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Introduction.

AvtaouGH the theory of aérial vibrations has been treated by more than one generation
of mathematicians and experimenters, comparatively little has been done towards obtain-
ing a clear view of what goes on in any but the more simple cases. The extreme diffi-
- culty of any thing like a general deductive investigation of the question is no doubt one
reason. On the other hand, experimenters on this, as on other subjects, have too often
observed and measured blindly without taking sufficient care to simplify the conditions
of their experiments, so as to attack as few difficulties as possible at a time. The result
has been vast accumulations of isolated facts and measurements which lie as a sort of
dead weight on the scientific stomach, and which must remain undigested until theory
supplies a more powerful solvent than any now at our command. The motion of the
air in cylindical organ-pipes was successfully investigated by BerNouLLI and EULER, at
least in its main features; but their treatment of the question of the open pipe was
incomplete, or even erroncous, on account of the assumption that at the open end the
air remains of invariable density during the vibration. Although attacked by many
others, this difficulty was not finally overcome until HrrLMHOLTZ, in a paper which I
shall have repeated occasion to refer to, gave a solution of the problem under certain
restrictions, free from any arbitrary assumptions as to what takes place at the open end.
Porssox and Stoxesf have solved the problem of the vibrations communicated to an
infinite mass of air from the surface of a sphere or circular cylinder. The solution for
the sphere is very instructive, because the vibrations outside any imaginary sphere
enclosing vibrating bodies of any kind may be supposed to take their rise in the surface
of the sphere itself.

More important in its relation to the subject of the present paper is an investigation
by HeLMHEOLTZ of the air-vibrations in cavernous spaces (Hohklraiime), whose three dimen-
sions are very small compared to the wave-length, and which communicate with the
external atmosphere by small holes in their surfaces. If the opening be circular of area
o, and if S denote the volume, # the number of vibrations per second in the fundamental

# Additions made since the paper was first sent to the Royal Society are inclosed in square brackets [ J.
4+ Theorie der Luftschwingungen in Réhren mit offenen Enden. Crelle, 1860,
£ Phil. Trans. 1868, or Phil. Mag. Dec. 1868,
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note, and @ the velocity of sound,
ack
obrigt

n=

- HrrmuOLTZ’S theory is also applicable when there are more openings than one in the
side of the vessel.

In the present paper I have attempted to give the theory of vibrations of this sort
in a more general form. The extension to the case where the communication with
the external air is no longer by a mere hole in the side, but by a neck of greater or
less length, is important, not only because resonators with necks are frequently used in
practice, but also by reason of the fact that the theory itself is applicable within wider
limits. The mathematical reasoning is very different from that of HerMHOLTZ, at least
in form, and will I hope be found easier. In order to assist those who may wish only
for clear general ideas on the subject, I have broken up the investigation as much
as possible into distinct problems, the results of which may in many cases be taken for
granted without the rest becoming unintelligible. In Part T. my object has been to put
what may be called the dynamical part of the subject in a clear light, deferring as much
as possible special mathematical calculations. In the first place, I have considered the
general theory of resonance for air-spaces confined nearly all round by rigid walls, and
communicating with the external air by any number of passages which may be of the
nature of necks or merely holes, under the limitation that both the length of the necks
and the dimensions of the vessel are very small compared to the wave-length. To prevent
misapprehension, I ought to say that the theory applies only to the fundamental note of
the resonators, for the vibrations corresponding to the overtones are of an altogether
different character. There are, however, cases of multiple resonance to which our theory
is applicable. These occur when two or more vessels communicate with each other and
with the external air by necks or otherwise; and are easily treated by LAGRANGE’S general
dynamical method, subject to a restriction as to the relative magnitudes of the wave-
lengths and the dimensions of the system corresponding to that stated above for a single
vessel. Iam not aware whether this kind of resonance has been investigated before, either
mathematically or experimentally. Lastly, I have sketched a solution of the problem of
the open organ-pipe on the same general plan, which may be acceptable to those who are
not acquainted with HELMHOLTZ'S most valuable paper. The method here adopted, though
it leads to results essentially the same as his, is I think more calculated to give an insight
into the real nature of the question, and at the same time presents fewer mathematical
difficulties. For a discussion of the solution, however, I must refer to HrLMHEOLTZ,

