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1 Problem

In an induction linac [1] a toroidal magnet carries a time-dependent current I(t) such that
the induced electric field can transfer energy from the magnet to charged particles that move
along the axis of the toroid.

Discuss the force and momentum balance in an idealized induction linac consisting of a
single magnet whose form is a torus of major radius a and minor radius b � a, and a single
electron of charge e that moves along the symmetry axis of the toroid. The current I is the
total current crossing any major circle on the surface of the torus.

While actual induction linacs contain high-permeability ferrites inside the toroid, whose
windings are made from shielded or unshielded conductors, it suffices here to consider a
nonconducting toroid (without ferrites) whose currents are due to electric charges fixed on
the rims of rotating disks. Neighboring disks have opposite charges and rotate in opposite
senses so that the net electric charge (and the net mechanical angular momentum) of the
toroid is zero. This configuration of a nonconducting toroid has no azimuthal current, in
contrast to a single-layer helical winding on the toroid which includes, in effect, a single
azimuthal current loop.

You may assume that (unlike the case of an induction linac) the velocity v of the moving
charge is small compared to c, the speed of light, and that the time variation of the current
in the toroid is slow enough that radiation and retarded effects can be ignored.

Provide an analysis in the rest frame of the moving charge as well as in the lab frame,
i.e., the rest frame of the toroid.
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Cullwick [2, 3] has noted that this example is paradoxical because no force is exerted on
the moving charge when the current is constant in the toroid, but the moving charge exerts
a nonzero force on the toroid.

2 Solution

The force Fe on the electric charge e due to the toroid causes a time rate of change of the
mechanical momentum Pe of the electron according to

Fe =
dPe

dt
, (1)

and likewise the force FT on the toroid changes the mechanical momentum PT of the latter
according to

FT =
dPT

dt
. (2)

The paradox (which dates back to Ampère) is that the magnetic interaction of a moving
charge and a current (as well as the magnetic interaction of two moving charges) does not in
general obey Newton’s third law, Fe �= −FT, so that the total mechanical momentum of the
system, Pmech = Pe + PT, is not constant in time, in apparent violation of Newton’s first
law for an isolated system.

The resolution of such paradoxes is that electromechanical systems in general possess an
additional momentum, PEM, associated with the interaction of the charges and currents with
the electromagnetic field such that the total momentum of an isolated system, Pe+PT+PEM

in the present example, is constant in time.
A further subtlety is that the sum Pmech + PEM, while constant, may appear to have a

nonzero value for an isolated system at rest. However, a “hidden” mechanical momentum
Ph can be identified that restores the total momentum of a system at rest to zero.

2.1 Analysis in the Lab Frame

2.1.1 The Electromagnetic Momentum

For systems in which effects of radiation and of retardation can be ignored, the electromag-
netic momentum can be calculated in various equivalent ways [4] (in Gaussian units),

PEM =
∫

�A

c
dVol =

∫
E × B

4πc
dVol =

∫
ΦJ

c2
dVol, (3)

where � is the electric charge density, A is the magnetic vector potential (in the Coulomb
gauge where ∇ · A = 0), E is the electric field, Φ is the electric (scalar) potential, and J is
the electric current density. The first form is due to Faraday [5] and Maxwell [6], the second
form is due to Poynting [7] and Abraham [8], and the third form was introduced by Furry
[9].

To calculate the electromagnetic momentum using the first form of eq. (3), we need the
vector potential AT of the toroid at the position of the charge e, but we do not need the
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vector potential of the charge since the toroid is assumed to be electrically neutral. The
vector potential of the toroid obeys

∇ × AT = BT = BT φ̂, (4)

where the magnetic field is BT = 2I/ac inside the toroid and zero outside, and φ̂ is a unit
vector in the azimuthal direction in a cylindrical coordinate system (ρ, φ, z). The toroid is
centered on the origin with the z-axis as its axis, as shown in the figure below (with radius
b exaggerated for clarity).

