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XXIV. On the Values of the Integmllen Q. dw, Q,, Q, being Larrace’s Coefficients

of the Orders n, 0', with an application to the Theory of Radiation. By the Hon.
J. W. Strutr, Fellow of Trinity College, Combridge. Communicated by W. SporTis-
wooDnE, F.R.S. -

Received May 17,—Read June 16, 1870,

Ix the course of an investigation concerning the potential function which is subject to
conditions at the surface of a sphere which vary discontinuously in passing from one
hemisphere to the other, it became necessary to know the values of the integral

ﬁ 'Q,Qudu,

Q,, Q,, being LaPLACE’S coefficients of the orders n, #' respectively. The expression for
Q, in terms of w is

1.3.5....(2n—1) n(n—1) w2 (n—1)(n—2)(n—3) ,_, )
Q="T23 { 2. @n—1) +n27.z4(2n—n;1)(2n—'3) - }*’

but the multiplication of two such series together and subsequent integration with re-
spect to w would be very laborious even for moderate values of % and /.

By the following method the values of the integrals in question may be obtained with-
out much trouble. According to the definition of the functions Q,

1

m=1+Q1e+Q232+ cas +Qn3"+ v

so that

n=0 n'=w

ln
ja/1+e2-—2e,u/1+e’9—2e' ,E:', n,i Qand(.o e"e

which shows thatf Q.Q.dw is the coefficient of ¢"¢™ in the expansion of the integral
B 0 .

on the left in powers of ¢ and €.
On effecting the integration and reducing, we obtain as the quantity to be expanded,

1+

1 (1+ vVed)( Ve— /) | — 1 — 1—'\/1_'_32'\/}

Vel 8 Ve Tio— VIVIEe =—=10g (1++/0) — = log /T e+ log v/
Vi

—fle -y

# Tmomson and Tarr’s Natural Philosophy, p. 624,
MDCOCLXX. 4 x

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to é )2
Philosophical Transactions of the Royal Society of London. IIN@RY

www.jstor.org


http://rstl.royalsocietypublishing.org/

Downloaded from rstl.royalsocietypublishing.org on 30 August 2009

580 THE HON. J. W. STRUTT ON THE VALUES OF A DEFINITE INTEGRAL

[ (/14€2\% e\} . 1(l+e? e ]

{(ﬂ?) —1 }(z) =+§{1+e2—1 };;'
146%\% e\E 1(/1+%\2 e\ 2

L | ) 1) () -10)

- Ved R . .

‘—l_. L3 » . . . . + . . . , . ) .

1
—5 log (1+¢°).

Since we know & priori that the expansion will only contain whole positive powers of
6, we may leave out all the terms in ebef..... (no negative powers of ¢ occur)*, We
thus obtain "

(ed! ee’)‘“‘ (ee’)4

1-i- + + +.o..n

1 1+e’ “le[/14+e2\8 N
+e{<1+e2> —1 }",‘52”9{(1”2) ”'15}

1 /1+e\g ), 18 /1+%\%
w5l (15e) - H7a (7Fe) -1}
1A [1462\8 1S /1rdNE
ol () — 1+ (1) -1

TIn this all terms containing negative powers of ¢ may be thrown away, as they must
finally disappear even if retained. The terms on the left after the first line contain only
‘even powers of ¢, and those on the right only odd. It appears, too, that with the even
powers of ¢ go the odd:of ¢/, and conversely. Hence if %, #' be both even or both odd
there is no part of the coefficient of ¢"¢"™ to be found after the first line, and none in the
first line unless n=x. - Thus

| 5 Q.Q du=0
3,
if n, o' are both odd or both even, unless they are the same, in which case
. o
(@ an=grp

* Professor CAvLEY has remarked that the finite expression itself may be modified so as to get rid of these
terms, and then becomes