- In Part IL the calculation of a certain quantity depending on the form of the necks
of common. resonators, and involved in the results of Part I.,is entered upon. This
quantity, denoted by ¢, is of the nature of a length, and is identical with what would be
called in the theory of electricity the electric conductivity of the passage, supposed to be
occupied by uniformly conducting matter. The question is accordingly similar to that
of determining the electrical resistance of variously shaped conductors—an analogy of


http://rstl.royalsocietypublishing.org/

Downloaded from rstl.royalsocietypublishing.org on 30 August 2009

THE HON. J. W. STRUTT ON THE THEORY OF RESONANCE. 79

which I have not hesitated to avail myself freely both in investigation and statement.
Much circumlocution is in this way avoided on account of the greater completeness of
electrical phraseology. Passing over the case of mere holes, which has been Aalready
considered by HrrmuoLrz, and need not be dwelt upon here, we come to the value of
the resistance for necks in the form of circular cylinders. = For the sake of simplicity
each end is supposed to be in an infinite plane. In this form the mathematical problem
is definite, but has not been solved rigorously. Two limits, however (a higher and a
lower), are investigated, between which it is proved that the true resistance must lie.

The lower corresponds to a correction to the length of the tube equal to Z—Zx(radiﬁs)

for each end. It is a remarkable coincidence that HrrmmoLrz also finds the same
quantity as an approximate correction to the length of an organ-pipe, although the two
methods are entirely different and neither of them rigorous. His consists of an exact
solution of the problem for an approximate cylinder, and mine of an approximate solu-
tion for a true cylinder; while both indicate on which side the truth must lie. The
final result for a cylinder infinitely long is that the correction lies between 785 R and.
‘828 R. 'When the cylinder is finite, the upper limit is rather smaller. In a some-
what similar manner I have investigated limits for the resistance of a tube of revolution,,

which is shown to lie between
"l
wy’e

fE))

where y denotes the radius of the tube at any point « along the axis. These formule
apply Whatever may be in other respects the form of the tube, but are especially valu-

and

able when it is so nearly cylindrical that 1s everywhere small. The two limits are

then very near each other, and either of them gives very approximately the true value.
The resistance of tubes, which are either not of revolution or are not nearly straight, is
afterwards approximately determined. The only experimental results bearing on the
subject of this paper, and available for comparison with theory, that T have met with are
some arrived at by SoNpHAUSS* and WERTHEIMf. Besides those quoted by HeLmuorrz, I
have only to mention a series of observations by SoNpHAUSST on the pitch of flasks with
long necks which led him to the empirical formula

n= 46705 LIS%,

o, L being the area and length of the neck, and S the volume of the flask. The corre-
sponding equation derived from the theory of the present paper is
=544
n=04470 — L~Sh
# Poee, Ann, vol, Ixxxi, T Annales-de Chimie, vol. xxxi. t Poee. Ann, vol. Ixxix,
M2
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which is only applicable, however, when the necks are so long that the corrections at the
ends may be neglected—a condition not likely to be fulfilled. This consideration suffi-
ciently explains the discordance. Being anxious to give the formule of Parts I. and I1.
a fair trial, I investigated experimentally the resonance of a considerable number of
vessels which were of such a form that the theoretical pitch could be calculated with
tolerable accuracy. The result of the comparison is detailed in Part IIIL., and appears
on the whole very satisfactory; but it is not necessary that I should describe it more
minutely here. I will only mention, as perhaps a novelty, that the experimental deter-
mination of the pitch was not made by causing the resonators to speak by a stream of
air blown over their mouths. The grounds of my dissatisfaction with this method are
explained in the proper place. '

[Since this paper was written there has appeared another memoir by Dr. SoxDmAUSS*
on the subject of resonance. An empirical formula is obtained bearing resemblance
to the results of Parts I. and I1., and agreeing fairly well with observation. No attempt
is made to connect it with the fundamental principles of mechanics. In the Philoso-
‘phical Magazine for September 1870, 1 have discussed the differences between Dr.
Sonpiavss’s formula and my own from the experimental side, and shall not therefore
‘go any further into the matter on the present occasion.]

PART 1.

