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February 19, 1891.
Sir WILLIAM THOMSON, D.C.L., LL.D., President, in the Chair.

The Presents received were laid on the table, and thanks ordered
for them.

The following Papers were read :—

I. “On the Sensitiveness of the Bridge Method in its Appli-
cation to Periodic Electric Currents.” By LORD RAYLEIGH,
Sec. R.S. Received January 17, 1891.

The most favourable conditions in the ordinary measurement of
resistance have been investigated by Schwendler* and by O. Heavi-
side.t It is here proposed to treat the problem more generally, so
as to cover the application to conductors endowed with self-induction,
or combined with condensers. The receiving instrument may be
supposed to be a telephone, which takes the place of the galvanometer

* ¢« On the Galvanometric Resistance to be employed in Testing with Wheat-
stone’s Diagram,” ¢ Phil. Mag.,’ vol. 31, p. 864, 1866.

+ “On the Best Arrangement of Wheatstone’s Bridge for measuring a given

Resistance with a given Galvanometer and Battery,” ‘ Phil. Mag.,” vol. 45, p. 114,
1873.
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employed in ordinary testing. In the conjugate ‘ battery” branch a
periodic electromotive force of given frequency is the origin of the
currents.

Special attention will be given to the case where the branches are
equal in pairs, eg., @ =¢, b = d (fig. 1). The advantages of this
arrangement are important even in ordinary resistance testing, and
in the generalised application are still more to be insisted upon. By
mere interchange of ¢ and ¢ and combination of results, the equality
of b and d can be verified independently of the exactitude of the
ratio o : c.

Fre. 1.

If any element in the combination, for example @, be a mere re-
sistance, the difference of potentials at its terminals (V) is connected
with the current, z, by the relation

Y = az.

We have, however, to suppose that @ is not merely a resistance or
even combination of such. It may include an electromagnet,* and it
may be interrupted by a condenser. So long as the current is
strictly harmoric, proportional to ¢??, the most general possible
relation between V and @ is expressed by

V = (111 +’l:a2) X,

where a, and e, are the real and imaginary parts of a complex co-
efficient a, and are functions of the frequency p/2w. In the particu-
lar case of a simple conductor, endowed with inductance L, @, repre-
sents the resistance, and @, is equal to pL. In general, a,is positive ;
but a; may be either positive, as in the above example, or negative.
The latter case arises when a resistance, R, is interrupted by a con-
denser of capacity C. Here o, = R, a, = —1/pC. If there be also
inductance 1,
a, = R, a; = pLi—1/pC.

* An electromagnet here denotes a conductor with sensible inductance. Tron
may be present if the range of magnetisation be small.—¢ Phil. Mag.,” March, 1887.
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Since the parts of a, may be either positive or negative, there is
nothing to hinder its evanescence by compensation. In the above
combination of an electromagnet and condenser compensation occurs
when p°LLC = 1, that is, when the natural period with terminals
connected coincides with the forced period. The combination is
then equivalent to a simple resistance;* but a variation of fre-
quency will give rise to a positive or negative a.. '

The case of two electromagnets in parallel is treated in my paper
on “ Forced Harmonic Oscillations ;’+ and other combinations have
been discussed by Mr. Heaviside and myself. But the above examples
will suffice to illustrate the principle that the relation of V to @ is
one of proportionality, and may be expressed by the single complex
symbol a. We fall back at any time upon the case of mere resistance
by supposing a to be real. 1In like manner b, ¢, d, ¢, and f are sym-
bols expressing the electrical properties of the remaining branches.

In all electrical problems the generalised quantities a, b, &c., com-
bine, just as they do when they represent simple resistances. Thus,
if @, o' be two complex quantities representing two conductors in
geries, the corresponding quantity for the combination is a+a'.
Again, if a, o' represent two conductors in parallel, the reciprocal of
the resultant is given by addition of the reciprocals of a, a’. For, if
the currents be » and &/, corresponding to a difference of potentials
V at the common terminals,

V =oaz=a%,
so that etz = V(1lja+1/a).

