at rest within & closed surface to be sud-
denly set in motion by an arbitrary normal velocity impressed on the surface, then the
actual motion assumed by the fluid will have less vis vive than any other motion con-
sistent with continuity and with the boundary conditions*®.

If , v, w be the component velocities, and ¢ the density at any point,

vis viva =%fyj‘g(u?+vz—{—w?)dxdydz,

the integration extending over the volume considered. The minimum wis wive corre-
sponding to prescribed boundary conditions depends of course on ¢; but if in any speci-
fied case we conceive the value of ¢ in some places diminished and nowhere increased,
we may assert that the minimum vis viva is less than before ; for there will be a decrease if
u, v, w remain unaltered, and therefore, & fortiori, when they have their actual values as
determined by the minimum property. Conversely, an increase in ¢ will necessarily
raise the value of the minimum vés véve. The introduction of a rigid obstacle into a
stream will always cause an increase of vis vive; for the new motion is one that might
have existed before consistently with continuity, the fluid displaced by the obstacle re-
maining at rest. Any kind of obstruction in the air-passages of a musical instrument
will therefore be accompanied by a fall of the note in the musical scale.

Long Tubes.

The simplest case that can be considered consists of an opening in the form of a cylin-
drical tube, so long in proportion to its diameter that the corrections for the ends may
be neglected. If the length be L. and area of section s, the electrical resistance is

%, and
| C=f.. (2
For a circular cylinder of radius R

— =& 92

Simple Apertwes.

The next in order of simplicity is probably the case treated by HeLMmoLTZ, where the
opening consists of a simple hole in the side of the reservoir, considered as indefinitely
thin and approximately plane in the neighbourhood of the opening. The motion of the

* Trmomson and Tarr’s ‘Natural Philosophy,” p. 230.
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fluid in the plane of the opening is by the symmetry normal, and therefore the velo-
city-potential is constant over the opening itself. Over the remainder of the plane in
which the opening lies the normal velocity is of course zero, so that ¢ may be regarded
as the potential of matter distributed over the opening only. If the there constant
value of the potential be called ¢,, the electrical resistance for one side only is

d
o "'j:fzi% do,

the integration going over the area of the opening.
Now

j:f% do=2x X the whole quantity of matterys

so that if we call M the quantity necessary to produce the unit potential,

. . 1
resistance for one side =

Accordingly
e=aM. . . . . . . . . . 0 .. (23

In electrical language M is the capacity of a conducting lamina of the shape of the
hole when situated in an open space.

For a circular hole M=g§, and therefore

0=2R. . . . . . . ... (2

‘When the hole is an ellipse of eccentricity ¢ and semimajor axis R,

7R
OSSR oottt - (29)
where F is the symbol of the complete elliptic function of the first order. Results equi-
valent to (23), (24), and (25) are given by HELMHOLTZ.
‘When the eccentricity is but small, the value of ¢ depends sensibly on the area (¢) of
the orifice only. As far as the square of e,

F(o)=5 (1+1¢),
c=aR%/1—¢=aR(1—1¢*),

R=4/% (1 +1e);

co=ma/TiI=20 /5 L L (20)

the fourth power of e¢ being neglected—a formula which may be applied without sen-
sible error to any orifice of an approximately circular form. Infact for a given area the
circle is the figure which gives a minimum value to ¢, and in the neighbourhood of the
minimum the variation is slow.
Next, consider the case of two circular orifices. If sufficiently far apart they act
02
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independently of each other, and the value of ¢ for the pair is the simple sum of the
separate values, as may be seen either from the law of multiple arcs by considering ¢
as the electric conductivity between the outside and inside of the reservoir, or from the
interpretation of M in (28). The first method applies to any kind of openings with or
without necks. As the two circles (which for precision of statement we may suppose
equal) approach one another, the value of ¢ diminishes steadily until they touch. The
change in the character of the motion may be best followed by considering the plane
of symmetry which bisects at right angles the line joining the two centres, and which
may be regarded as a rigid plane precluding normal motion. Fixing our attention on
half the motion only, we recognize the plane as an obstacle continually advancing,
and at each step more and more obstructing the passage of fluid through the circular
opening. After the circles come into contact this process cannot be carried further ; but
we may infer that, as they amalgamate and shape themselves into a single circle (the
total area remaining all the while constant), the value of ¢ still continues to diminish
till it approaches its minimum value, which is less than at the commencement in the
ratio of o/2:2 or 1: /2. There are very few forms of opening indeed for which the
exact calculation of M or ¢ can be effected. We must for the present be content with
the formula (26) as applying to nearly circular openings, and with the knowledge that
the more elongated or broken up the opening, the greater is ¢ compared to . In the
case of similar orifices or systems of orifices ¢ varies as the linear dimension,

Cylindrical Necks.

Most resonators used in practice have necks of greater or less length, and even where
there is nothing that would be called a neck, the thickness of the side of the reservoir
could not always be neglected. For simplicity we shall take the case of circular cylinders
whose inner ends lie on an approximately plane part of the side of the vessel, and whose
outer ends are also supposed to lie in an infinite Fig. 4.

Plane, or at least a plane whose dimensions are
considerable compared to the diameter of the
cylinder. Even under this form the problem does
mnot seem capable of exact solution; but we shall
be able to fix two slightly differing quantities
between which the true value of ¢ must lie, and
which determine it with an accuracy more than
sufficient for acoustical purposes. The object is to
find the vis vive in terms of the rate of flow. Now, according to the principle stated at
the beginning of Part II., we shall obtain too small a vis vive if at the ends A and B of
the tube we imagine infinitely thin lamine of fluid of infinitely small density. We may
be led still more distinctly perhaps to the same result by supposing, in the electrical
analogue, thin disks of perfectly conducting matter at the ends of the tube, whereby the
cffective resistance must plainly be lessened. The action of the disks is to produce uniform
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potential over the ends, and the solution of the modified problem is obvious. Outside
the tube the question is the same as for a simple circular hole in an infinite plane, and
inside the tube the same as if the tube were indefinitely long.