The class of resonators to which attention will chiefly be given in this paper are those
where a mass of air confined almost all round by rigid walls communicates with the
external atmosphere by one or more narrow passages. For the present it may be sup-

‘posed that the boundary of the principal mass of air is part of an oval surface, nowhere
contracted into any thing like a narrow neck, although some cases not coming under
this description will be considered later. In its general character the fundamental
vibration of such an air-space is sufficiently simple, consisting of a penodwal rush of
air through the narrow channel (if there is only one) into and out of the confined space,
which acts the part of a reservoir. The channel spoken of may be either a mere hole
of any shape in the side of the vessel, or may consist of a more or less elongated tube-
like passage.

If the linear dimension of the reservoir be small as compared to the wave-length of
the vibration considered, or, as perhaps it ought rather to be said, the quarter wave-
length, the motion is remarkably amenable to deductive treatment. Vibration in general
may be considered as a periodic transformation of energy from the potential to the
kinetic, and from the kinetic to the potential forms. In our case the kinetic energy is
that of the air in the neighbourhood of the opening as it rushes backwards or forwards.
It may be easily seen that relatively to this the energy of the motion inside the reservoir
1s, under the restriction specified, very small. A formal proof would require the assistance
of the general equations to the motion of an elastic fluid, whose use I wish to avoid in

* Poga, Ann, 1870, '
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this paper. Moreover the motion in the passage and. its neighbourhood will not differ
sensibly from that of an incompressible fluid, and its energy will depend only on the rate
of total flow through the opening. - A quarter of a period later this energy of motion
‘will be completely converted into the potential energy of the compressed or rarefied air
inside the reservoir. So soon as the mathematical expressions for the potential and
kinetic energies are known, the determination of the period of vibration or resonant
note of the air-space presents no difficulty.

The motion of an incompressible frictionless fluid Whlch has been once at rest is sub-
ject to the same formal laws as those which regulate the flow of heat or electricity
through uniform conductors, and depends on the properties of the potential function, to
which so much attention has of late years been given. In consequence of this analogy
many of the results obtained in this paper are of as much interest in the theory of elec-
tricity as in acoustics, while, on the other hand, known modes of expression in the former
subject will save circumlocution in stating some of the results of the present problem.

Let &, be the density, and ¢ the velocity-potential of the fluid motion through an
opening. The kinetic energy or vis viva

=31 () + () + (i2) Jawaa

the integration extending over the volume of the fluid considered
1
7 5 j‘ 02 s,

- . . . .
Over the rigid boundary of the opening or passage, d—i =0, so that if the portion of

by GREEN’S theorem.

fluid considered be bounded by two equipotential surfaces, ¢, and @,, one on each side of
the opening,

- | 1 )
vis viva= (¢, — ) j ® 18=1 o —9.)X,

if X denote the rate of total flow through the opening.
At a sufficient distance on either side ¢ becomes constant, and the rate of total flow
is proportional to the difference of its values on the two sides. We may therefore put

={fas

where ¢ is a linear quantity depending on the size and shape of the opening, and repre-
senting in the electrical interpretation the reciprocal of the resistance to the passage of
electricity through the space in question, the specific resistance of the conducting matter
being taken for unity. The same thing may be otherwise expressed by saying that ¢ is
the side of a cube, whose resistance between oppdite faces is the same as that of the
opening.
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The expression for the vis vive in terms of the-rate of total flow is accordingly
By X2 .
vis vwa:%T N )

If S be the capacity of the reservoir, the condensation at any time inside it is given by

K, of which the mechanical value is

5
1 X® 9
5 ko ? 5 (‘/’)
@ denoting, as throughout the paper, the velocity of sound.
The whole energy at any time, both actual and potential, is therefore
hy X2
~~+’°2~ N ).
and is constant. Differentiating with respect to time, we arrive at
X +50X=0
as the equation to the motion, which indicates simple oscillations performed in a time
a’c
27+ <

Hence if # denote the number of vibrations per second in the resonant note,
_« /3 -
=5 b. L T T (O)
The wave-length A, which is the quantity most immediately connected with the dimen-
sions of the resonant space, is given by

=t=ten/S L)

A law of SAvArt, not nearly so well known as it ought to be, is in agreement with
equations (5) and (6). It is an immediate consequence of the principle of dynamical
similarity, of extreme generality, to the effect that similar vibrating bodies, whether they
be gaseous, such as the air in organ-pipes or in the resonators here considered, or solid,