The investigation of the currents in networks of conductors is
usually treated by ¢ Kirchhoff’s rules,” and this procedure may of
course be adopted in the present case to determine the current
through the bridge of a Wheatstone combination. But it will be
more instructive to put the argument in the form applicable to the
forced vibrations of all mechanical systems which osciliate about a
configuration of equilibrium.

If p/27 represent the frequency of the vibration, the coordinates
Yy Yo, Yoo o o determining the condition of the system, and the cor-
responding forces ¥, ¥, ¥;....are all proportional to e#, and the
coordinates are linear functions of the forces.] For the present
purpose we suppose that all the forces vanish, except the first and
second. Thus Y, ¥, are linear functions of ¥, and ¥, and, con-
versely, ¥, ¥, may be regarded as linear functions of VY and ¥, We
may therefore set

* ¢Theory of Sound,” § 46, Macmillan, 1877,

+ ‘Phil. Mag.,” May, 1886.
I ‘Theory of Sound,’ vol. 1, § 107.
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Yy = A‘P1+ B%}

Ty, = By +Cyn

the coefficient of VY, in the first equation being identical with that
of Yy in the second by the reciprocal property. The three constants
A, B, C are in general complex quantities, functions of .

In the application that we have to make of these equations, Y, Y,
¥,, ¥, will represent respectively currents and electromotive forces in
the battery and telephone branches of the combination. The re-
ciprocal property may then be interpreted as follows:—If ¥, = 0,

B‘,”1+C‘/’2 =0,

B
a,nd \//‘22‘-';8—2'_—16\1,1 o8 s e e 06 s o e s cae e (2).

In like manner, if we had supposed ¥, = 0, we should have found

showing that the ratio of the current in one branch to an electro-
motive force operative in the other is independent of the way in
which the parts are assigned to the two branches.

‘We have now to determine the constants A, B, C in terms of the
electrical properties of the system. If v~ be maintained zero by a
suitable force ¥,, the relation between v, and ¥, is ¥, = Ayy. In
our application, A therefore denotes the (generalised) resistance to
an electromotive force in the battery branch, when the telephone branch
is open. This resistance is made up of f, the resistance in the battery
branch, and of that of the conductors a+e¢, b+d combined in
parallel. Thus,

_ o @t 04d) )
A=r+ Triterd Ceeeee (4).
In like manner, C= 6+%€3+(2%2 ........ theeaien ).

To determine B let us consider the force ¥, which must act in e in
order that the current through it (y») may be zero, in spite of the
operation of ¥;. We have ¥, = By~. The total current vy, flows
partly along the branch a+c, and partly along b+d. The current
through a+cis

1
ate _ (b+d) Yy x
1 1 ‘[/l—-a—{—b-l-(;-}—d ............ (0),

ate Txa
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and that through b +d is
Loty (6).
a+btetd
The difference of potentials at the terminals of e, supposed to be
interrupted, is thus
c(b+ad)y—d (a+c) Y.
atb+tc+d ’

or B o — e i e (7).

By (4), (4"), (7) the relationship of ¥, ¥, to Y, ¥ is completely
determined.

The problem of the bridge requires the determination of the cur-
rent Y, as proportional to ¥,, when ¥, == 0, that is, when no elec-
tromotive force acts in the bridge itself, and the solution is given at
once by simple introduction into (2) of the values A, C, B from (4),
@), (7).

If there be an approximate ba,lance the expression simplifies.
For be—ad is then small, and B? may be neglected relatively to AC
in the denominator of (2). Thus, as a suflicient approximation in
this case, we have

_ad—bo
_ a+b+c+d
e { CEDIGION {f [EDIGTN
atbtet+d § Tatbtetd

in agreement with the equation used by Mr. Heaviside for simple
resistances.

