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XLIIL. On a veciprocal relation between (he Filectrostatic
e . - a " a ’ T P ’

Iields of  certuin  Distributions of Llectricity and the

- r T"' L * LY | ! N o "

Magnetic  Fuelds  of  corresponding Uwiforin Curpents

By Protessor A. Gray, I 12.8.%

L. A wmaform civeular linear distribution of electricity and
a uniform circular current.

Fl""ﬂEihe:}yy circlein fig. 1 represents the circular electrical
B distribution of line densitv p and radius a. P isn
point external to the cirele and its plane, at a distunce &'
i'f'm? 1ts centre, and A i the interscetion of OP with the
circle,

Fig, 1.

(meﬂidm: an clement of the circle at B of lenoth ds.
Project this element radially to X' on the concentric ojrcle
(of radius a') described through P, and denote by ds’ the
Length Ofcﬁ?fi projection. Then d¢'/ds==a'/a. Denote EP
by »r, £UPK by 6; we have then also AR —p.
i(_‘jﬁ’A=-9, 0 r, and

T}m repulsion of the charge onds exerted on a unit charge
at 1, that is the clectric fiold intensity at D, is

o, c088ds _ acosfds 1
e T.H —P{i? B ?12 r & . - a ( )

Now the second of fhese forms 18, by the diagram, and

* Communicated by the Author.
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according to the so-callod law of Laplace, the magnetic jield

intensity produced at A by the element ds" of a circular
conductor coincident with the concentric circle drawn
throngh P, and carrying a current of strength v=pa/d'.
Thus the whole magnetic field intensity K, at A, due to a
current « in the concentrie eircle through P, is given by

=y | $58 v = Q ""'f:ffzgzm, . ©)

..?1 '2

whero I, 15 the electric (or gravitational) field intensity at
I’ due to the civele of radius a and uniform lne {lﬂnsity 0.

Of course If, is directed radially outward, while F,, is

normal to the plane of the circles.
The same result holds snwtatis mudtandis wht‘!n t]m pﬂint I’

15 within the given circle (fig, 2).

Fig, 2,

2. The mubual inductance of two concentric circles is propor-
teonal to the electric (or gramtational) jield intensity
produced by a uniformly charged disk, the edge of which
concrdes with one cirele, at a point on the circumference
of the other, | I

Imagine the charged disk divided into an infinite nunber
of concentric narrow circular strips, and consider the ont-
ward repulsion of each of these on unit charge at P, These
repulsions combine 1nto a radially outward force at P equal
to their sum. But each clement of repulsion is equal to the
product of the area of the strip producing it and the mag-

metic field intensity produced at any point of that strip by a

fixed current flowing round the other circle. This conclusion

weems very remarkable : 1 am not aware that it has been

noticed before.
One direct mode of ecalculating the mutnal inductanee
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of two coplanar concentric cireles, would therefore soem to.

ho as follows. Imagine the circle AER (hg. 1) replaced

by a uniformly charged disk and calculate the repulsion of
the disk on a unit charge placed at P. This will be most

casily done by dividing tho disk into narrow strips all at
right angles to the diameter through A.  Then the repulsion
exerted on unit charge at D, by one of thege strips at
distance & from I’, of breadth da, and having D, F for

1ts extremities, 15 equal to the ropulsion of tho 1Incomplete:

circular strip of radius &, breadth de, and intercepted between

the lines IP’D and PF.

3. A distribution of electricity on a plane conductor bounded

byltufrf close, sunular, and similarly situated ellipses, and
& unrform current in the confocal ellipse through the point
considered.

To generalize the theorem of §1 consider the spa.co:

between the ellipses of which the equations are

2

W
— s =k—=de. . . . (3)

/4
u+'

s (i b

One of these is shown by tho heavy curve in fig. 3. We

take an element of elliptic arc at B of length ds, and suppose-

that over the area of this length, which lies at K bhetween
the two curves, electricity is distributed with uniform sur-
face density o. If the length of the perpendicular from the.
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centre on the tangent at K is p, the area is $pdsdx/x, and so-
the charge 13 Lo pdsdx/x.