“such as tuning-forks, vibrate in a time which is directly as their linear dimensions. Of
course the material must be the same in two cases that are to be compared, and the
geometrical similarity must be complete, extending to the shape of the opening as well
as to the other parts of the resonant vessel. Although the wave-length 2 is a function
of the size and shape of the resonator only, »# or the position of the note in the musical
scale depends on the nature of the gas with which the resonator is filled. And it is
important to notice that it is on the nature of the gas in and near the opening that the
note depends, and not on the gas in the interior of the reservoir, whose inertia does not
come into play during vibrations corresponding to the fundamental note. In fact we
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may say that the mass to be moved is the air in the neighbourhood of the opening, and
that the air in the interior acts merely as a spring in virtue of its resistance to compres-
sion. Of course thisis only true under the limitation specified, that the diameter of the
reservoir is small compared to the quarter wave-length. Whether this condition is
fulfilled in the case of any particular resonator is easily seen, & posteriori, by calcu-
lating the value of A from (6), or by determining it experimentally.

Several Openings.

When there are. two or more passages connecting the interior of the resonator with
the external air, we may proceed in much the same way, except that the equation of
énergy by itself is no longer sufficient. -For simplicity of expression the case of two
passages will be convenient, but the same method is applicable to any number. Let
X,, X, be the total flow through the two necks, ¢,, ¢, constants depending on the form
of the necks corresponding” to the constant ¢ in formula (6); then T, the vis viva, is
given by

T= ]:7°<z{_? —|—.}.§) s
2\ o
the necks being supposed to be sufficiently far removed from one another not to inter-
fere (in a sense that will be obvious). Further,

- 2
=Potential Energy = %koaz QS_:FSZ@

. , . . d/dT ar av
Applying LAGRANGE'S general dynamical equation, <:Z:4_;> — =T

we obtzﬁn
. \
X 2
5K+ X)=0,|
. }...,.......(7)
X, o, ]
S (XAX,)=0

as the equations to the motion.
By subtraction,

G E:O"
or, on integration,
. }__(.1___2(_9 (8)
T e e e

Equation (8) shows that the motions of the air in the two necks have the same pe-
riod and are at any moment in the same phase of vibration. Indeed there is no essen-
tial distinction between the case of one neck and that of several, as the passage from
one to the other may b€ imade continuously without the failure of the investigation.
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‘When, however, the separate passages are sufficiently far apart, the constant ¢ for the
system, considered as a single communication between the interior of the resonator and
the external air, is the simple sum of the values belonging to them when taken sepa-
rately, which would not otherwise be the case. This isa point to which we shall return
later, but in the mean time, by addition of equations (7), we find

. . 2 .
X, +X, 456+ 6)(X,4X,)=0,

so that .
n:%?l—g‘—ce......;......@)

If there be any number of necks for which the values of ¢ are ¢, ¢,, ¢, .. .., and no
two of which are near enough to interfere, the same method is applicable, and gives

a g
n=— -2——;\‘/4__*:@%?84_!;_7; o . . - . . . . . (9)

when there are two similar necks ¢,=¢,, and

- a ¢
n=va"2 X AVAIE

The note is accordingly higher than if there were only one neck in the ratio of +2:1,
a fact observed by SoNDHAUSS and proved theoretically by HrrLmuovrz for the case of
openings which are mere holes in the sides of the reservoir.

Double Resonance.

Suppose that there are two reservoirs, S, ', com- Fig. 1.
municating with each other and with the external
air by narrow passages or necks, If we were to —_ ,
ar by passag ' > s > s >

consider S &' as a single reservoir and to apply equa- x 1UU X
tion (9), we should be led to an erroneous result;

for the reasoning on which (9) is founded proceeds on the assumption that, within the
reservoir, the inertia of the air may be left out of account, whereas it is evident that the
vis vive of the motion through the connecting passage may be as great as through the
two others. However, an investigation on the same general plan as before meets the
case perfectly. Denoting by X, X,, X, the total flows through the three necks, we have
for the vis vive the expression

K

: 72 ove w2
T_—_é]lo{)& _1_& +)}_‘l
< ¢ ¢ g

and for the potential energy

: Vﬁ%koaz,{(xe';xl)q_{__(ng'xe)g}'
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An application of LaGrANGE'S method gives as the differential equations to the motion,