The following interpretation of the process leads very simply to
the approximate form (8), and may be acceptable to readers less
familiar with the general method. Let us first inquire what E.M.T.
is necessary in the telephomne branch to stop the current through it.
If such a force acts, the conditions are, externally, the same as if the
branch were open, and the current y» in the battery branch due to an
B.M.F. equal to ¥, in that branch is ¥,/A, where A is written for
brevity as representing the right-hand member of (4). The difference
of potential at the terminals of e, still supposed to be open, is found
at once when ¥ is known. It is equal to

ex (5)—dx (6) = By,

where B is defined by (7). In terms of ¥, the difference of poten-
tials is thus B¥,/A. If e be now closed, the same fraction expresses
the E.M.F. necessary in ¢ in order to prevent the generation of a
current in that branch.
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The case that we have to deal with is when ¥, acts in f, and there
is no E.M.F. in e. We are at liberty, however, to suppose that two
opposite forces, each of magnitude B¥,/A, acts in e. One of these,
as we have seen, acting in conjunction with ¥, in f, gives no current
in e; so that, since electromotive forces act independently of one
another, the actual current in e, closed without internal E.M.F. is
simply that due to the other component. The question is thus re-
duced to the determination of the current in e due to a given E.M.F.
in that branch.

So far the argument is rigorous; but we will now suppose that
we have to deal with an approximate balance. In this case an K.M.F.
in e gives rise to very little current in f, and in calculating the cur-
rent in ¢ we may suppose f to be broken. The total resistance to the
force in e is then given simply by C of equation (4'), and the approxi-
mate value for Y is derived by dividing —B¥;/A by C, as we found
in (8).

A continued application of the foregoing process gives /¥, in the
form of an infinite geometric series :—

B B> B ’ B
Y’z/‘l‘l = -—-E-{ 1+—K6+'A-£(—j§+” .. } = B—AG " (2).

This is the rigorous solution already found; but the first term of
the series suffices for practical purposes.

The form of (8) enables us at once to compare the effects of incre-
ments of resistance and inductance in disturbing a balance. For let
ad = be, and then change d to d+d' where d' = d'\+7d’,. The value
of yn/¥, is proportional to &, and the amplitude of the vibratory
current in the bridge is proportional to Mod d', that is, to
V(@24 d#). Thus d, d'y are equally efficacious when numerically
equal.

The next application that we shall make of (8) is to the general-
ised form of Schwendler’s problem. When all else is given, how
should the telephone, or other receiving instrument, be wound in
order to get the greatest effect ?

If by separation of real and imaginary parts we set

e = ¢ +leg, a,-{—_Z_)_-i—T}:i— = ceeeon (9),

the factor in the denominator of (6) with which we are concerned
becomes
e+r+e (92+7‘2) H

and the square of the modulus is given by

Mod® = (e1+71)*+ (ea4+72)* vvvnvnenewe (10).
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In this equation e, 7 are essentially positive, while e,, , may be
either positive or negative. If ¢ and e, are both at disposal, the
minimum of (10), corresponding to the maximum current, is found
by making

e =0, €3 == =T verenenean an.

But this is not the practical question. As in the case of simple
resistances, what we have to aim at is not to render the current in the
bridge a maximum, but rather the effect of the current. Whether
the receiving instrument be a galvanometer or a telephene, we cannot
in practice reduce its resistance to zero without at the same time
nullifying the effect desired. We must rather regard the space
available for the windings as given, and merely inquire how it may
best be utilised. Now the effect required to be exalted 1is, ceeteris
paribus, proportional to the number of windings (m); and, if the
space occupied by insulation be proportiomal to that occupied by
copper, the resistance varies as m?® So also does the inductance ; and
accordingly, if the instrument be connected to the bridge by leads
seusibly devoid of resistance and inductance, .

ertie, = m* (+960) coveerniaesen.s (12),

where ¢, ¢, are independent of m. The quantity whose modulus is to
be made a minimum by variation of m is thus

e +ies 7+ 1ry — 71+ mbe+1 (”'2+m2€2) .
9

m m

and we have
Mod? = (”'1 +'m2€1)2 + (7’2 + ’m252)z

m?
= (rP+rd) mmr 42 (e +n6) + (e + &%) me
This is a minimum by variation of m when

4 784 1g?
m- == ——,z————é',
€+ €

or Mod (r,+91) = Mod (er+4es) «vveveven. (13).