Accordingly l

. L 1 1 T
resistance =—ps+ 5 =3 <L—|—§ R). e .. (27
The correction to the length is therefore ;f R, that is, ZI' R for each end,

xR?
L+§R

c=

N 1)

HEeLMIIOLTZ, in considering the case of an organ-pipe, arrives at a similar conclusion,—
. . . w e . .
that the correction to the length («) is approximately 7 R. His method is very different

from the above, and much less simple. Ile begins by investigating certain forms of
mouths for which the exact solution is possible, and then, by assigning suitable values
to arbitrary constants, identifies one of them with a true cylinder, the agreement being
shown to be everywhere very close. Since the curve substituted for the generating line
of the cylinder lies entirely outside it, HELMHOLTZ infers that the correction to the length
thus obtained is too small.

If, at the ends of the tube, instead of layers of matter of no density, we imagine rigid
pistons of no sensible thickness, we shall obtain a motion whose vis vive is necessarily
greater than that of the real motion; for the motion with the pistons might take place
without them consistently with continuity. Inside the tube the character of the motion
is the same as before, but for the outside we require the solution of a fresh problem :—
To determine the motion of an infinite fluid bounded by an infinite plane, the normal
velocity over a circular area of the plane being a given constant, and over the rest of
the plane zero. The potential may still be regarded as due to matter confined to the
circle, but is no longer constant over its area; but the density of matter at any point,

being proportional to 51@ or to the normal velocity, is constant.

The vis vive of the motion

d
o

the integration going over the area of the circle.
The rate of total flow through the plane

__q‘—lfd P

2 vis viva ﬁbda‘ o

** (rate of flow)* T

(29)

de
opa 4@
7R o
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We proceed to investigate the value of {{¢ds, which is the potential on itself of a cir-
cular disk of unit density,

Potential on itself of a uniform circular disk.

r denoting the distance between any two points on the disk, the quantity to be eva-

luated is expressed by ' Tig. 5.
!
f fa {2 R
The first step is to find the potential at any point > e %\

0 P
P, or ﬂ‘— Taking this point as an ongm of polar \( /

coordlmtes, we have

potential —jj‘dd *ff rdrd? j;'d():j‘(PQ—f- PQ)de.

Now from the figure

1(QQ')2*‘ ?—¢?sin’ 4, _
where ¢ is the distance of the point P from the centre of the circle whose radlus is R.
Thus potential at P

™ 2 g 2
:‘?Rﬁ\/l——l%gsin29d0=4Rj;\/1—£7zsin2éd€. C e e (30)

Hence potential of disk on itself |
e R RV BT

if for the sake of brevity we put Rg—.z

In pe1fo1m1ng first the integration with respect to § we come upon elliptic functions,
but they may be avoided by changing the order of integration.

1 Y ) 2 . 2 1
j; dea/1—2 smzez{—m (1—a smzé)?}o

2 1
=35m0 (1—-00530)=%1 T cos 9—I——§— cosd;
.~. potential on itself
3 q;_r 1 3
=3 d@{m—{—cosé}:—g— 1Ll =267R% . . . . (31)

This, therefore, is the value of .S:S'qbda when the density is supposed equal to unity.
The corresponding value of

dn_zw’
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and so from (29) :
2uisviva __ 8 Q
(rate of low)? ™ 3a%R’ s (39
This is for the space outside one end. For the whole tube and both ends
2uisviva __ L 16
(rate of ﬂow)g_;rf{?+3r‘2R' N G1)

Whatever, then, may be the ratio of L:R, the electrical resistance to the passage in
question or —15 1s limited by
1. L 1
o” R TR l (39)
<aitar)
In practical application it is sometimes convenient to use the quantity « or correction
to the length. In terms of « (34) becomes

a>gR]

<10, J
or in decimals,
‘ > (16TIR=2X T85R))

: (34))
2 < (1:697TR=2 X "849R)[

"The corrections for both ends is the thing here denoted by «. Of course for one end
it is only necessary to take the half .

I do not suppose that any experiments hitherto made with organ-pipes could discri-
minate with certainty between the two values of « in (84'). If we adopt the mean pro-
visionally, we may be sure that we are not wrong by so much as *032 R for each end.

Our upper limit to the value of o expressed in (34) was found by considering the
hypothetical case of a uniform velocity over the section of the mouth, and we fully deter-
mined the non-rotational motion both for the inside and for the outside of the tube.
Of course the velocity is not really uniform at the mouth; it is, indeed, infinite at the
edge. If we could solve the problem for the inside and outside when the velocity
(normal) at the mouth is of the form ¢+0r%, we should with a suitable value of 4: @ get
a much better approximationto the true vis viva. The problem for the outside may be
solved, but for the inside it scems far from easy. It is possible, however, that we may

* Though not immediately connected with our present subject, it may be worth notice that if at the centre
of the tube, or anywhere clse, the velocity be constrained (by a piston) to be constant across the section, as it
would approximately be if the tube were very long, without a piston, the limiting inequalities (34) still hold
good. For large values of L the two cases do not sensibly differ, but for small values of I compared to R the
true solution of the original problem tends to coincide with the lower limit, and of the modified (central piston)
problem with the higher.
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be able to find some motion for the inside satisfying the boundary conditions and the
equation of continuity, which, though of a rotational character, shall yet make the whole
vis vive for the inside and outside together less than that previously obtained. At the
same time this vis vive is by THOMSON’S law necessarily greater than the one we seek.