X, K k

+2 *—0,

X X,—X, , X,—X,
cfﬂf{ RS s}zo, Lo e (10)

X, , ,Xo—
‘_3—+a Y

o

By addition and integration
e
Hence, on elimination of X,, |
+§{(01 +6,)X, —}—%—:ng} =0, ]L
X,+ g{(ca—i?oz)XS'—{- ‘—if—gx} =0. J
Assuming X,=A¢", X;=Be”, we obtain, on substitution and elimination of A: B,
g {cl-m L }+ S\,{c,ca-{—o?(c,—l—@)} T 5 )

as the equation to determine the resonant notes. If # be the number of vibrations per

cs“l'%

2
second, n?= —-f—-ﬂg, the values of p* given by (11) being of course both real and negative.

The formula simplifies considerably if ¢,=e¢,, §'=S; but it will be more instructive to
work this case from the beginning. Let ¢,=c¢,=moe,=mec.
The differential equations take the form

+{ s mx =0, .
while X,= — =12,
X, + S {(1+771)X +‘§} J
Hence
(Ko X+ (- 2)(X, 4+ X,) =0,
2
(X, —X,)" + % m(X,—X,) =0.
The whole motion may be regarded as made up Fig. 2.

of two parts, for the first of which X,+X,=0; which
requires X,=0. This motion is therefore the same
as might take place were the communication between
S and S' cut off, and has its period given by

— T —on e

MDCCCLXXI N
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For the other component part, X,—X,=0, so that Fig. 3.
K et ’ VAUAS
X2_~—-m_‘: W"‘W ... (12)

Thus _____m_;-_z_, which shows that the second note W

is the higher. It consists of vibrations in the two reservoirs opposed in phase and mo-
dified by the connecting passage, which acts in part as a second opening to both, and so
raises the pitch. If the passage is small, so also is the difference of pitch between
the two notes. A particular case worth notice is obtained by putting in the general

equation ¢,=0, which amounts to suppressing one of the communications with the ex-
ternal air. 'We thus obtain

L+ at
p“+a2_p < S Q'l_b/) "I'S‘g/ 010220;
or if S=¥8', ¢,=mec,=me,

4 2 92C 9 ‘é‘ff —0
P+ ap*g(m~+2)+ g m=0,
a®c —
n“’:m{m—l—ﬂ—_}_—\/wf—}-/l}.
If we further suppose m=1 or ¢,=¢,
a%c
nW'=gmg (31 v5).

If N be the number of vibrations for a simple resonator (S, ¢),
. ‘

. ac .

szm’

2 e Ne="T 00618,
N e = 2618,

Tt appears therefore that the interval from », to N is the same as from N to #,, namely,
A/ 2:618=1-618, or rather more than a fifth. It will be found that whatever the value
of m may be, the interval between the resonant notes cannot be less than 2-414, which
is about an octave and a minor third. The corresponding value of m is 2.

A similar method is applicable to any combination of reservoirs and connecting pas-
sages, no matter how complicated, under the single restriction as to the comparative
magnitudes of the reservoirs and wave-lengths; but the example just given is sufficient
to illustrate the theory of multiple resonance. In Part IIT. a resonator of this sort will
be described, which was constructed for the sake of a comparison between the theory
and experiment. In applying the formule (6) or (12) to an actual measurement, the
question will arise whether the volume of the necks, especially when they are rather
large, is to be included or not in S. At the moment of rest the air in the neck is com-
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pressed or rarefied as well as that inside the reservoir, though not to the same degree;
in fact the condensation must vary continuously between the interior of the resonator
and the external air. This consideration shows that, at least in the case of necks which
are tolerably symmetrical, about half the volume of the neck should be included in S.

[In consequence of a suggestion made by Mr. CLERK MAXWELL, who reported on this
paper, I have been led to examine what kind of effect would be produced by a deficient
rigidity in the envelope which contains the alternately compressed and rarefied air.
Taking for simplicity the case of a sphere, let us suppose that the radius, instead of
remaining constant at its normal value R, assumes the variable magnitude R+4¢. We
have

s s leXQ m.
kinetic energy=-¢ - .|_5 &%

2
potential energy:%‘% {X447R%} >+ 10B¢%
where m and (3 are constants expressing the inertia and rigidity of the spherical shell.
Hence, by LAGRANGE’S method,