Now through P let an ellipse confocal with the given.

ellipse LAK be described. A point A on the_ lattf-;!r curve
corresponds to 1’ on the confocal, and a point D) _ou_j:he
confoeal corresponds to I on the given ellipse. Jon I to-

P and A o E'. Thesc lines have the same length, ». Lct

»" be the length of the perpendicular from the centre on

the tangent at B/, and @ denote the angle between the line
AFE’ and that perpendicular. Let also po’, 8y be the corre-
sponding quantities for the point I and the line P, ![(J:L.m
of course is to be taken that the lines are reckoned In tne
directions indicated by the letters, and that the perpen-—
diculars are regarded as drawn both inward or hoth out-
ward, so that there is no ambiguity as to ﬂ{ﬂ signs of the-
cosines.] In a former paper (’hil. Mag. April 1907) I have
proved for two confocal ellipsoids the geometrical theorem:
(not, apparently, previously known)

P’ sec O=p, secly, . . . - - (A)

where p', 8 and py’, 8, refer to pairs ot corresponding points.
on the ellipsoids, and have applied it to the complete and
instantancous evaluation of the integral for the force pro-
duced at an internal or external point by an elliptic homocoid,.
and hence to the solution of the problem of the attraction ol
a solid ellipsoid of uniform or of varying density.

The geometrical theorem as stated above asserts that the:
product p’scc is invariant over the contocal ellipsord :
exactly the same theorem holds of course for the given
ellipsoid. Morcover, since an ellipsoid is one of 1ts own
confocals, the theorem holds also for any two points b, ( on
a given ellipsoid, the perpendiculars fromn the centre on the:
tangent planes at P, Q, and the chord joining these points.
The theorem holds also for any confocal surfaces of the

second degree. | |
In the prosent casc let us take on the confocal ellipse

through P, the element of are ds', the points on which
correspond to the points on ds; then since the equation of

the confocal 1

i .

e /e 2
oy : + - il pun— m - . . v » ("))
af+u B u 7

we have, as can easily be proved,

pds= 1y P
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The clectric field intensity at P, resolved along the normal
to the contocal, 1s -

i dic { s
]jﬁzéﬂ‘-x ‘p(:()ﬁﬁgr_ﬂ; . - ’ . . (7)

where the integration is taken ronnd the given elliptic strip.
By the previous equation this can be written .
{x wls - ds’

‘ p' (OS HD T - (8)

K V(4 u) (07 + H) }fi"“ }

I

{
=lo
where the integration is taken round the conflocal ellipse.
But by the geometrical theorem stated above, the value of
the component field intensity thus found becomes

1x ahn, ' ds'
—_ I ( — e ﬁ“ ..... e — iy e
o= 2@ K { (c.ﬁ -+ ) (;_hﬂ -+ 1) } ét cos 6 me 0T (9)
or, 1f we write |
_ die b p,’ . |
1= T ) (B*+uw)ps” (10)
By ffy COS 3% e ¢ B

This is evidently the magnetic field intensity T, produced
at A by a current ot strength v flowing round the confocal
ellipse. It is of course in the direction at right angles to F.,
that is perpendicular to the plane of the ellipse.

This relation between the normal componént of the electric
field intensity at I’ of the charged elliptic strip and the
magnetic field imtensity at the corresponding point A due to
a current in the confocal ellipse, is curious and appears to bo
new. There 1s not, so far as I can see, any direct practical
application of the theorem which can be made with advantage.

I may here recall that in the paperof April 1907, referred

to above, the expression

(& (b (cos @ .
F=1p%% 49 S A T
2P Y2+ w)(H* + ) (e + )} 5,} ) BT (J2)

[where p, is the perpendiculur let fall from the centre on
the tangent plane to the confocal at the point P, and &' 1s
the angle between the perpendicular from the centre to the
tangent plane at the element d8', at E/, of the confocal
surfuce, and the line AE' (sce Gg. 3), and the integral 1s
taken over the confocal] was found, by the geometrical
theorem (4) quoted above, for the atiraction of @ homaeoid
at the external point I’. It was remarked that this value of

F at P is, to a constant factor, equal to the potential
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produced at any point internal to it%elf by a uniform
mugnetic shell coinciding with the confocal surface. :rht}-
strength ol this shell, though constant over the surlace,
iy proportional to the length of the perpendicular trom
the centre on the tangent plane to the confocal at P, and
thercfore varies with the position of P on the surtace.

The value of the integral 5605 9’ ' [»2 i3 of course 4m and
so0 17 the force at P due to the given elliptic homaoeoid, or its
equivalent the magnetic potential within the confoeal 1s
obtained at once ™. |

A, Evaluation of the jield intensities for the case of § 1.

The values of the electric and magnetic field intensities
specified in § 1 in terms of elliptic integrals are of course
well known, (see for example a paper by Dr. Alexander
Russell, Phil. Mag. April 1870). Dut a process of Integration,
differing somewhat from the usual one, 13 of some interest
and seems possibly capable of some extensions, which may
be given in a snbsequent note,

he di waluation of the electric field

The direct process of evaluation of the electric ticld
intensity If, from

Y I ! | |
F.=2 ‘”ﬂj eor 9,‘3""» ).
. |

E f,;[‘ .-in:-r

in clliptie integrals 1s as fmllows_ﬂ. By fig. 1 we sec at once
that cos 8= (@' —a cos b)fr so that we get

™ 'r___ - - |
Fﬁz ‘?‘P ::,J EL_ ﬂ—:ﬂi ‘#d.?’. - . - (14)*
o .