Motion in a finite cylindrical tube, the axial velocity at the plane ends (x=0 and & =1) being
v=ut%r), . « . . < . . . . . . . (39

frxmdr:o,. N € 1)
0

7 being the transverse coordinale, and the radius of the cylinder being put equal to 1.

where

If u, v be the component velocities, the continuity equation is

du | 1d(rv) o
% ; d]" o— O, . . . . . . . . . . . - (0 {)
whence
m-;“]i’,
dr -
(37
dy
= —"7
dz’

where +} is arbitrary so far as (87) is concerned.
Take
2 ”
Y=, %—]— o (:c')j; ry(r)dr,
so that
OO

v=—¢(2) %fr%rdnj. (59)
0
It is clear from (38) that if
e(0)=0(H)=1, . . . . . . . . . . . (89
W™= U Y1 =y
v,.,=0 for all values of a.
Thus (38) satisfies the boundary conditions including (35), and ¢ is still arbitrary,
except in so far as it is limited by (39).
In order to obtain an expression for the wis viva, we must integrate u?+v* over the
volume of the cylinder.

+j‘l®“dx§12rm2rdr

+f F5t0e [ 22 ]

Thice vis vz’va:uﬁrl—l—Zuojﬁlqi(x)dx( w(*)27rdr \l
| . (40)
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The second term vanishes in virtue of (36), and we may write
4
Twice vis'm'w:uﬁvrl+5‘ (Ag*+By*de, . . . . . . . . . . . (40"
[

where A and B are known quantities depending on x, and y=¢(«) is so far an arbitrary
function, which we shall determine so as to make the vis vive a minimum.
By the method of variations

y:Ce'\/%’+C’e+\/§”; I (29
and in order to satisfy (39),
1=C+C,

T (42)
1=CV 30V |

(41) and (42) completely determine y as a function of #, and when this value of y is used
in (40) the vis viva is less than with any other form of y. On substitution in (40'),

x
ice vis viva =} ABL=VE L 48
Twice vis viva =ulzl-+24/AB m’ (43)
The vis vive expressed in (43) is less than any other which can be derived from the
equation (38); but it isnot the least possible, as may be seen by substituting the value
of ¢ in the stream-line equation

Py 1y By
@7 & Ta=0

which will be found to be not satisfied.
The next step is to introduce special forms of y. Thus let

Wpmo=1 41>
Then w=141w,
. x=m(—%+7°).
Accordingly
_mp? 1 = AR, A _
A=35 B=rp-dp WV AB=Tg; =4

and (43) becomes
2 wis viva =#l(1+44p)

"FLQ 1—e—8

+21 T (44)

We have in (44) the vis vive of a motion within a circular cylinder which satisfies the
continuity equation, and which makes over the plane ends

w=1-4pr

If w=0 we fall back on the simple case considered before; and this is the value of w for

which the vis viva in (44) is a minimum compared to the rate of flow (14+1x). But

for the part outside the cylinder the vis vive is, as we may anticipate, least when w has
MDCCCLXXI. P
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some finite value; so that when we consider the motion as a whole it will be a finite
value of 4 that gives the least vis viva.

The vis viva of the motion outside the ends is to Fig. 6.
be found by the same method as before, the first
step being to determine the potential at any point
of a circular disk whose density=pr*;

potential at P= fﬁg_def,,opz,
where S
OP"=¢*+¢*+2c¢ cos b;

.. potential at P=j‘/,ad6 {oﬁg—l— —f; +c¢® cos 6} ;

or if previously to integration with respect to § we add together the elements from Q to Q,

=P°£d6(PQ+PQ') {02+JPQEz PRI o oos qPQ—PQ) }

3
Now

PQ+PQ =24/R*—¢*sin%,
PQ—PQ'=—2PN=—2c¢eos b,
PQ . PQ=R*—¢

s (3
Thus potential at P= %R—y.j; din/1—c*sin® d(1+2¢*sin® 0), ¢ being written for ¢+ R.

To this must be added the potential for a uniform disk found previously, and the result
must be multiplied by the compound density and integrated again over the area, the
order of integration being changed as before so as to take first the integration with
respect to ¢. In this way elliptic functions are avoided; but the process is too long to
be given here, particularly as it presents no difficulty. The result is that the potential

on itself of a disk whose density

2
, =1 "‘#A‘E““‘az
is expressed by

167R? , ,
(U Hatip)* . . . L. L. (45)

# [Mr. Crerk Maxwerr has pointed out a process by which: this result may be obtained much more simply..

Begin by finding the potential at the edge of the disk whose densityis 14-yus®, Taking polar coordinates (p, 6),.
the pole being at the edge, we have

r*=p’+a’—2ap cos 6

and
V={T{1+ p(o*+a—2ap cos 6)}dodp,

the limits of p being 0 and 2 cos 6, and those of 6 being —%‘ and +%. We get at once

V=4a+%‘l,uw’,
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Thus if for brevity we put R=1, we may express the vis viva of the whole motion (both

extremities included) by

1— 14 5
2 vis fvwa_._vrl(l+§{4,)2-|-7;":1 1+:_81+ (1 +1z {‘,1_5_2_1@2),

which corresponds to the rate of flow 7w, =#(1+3p).

Thus

A o 16 ( + ot 2 2)
2 vis viva 1 8% tar .. . . . (46)
(rate of flow)2™ +37r I+ w)g i

1 —g=8
14

The second fraction on the right of (46) is next to be made a minimum by variation

of w. Putting it equal to z and multiplying up, we get the following quadratic in p:—

A 516 =z 167 =z 16
{’*‘217: 4}““25”{157: Q}"‘?"ZZO'

The smallest value of z consistent with a real value of p is therefore given by

167 z\?2 16 A 516 =z
(157r E) —(w )( +217t _)=0
8192

15757 2A 416556 __3'6556— 34449
12 *3927A+°3429" 7356 —0498:~8

where A=-——

2A+

_+35
Thus ‘
2 vis viva 1 36556 —-3444¢~%
(vate of flow)2— +3,r 7356 — 0498 * N (1))

This gives an upper limit to lc In terms of & (including both ends)

~

10615—¢ "R .
m. . . . . . . . . (47 )

«<2:305R

From (47') we see that the limit for @ is smallest when /=0, and gradually increases
with /.