Cullwick notes [3] that the relation (4) has the same form as Maxwell’s equation for the
magnetic field due to a conducting wire that forms a (solid) torus of the same dimensions as
the (hollow) toroidal magnet when the wire carries azimuthal current density J = J φ̂,

∇ × Bloop =
4π

c
J =

4π

c
J φ̂. (5)

From the Biot-Savart law we know that the magnetic field along the axis of the current loop
is, for b � a,

Bloop(0, 0, z) ≈ 2π

c

πb2Ja2

(z2 + a2)3/2
ẑ . (6)

Comparing eqs. (4) and (5), we see that on replacing 4πJ in eq. (6) by 2I/a we obtain
the vector potential on the axis of the toroid when b � a,

AT(0, 0, z) ≈ πb2I

c

a

(z2 + a2)3/2
ẑ . (7)

Hence, the electromagnetic momentum of the system when charge e is at position z on
the axis of the toroid is

PEM =
eAT(0, 0, z)

c
=

πb2Ie

c2

a

(z2 + a2)3/2
ẑ , (8)

which is independent of the velocity of the charge.
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To calculate the electromagnetic momentum using the second form of eq. (3), we note
that the electric field at the toroid due to charge e has magnitude Ee = e/(z2 + a2) on
average, and that the z-component of Ee × BT (which is the only one remaining after the
integral over the toroid volume) is EeBT a/

√
z2 + a2. Hence,1

PEM =
∫ Ee ×BT

4πc
dVol ≈ e

z2 + a2

2I

ac

a√
z2 + a2

2πaπb2

4πc
ẑ =

πb2Ie

c2

a

(z2 + a2)3/2
ẑ . (9)

For completeness, we calculate the electromagnetic momentum using the third form of
eq. (3). We must keep the first correction to the spatial dependence of the electric po-
tential Φe of charge e over the toroid. Referring to the figure above, we see that r =√

R2 − 2bR cos(α + β) + b2 ≈ R[1 − b
R

cos(α + β)], sinβ = (a + b sinα)/r ≈ a/R, and

R =
√

z2 + a2. Only the z-component of the integral survives, so noting that Jz dVol →
−Ib sinα dα, we find

PEM =
∫

ΦeJ

c2
dVol = −

∫ 2π

0

eI

c2r
b sinα dα ẑ

≈ − eIb

c2R

∫ 2π

0
sinα dα

(
1 +

b

R
(cosα cos β − sinα sinβ)

)
ẑ

=
πb2Ie

c2

a

(z2 + a2)3/2
ẑ . (10)

2.1.2 The Force on the Electric Charge

The force Fe on the electric charge is due to the electric field ET induced when the current in
the toroid changes. This field is conveniently calculated as the time derivative of the vector
potential (7). Thus,

Fe = eET = −e

c

∂AT

∂t
= −πb2İe

c2

a

(z2 + a2)3/2
ẑ , (11)

where İ = dI/dt, independent of the velocity of the charge. This force is nonzero only when
the current I in the toroid is changing.

2.1.3 The Force on the Toroid

The magnetic field Be at a distance r from the moving charge e is given by

Be = e
v

c
× r̂

r2
=

evρ

cr3
φ̂, (12)

where v is its velocity, and ρ is distance from the observation point from the z-axis. This
magnetic field acts on the current I in the toroid to exert a force on the latter given by

FT =
∮

I

c
dl × Be =

evI

c2

∮
dlρ

ρ

r3
ẑ (13)

1The “self momentum” of charge e associated with the cross product Ee × Be is, as usual, assumed to
be part of the mechanical momentum of the charge.
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Referring to the figure above, we see that dlρ = b cos αdα, ρ = a + b sin α ≈ a,

r =
√

R2 − 2bR cos(α + β) + b2 ≈ R[1 − b
R

cos(α + β)], cos β = (z − b cos α)/r ≈ z/R, and

R =
√

z2 + a2. Then,

FT ≈ evI

c2

∫ 2π

0
b cos αdα

a

R3

(
1 + 3

b

R
(cos α cos β − sinα sinβ)

)
ẑ

=
3evIπb2

c2

az

(z2 + a2)5/2
ẑ = −ev

c

∂AT

∂z
, (14)

recalling eq. (7). This force is nonzero whenever the velocity v of the charge and the current
I in the toroid are nonzero.

2.1.4 Momentum Balance in the Lab Frame

The sum of the electromagnetic forces on the system is

FT + Fe = −e

c

∂AT

∂t
− ev

c

∂AT

∂z
= −e

c

dAT

dt
, (15)

where d/dt is the convective derivative according to an observer on the charge e. The total
force is nonzero when the charge is moving and/or the current in the toroid is changing, in
apparent violation of Newton’s third law.