T

This leads to

FEZBP‘%W{ —;"l (k) + ,1 _-—K(/ft)}3 .. (15)

o LW —u {2 o
if =23/ ad'[(a+a'), and we use the relation
. T .
\ . |
L B
, (1= siniap)s 1=K

which can be verified by direct integration. This 1s an
| . [ = 1 & _ . ,E
elliptic integral of the third kind with paramecter — k2

% Tn the particular case m which the confocals are concentric
Eplmr-icul surfaces, the attraction of a shell coineident with the 1mner
e 1 ’ ! iﬂ-q—
sphere reduces at once to dpoa?/a’", s1nce s'ms_:_ OdR /rt=4dr.

Similarly for the attraction at an interpﬂl pniu_t, the point A 18
external to the sphere radius ', and the solid angle is zere, Hence the

internal atlraction 18 zero,
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But we may also, since by fig, 4 r(dp +db)ds' = cos 6
Sk ?

write
""” cos 6 ds' "dd  ("d8 -
E . T—— ‘g:} ) ?;_. +J _?i & y a = (]_7)

. 0 r

Iig, 4,

!

Iy L i ] . [} . -
The {irst integral 18 obtained at once. [t comes out

" b 2
’ — = K (%), v (18)

0o T a+a

and 1t is to be observed that multiplied by 2p'a’ it is the
potential at A due to a uniform distribution of electricity
(or gravitating matter) ot line demsity ¢ on the outer ojrela

For the second integral)df[r we take

Hl-ll-ll— f | at -
a'=a*+r"—2a'r cos 6,
that Is

rea’ cos 0L (a®—a?sin? ), . . (19)

Thus the largest value of @ is sin"Ha/a'), and is shown
by the dotted lines in fig. 4, whero a right mlﬁ-lglh--”; A s
intended to bhe indicated. As successive Fﬂsitiu:qdu% E and
E" are tauken on tho semicircles, AEB and PE’Q g 1’-1;'i{3u
from zero to sin~l(a/a’) and then falls off to zero

For the first part of this range of wu*ia’tion.we have to
take the lower sign in J;]w last equation, and for the second
part the upper sign. Thus we aet for the first part, putting
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¢, for sin~1(a/a’),

i1r39 ‘191 , d@
V=), o e T oy
_ EPIN . 1
= o dfia’ cos @+ (a®—a'? sin? )y,
()
or again, since o’ sin 8, =a,
‘q
":EE — 1 i@+ a a* ‘ 27 msﬂxdx
- i et — = A
S % — ? “‘!ﬂ...-u al . , 3 ; (20)
| .].“—”'iﬁf‘ill] X
ac

‘where y=sin~!{(a'/u) sin 4}.

i - 4 -
* [he socond part of the 1ntegral f:‘iﬂ/?’ for the semicircla
15 found similarly to he R

- i | |
‘ ot = a+a' @ (57 cos’ydy
P IH s - T T iy ' - " o — - .
. ! @ —a } {Lf;’ls () ] {Lﬂ T 2 - (2])
D= asin®x

Thus the total value of ‘.dﬁ/r for the circle 15

da'k® 57 cos?y dy
(‘L’H—r-{;{,z‘ 0 (J_—'K’TIE Eil]ﬂac)é
| 4(1f > ' W
= =y i (k) + E(k)—K (&)}, (22)

By
a't—

‘where (with f,z’:}fx) ki*=a’/a’*. Also
b= 2\/&&'/({1 +a')= ‘l’\/)ﬁi/(l + £1).

ND}V A and £y are the moduli conneccted by Landen’s
transtormation, and so the magnetic field intensity at A due
to a current ry in the circle of radins a' is, as stated in § 1
above, ' |

4 | - - E(4 (£ H
Fm': e ﬂf"}’ (41)227 r ,( L)-l- IX(K) 1. . (23)

Y, *

a'?—q? La'—a ' & +a |

A com Iimriaou of the reduced form of (14), from whi.ch (15)
was obtained by assuming (16), with (23) establishes (16)
and so evaluates this simple form of the elliptic integral qlﬂf'

the third kind.

5. [Jield intensities not in the plane of the circulur
distributions.