Now let us cut off a strip of breadth da from the edge of the disk, whose mass is accordingly
2ra(1+ ua*)da.
The work done in carrying this strip off to infinity is
2rada(l+ pa®)(4a+20pa’).
If we gradually pare the disk down to nothing and carry all the parings to infinity, we find for the total
work by integrating with respect to « from 0 to R,

871'R
( +3= 5M+21 )

@ being written for R This is, as it should be, the half of the expression in the text.]
P2
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When /=, it becomes .
1:6565 R=2 x -8282 R.

Thus the correction for one end of an infinite tube is limited by

«>T8BRY L 49
<8282 R

When [ is not infinitely great the upper limit may be calculated from (47'), the lower
limit remaining as before; but it is only for quite small values of / that the exponential
terms in (47') are sensible. It is to be remarked that the real value of « is least when
[=0, and gradually increases to its limit when {= co. For consider the actual motion
for any finite value of /. The vis vive of the motion going on in any middle piece of the
tube is greater than correspondé merely to thelength. If the piece therefore be removed
and the ends brought together, the same motion may be supposed to continue without
violation of continuity, and the vis vive will be more diminished than corresponds to the
length of the piece cut out. A fortiori will this be true of the real motion which
would exist in the shortened tube. Thus « steadily decreases as the tube is shortened

until when 7=0 it coincides with the lower limit ZR.

In practice the outer end of a rather long tube-like neck cannot be said generally to
end in an infinite plane, as is supposed in the above calculation. On the contrary, there
could ordinarily be a certain flow back round the edge of tube, the effect of which must
be sensibly to diminish «. It would be interesting to know the exact value of « for an
infinite tube projecting into unlimited space free from obstructing bodies, the thickness
of the cylindrical tube being regarded as vanishingly small. Hermmorrz has solved
what may be called the eorresponding problem in two dimensions; but the difficulty in
the two cases seems to be of quite a different kind. Fortunately our ignorance on this
point is not of much consequence for acoustical purposes, because when the necks are
short the hypothesis of the infinite plane agrees nearly with the fact, and when the necks
are long the correction to the length is itself of subordinate importance.

Nearly Cylindrical Tubes of Revolution.

The non-rotational flow of a liquid in a tube of revolution or of electricity in a similar
solid conductor can only in a few cases be exactly determined. It may therefore be of
service to obtain formulee fixing certain limits between which the vis viva or resistance
must lie. First, considering the case of electricity (for greater simplicity of expression),
let us conceive an indefinite number of infinitely thin but at the same time perfectly
conducting planes to be introduced perpendicular to the axis. Along these the peten-
tial is necessarily constant, and it is clear that their presence must Jower the resistance
of the conductor in question. Now at the point # (axial coordinate) let the radius of
the conductor be y, so that its section is #3®. The resistance between two of the above-
mentioned planes which are close to one another and to the point & will be in the limit
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da +=y?, if de be the distance between the planes, the resistance of the unit cube
being unity. Thus resistance

dz
-_-j;y-é*..............(ezg)

Upper Limit.

Secondly, we know that in the case of a liquid the true vis vive is less than that of
any other motion which satisfies the boundary conditions and the equation of conti-
nuity. Now u, » being the axial and transverse velocities, it will always be possible so
to determine v as to satisfy the conditions if we assume w= constant over the section,

and therefore
=Y :
u_.%_yg............(50)
This may be seen by imagining rigid pistons introduced perpendicular to the axis. To
determine v it is convenient to use the function ¢, which is related to # and v ac-
cording to the equations (37),
ap - ap

7"66="J;s r=— E&’

These forms for  and v secure the fulfilment of the continuity equation. Since

g dy g
u=w—@, %=7"——29

Y Y
Y=tu(@)+ g, 051"
and therefore
_ Y@ _w 41
V== r 27:7'dx ygz

But since v cannot be infinite on the axis, but must, on the contrary, be zero,

Yi(2)=0,

and we have

_@:{1""""""(51)
V==:" dx(b—é
From the manner in which these were obtained, they must satisfy the condition of

* [Tt is easy to show formally that no error can arise from neglecting the effect of the curved rim. Imagine
the planes at # and x+dw extended, and the curves in which they cut the surface of the conductor projected
by lines parallel to the axis. In this way a cylinder is formed which contains the whole surface between
and #-+dx, and another cylinder which is entirely contained by the surface. The small cylinder may be ob-
tained by supposing part of the matter not to conduct, and therefore gives too great a resistance. On the other
hand, the real solid may be obtained from the large cylinder by the same process. The resistance of the slice
lies accordingly between those of the two cylinders which are themselves equal in the limit. Hence, on the
whole, the parts neglected vanish compared to those retained.]
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giving no normal motion at the surface of the tube. That this is actually the case may
be easily verified & posteriori, but it is scarcely necessary for our purpose to do so. To
find the wvis viva,

99

ﬁuﬂzwdmx:%ﬁﬁ; dz,
(o2mrar="[2 (1),
Aﬁ‘ 227z'rd¢dx__ [ < )]d j‘ ( >2dx.

2 2
Thus vis m’va = ;L;’r Sy%{l +1 (%) }dx.

K 2
y W2grdr= "2
0 Y

The total flow across any section is wy*u=1u,.

Therefore
2 vis viva 1 1 d_y 2
(rate of ﬂow)g—;yg-/-?{l_}'@(dx) }dx N G

This is the quantity which gives an upper limit to the resistance. The first term,
which corresponds to the component # of the velocity, is the same as that previously
obtained for the lower limit, as might have been foreseen. The difference between the
two, which gives the utmost error involved in taking either of them as the true value, is

oS () e

In a nearly cylindrical tube % is a small quantity, and so the result found by this

method is closely approximate. It is not necessary that the section of the tube-should
be nearly constant, but only that it should vary slowly. The success of the approxima-
tion in this and similar cases depends in great measure on the fact that the quantity to
be estimated is a minimum. Any reasonable approximation to the real motion will give
a vis vive very near the minimum, according to the principles of the differential calculus.