Consistency with Newton’s laws is restored if we recall eq. (8) for the electromagnetic
momentum of the system, so that we can write

FT + Fe = −dPEM

dt
= −∂PEM

∂t
− v

∂PEM

∂z
, (16)

noting that the electromagnetic momentum varies both with the current in the toroid and
with the position z of charge e. Then, using eqs. (1) and (2) we see that the total momentum
of the system is constant in time,

dPT

dt
+

dPe

dt
+

dPEM

dt
=

dPtotal

dt
= 0. (17)

2.1.5 “Hidden” Mechanical Momentum

While eq. (17) is a satisfactory representation of overall momentum balance, another aspect
of momentum in this example remains paradoxical. Namely, that if the velocity of charge e is
zero and the current in the toroid is constant, then the mechanical momenta Pe and PT are
zero, yet the electromagnetic momentum PEM of eq. (8) is nonzero. If the total momentum
of an isolated system at rest is to be zero, in accordance with usual expectations, there must
be an additional, “hidden” momentum in the system that is equal and opposite to the PEM.

The question of whether the electromagnetic momentum (3) itself corresponds to a kind of
“hidden” mechanical momentum was considered by Maxwell in secs. 552 and 590 of [10], who
felt that the issue could not be settled at that time. Cullwick appears to have concluded
that the electromagnetic momentum associated with currents actually is the mechanical
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momentum of the moving charges that comprise the currents. See. chap. 18 of [3]. However,
this view does not ensure that the total momentum is zero for an isolated system at rest.

Rather, we argue the charge e is brought sufficient slowly from “infinity” to rest near
the toroid, then the force (14) is negligible and negligible work is done on the toroid during
this process. The toroid remains at rest so long as the velocity of the charge e is negligible.
The total energy of a charge q of rest mass M that participates in the current I of the
toroid remains Mc2. When that charge is in the electric potential Φ of charge e, its electrical
potential energy is qΦ, so the effective mass Meff of charge q is must be lower than M , such
that ΔMeff = Meff − M = −qΦ/c2 according to Einstein’s relation for the equivalence of
mass and energy. Following initial discussion of this effect by Shockley [11] and by Coleman
and Van Vleck [12], a useful expression for the “hidden” mechanical momentum Ph was
given by Furry [9],

Ph = −
∫

ΦJ

c2
dVol. (18)

who noted that for a single charge q, J dVol ↔ qv, so that the “hidden” mechanical mo-
mentum associated with ΔMeff is the dPh = −(qΦ/c2)v ↔ −(ΦJ/c2) dVol. Comparing with
eq. (3) we see that

Ph = −PEM, (19)

(and not +PEM as argued by Cullwick [3]), so that the total momentum is indeed zero.2

2.2 Analysis in the Rest Frame of the Moving Charge

The transformation from the lab frame to the rest frame of charge e requires a boost by the
small velocity v, and so we expect the forces to be the same in both frames. However, in the
rest frame of the charge e that charge creates no magnetic field, so it appears that the force
on the toroid is zero in this frame, and hence Galilean invariance may be violated.

The resolution of this aspect of Cullwick’s paradox is to be found in the relativistic
transformation of charge and current density, which form a 4-vector, (c�,J). We consider
only the case that the velocity v of charge e is small compared to the speed of light, so that

γ = 1/
√

1 − v2/c2 ≈ 1.
In the lab frame there is no charge density � associated in the toroid, but in the rest

frame of charge e, whose lab velocity is v, the toroid has a nonzero charge density �′ given
by

�′ = γ

(
� − J · v

c2

)
≈ −J · v

c2
= −vJz

c2
, (20)

where the ′ indicates quantities measured in the rest frame of the charge. The lab-frame
current consists of positive and negative charge densities that are equal and opposite but
which have different velocities. On transforming to a moving frame, the positive and negative
charge densities are no longer the same, and a net charge density (20) is observed. See sec. 86
of [16] for further discussion, including the example of a moving ring of current.

2The present example, in which the mechanical momentum of conduction currents includes a “hidden”
component, contrasts with others, [13, 14, 15] in which part or all of an isolated electromechanical system
has tiny net velocity, such that the associated mechanical momentum is effectively “hidden”.
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Since the current density J resides on the surface of the toroid, the volume charge density
(20) can be re-expressed as a surface charge density σ′ given by

σ′ ≈ vI

2πac2
sin α, (21)

where α the angle shown in the figure above. The charge distribution (21) on the toroid is
positive for radial distances ρ greater than a and negative for ρ < a, so that total charge on
the toroid is zero in the rest frame (as well as in the lab frame).

Charge e exerts an electrostatic force on the charge distribution (21) on the toroid, and,
of course, charge e experiences an equal and opposite electrostatic force from the toroid (in
addition to the force if the current is changing).

