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1 Problem

Calculate the electromagnetic momentum and identify the “hidden” mechanical momentum
in a coaxial cable of length L, inner radius a, outer radius b, when a battery of voltage V is
connected to one end and a load resistor R0 is connected to the other. The current may be
taken as uniformly distributed over the inner conductor, which has resistivity ρ. The outer
conductor has negligible resistivity, and the current flows on it in a thin sheet at radius b.
The battery has negligible internal resistance.

Deduce the charge per unit length on the outer surface of the inner conductor. Then,
suppose the battery can be turned off in such a way that the current in the cable falls to
zero with some time dependence I(t). Calculate the impulse on the charge on the surface of
the inner conductor due to the electric field induced by the transient current.

2 Solution

This problem is based on sec. 17 of [1], and on prob. 7.57, ex. 8.3 and ex. 12.12 of [2].

2.1 Electromagnetic Fields and Field Momentum

We denote the resistance per unit length along inner conductor as

R =
ρ

πa2
. (1)

Then, the total resistance of the cable plus load resistor is R0 + RL. To have current I in
the system, the battery must have voltage

V = I(R0 + RL). (2)

The current I causes a magnetic field that is readily calculated via Ampère’s law to be
(in Gaussian units, and in a cylindrical coordinate system (r, φ, z) with the coaxial cable
centered on the z axis),

B =
2I

c
φ̂

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r
a2 (r < a),

1
r

(a < r < b),

0 (r > b).

(3)

Inside the wire the electric field is E(r < a) = IRẑ, as needed to drive the current I against
the resistivity ρ. Since the tangential component of the electric field is continuous across a
boundary, there must be some electric field in the region r > a as well. Indeed, a charge
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distribution Q(z) is needed on the surface of the inner conductor to shape the interior electric
field to be purely longitudinal.

An analysis of the electric field can be based on the convention that the electric potential
V (r, z) is equal to zero on the outer conductor, and is also zero on the plane z = 0 (which
is not necessarily inside the wire of length L). That is, we suppose the cable extends from
z = −L − R0/R (the position of the battery) to z = −R0/R (the position of the resistor),
so that the electric potential for r ≤ a can be written as

V (r ≤ a, z) = −IRz. (4)

Thus, the potential of the inner conductor at the position of the load resistor is IR0, and
the potential at the position of the battery is IR(L + R0/R), i.e., the battery voltage (2).

The capacitance per unit length between the inner and outer conductors of the coaxial
cable is well known to be

C =
1

2 ln(b/a)
. (5)

The charge Q(z) per unit length on the inner conductor is therefore

Q(z) = CV (r = a, z) = − IRz

2 ln(b/a)
=

IRz

2 ln(a/b)
, (6)

assuming that L � b so that Q(z) is essentially constant over length Δz � b. Further, the
potential in the region a < r < b is essentially that for a long wire of charge density Q(z),
matched to the condition that V (r = b) = 0, namely

V (a < r < b, z) = −2Q(z) ln(r/b) = −IRz ln(r/b)

ln(a/b)
, (7)

which also matches eq. (4) at r = a. The potential (7) can also be obtained by a separation-
of-variables solution to Laplace’s equation [1].

The electric field is obtained by taking the gradient of eq. (7), and we find

E = IR

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẑ (r < a),

ln(r/b)
ln(a/b)

ẑ + z
r ln(a/b)

r̂ (a < r < b),

0 (r > b).

(8)

The electromagnetic momentum density is

pEM =
S

c2
=

E × B

4πc
=

I2R

2πc2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− r
a2 r̂ (r < a),

− ln(r/b)
r ln(a/b)

r̂ + z
r2 ln(a/b)

ẑ (a < r < b),

0 (r > b).

(9)

The Poynting vector S quantifies the flow of energy from the battery in the region (a <
r < b, z = −L − R0/R) to the inner conductor and to the load resistor, where the energy is
dissipated in Joule heating.
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The figure on the next page (from [1]) shows lines of electric field and of Poynting flux
in a coaxial cable that has no terminating resistor, but rather is symmetric about the origin
and with power sources at both ends. The example considered here corresponds to, say, the
left third of the figure, plus a terminating resistive plate; the power source is at the left of
the figure.

The total electromagnetic momentum in the cable is

PEM =
∫

pEM dVol =
I2R ẑ

2πc2 ln(a/b)

∫ b

a
2πr dr

∫ −R0/R

−L−R0/R
dz

z

r2

=
I2RL(L + 2R0/R)

2c2
ẑ. (10)

2.2 “Hidden” Mechanical Momentum

Suppose the entire system of coaxial cable, battery and load resistor is isolated from the rest
of the Universe and that the center of mass of the system is at rest. Then, we expect the
total momentum of the system to be zero. While there is internal motion associated with the
electrical current, we expect the net momentum of the current to be zero, since the steady
current density J obeys ∫

J dVol = 0. (11)

This implies that there is mechanical momentum “hidden” somewhere in the system such
that the total mechanical momentum cancels the electromagnetic momentum (10).