We may express this result by saying that to get the best effect
the instrument must be so wound that its smpedance is equal to that
of the compound conductor r,+4r,. If for any reason the inductances
can be omitted from consideration, then the resistance of the instru-
ment is to be made equal to 7, in accordance with Schwendler’s
rule.

The case of the “battery ” branch may often be treated in like
manner. As Mr. Heaviside has shown, if a number of cells are
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available for ordinary resistance testing, they should be combined, so
that their resistance is equal to that (s;) of the corresponding com-
bination of wires in parallel. Periodic currents may be conceived to
arise from the rotation of a coil in a magnetic field of given strength.
If the space occupied by the windings of the coil be supposed to be
given, their number m will be determined by the condition of equal
impedances. Thus, if

(atc) (b+a) .
a+btc+d

Mod (fi+if,) = Mod (s;+is) ..... ceees (15),

in analogy with (13).

The above is the solution of the problem, if the coils of the sending
and receiving instruments represent the whole of their respective
branches, and are limited to occupy given spaces. The inductances
and resistances cannot then be varied independently. But there
would often be no difficulty in escaping from this limitation. The
inclusion of additional resistance, external to the instrument, can
only do harm ; but the case is otherwise with inductance, positive or
negative. If the inductance of the instrument added to 7, or to s,
be positive, the total inductance may be reduced to zero by the inser-
tion of a suitable condenser, and this without material increase of
resistance. If the inductance be already negative, the remedy is not
so easily carried out; but, theoretically, it is possible to add the
necessary inductance without sensible increase of resistance. The
greater the frequency of vibration, the more feasible does this course
become. We may, therefore, without much violence, suppose that
the inductances of two branches can be reduced to zero without
additional resistance. Thus,

62+72ﬂ0, f2+32:——00v ------- oo e (16);
and the condition of maximum efficiency of the transmitting and
receiving coils is then given by Schwendler’s rule,

e =1, fi=s ceiiiiinnns oo (7).

These suppositions form a reasonable basis for further investiga-
tion; but conclusions founded upon them will be subject to re-
examination, especially in extreme cases. We may also now introduce
the promised simplification,

a=c, b=d ......... e eeen . (18),
in accordance with which (8) becomes
%/\p‘=d-—b 2ab/(a+b) (19).

40 {e+% (a+b)} {f+2ab/(a+b)}
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Also ntip=1%0@+0) =% (m+b)+37 (e +b) ... (20).

2 (ay+1ay) (bi+1by)
a1+ 1, + by + b,

—9 (a:i+b) (a'lbl — b)) + (24 b)) (a201+ a1b)
(ar+b1)* + (a2 +bg)?

24 (11'1 + bl) (“2171 + ale) - (az+ bz) (albl—%bz) .. (21).
(al +b1) + (az‘l‘ by)?

81+/I:Sz =

+

It may be well to examine, first, the consequences of (19), in the
case of simple resistances. Here

r = '}_7 (w1+b1), 9= 0 tovivsuncs (22) H
8 = 2albll(w1+b1), S =0 ..iiiiunn (23).

In accordance with the plan proposed, we are to make e, = 0,
fo=0;* ee=r, fi=s. Our equation then becomes

dy—b, )
¥ =270
V¥ 8y (a1 +by)

Here a, is still at disposal, and we see that according to (24) it
ought to be diminished without limit. This conclusion does not
harmonize with one obtained by Mr. Heaviside.t It must be ob-
served, however, that a; =0 is unpractical, involving, as it does,
s, =0, fi=0. Even according to (24) there is little to be gained by
diminishing a, below, say, 3 bi. In this case

a =10, e =1 =2b, f1281=%bl coee (25).

Such an arrangement as (25) may be recommended for practical
use.

When b, is large, there may be advantage in taking e, relatively
smaller than in the above example. In such cases we approach the
limiting condition of things, and have approximately

31-—_—”'1:‘;1’1, f1=6'1=2(11 .......... .o (26),
di—b
il =BT @)

And the smallness of f; in comparison with b, may sometimes be a
convenience.