. L‘(ZQ
X455 (X4-47R2%)=0,

2
mig+4xR: 10 (X 4 4xR%)+Be=0,

equations determining the periods of the two vibrations of which the system is capable.
It might be imagined at first sight that a yielding of the sides of the vessel would neces-
sarily lower the pitch of the resonant note; but this depends on a tacit assumption that
the capacity of the vessel is largest when the air inside is most compressed. But it may
just as well happen that the opposite is true. Everything depends on the relative mag-
nitudes of the periods of the two vibrations supposed for the moment independent of one
another. If the note of the shell be very high compared to that of the air, the inertia
of the shell may be neglected, and this part of the question treated statically. Putting
in the equations m=0, we see that the phases of X and ¢ are opposed, and then X goes
through its changes more slowly than before. On the other hand, if it be the note of
the air-vibration, which is much the higher, we must put 8=0, which leads to

47:R2/z05§ —comg=0,
showing that the phases of X and ¢ agree. Here the period of X is diminished by the
yielding of the sides of the vessel, which indeed acts just in the same way as a second
aperture would do. A determination of the actual note in any case of.a spherical shell
of given dimensions and material would probably be best obtained deductively.

But in order to see what probability there might be that the results of Part III. on
glass flasks were sensibly modified by a want of rigidity, I thought it best to make a
direct experiment. To the neck of a flask was fitted a glass tube of rather small bore,
and the whole filled with water so as to make a kind of water-thermometer. On

N2
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removing by means of an air-pump the pressure of the atmosphere on the outside of the
bulb, the liquid fell in the tube, but only to an extent which indicated an increase in
the capacity of the flask of about a ten-thousandth part. This corresponds in the ordi-
nary arrangement to a doubled density of the contained air. It is clear that so small a
yielding could produce no sensible effect on the pitch of the air-vibration.]

Open Organ-pipes.

Although the problem of open organ-pipes, whose diameter is very small compared to
their length and to the wave-length, has been fully considered by HeLmuoLrz, it may not
be superfluous to show how the question may be attacked from the point of view of the
present paper, more especially as some important results may be obtained by a compa-
ratively simple analysis. The principal difficulty consists in finding the connexion
between the spherical waves which diverge from the open end of the tube into free
space, and the waves in the tube itself, which at a distance from the mouth, amounting

“to several diameters, are approximately plane. The transition occupies a space which
is large compared to the diameter, and in order that the present treatment may be
applicable must be small compared to the wave-length. This condition being fulfilled,
the compressibility of the air in the space mentioned may be left out of account and the
difficulty is turned. Imagine a piston (of infinitely small thickness) in the tube at the
place where the waves cease to be plane. The motion of the air on the free side is
“entirely determined by the motion of the piston, and the vis vive within the space con-
sidered may be expressed by

©

X
]&0 P

O =

where X denotes the rate of total flow at the place of the piston, and ¢ is, as before, a
linear quantity depending on the form of the mouth. If Q is the section of the tube

and ¥ the velocity potential,
dyr

X:Q(%—-

The most general expression for the velocity-potential of plane waves is

Y= (% sin £+ B cos k’o) cos 2znt @ cos kx sin 27nt,. . . . . . (13)

d . . . .
47%: A cos kx—BFk sin k) cos 2mnt— Bk sin kz sin 270,

where

When =0,
V=B cos 2#ni + 3 sin 27nt,

?Isz cos 27 nt.
A
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The variable part of the pressure on the tube side of the piston
ay
= ]LO 7

The equation to the motion of the air in the mouth is therefore

Qddy

o dideta="
or, on integration,

Q &y

‘E' Zm—[—\!/:(). . © o . . . . B . - . (14)
This is the condition to be satisfied when £=90.

Substituting the values of ¥ and %, we obtain

cos 27 nt <A%~ +B> + 3 sin 2ant=0,
which requires ‘
AS4B=0,  p=0.