Jon Thaler1 (private communication, Aug. 26, 2007) reminds us that the present example
is very close to that considered by Einstein in 1905 [3] from which he deduced that the
emission of light of energy E lowers the mass of the emitting body according to

E = Δmc2. (12)

1This point was also recently made by Timothy Boyer (private communication, Sept. 21, 2007).
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Here, the mass of the battery is reduced as the electromagnetic field carries energy away to
the resistive inner conductor and the load resistor. As the latter absorb the energy their
masses increase (ignoring possible thermal transport of the absorbed energy). Hence, the
mass of the system at positive z is increasing with time, so the system as a whole must be
moving in the negative z direction if the center of mass is to remain fixed.

The required motion of the system in the −z direction can be traced to transient forces
generated as the current increases from 0 to I [2].

Another confirmation of the result (10) can be found by supposing the current I drops to
zero with time. The changing magnetic field induces a longitudinal electric field that pushes
on the charge on the surface of the inner conductor, leading to a force on the wire. The force
on the conduction electrons merely slows the decrease of the current, but does not cause a
net force on the wire. By Faraday’s law, the induced electric field at r = a is2

Ez,induced(r = a) = −1

c

d

dt

∫ b

a
Bφ dr = − 2

c2

dI

dt
ln(b/a), (14)

noting that Ez,induced(r = b) = 0 since the outer (perfect) conductor can support no tangential
electric field. The additional force on the surface charge is

Fz,induced =
∫ −R0/R

−L−R0/R
Q(z)Ez,induced(r = a) dz = −RL(L + 2R0/R)

2c2

dI2

dt
, (15)

using eq. (6). The momentum kick to the wire as the current rises from zero to I is therefore

ΔPmech = ẑ
∫

Fz,induced dt = −I2RL(L + 2R0/R)

2c2
ẑ = −PEM. (16)

Thus, the back reaction to the process of emission of the electromagnetic energy into the
coaxial cable results in a very small mechanical momentum of the cable as a whole in the
direction opposite to the energy flow. The corresponding momentum is not, strictly speaking,
“hidden”, since the entire cable moves as a rigid body. However, this motion is effectively
hidden by its tiny magnitude, which is proportional to 1/c2.

This result reinforces the interpretation of eq. (10) as field momentum stored in the sys-
tem, that could be converted to back into mechanical momentum when the current drops to
zero. Here, this conversion serves to cancel small but nonzero “hidden” mechanical momen-
tum (16), returning the cable to zero velocity at zero current such that the total momentum
is zero at all times.

Since the nonzero electromagnetic momentum of a coaxial cable at rest is always canceled
by the “hidden” mechanical momentum, both of these entities can be safely neglected by
the pragmatic physicist in this case. Electromagnetic momentum is of greater significance in
dynamic phenomena, in which the mechanical momentum is “evident” rather than “hidden”,
and in which Newton’s 3rd law for “evident” mechanical momentum is not satisfied unless
the electromagnetic momentum is taken into account [4].

2Alternatively, we can use Faraday’s law in differential form,

(∇ × Einduced)φ =
∂Er,induced

∂z
− ∂Ez,induced

∂r
= −1

c

∂Bφ

∂t
= − 2İ

c2r
(a < r < b). (13)

There will be no radial component to the induced field, so eq. (13) integrates to the form (14) after enforcing
the condition that Ez,induced(r = b) = 0.
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3 Comments

The name “hidden” momentum has also been applied to examples in which a permanent
magnet resides in a static electric field such that electromagnetic momentum

PEM =
∫ S

c2
dVol =

∫ E × B

4πc
dVol (17)

is nonzero [5, 6, 7, 8, 10, 9, 11, 12]. In such examples there is no flow of energy between
a source and a sink, and hence no “hidden” motion of the system as a whole. The diffi-
culty in locating the “hidden” mechanical momentum required to cancel the electromagnetic
momentum in the isolated system is compounded by the inadequacy for classical models of
permanent magnetism.

Suggestive arguments can be made by noting that in static systems the electromagnetic
momentum (17) can also be calculated as [9, 10]

PEM =
∫

JV

c2
dVol, (18)

where J is the current density and V is the electric potential.3 If the total momentum is to
be zero, then we must have a “hidden” mechanical momentum equal to

Phidden = −
∫

JV

c2
dVol. (20)

A possible interpretation4 of eq. (20) is that a charge e with velocity v that participates
in current density J somehow has its relativistic mass γm reduced by amount eV/c2, and
hence its mechanical momentum is lower by amount evV/c2. This interpretation would be
justified if somehow the total energy U = γmc2 + eV of the charge were independent of the
strength of the potential V , which however is doubtful.

The physical interpretation of “hidden” mechanical momentum deserves further clarifi-
cation, in the view of this author.
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