Application to straight tube of revolution whose end lies on two infinite planes.
For the lower limit to the resistance we have

+4R +4R

R,, R, being the radii at the ends, and for the higher limit

() oot )
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The first expression is obtained by supposing infinitely thin but perfectly conducting
planes perpendicular to the axis to be introduced from the ends of the tube inwards,
while in the second the conducting planes in the electical interpretation are replaced by
pistons in the hydrodynamical analogue. For example, let the tube be part of a cone
of semivertical angle 4.

The lower limit is

1}/l 1\ ,,(1 1
7 tan 6<R1 R_Q\) +Z(R]+R2)’
1+tan20/1 .1 8 /1 1
“rtand (R: *m) “LW(EJFE)'

Tubes nearly straight and cylindrical but not necessarily of revolution.

and the higher

Taking the axis of 2 in the direction of the length, we readily obtain by the same
process as before a lower limit to the resistance

N (1))

[

where ¢ denotes the section of the tube by a plane perpendicular to the axis at the point
x, an expression which has long been known and is sometimes given as rigorous. The
conductor (for I am now referring to the electrical interpretation) is conceived to be
divided into elementary slices by planes perpendicular to the axis, and the resistance of
any slice is calculated as if its faces were at constant potentials, which is of course not
the case. In fact it is meaningless to talk of the resistance of a limited solid at all,
unless with the understanding that certain parts of its surface are at constant potentials,
while other parts are bounded by non-conductors. Thus, when the resistance of a
cube is spoken of, it is tacitly assumed that two of the opposite faces are at constant
potentials, and that the other four faces permit no escape of electricity across them. In
some cases of unlimited conductors, for instance one we have already contemplated—an
infinite solid almost divided into two separate parts by an infinite insulating plane with
a hole in it—it is allowable to speak of the resistance without specifying what particular
surfaces are regarded as equipotential ; for at a sufficient distance from the opening on
either side the potential is constant, and any surface no part of which approaches the
opening is approximately equipotential. After this explanation of the exact significance
of (63), we may advantageously modify it into a form convenient for practical use.

The section of the tube at # different points of its length 7 is obtained by observing
the length A of a mercury thread which is caused to traverse the tube. Replacing the
integration by a summation denoted by the symbol 2, we arrive at the formula

2 »
resistance:zivzxzi, N 1Y)

which was used by Dr. MATTHIESSEN in his investigation of the mercury unit of electrical


http://rstl.royalsocietypublishing.org/

Downloaded from rstl.royalsocietypublishing.org on 30 August 2009

108 THE HON. J. W. STRUTT ON THE THEORY OF RESONANCE.

resistance, and was the subject of some controversy*. It is perfectly correct in the sense
that when the number of observations is increased without limit it coincides with (53),
itself, however, only an approximation to the magnitude sought. The extension of our
second method (for the higher limit) to tube not of revolution would require the general
solution of the potential problem in two dimensions. It may be inferred that the dif-
ference between the two limits is of the order of the square of the inclination of the

tangent plane to the axis, and is therefore very small when the section of the tube alters
but slowly.

Tubes not nearly straight.

In applying (63) to such cases, we are at liberty to take any straight line we please
as axis; but if the tube is much bent, even though its cross section remain nearly con-
stant, the approximation will cease to be good. This is evident, because the planes of
constant potential must soon become very oblique, and the section ¢ used in the formula
much greater than the really effective section of the tube. To meet this difficulty a
modification in the formula is necessary. Instead of taking the artificial planes of
equal potential all perpendicular to a straight line, we will now take them normal to
a curve which may have double curvature, and which should run, as it were, along the
middle of the tube. Consecutive planes intersect in a straight line passing through the
centre of curvature of the “axis” and perpendicular to its plane.

The resistance between two neighbouring equipotential planes is in the limit

do
00+ 5‘5'7,
where 3 is the angle between the planes, and 7 is the distance of any element do of the

# See Saping’s ¢ Electric Telegraph,” p. 329. To prove (54), we have

resistance:% 3 1 , and eA=constant=x, say,
[

ootz
¢ K
Z.ButV:volume:-zzaz_Z Kz_l_,
n n A

I S A |

AR
and

1_1 1

Pl=—_3IAX=.

c an E)\

The correction for the ends of the tube employed by SiemENs is erroneous, being ealculated on the supposition
that the divergence of the current takes place from the curved surface of a hemisphere of radius equal to that
of the tube. This is tantamount to assuming a constant potential over the solid hemisphere conceived as of
infinite conductivity, and gives of course a result too small—R for both ends together. The proper correction,
which probably is not of much importance, would depend somewhat upon the mode of connexion of the tube

with the terminal cups, but cannot differ much from gR (for both ends), as we have seen. (I have since found

that StEMENS was aware of the small error in this correction.)
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section from the line of intersection of the planes. Now 8d=ds=¢, if ds be the inter-
cept on the axis between the normal planes, and ¢ the radius of curvature at the point
in question. The lower limit to the resistance is thus expresséd by

5K

s‘dsjj'?d . R €19))

. . do .
In the particular case of a tube of revolution (such as an anchor-ring) j'j‘gf—- is a con-

stant, and the limit which now coincides with the true resistance varies as the length of
the axis, and is evidently independent of its position. In general the value of the inte-
gral will depend on the axis used, but it is in every case less than the true value of the
resistance. In choosing the axis, the object is to make the artificial planes of constant
potential agree as nearly as possible with the true equipotential surfaces.

A still further generalization is possible by taking for the artificial equipotential
surfaces those represented by the equation

F= const.

For all systems of surfaces, with one exception, the resistance found on this assumption
will be too small. The exception is of course when the surfaces F= const. coincide
with the undisturbed equipotential surfaces. = The element of resistance between the

surfaces F and ¥4 dF is
1

jv dn d6

where dn is the distance between the surfaces at the element ds, and the integration
goes over the surface F as far as the edge of the tube.. Now

it/ 4 (5 + ()

*. limit to resistance
_ d¥
e/ (@) + () + ()
an expression whose form remains unchanged when f(F) is written for F. If F=r,
so that the surfaces are spheres,

dF\ 2 dl\ 2
*() = (&) =1

. . dr dr
. llmlt -':l'jvmzj‘?.