If there is a node at a=—1
A cos kl+DBk sin kl=0;

. =B O . e ... 5
coktan kl= B ="a ¢ (15)

This equation gives the fandamental note of the tube closed at #=—1; but it must be
observed that / is not the length of the tube, because the origin #=0 is not in the
mouth. There is, however, nothing indeterminate in the equation, although the origin
is to a certain extent arbitrary, for the values of ¢ and / will change together so as to
make the result for % approximately constant. This will appear more clearly when we
come, in Part II., to calculate the actual value of ¢ for different kinds of mouths. In
the formation of (14) the pressure of the air on the positive side at a distance from the
origin small against A has been taken absolutely constant. Across such a loop surface
no energy could be transmitted. In reality, of course, the pressure is variable on account
of the spherical waves, and energy continually escapes from the tube and its vicinity.
Although the pitch of the resonant note is not affected, it may be worth while to see
what correction this involves. : ,

We must, as before, consider the space in which the transition from plane to sphe-

rical waves is effected as small compared with A. The potential in free space may be
taken

\pzl—},cos(kf—l-g—%%t), B )

expressing spherical waves diverging from the mouth of the pipe, which is the origin
of r.  The origin of « is still supposed to lie in the region of plane waves.
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d ' ..
*47:?23% = rate of total flow across the surface of the sphere whose radius is »

= —4xA'[cos 2ant{cos (kr4g)+lr Sin(k?‘ +¢)} +sin 2znt {sin (kr+g)—Fkr cos (kr+¢)} .
If the compression in the neighbourhood of the mouth is neglected, this must be the
same as

fwii—() =QA cos 2xnt.

Accordingly : .
AQ=— 47N {cos(kr-+g)+krsin (kr+g)},

0= sin (kr+4g)—Fkr (cos kr+yg).
These equations express the connexion between the plane and spherical waves.

From the second, tan (Ar-g¢)==4%r, which shows that ¢ is a small quantity of the order
(kr)*.  From the first

' AQ
8%
Al=— din’
so that :
Yo =—7,, €OS .‘Zz'nt—»rik sin 2znt,

the terms of higher order being omitted.
Now within the space under consideration the air moves according to the same laws as

clectricity, and so
Q a4y
e don—0— ""'4’@'=0+'4'r7

W
de=0""

Y,—o=B cos 2ant -0 sin 2ant.

A cos 2mni,

Therefore on substitution and equation of the coefficients of sin 2ant, cos 2ant, we
obtain

Qi) =—P,

AQL

P=—1"
‘When the mouth is not much contracted ¢ is of the order of the radius of the mouth,
and when there is contraction it is smaller still. In all cases therefore the term

1. 1
i 18 very small compared to —; and we may put

AQ AQk
M=-m,op=—5 LW

# Throughout Hermmorrz’s paper the mouth of the pipe is supposed to lic in an infinite plane, so that the
diverging waves are hemispherical. The calculation of the value of ¢ is thereby simplified. Except for this
reason it seems better to consider the diverging waves completely spherical as a nearer approximation to the
actual circumstances of organ-pipes, although the sphere could never be quite complete.
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which agree nearly with the results of HELMHOLTZ  In his notation a quantity « is used
defined by the equation

A
—pi=cot ke,

so that
cot ka=tan £{ by (15),

or

Hl+e)=2m+1)3;

« may accordingly be considered as the correction to the length of the tube (measured,
however, in our method only on the negative side of the origin), and will be given by

(4
cot fo—=— a

The value of ¢ will be investigated in Part IL

The original theory of open pipes makes the pressure absolutely constant at the
mouth, which amounts to neglecting the inertia of the air outside. “Thus, if the tube
itself were full of air, and the external space of hydrogen, the correction to the length
of the pipe might be neglected. The first investigation, in which no escape of energy is
admitted, would apply if the pipe and a space round its mouth, large compared to the
diameter, but small compared to the wave-length, were occupied by air in an atmosphere
otherwise composed of incomparably lighter gas. These remarks are made by way of
explanation, but for a complete discussion of the motion as determined by (13) and (17),
T must refer to the paper of HELyuoLz.

Long Tube in connexion with a Reservoir.

It may sometimes happen that the length of a neck is too large compared to the
quarter wave-length to allow the neglect of the compressibility of the air inside. A
cylindrical neck may then be treated in the same way as the organ-pipe. The potential
of plane waves inside the neck may, by what has been proved, be put into the form

J=Asin k(2 —«) cos 2ant;
if we neglect the escape of energy, which will not affect the pitch of the resonant note,

%‘%’ = —27nA'sin k(x—e) sin 2ant,

% =kA' cos k(x—a) cos 2ant,

where « is the correction for the outside end.