1 1‘ 1+N/ee+ 1 [10g1+\'/ z'g(}ﬂ_e;’; . +'\/-..
Ve ©1_ Vee 2~/eel 1_\/%% /\/

For so far as the terms containing fractional powers of « are concerned,

+'\/m'
I—Va

log (1+ ¥ z) and } log
are identical.—(Nov. 1870.)


http://rstl.royalsocietypublishing.org/

Downloaded from rstl.royalsocietypublishing.org on 30 August 2009

INVOLVING THE PRODUCT OF TWO LAPLACE'S COEFFICIENTS. 581

These results* are immediate consequences of what is known with respect to the values
of the integrals

5 Q.Q.dy,

in which the integration extends over the whole sphere; for if n, #' are both odd or both
even, Q,Q, is an even function of w, and so:

(C i du= {, Q.

The peculiar character of the integrals over the hemisphere only shows itself when
one of the quantities n, 7' is even and the other odd.

2%
The coefficient of ¢’ in the expansion is 1+v(_1_";‘f,.)_u ;
e

1(1+6F ) 1(14e2)f—1
2 4 5 &8 g

1.3(1+e?)d 5 1(1+638  1(1+698—1
2°2 & 2’5 & 9 P2 g

o 12
coefficient of e"’:% —

coefficient of ¢ ——-+

e 1.3.5(1+6)F 5.7
coefficient of ¢'= =BT @ 7 —~C 75 555
_5

7.9 1(1+e?)E

11+e¢9% 9 1(1+¢2)E 41 (1425 —
13 e ’

1.3.5. 7(1+e’9)

coefficient of ¢*= 17—|— G e, BB 5
49.11 1(1+e2% 13 1 (1+e'2)%+}_(1+é2)1}—
22@ 9 2°13 &7 17 P

The law of formation of these series is obvious, and the coefficient of ¢** could, if

necesssary, be written down.

From the symmetry of the original expression in ¢ and ¢ we know that the coefficient
of ¢*¢” must be the same as that of ¢”¢"; so that, in order to obtain all the integrals
required, it is not absolutely necessary to consider the coefficients of odd powers of e.

. 1
Nevertheless, in the calculation for instance of j Q,Q,, dw, it would be much easier to
0

obtain it as the coefficient of ¢ in the series which multiplies e, than as the coefficient
of ¢ in the series which multiplies ¢".
The coefficient of ¢

+- 1+8’Q)2'. ..

2 >
coefficient of &°
_? 31 (1+e'2)%+_1_(1 +e'2)%-1;

7TTE3 E T &

# They would, of course, be more simply obtained by taking the integration in the first instance from p=-—1
to p=+1.—(Nov. 1870.)
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coefficient of ¢°

1(14e?2, 1 1+e’°"2—-1
'7‘( P + (

’

coefficient of ¢’

_€7_8.5.7 1(1+¢% +7 9 1(1+62)E
T 23{_ "3 2%@_ 7 €

_111 a4y _I___(1+e'2)%?—1,
T2 11 S 15

and so on. From these series the coefficients of ¢"¢™ for moderate values of 7 and #' may
be calculated with facility.

It is desirable to know the limit of the integral (lQ,‘Q,,,d,w when 7 becomes very large,
0

n' remaining finite. A distinction is necessary according as it is the even or the odd

suffix which is supposed to increase without limit.
dm+1

14+e?)2 .
The whole coefficient of ¢** is a sum of terms of the imm L,;,ml , where m is zero,

or any positive integer, each term multiplied by a numerical factor, which may be re-
dm+1

. . ) 1+€? 2
garded as a function of # and m. The general term in the expansion of -(?;,,{T)
powers of ¢ is

- (4m+1) (4m—1).....3.1.1.3... (2r—4m—3),

7l

Jirrespective of sign.
If we put 2r—2m—1=2n'—1, it becomes

ro g (4m+1)(4m—1)...8.1.1.8...(2n —2m —3)
¢ 2.4.6...(20 +2m) ’