* These conditions require no attention in galvanometric testing with steady
currents, being satisfied by p = 0, independently of the nature of the instrument.

t Loc. eit., p. 120, “In conclusion, if, to measure a certain resistance, the best
resistances for the galvanometer, battery, and the three sides, @, b, ¢, were required,
then we should have to make a = b =c¢c =d = e = f.”
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The next remark that has to be made is that, even when the con-
ductors, b and d, to be compared are endowed with sensible in-
ductances (positive or negative), the problem may still, theoretically,
be brought under the above head. Suppose, for example, that b, d
represent nearly equal electromagnets. Their inductances may be
compensated by the introduction (in series) of suitable equal con-
densers into these branches, so that b and d are reduced to b, and d;.
Tf then we assume a to be a simple resistance (a, = 0), the solution is
as before. Two objections may here be raised. First, on the
theoretical side it has not been proved to be advantageous fo assume
@, = 0; and, secondly, the introduction of extraneous condensers,*
even with interchange, into the branches to be accurately comipared
may be a complication unfavourable to success.

We will now resume the consideration of (19), supposing that

e = e;+1e, = 1y—17y, fF=fit+ifa=s—is; .... (28),
vy, 7o, 81, 8, being given by (20), (21). Thus,

d—Db s1+1is,

Yo/ Wy = —=
vl 16 bnrs;

and the question before us is how to make the modulus of the second
fraction on the right a maximum by variation of a. In the de-
nominator of this fraction »; and s, are real, and the modulus of
bis v/ (b2+b%). TFor the numerator we have

1 1 1 2 2(s—isy)

1
T a,+ia2+b1+ibz T sibis, | sPdsf

28, __ 22 }71
so that 5487 - a4+t + b+ bz‘z‘

Also from the definition of s
4 (o +a?) (b4 b)

YA = Ty (et by
so that
5y — (a12+@22) (b12+b22) { L8 b, }2
si* 484’ - (a1+b1)2+(a2+b2)2 a’+a? bt 4bt '
Thus .
Mod by, _ (a,+by) {”1(b12+b22) +bl(alz+a2“)} . (30)’

sitism 2/ (a2 +a?) .« /{(a+b)*+ (aat+b)?}
and this is to be made a minimum by variation of ai, a,.

* The use of condensers or electromagnets in the branches e and f stands, of
course, upon a different footing.
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We shall show presently that (80) can be reduced to zero; but for
the moment we will so far limit the generality of a;, a, as to suppose
that @, = #b;, a, = @b,, @ being real and positive.

(80) then reduces to 3 b*(1+=) ; and by (29)

Mod (d—b)

Mod - = 02\
od ¥u/¥ 8b (14)

Accordingly, the maximum sensitiveness cannot be attained until
2 is reduced to zero, so that a;, @, vanish. (31) may be regarded as
a generalised form of (24), free from the limitation that b, = 0, pro-
vided a, be so taken that a,/b, = a,/b:.

We will now suppose in (30) that a and a, are both small, and in
the first instance that b, is finite. We have

[0 % b?
\/(a12+a22) «/(b12+ bzz)

and this reduces ultimately to its first term, depending upon the ratio
only of @, and a,. The expression vanishes if a, : @, be small enough,
so that (80) can certainly be thus reduced to zero. It is remarkable
that the expression for the sensitiveness should be capable of becom-
ing infinite by suitable choice of a,. If we first suppose that a, is
absolutely zero, and afterwards that a, diminishes without limit, the
ultimate value of (32) is 3 b1/ (b*+b2), in place of zero.