This form would be suitable for approximately conical tubes, the vertex of the cone
being taken as origin of 7.
MDCCCLXXI Q

(56)
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The last formulee, (55) and (56), are perhaps more elaborate than is required in the
present state of acoustical science, and it is rather in the theory of electricity that their
interest would lie; but they present themselves so readily as generalizations of previous
results that I hope that they are not altogether out of place in the present paper. In
all these cases we have the advantage that the quantity sought is determined by a mini-

mum property, and is therefore subject to a much smaller error than exists in the condi-
tions which determine it.

PART III.

Egperimental.

The object of this Part is to detail some experiments on resonators instituted with a
view of comparing some of the formulee of Parts I. and II. with observation. HELu-
HoLTZ in his paper on organ-pipes has compared his own theory with the experiments of
SonpHAUSS and WERTHEIM for the case of resonators whose communication with the
external atmosphere is by simple holes in their sides. The theoretical result is embodied

_in (8) and (23), or for circular holes (24) and runs,
o« SRR SR 6]

=9y =V 35’

or when the area of the opening is approximately circular and of magnitude o,

T )

2xiSY
On calculation Hrimuorrz finds

n=56174 "%,
Sz

the unit of length being metrical.
The empirical formula found by SoxpHAUSS is

n—52400 7
S“f

which agrees completely with theory as regards its form, but not so well in the value it
assigns to the constant multiplier. The difference corresponds to more than a semitone,
and is in the direction that the observed notes are all too low. I can only think of two
explanations for the discordance, neither of which seem completely satisfactory. In the
first place, SoNpHAUSS determined his resonant notes by the pitch of the sound produced
when he blew obliquely across the opening through a piece of pipe with a flattened end.
It is possible that the proximity of the pipe to the opening was such as to cause an
obstruction in the air-passage which might sensibly lower the pitch. Secondly, no
account is taken of the thickness of the side of the vessel, the effect of which must be

# The velocity of sound is taken at the freezing-point; otherwise the discordance would be greater.
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to make the calculated value of n too great. "On the other hand, two sources of error
must be mentioned which would act in the opposite direction.. The air in the vicinity
of the opening must have been sensibly warmer than the external atmosphere, and we
saw in Part I. how sensitive resonators of this sort must be to small changes in the phy-
sical properties of the gas which occupy the air-passages. Indeed Savarr long ago
remarked on the instability of the pitch of short pipes, comparing them with ordinary
organ-pipes. The second source of disturbance is of a more recondite character, but not,
I think, less real. It is proved in works on hydrodynamics that in the steady motion of
fluids, whether compressible or not, an increased velocity is always accompanied by a
diminished pressure. In the case of a gas the diminished pressure entails a diminished
density. There seems therefore every reason to expect a diminution of density in the
stream of air which plays over the orifice of the resonator, which must cause a rise in
the resonant note. But independently of these difficulties, the theory of pipes or other
resonators made to speak by a stream of air directed against a sharp edge is not suffi-
ciently understood to make this method of investigation satisfactory. For this reason I
have entirely abandoned the method of causing the resonators to speak in my experi-
ments, and have relied on other indications to fix the pitch. The only other experiments
that I have met with on the subject of the present paper are also by SonpHAUSS, who has
been very successful in unravelling the complications of these phenomena without much
help from theory *  Tor flasks with long necks he found the formula
n=46705_% _
L=8=

as applicable when the necks are cylindrical and not too short, corresponding to the
theoretical

__ao'% 4
72,__2—7;]?‘%—8},..'...........(09)

obtained by combining (§) and (21), or, in numbers with metrical units,

n=54470 %>
128z

The discrepancy is no doubt to be attributed (at least in great measure) to the omis-
sion of the correction to the length of the neck.

In the experiments about to be described the pitch of the resonator was determined
in various ways. Some of the larger ones had short tubes fitted to them which could
be inserted in the ear. By trial on the piano or organ the note of maximum resonance
could be fixed without difficulty, probably to a quarter of a semitone. In most of the
experiments a grand piano was used, whose middle ¢ was in almost exact unison with a
fork of 256 vibrations per second. Whenever practicable the harmonic undertones
were also used as a check on any slight difference which might be possible in the quality
of consecutive notes. Indeed the determination was generally easier by means of the

* Pogg. Ann. t. Ixxxi,

Q2
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first undertone (the octave), or even the second (the twelfth), than when the actual note
of the resonator was used. The explanation is, I believe, not so much that the overtones
belonging to any note on the piano surpass in strength the fundamental tone, although
that is quite possible *, as that the ear (or rather the attention) is more sensitive to an
increase in the strength of an overtone than of the fundamental. However this may be,
there is no doubt that a little practice greatly exalts the power of observation, many
persons on the first trial being apparently incapable of noticing the loudest resonance.
Another plan very convenient, though not to be used in measurements without caution,
is to connect one end of a piece of india-rubber tubingf with the ear, while the other
end is passed into the interior of the vessel. In this way the resonance of any wide-
mouthed bottle, jar, lamp-globe, &c. may be approximately determined in a few seconds;
but it must not be forgotten that the tube in passing through the air-passage acts as an
obstruction, and so lowers the pitch. In many cases, however, the effect is insignificant,
and can be roughly allowed for without difficulty. For large resonators this method is
satisfactory, but in other cases is no longer available. I have, however, found it possible
to determine with considerable precision the pitch of small flasks with long necks by
simply holding them rather close to the wires of the piano while the chromatic scale is
sounded. The resonant note announces itself by a quivering of the body of the flask,
easily perceptible by the fingers. Since it is not so easy by this method to divide the
interval between consecutive notes, I rejected those flasks whose pitch neither exactly
agreed with any note on the piano nor exactly halved the interval. In some cases it
is advantageous to sing into the mouth, taking care not to obstruct the passage; the
resonant note is recognized partly by the tremor of the flask, and partly by a peculiar
sensation in the throat or ear, hard to localize or describe.