The coefficient of ¢¢*~! is thus a series of terms of the form

(4m+1).....1.1....(2n' —2m—38)
2.4.6...(2n +2m) ’

each term multiplied by a factor depending on % and m but independent of w'. The
question is which term has the predominance when #' increases without limit? It appears
that it is the one corresponding to m=0; for the ratio of this to the general term is

1.1.3....(20/—3) 2.4 (20 +2m)
(4m+1).....1.1....(20 —2m—3) 2.4...20/

_ (@ =2m—1)..... (20 —3) x (20 + 2)..... (2n' +2m)
- (4m—+1)(4m—1)...1 ’

a fraction which increases without limit with #'.
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The value of IIQM w1 0, When 2' is indefinitely great, is therefore identical with the
0

coeflicient of ¢**~! in the expansion of

1.3.5.00..(20—1) (1 +£2)F
2.4.6....2n d

Now
(1+e'@)%

1.1.3....(2'—3) .,
! 120/ —1 .
e’+2 e S i I A A

and by a known theorem, when 2/ is indefinitely great,

1.18...(2=3) 1 1
2.4.6...200 T 20 —1 gyl

1
Finally, therefore,j Q. Quy-; dw, when 7' increases without limit, takes ultimately the
0

1.3.5....(2n—1) 1
2.4.6...2n  omipd

If n be very great (though infinitely small, perhaps, compared to #') this becomes

form +

+

1 .
5. In a similar manner it may be proved that the limit of f Qg1 Qo dw, when
0

— 9 l

7

7' increases indefinitely, is

1 8.5.7..(20—1) 1
T274.6....(2n—2) anint

If, now, n increases without limit, we obtain

n¥

.

2xn's
There is no inconsistency in the non-agreement of the values found when % and #' are
indefinitely great, for the limiting circumstances contemplated in the two cases are in
reality quite different. It may be convenient for the sake of comparison to repeat here
the equation

1 5 1
f,@rdu=g75>

which is true whether » be great or small.

The annexed Table contains the exact numerical values of the integrals for which
neither suffix is greater than eleven. If we fix our attention on a given value of 2 (say 6),
while 2/ varies, we see that the integrals, or, rather, those of them which do not vanish,
begin by being alternately opposite in sign, and increase in value up to # =n—1; that
when #'—n a change of sign is missed, and that for greater values of #' the regular alter-
nation of sign is reestablished in conjunction with a steady diminution in numerical
value.

This is in accordance with what might have been expected from the general character
of the functions Q. They have their maximum (arithmetical as well as algebraical)
value, namely unity, when w=1, an even function, Q,,, vanishing » times, and an odd
function, Qg,,, vanishing n-1 times for values of w ranging from 0 to 1 inclusive.
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When, therefore, one of the quantities n, #' is large and the other not nearly equal to
it, Q,Q, is affected with a sign rapidly alternating, and consequently the value of the

1
j Q,Q, dw is comparatively very small. But if » and %/ are nearly equal, the functions
0

Q,, Q,, in spite of the rapid alternation, keep together as it were in sign for a considerable
fraction of the range of integration, and so thevalue of the integral is largely increased.
Again, for all cases included in the Table it will be found that

1 ) 1
jo , anagn_ldmfb Qo Qo it

a relation which is_evidently: general, although not very easily proved to be so. After
a good deal of trouble I arrived at the following demonstration :—
If in the expression

whose expansion gives the integrals under consideration, we put

' e
=z, =Y,

we obtain
(1+ v2)(1— v7y)

4/1+wy—4/yf\/l+g

1 log-

x

In consequence of the symmetry of this in respect to y and ?1/, it may be expanded in

a series of positive and negative powers of v/ of the form
10 N
Aot & ( Wyt )+ (o)) HAEHH D+
Ay A, . .. . being functions of 2.

The terms that we are engaged in examining are those in 4/ or :/1?«/, so that the

question reduces itself to the determination of A, as a function of z, or at least an
examination of its nature.
Now A, is the term independent of y after differentiation of the series with respect to
vy. Henee
At+tvVa)Q—vy
Vitay—vyA/ 1+
v/
On differentiation and reduction we arrive at the-expression
1+
e (s D)

from which the part independent of  has to be selected.