The rate of flow out of S=Q ‘%

Total flow = QS‘% dt=FA'Q cos kL

sin 2wnt
b
2nn
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the reduced length of the tubé,vinéludingthe corrections for both ends, being denoted
by L. Thus rarifaction in S
A'QcoskL sin2wnt 1 d¥y  2wnA’sinkL -

=k S G SR A= @ sin 2ant.

This is the condition to be satisfied at the inner end. It gives

? Q Q
tan kL= TR SIS ¢ e e e e (18)

‘When £L is small,
tan FL= LL-}— (/fL)3

L. Q 11Q
'k—ITS(l"ﬁ s>’

B=gA 1?5( 1L> dl\/L(b+éLQ) s (1)

In comparing this with (5), it is necessary to introduce the value of ¢, which is %

—Ab’

(5) will accordingly give the same result as (19) if one-third of the contents of the neck

be included in S. The first overtone, which is often produced by blowing in preference

to the fundamental note, corresponds approximately to the length L of a tube open at

both ends, modified to an extent which may be inferred from (18)by the finiteness of S.
The number of vibrations is given by

1 .
n:%(i+£%>.. A £:1))

[The application of (20) is rather limited, because, in order that the condensation
within S may be uniform as has been supposed, the linear dimension of S must be con-
siderably less than the quarter wave-length ; while, on the other hand, the method of ap-
proximation by which (20) is obtained from (18) requires that S should be large in
comparison with QL.

A slight modification of (18) is useful in finding the pltch of pipes wluch are cylin-
drical through most of their length, but at the closed end expand into a bulb S of no
great capacity. The only change required is to understand by L the length of the pipe
down to the place where the enlargement begins with a correction for the oufer end.
Or if L denote the length of the tube simply, we have

tonk(Lta)=18 - .« « - . . . . . . (20a)
and u:— R approximately.

If S be very small we may derive from (20 a)

:szgy. N )

n=
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In this form the interpretation is very simple, namely, that at the closed end the shape
is of no consequence, and only the volume need be attended.to. The air in this part of
the pipe acts merely as a spring, its inertia not coming into play. -~ A few measurements
of this kind will be given in Part I1IL.

The overtones of resonators which have not long necks are usually very high. Within
the body of the reservoir a nodal surface must be formed, and the air on the further
side vibrates as if it was contained in a completely closed vessel. 'We may form an idea
of the character of these vibrations from the case of a sphere, which may be easily
worked out from the equations given by Professor StoxEes in his paper “On the Com-
munication of Motion from a vibrating Sphere to a Gas”*. The most important vibra-
tion within a sphere is that which is expressed by the term of the first order in LArLACE’S
series, and consists of a swaying of the air from side to side like that which takes place
in a doubly closed pipe. I find that for this vibration

radius : wave-length =-3313,
so that the note is higher than that belonging to a doubly closed (or open) pipe of the
length of the diameter of the sphere by about a musical fourth. We might realize this
vibration experimentally by attaching to the sphere a neck of such length that it would
by itself, when closed at one end, have the same resonant note as the sphere.

Lateral Openings.

In most wind instruments the gradations of pitch are attained by means of lateral
openings, which may be closed at pleasure by the fingers or otherwise. The common
crude theory supposes that a hole in the side of, say, a flute establishes so complete a
communication between the interior and the surrounding atmosphere, that a loop or
point of no condensation is produced immediately underit. Ithaslong been known that
this theory is inadequate, for it stands on the same level as the first approximation to
the motion in an open pipe in which the inertia of the air outside the mouth is virtu-
ally neglected. Without going at length into this question, I will merely indicate how
an improvement in the treatment of it may be made.

Let ¥, ¥, denote the velocity-potentials of the systems of plane waves on the two
sides of the aperture, which we may suppose to be situated at the point £=0. Then
with our previous notation the conditions evidently are that when 2=0,

b=,
Qb db\ | (20 ¢)
H(B-E) =0,

the escape of energy from the tube being neglected. - These equations determine the con~
nexion between the two systems of waves in any case that may arise, and the working
out is simple. 'The results are of no particular interest, unless it be for a comparison with
experimental measurements, which, so far as I am aware, have not hitherto been made.}

* Professor Stoxes informs me that he had himself done this at the request of the Astronomer Royal,
MDCCCLXXIL 0
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