Returnmg to fig. 1 we may regard the points E' and P as

~in a plane parallel to that of the circle AEB, and distant &

from 1t, so that the two circles are now coaxial. The two
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distances ET and AE', and the Ewo angles (CPE and CE’A)

marked @ are equal. This angle 1s not, however, any longer
tho complemont of the angle between AR’ and the tangent
to the circle at B, drawn back towards P. We may
calculate the components of the electric field mtensity at
P, denoting. by X the component parallel to UA, and by 4
the component parallel to the axis ol the system.

If as before a. ¢ be the radii of the circles, and » be EP,
20 that now ©2=a’+ a2 +b*—2aa’ cos ¢, the components due
to ad¢ at H are, as we sce at once,
add o' —acos ¢

. — _
(z ;K-E - P /?.j ‘?.‘ f

d/i.= ph . d_qfn .

3 s}-::‘-'

Thus integrating round the circle AEDB we get

, "Tq —a o8 d o
X, =2pu e ddp, 7Zi,=2pba ‘

0 ? o 7

S ST

To pass from these to the components of magnetic field
intensity at A duc to a current of strength pa/a’ in the
circle PR/, we have only to interchange X and Z, and take
note of the directions of the components. As a little con-
sideration will show, we have toreplace X,, which 1s parailel
to CI’, by a component along PC, and then suppose that
turned normally out from the paper to give Line. 1t will he.
secn that the ¢ vertical” component 7, gives a component
X, parallel to K€, and that we have

(a/ — @ cos ¢)dp

g

Xm: _ E’Ynftfb ‘ T 0% (fHZSb Zmﬂ erﬂ;r ‘ . (25}

L0 r

L

These components can be at once expressed in elliptic
integrals. The component Z,, 1% the more noportant as 1t
enables the mutual inductance of the two circles to be found
by integration over the circle AEB.  The mutnal mnductance
between the coaxial circles could be found by calculating
the total X, at P for each of a series of narrow concentric
rings into which the circle of radius a, say, is divided,
multiplying each hy the area of the ring to which 1t belongs
and calculating the sum of products thus obtained.

These reciprocal theorems of coaxial circles have not so
far as I know been stated explicitly before; but Sir George
Greenbill has pointed out to me that in a paper in the
‘American Journal of Mathematics,” vol. xxxix, p. 439 (1917),
he has given certain general reciprocal relations from which
they may be deduced.
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XLIV. Notes on the *“ Break” of a Magneto or Induction-
Cotl, Dy NormAN CamrnwLn, Se.D.*

Nore —The work desciibed in these notes was carried
out at the National Physical Laboratory under the direction
of the Advisory Committece for Aeronautics. The results
have been communicated in a confidential report to the
Internal Combustion Engine Sub-Committee of that Com-
mittee, who have now given their consent to the publication
of any portions which appear of pure scientific interest.

(1) Introduction.

T is well known that if the greatest possible efficiency is
to be obtained from a magneto or induction-coil, that
iy, the greatest possible ratio of the maximum secondary
potential to the primary current broken, it 15 necessary to
avoid sparking between the terminals. at which the primary
current is broken. No elaborate theory 13 necessary to
oxplain the loss of cfliciency due to sparking. In the first
place the spark involves the dissipation of some of the
electromagnetic cnergy originally present in the primary
cuarrent which would otherwise have been' available for
conversion into electrostatic energy of the secondary. In
the second place the passage of the spark, even if it involved
no loss of energy, would prolong the time which elapses
between the first docrease of the primary current, as the
contact opens, and its total cessution; very general consider-
ations will show that, if this time 1s so prolonged as to
become an appreciable fraction of the period of the oscil-
lations excited, a loss of efficiency will-usually follow,

Tt is always possible to suppress the spark at the primary
break by inserting a condenser of suffictent capacity 1n
parallel with the separating terminals. Until an adequate
theory of the induction.coil was developed, chiefly by the
work of Prof. Taylor Jones and his collaborators t, 1t seems
to have becn believed that the suppression ot the spark was
the only useful function of the primary condenser; and that
if the suppression could be achieved by any other means,
such as an increascin the speed of separation of the terminals,
the addition of capacity to the primary circuit would be
unnecessary. This view was, of course, largely based on
the classical experiments of Lord Rayleigh I, who showed

# (Communicated by the Author, |

+ Phil. Mag. Jan, 1909, p. 28; Nov, 1911, p, 706 ; April 1914, p. 580;
Jan. 1915, p. 1; Aug. 1915, p. 224 ; April 1917, p. 322,

~ Phil, Mag. ii. p. 681 (1901), -

Phil. Mag. S. 6. Vol. 37. No. 221. May 1919. 2 1.