A,=term independent of y in d—j‘z—/—},—; log

-1
2
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From the ﬁrsf term we have simply 1;7%? . As for the second,

fref

“(1+4"2)'5{ 21+m9( y)+ 1+w9 (y+?/)

]35

—5 () oo
The term in <y+%)(1+y+y“+y3+. .. .) independent of y is 1,

3
The term in (y—}-?l;) (14+y+»+...)is 1438, and generally, if % b¢ odd, the part
independent of  in

1 " -1 3 1 7 n
(y+?7) (1—y)is S (141)y=1. 2n
Thus the term in {1 +x’+w(g/—}-ly)}—§(1 —y)~! independent of y

:(1_}_%.2)—%{—5 1+222° 2~ 223 (L+2° 2’

— .....+ an even function of

1 z 1 1.3.5 &8 1 221

; . 1 2 (22)* 1.3.5 (22)3
:(1 -;,zﬁ)—f{l ) 1+w2+29L(1+a’“) - 23@_ a +x2)8}
+

.....+ an even function of z

_a '2 a?)~% {1 45 +$2}—%+ even function of .a;]

11

=5 i4s T aneven functlon of x.

Finally, therefore,
A= «/ =4 ];;{ao+a2w’+a4w‘+ }
where ¢, @,. . . are unknown coefficients, of which we will only determine @, by a reference
to the expression from which A, was obtained, which shows that
~ 10,0,

A=} vataritaaifogifaait ...,

Multiplying by 4y and replacing ¢ and ¢,
A Vy=1o+ 0,6 + 0,0 +-0,6' +a,6¢* + 4 +aig’dS . ..

so that
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0+ van(1-4/%)
- in which
viTe—A/5 viTe

Having regard, now, to the symmetry in ¢ and ¢, we see that generally

le2nQ2n— ld[u' =j:Q2nQ2n+ 1 d{b.

As an application of some of the results of this investigation I will take the following
physical problem. A spherical ball of uniform material is exposed to the radiation
from infinitely distant surrounding objects. It is required to find the stationary con-
dition. For the sake of simplicity, the surface of the sphere will be supposed to be per-
fectly black, that is, to absorb all the radiant heat that falls upon it, and NEwrox’s law
of cooling will be employed, at least provisionally.

If V denote the temperature, it is to be determined by the equations

d?
(M+dyg+dzg>v =0, . ... @

FNSFEE)-RV, . . . . ... ... . (B

These are the only terms in the expansion of ﬁlog

the index of ¢ is one higher than that of ¢.

where F(E) is a function of the position of the point E on the surface, and denotes the
heat received per unit area at that point, Z is the conductivity, and % the coefficient of
radiation. Equation (A) is to be satisfied throughout the interior and (B) over the
surface of the sphere.

If V be expanded in LAPLACE’S series,

av
V=S,48, 2 +8 0 + 5 g =7 (SH28+38,+..);

and if

F=F +F+F,+....
be the expansion of F in a similar series of surface harmonics, we obtain, on substituting
in (B) and equating to zero the terms of any order,

So—-—-z-)
s,=_F_‘17c
h+=
a
Sz-— FQQI"
bt
F
S,=—2-. . . . . . . .. ... (0
n nk -
ht—

MDCOCLXX. 41
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The mean temperature S, is seen to be independent of the conductivity and of the
size of the sphere.

The case where the heat which falls on the sphere proceeds from a single radiant-
point is not only important in itself, but may be made the foundation of the general
solution in virtue of the principle of superposition. Taking the axis in the direction of
the radiant-point, we have

F(E)=u
over the positive hemisphere, that is, from =0 to 9=ga

while over the negative hemisphere F(E)=0.