For low-velocity transformations, the current density is unchanged since � = 0 in the lab
frame,

J′ = γ
(
J‖ − �v

)
+ J⊥ ≈ J. (22)

We now calculate the electromagnetic momentum P′
EM, and the forces F′

T on the toroid
and F′

e on the charge e in the rest frame of charge e.

2.2.1 The Electromagnetic Momentum

It is simplest to use the first form of eq. (3) to evaluate the electromagnetic momentum in
the rest frame. The only vector potential in this frame is that due to the current J′ ≈ J in
the toroid. Hence, the rest frame vector potential A′ obeys

A′ = A′
T ≈ AT. (23)

The rest-frame electromagnetic momentum is therefore,3

P′
EM =

∫
�′A′

c
dVol′ ≈ eAT

c
= PEM, (24)

the same as in the lab frame. This result illustrates how electromagnetic momentum that is
tied to charges and currents does not transform like the space part of an energy-momentum
4-vector. See, for example, sec. 12.10 of [17] for additional comments.

We can, however, relate the electromagnetic momentum to the charge/current-density
4-vector, (Φ,A). In the lab frame the electric potential ΦT of the toroid vanishes, so the
transformation of the toroid’s lab-frame 4-vector (ΦT = 0,AT) to the rest frame of charge e
gives

Φ′
T = γ

(
ΦT − v · AT

c

)
≈ −v

c
AT,z, A′

T = γ
(
AT,‖ −ΦT

v

c

)
+ AT,⊥ ≈ AT. (25)

3We do not include the term σ′A′
T/c in eq. (24) as this is suppressed a factor of c2.
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2.2.2 The Force on the Toroid

The electric field E′
e ≈ Ee = er̂/r2 of charge e exerts a force F′

T on the charge distribution
σ′ on the toroid in the charge’s rest frame given by4

F′
T =

∫
σ′E′

e dArea′ =
∫

σ′ er̂
r2

dArea′

≈
∫ 2π

0

vI sinα

2πac2

e(sinβ ρ̂ − cos βẑ)

R2

(
1 + 2

b

R
cos(α + β)

)
2πab dα. (26)

A subtlety compared to the calculations in sec. 2.1 is that the factor cosβ in the expression
for r̂ in eq. (26) must be expanded to the next order of accuracy. Indeed,

cos β =
z − b cos α

r
≈ z

r
≈ z

R

(
1 +

b

R
cos(α + β)

)
. (27)

Thus,

F′
T ≈ vIb

c2R3

∫ 2π

0
sinα e(a ρ̂ − z ẑ)

(
1 + 3

b

R
(cos α cos β − sinα sinβ)

)
dα

≈ 3evIπb2

c2

az

(z2 + a2)5/2
ẑ = −ev

c

∂AT

∂z
= FT . (28)

2.2.3 The Force on the Electric Charge

The force F′
e on the electric charge in its rest frame is due to the electric field E′

T,ind induced
when the vector potential of the toroid changes at the position of the charge e, and also due
to the electric field E′

T,σ′ of the charge distribution (20) on the toroid. The vector potential
A′

T at the charge e is the same in the rest frame as in the lab frame, but in the rest frame
A′

T changes due to the velocity vT = −v of the toroid, as well as due to changes in the
current I . Hence, the force due to the changing vector potential of the toroid is

F′
e,ind = eE′

T,ind = −e

c

∂A′
T

∂t
− e

c
(vT · ∇′

T)A′
T = −e

c

∂AT

∂t
− ev

c

∂AT

∂z
, (29)

noting that ∇′
T = −∇′

e (= −∇e) since the former refers to the coordinates of the (center of
the) toroid while the latter refers to the coordinates of the charge e. The electrostatic force
on charge e is equal and opposite to the electrostatic force (26) on the toroid,

F′
e,σ′ =

∫
eE′

T,σ′ dArea′ =
∫

e
−σ′r̂
r2

dArea′ = −F′
T =

ev

c

∂AT

∂z
= −e∇′

eΦ
′
T = −e∇eΦ

′
T(0, 0, z),

(30)
where the last form refers to the electric potential (25) of the toroid in the rest frame of
charge e.

The total force on charge e in its rest frame is

F′
e = −e

c

∂AT

∂t
= Fe. (31)

4A briefer argument works backwards from the end of eq. (30).
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2.2.4 Momentum Balance in the Rest Frame of Charge e

Once it is recognized that, in the rest frame of charge e, the moving toroid appears to have a
nonzero surface charge distribution, we find that the forces on the charge and on the toroid
are the same as in the lab frame. Also, the electromagnetic momentum is the same in both
frames (which shows that PEM does not behave exactly like an ordinary momentum in all
respects). Hence, the details of momentum balance are the same in both frames.