From the practical point of view, these conclusions from our
equations are not particularly satisfactory. We began with certain
proposals which, in ordinary cases, could be carried out; but in the
end we are directed to apply them to an extreme and impossible state
of things. We have found, however, in what direction we must tend
in the search for sensitiveness; and useful information may be
gathered from (32). In practice a; could not be reduced below a
certain point. The question may then be asked, what is the best
value of a,, when a, is given? From (32) we find at once that

-+

30V (02 +0)) V(@' +a) .. (32);

2 2
it af = M%.t_bz) .............. (33),
1
(32) then becoming
Dia/ (b)) eovevniiniin i, (34).
In this case from (29) Mod (d—)
od (d—
Mod /¥, = by (e T (35),

independent of by,
If we suppose in (32) that a, = 0, we have
1b%
9 Y1

% bl \/(b12 + bzz) + 17(—5;5:;322—)' ............ (36).
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To take a numerical example, let b, = 0; and suppose a, =

b
o Vi
Then, according to (33), a; = + 5 bi. Also by (20), (21),

™

I-H

e = 33 by, e
S by, So=

The corresponding minimum value of (32), equal to (34), is
b2/ (10).

But with this value of a, the gain by allowing a; to be finite is not
great. If ay, =0,

= oiw

P bis
T b

II
-
)

I~

of= o

e b1, e =20;
f2 by, fo=0;
and the value of (32), equal to (36), is 13 b2

We see from (36) that when a, = 0 there is little to be gained by
further reduction of @, But when a, is suitably chosen the gain

Q= O

may be worth having. Thus, in (34), if a1 = 1}5 b1, we have ;b%
Corresponding to this @, = 4% b, nearly, and

€ — '5];'1)], €y -——F§> Z)l H

Ji=dsby fo=FH b

These are not unreasonable proportions, and we see that the use of
a, may be advantageous, even when the subject of measurement is a
mere resistance. It will be remarked too that, except as regards
ez, fo, the sign of a, is immaterial.

When the branches b, d consiet of electromagnets, and still more
when they consist of condensers, by may be very small. If we sup-
pose it to be zero, (30) becomes

a12b22

......... . (87).
2y (P +a?) . /{0t 4+ (a+by)?} (37)
Corresponding to this from (20), (21),
6 =% a, = —% (ag+by) ...... (38),
2a,by? 2 a\*hy 4+ 2 50, (@ + by) :
= v = — .. (39).
i a+ (az+02)* S a’*+ (uz+0,)* ©9)

From (37) we see that the increase of a, is favourable, especially
if the sign be the same as of b,. Hven if a, =0, (37) now assuming
the form

a,b,?

ma:i"—b}_)- ...... o6 o0 0 s s e 0 e e
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can be reduced to zero by taking @, small enough. But of course
(87) ceases to be applicable unless b; be small relatively to a;. In
correspondence with (40),

e =3 a, &= —%by et (41);
— 2mb _ _2a%, 42
f"’"al2+b22’ fz—- arhbE ( )
As an example of (37), suppose
& = i b21 Ay = 41)2.
Th b;? 1
on @7 = o early-

Also approximately
e = ';" bza € = "‘% bz, fl = 3% b% fz = -—’; b,.

It b, represent the stiffness of a condenser, f, must be a positive
inductance, and its magnitude, relatively to f,, would probably con-
stitute a difficulty.

As an example, with a, equal to zero, take

= 5 by, a, = 0.
Then (87) = (40) = 3% &;* nearly,
and

—_ 1 —_ —
e = 3 by, e = —3 by, fi= 40, fz = —4% ba

So far as the general theory is concerned, it is a matter of indif-
ference whether the indicating instrument be in the branch e, or in
/- The latter corresponds to the connections in De Sauty’s method
of testing condensers by means of the galvanometer. In practice,
more space would probably be available for the coils of a transmitting
instrument than of the receiving instrument, at least, 1f the latter be
a telephone; and this would tell in favour of choosing that branch for
the transmitter which shounld have the larger time constant (L/R).

To get an idea of the relative capacities, resistances, and induct-
ances involved, we must assume a particular pitch. A frequency
suitable for telephonic experiments is 1000 per second, for which
p = 20007 Thus, if the value of a, for a condenser of capacity C,
and for an inductance L, and that of a, for a resistance R, are all

numerically equal,
1

R =20007L = —— .
2000 7 C

If R be 1 obhm, equal to 10° C.G.S., the corresponding capacity is
1:6x107% C.G.S., equal to 160 microfarads, and the corresponding
VOL. XLIX. Q
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inductance is 1'6 x 10° C.G.S. Again, if C be one microfarad, equal
to 10~ C.G.8., R is 160 ohms, and L is 25 x 107 cm.