It is required to expand F in a series of spherical harmonics. :

Let F=3w+f; then fis a function of w, which is equal to u over the positive hemi-
sphere and to — 4w over the negative. The problem therefore reduces itself to the ex-
pression of iu over the positive hemlsphele in a series of functions Q of even order.
The same series will then give —4w over the negative hemisphere.

Assume

%{" =A+AQ+AQ+.....
Multiplying by Q,,, and integrating with respect to p from p=0 to p=1,

-j QQudp=Au (Qu)du,
0 0

all the other terms on the right vanishing.
1 1
Now | (Qupdp= gy
1 .
f Q,Q,,dpw=coefficient of ¢* in the expansion of
0
1a +e9)%_1
3 e?

. 1.1.3.5....(2n—3)
=—(=1r3as. (2n+2) ’

or
4n+1 .3....(2n—38)
Ap=—(=1) =3 6....(2n+2)"
Accordingly
dn+1 1 1 3 5....(2n—3
BE)=}+1Qu+ Q- (=1 ey Quko

When 7 is great the coefficient of Q,, approximates to ~—1:
2\/ w.nf

This completes the solution for a sphere exposed to the radiation from an infinitely
distant source of heat situated over the point pw=1.
If its coordinates are @/, ¢/, it is only necessary to replace @ in Q,, by

cos 0 cos ¢+ sin dsin ¢ cos (p—¢').
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Hence if H denote the intensity of the radiation which comes in direction W', ¢, the
general value of S, is

4n+1 1.1.3.5...(2n—3)
Sep=—(—1)" ‘,
2<h+n7/c> 2.4.6...(2n+2)

X §§ HQ,,(cos § cos #'+-sin ¢ sin §' cos(p—¢'))dp'de,
the integration going all round the sphere. ‘
Now (4n+1)~{§'HQ2,,dp’d<p"is the same as 47H,,, where H,, is the harmonic element

of H of order 2n; so that

1.1.3...(2n—3) 27H,,
Spp=—(—1)" X
2.4.6...(2n+2)h+gglc

8, =7 H,,
S, %@ H,
S, = _m H,.

It is remarkable that the odd terms in H (except H,) are altogether without influence.
The reason is simply that they do not affect the total heat falling on any point of the

surface.
1o
‘fy pwH,dpde,

For this is expressed by
the point considered being taken as pole of @, which involves no loss of generality.
Now (Tuomsox and Tarr, p. 149)

Hn:sfn(As cos s¢+ B, sin s¢)@5,

where @;, is a function of g not containing ¢.
When the integration with respect to ¢ is effected, all the terms will vanish except
that whose coefficient is A,. For this purpose, therefore, we may take

H,=A,0) or A)Q,,
. 1
and we know thaty ©wQ,dw vanishes if n be odd and different from unity*.
0

* The proof given is sufficient for the object in view ; but it may be well to notice that the essential thing is
that the two surface harmonics which are multiplied together are either both odd or both even. A harmonic
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The same thing is true for an ellipsoid or body of any figure which lies altogether on
one side of every tangent plane, namely, that the terms of odd order in H (except one)
are wholly without influence on it, and for the same reason.

We saw that in the case of a sphere the mean temperature was independent of the
conductivity, and also of the size of the sphere; but this depends on NEwTON’S law of
cooling. A comparison, however, may be made which shall hold good whatever be
the law of variation of radiation with temperature; for if the conducting-power of any
uniform body (which need not be oval) be increased in the same proportion as its linear
dimensions, a corresponding distribution of temperature will satisfy all the conditions.
Conclusions of interest from a physical point of view may be deduced from the foregoing
considerations, but I refrain from pursuing the subject at present, as the physical problem
was only brought forward in illustration of the mathematical results developed in this

paper.

of even order has identical values at opposite points of the sphere, and one of odd order has contrary values.
The product of two harmonics which are either both even or both odd has therefore the same value when inte-
grated over any portion of the sphere, or over what may be called the opposite portion, or as a particular case
over two opposite hemispheres. The last two integrals are the halves of the integral over the whole sphere,
which vanishes by a well-known property of these functions.
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