The sum of the forces on the charge e and on the toroid in the rest frame is

F′
e + F′

T = −e

c

∂AT

∂t
= −e

c

dA′
T

dt
= −dP′

EM

dt
, (32)

since the partial and total time derivatives of the vector potential at charge e are the same
in the charge’s rest frame. Relating the forces to the corresponding time rates of change of
momentum, we have

dP′
e

dt
+

dP′
T

dt
+

dP′
EM

dt
=

dP′
total

dt
= 0. (33)

As expected, the total momentum is constant in the rest frame of the charge e.

2.2.5 “Hidden” Mechanical Momentum in the Rest Frame of Charge e

According to the prescription of Furry [9], the “hidden” mechanical momentum in the rest
frame of charge e can be calculated as5

P′
h = −

∫
Φ′

eJ
′

c2
dVol′ = −P′

EM. (34)

We have seen in eq. (22) that J′ ≈ J. Similarly, the electric potential of charge e in its rest
frame is that same as that in the lab frame when v � c, so that Φ′

e ≈ Φe. Hence,

P′
h ≈ Ph. (35)

Thus, “hidden” mechanical momentum does not transform between moving frames like an
ordinary mechanical momentum. The “hidden” momentum, as does the electromagnetic mo-
mentum, transforms like the charge-current 4-vector rather than like an energy-momentum
4-vector. Hence, both of these concepts must be treated with care in problems involving
transformations between moving frames. See [18] for additional commentary.

2.3 Energy Flow in an Induction Linac

In the lab frame the charge e is accelerated by the electric field ET that exists when the
current in the toroid is changing. The power P absorbed by the charge is

P = Fe · v = evET(0, 0, z) = −ev

c

∂

∂t
AT(0, 0, z) = −evİπb2

c

a

(z2 + a2)3/2
. (36)

5We neglect the contribution from Φ′
TJ′/c2 in eq. (34) as this is suppressed by two additional powers of

c.
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The flow of power from the toroid to the charge is described by the Poynting vector, or more
precisely, by the interaction part of the Poynting vector,

Sint =
c

4π
ET × Be +

c

4π
Ee × BT. (37)

It would be nice to have a plot of the field lines of the Poynting vector (37), which would
show them emanating from the toroid and converging on the charge e. Lacking such a plot,
we content ourselves with verification that the total Poynting flux across a small surface
surrounding charge e, and also across the surface of the toroid, is equal to the power P of
eq. (36).

We first consider a small cylindrical surface of radius ρ and length 2l � ρ centered on
the charge e. The electric field due to the toroid is essentially uniform over this surface, so
ET ≈ ET(0, 0, z), and the magnetic field Be of charge e is given by eq. (12). Outside the
toroid the magnetic field BT vanishes, so only the first term in eq. (37) contributes there.
We can neglect the Poynting flux on the ends of the small cylinder since ρ � l. Hence, the
inward Poynting flux over the surface of this cylinder is

−
∮

Sint · dArea = − c

4π

∮
ET × Be · dArea ≈ − c

4π

∫ l

−l
ET ẑ × evρ

cr3
φ̂ · 2πρ dz ρ̂

≈ evETρ2

2

∫ l

−l

dz

(z2 + ρ2)3/2
= evET

l√
l2 + ρ2

→ evET = P, (38)

in the limit that the radius ρ of the cylinder goes to zero.
To evaluate the outward Poynting flux from the surface of the toroid we consider a

toroidal surface just outside the actual toroid, so that the second term of eq. (37) can again
be neglected. The electric field ET due to the changing current İ flows in loops of radius b
just outside the toroid. From Faraday’s law, the magnitude of the induced electric field at
the surface of the toroid is

ET = −bḂφ

2c
= −bİ

ac
, (39)

recalling that Bφ = 2I/ac inside the toroid. The magnetic field of charge e at the toroid has
magnitude Be = eva/c(z2 +a2)3/2. The cross product ET×Be is directed along the outward
normal to the surface of the toroid. Hence, the total outward Poynting flux from the toroid
is

∮
Sint · dArea =

c

4π
ET Be Area = − c

4π

bİ

ac

eva

c(z2 + a2)3/2
2πa 2πb

= −evİπb2

c

a

(z2 + a2)3/2
= P. (40)
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