In the preceding calculations e and f are supposed to be adjusted
to the values most favourable to the effect in the receiving instru-
ment. A question, which arises quite as often in practice, is how to
make the best of given instruments. The full answer is necessarily
somewhat complicated ; for there could be no objection to the inser-
tion of a condenser for example, if the sensitiveness could be im-
proved thereby. In what follows, however, the transmitting and
receiving branches will be supposed to be fully given, so that ¢ and f
are known complex quantities ; and the only question to be considered
is as to the most suitable value of @, assumed to be equal to c.

For this purpose the modulus of the second fraction on the right
in (19) is to be a maximum, or that of

(a+b+20) (};+%+J2€) .............. (43)

is to be a minimum, by variation of a. The problem thus arising of
determining the minimum modulus of a function of a complex
quantity may be treated generally.
Let
() =F (z+1y) = ¢ (2,y) +iy (2, 9),
and let it be required to find when the modulus® of F (), viz,
¢*+ V4 1s a minimum by variation of #,y. We have

d 1 d
¢d¢+yf \b ¢:T$+\I»E;7/’:—_o ceee (44).
And in general
@ ‘/" @ dV’ 4
de ~ dy’ dy — " de "t (45).

In order that (44), (45) may both obtain, we must have either
@+ Y* =0, or else

ag _ (L¢ _ ay _ d\lr
e = 0, dy 0 =

=0, - =4,

dz

The latter conditions are equivalent to

For example, let
F () = (z+m)<§+ﬁ> .............. . (47),

where «, 8 are complex constants.
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The application of (46) gives

) B <) B
and F@E)={1+V@B)F ciiieininne.. (49).
We see then that the modulus of (43) will be a mjnimum, when
b+2e
e e e e (50),
= TN

and in taking the square root the ambiguity must he sa.determined as
to make the real part of a positive.

Equation (50) coincides with that obtained by Mr. Heaviside for
the case where all the quantities are real..

II. “On the Influence of Pressure on the Spectra of Flames.”
By G. D. LiveiNg, M.A,, F.R.S., Professor of Chemistry,
and J. DEwar, M.A., F.R.S., Jacksonian Professor,
University of Cambridge. Received January 22, 1891.

‘We have already described (* Phil. Trans.,” A, 1888) the remarkable
spectrum of the oxy-hydrogen flame burning at the ordinary atmo-
spheric pressure. Recently we have examined the spectrum of the
same flame at various pressures: hydrogen burning in excess of
oxygen up to a pressure of 40 atmospheres, and oxygen in excess of
hydrogen up to a pressure of 25 atmospheres, also that of the mixed
gases burning in carbonic acid gas.

The apparatus employed was an adaptation of ene of the tubes
used in our experiments on the absorption spectra of compressed
gases (‘ Phil. Mag.,” September, 1888, and ‘Roy. Soc. Proc.,” vol. 46,
p- 222). It consisted of a steel cylinder, about 50 mm. in internal
diameter and 225 mm. long, fitted at oue end with a quartz stopper,
a, in the annexed figure, and with a jet, b, for burning the gas,
adapted by a properly fitting union joint to the opposite end. There
were two tubes, ¢ and d, connected to the cylinder at the sides, of
which one, ¢, served for the introduction of gas, while the other, d,
was fitted with a stopcock and was used to draw off the water formed,
or to reduce the pressure of the gas in the cylinder if that was
desired. The flame was observed, nearly end on, through the quartz
stopper. The whole apparatus was kept cool by a stream of cold
water running on to a sponge cloth wrapped round the cylinder. In
the course of the tube conveying gas to the jet b was interposed a
small cylinder, e, in which sodium was placed, and by heating this,
the gas entering could be charged with sodium vapour.
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