The precision obtainable in any of these ways may seem inferior to that reached by
several experimenters who have used the method of causing the resonators or pipes
to speak by a stream of air. That the apparent precision in the last case is greater I
of course fully admit; for any one by means of a monochord could estimate the pitch of
a continuous sound within a smaller limit of error than a quarter of a semitone. DBut
the question arises, what is it that is estimated ? Is it the natural note of the resonator ?
I have already given my reasons for doubting the affirmative answer; and if the doubt
is well grounded, the greater precision is only apparent and of no use theoretically. I
may add, too, that many of the flasks that I used could not easily have been made to
speak by blowing. If they sounded at all it was more likely to be the first overtone,
which is the note rather of the neck than the flask: see equation (20). In carrying
out the measurements of the quantities involved in the formula, the volume of the flask
or reservoir was estimated by filling it with water halfway up the neck, which was then
measured, or in some cases weighed. The measurements of the neck were made in two
ways according to the length. Unless very short their capacity was measured by water,

* In this respect pianos, even by the same maker, differ greatly.
+ The black French tubing, about 1 inch in external diameter, is the pleasantest to use.
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and the expression for the resistance (54) in a simplified form was used. The formula
for # then runs,

a vol. of neck
=21
vol. of flask x (1

T L

”Ry' C .. (60)

When, on the other hand, the necks were short, or simply holes of sensible thickness,
the following formula was used,

p=2utrs LV+T)". N (10
7\ Ty _
#LS <1 +I02 )

7y, 7, being the radii or halves of the diameters as measured at each end. It is scarcely
necessary to say that the estimation of pitch was made in ignorance of the theoretical
result; otherwise it is almost impossible to avoid a certain bias in dividing the interval
between the consecutive notes.

TapLe L.
No. of s, | W, I - n, u, Difference,
observation,| i cub. ineub. | 4 5 ches. in inches. by caleu- |by observa-| in mean
centims. | centims. lation. tion. semitones.
1 806 68 4% 1 1277 126 +23
2 13560 | 126-7 5% 5 107-7 1087 —-16
3 7100 | 430 is 23 15 122-3 120 +-33
4 405 49-9 313 3 179-7 180 —03
) 180 2126 23 2 2387 228 + 42
6 785 36-84 2 3% 13 174-3 176 —-16
7 210 325 3% 13 2019 204 —-18
8 312 29:32 3% 2 186-3 182 +-41
10 6300 | 270 33 28, 42 104-2 102-4 +-29
12 5469 11-6 2+% | not recorded | 3916 384* +-34

In Table I the first column gives the number of the experiment, the second the
- volume of the reservoirs, including half the necks, the third the volume of the necks
themselves, the fourth their lengths, and the fifth their radii measured, when necessary,
at both ends. In the sixth column is given the number of vibrations per second calcu-
lated from (60), the velocity of sound being taken at 1123 feet per second, corresponding
to 60° F., about the temperature of the room in which the pitch was determined.

* 12 was originally estimated an octave too low, so that the number in the Table is the double of what was
put down as the result of observation. '
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Column 7 contains the values of 7 estimated by means of the pianoforte, while in 8 is
given for convenience the discrepancy between the observed and calculated values ex-
pressed in parts of a mean semitone.

1,2,4,5,6,7, 8, 12 were glass flasks with well-defined nearly cylindrical necks, the
body of the flask being approximately spherical. Of these 1 and 2 had small tubes
cemented into them, which were inserted in the ear; the pitch of the rest was estimated
mainly by their quivering to the resonant note. 8 and 10 were globes intended for
burning phosphorus in oxygen gas, and their pitch was fixed principally by the help
of the india-rubber tube passed through the neck. A good ear would find no difficulty
in identifying the note produced when the body of the globe is struck with the soft part
of the hand. The agreement is I think very satisfactory, and is certainly better than I
expected, having regard to the difficulties in the measurements of pitch and of the
dimensions of the flasks. The average error in Table I. is about a quarter of a semi-
tone, and the maximum error less than half a semitone. It should be remembered
that there is no arbitrary constant to be fixed as best suits the observations, but that
the calculated value of 7 is entirely determined by the dimensions of the resonator and
the velocity of sound. If a lower value of the latter than 1123 were admissible, the
agreement would be considerably improved.

TasLe IL
No. of S, L, d, n, 2%, Difference, in
cxperiment. in cub. centims.| . in inches. in inches. | Dby calculation. [by observation.| mean scmitones.

9 1245 211 1 13 107-3 | 108 — 11
11 2166 | 1 1, L& 526 538 — -39
13 1245. 1 1 1632 170 — 71
14 1245 1 1, 1z 219-4 213 1+ 51
15 3090 2 27% 2181 2275 — 73
16 3240 114 13 181-8 142 136
17 3240 1 13, 1 1491 1535 — 50
18 3240 & 15 15632 15635 — 03
19 3240 5 1 129-1 182 — 88
20 3040 | neglected | $2 1286 128 + 08
21 3240 1% 1, 1% | 1015 103-5 — 34
22 3240 e 255 216 229 —1-01

Table I1. contains the results of the comparison between theory and observation for
a number of resonators whose necks were too short for the convenient measurement of
the'volume. The length and diameter were measured with care and used in formula
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(61). In 9,13, 14 the reservoir consisted of the body of a flask whose neck had been
cut off close, and which was fitted with a small tube for insertion in the ear. In 9 and
13 there was a short glass or tin tube fitted into the opening*, while in 14 the mouth
was covered (air-tight) with a piece of sheet gutta percha pierced by a cork borer; 11
was a small globe treated in the same way. 15 to 22 were all experiments with a globe
of a moderator-lamp, which also had a tube for the ear, one opening being closed by a
piece of plate glass cemented over it. Sometimes a little water was poured in for
greater convenience in determining the pitch, whence the slightly differing values of S.
In 15 the opening was clear, and in 16 fitted with a brass tube; in 17 it was covered
with a gutta-percha face, in 18, 19, 21 with a wooden face bored by a centre-bit, and
in 20 with a piece of tin plate carrying a circular hole; 22 contains the result when the
other opening of the globe was used clear.

On inspection of Table IIL it appears that the discrepancy between theory and obser-
vation is decidedly greater than in Table L., in fact about double, whether we consider
the maximum or the mean error. The cause of some of the large errors may, I think,

be traced. 13 and 16 had necks of just the length for which the correction Z R may not

be quite applicable. A decided flow back round the edge of the outer end must take
place with the effect of diminishing the value of «. In order to test this explanation, a
piece of millboard was placed over the outer end of the tube in 16 to represent the
infinite plane. A new estimation of n, as honest as possible, gave n=137, which would
considerably diminish the error. 1 fancied that I could detect a decided difference in
the resonance according as the millboard was in position or mot; but when the theo-
retical result is known, the difficulty is great of making an independent observation.
In 15 and 22, where the apertures of the globe were used clear, the error is, I believe,
due to an insufficient fulfilment of the condition laid down at the commencement of this
paper. Thus in 15 the wave-length=1123 +-227=4-9 feet; or 2r=1-2 feet, which isnot
large enough compared to the diameter of the globe (6 inches). The addition of a neck
lowers the note, and then the theory becomes more certainly applicable.

It may perhaps be thought that the observations on resonance in Tables I. and II. do
not extend over a sufficient range of pitch to give a satisfactory verification of a general
formula. It is true that they are for the most part confined within the limits of an
octave, but it must be remembered that if the theory is true for any resonant air-space,
it may be extended to include all similar air-spaces in virtue of Savarr’s law alone—a
law which has its foundations so deep that it hardly requires experimental confirmation.
If this be admitted, the range of comparison will be seen to be really very wide, including
all proportions of L and R. When the pitch is much higher or much lower than in the
Tables, the experimental difficulties are increased. For much lower tones the ear is not
sufficiently sensitive, while in the case of the higher tones some of the indications relied
on to fix the pitch are no longer available.

* (Gutta percha softened in hot water is very useful for temporary fittings of this sort.
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Some experiments were next made with the moderator globe and two openings. The
theoretical formulea are

n:%r N/CHS'%,
TR?
(==
L+ §R
Tapre I11.
No. of ) S, ) § ” ¢, e, n, 7, Differcnce,
expe;)in(l)ent. incub. | 5, ixﬁches. in iffches. in inc%es. by calcula- | by observa-| in mean
centims. . tion. tion, semitones.
23 3240 2:00 1:95 3:95 3034 320 92
24 3240 | 2:00 1-01 301 | 2648 282 1-09
25 3240 715 | 1-01 1725 | 200-4 204 81

In 23 both holes of the globe were clear, and in 24, 25 they were covered with wooden
faces carrying holes of various.diameters. The error in 23, 24 is to be ascribed to the
same cause as in 15 and 22 above.

The last experiment that I shall describe was made in order to test the theory of
double resonance, but is not quite satisfactory, for the same reason as 15, 22, 23, 24.
Two moderator globes were cemented together so as to form two chambers communi-
cating with each other and with the external air. The natural openings were used clear,
and the resonance (which was not very good) was estimated by means of a tube con-
necting the ear with one of them. The observations gave for the values of »,

High note=2384,]
Low note :213.J’
The result of calculation from the dimensions of the globes and openings by means of
the formule of Parts I. and II. was '
High note= 360,1
Low note -_—_212.]'
The error in the high note is about a semitone.
[The two moderator globes were fitted up again as a double resonator, only with

bored wooden disks over the holes, so as to lower the note and render the theory more
strictly applicable.  The pitch was much better defined than before, and gave

Low note =152'5,1
High note=240. |

=¢,=1008; c,="7162.
a=1133 (70° F.)
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Thus

_1133x12  /1639x1008__xx.
™m="¢08 \/ 3300 — 1006,

1133 x 12 1639 x 2438
P9I 22 *OC=9419.
628 3200

2=

The agreement is now very good. _
One of the outer holes was stopped with a plate of glass. The resonance of the high
note was feeble though well defined ; that of the low was rather loud but badly defined.

The high note was put at 225‘.

,, low ’ ' 90J
S=31560, S'=3250,
¢,='7152, ¢,=1-008, ¢,+¢,=1:7232.

Calculating from these data, we get
nl=225'2,_
= 90'5.}
The agreement is here much better than was expected, and must be in part fortuitous.
I will now detail two experiments made to verify the formula marked (20z). A mode-
rator chimney was plugged at the lower end with gutta percha, through which passed a
small tube for application to the ear. The bulb was here represented by the enlarge-
ment where the chimney fits on to the lamp. On measurement,

5416 inches, L=5367 inches, a=1R="4T1.
Thus
tan b 9-611 =

from this the value of & was calculated by the trigonometrical tables. Finally,

As the result of observation » had been estimated at 252.
In another case,

L=57767, =537, =377, n by obscrvation=351,

The result of calculation is #=360-3. These are the only two instances in which I
have tried the formula (20z). It is somewhat troublesome in use, but appears to repre-
sent the facts very closely ; though I do not pretend that the above would be average

samples of a large series. There is no necessity for the irregularity at the lower end
taking the form of an enlargement. For example, the formula might be applied to a
truly cylindrical pipe with a ball of solid material resting at the bottom.]

I had intended to have made these experiments more complete, particularly on mul-
tiple resonance, but have not hitherto had time. However, the results obtained seem

MDCCCLXXI. R
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quite sufficient to establish a substantial agreement between theory and fact. It should
be understood that those here presented are not favourable specimens selected out of a
large number, but include, with one exception, all the measurements attempted. There
are many kinds of bottles and jars, and among them some of the best resonators, which
do not satisfy the fundamental condition on which our theory rests. The deductive
treatment of the problem in such cases presents great difficulties of a different kind
from any encountered in this paper. Until they are surmounted the class of resonators
referred to are of no use for an exact comparison between theory and observation, though
they may be of great service as aids to investigation in other directions.
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