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XLVIL Further Calculations concerning the Momentum of

Progressive Waves. By Lord RayieieH, 0.M., F.R.8.%

HE question of the momentum of waves In fluid 18 of
T interest and has given rise to some difference of opinion.
In a paper published several years ago T I gave an approxi-
‘mate treatment of some problems of this kind. For a fluid
moving in one dimension for which the relation hetween
pressurc and density is expressed by

p=fp), - + + - - (1)

it appeared that the momentum of a progressive wave of
mean density equal to that of the undisturbed fluid 18 given

by
{Pﬂ,f”(Pﬂ) + i} b o tﬂtﬂl Eﬂergy, - s . (2)
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1in which p, is the undisturbed density and a the velocity of
propagation, The momentum is reckoned positive when 1t
is in the direction of wave-propagation.

For the ““adiabatic” law, via.

plwe=(plpe)s - - - - o - (3)
Flg="T =, =22 )
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In the case of Boyle's law we have merely to muke oy=1

in (9).

](f'ﬂ)r ordinury gases ¢>1 and the momentum 18 positive;
but the above argument applies to all positive values of .
If v be negative, the pressure would increase as the density
decreases, and the fluid would be essentially unstable,

However, a slightly modified form of (3) allows the
exponent to be negative., If we take

plpo=2—(p[p)™® . . . . . (6)
with 8 positive, we get as above

Flo=EPma, fipg==EIDE )

and accordingly

!’___nf;’(Pﬂ) L= . ®
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* Communicated by the Author,
+ Phil, Mag. vol. x, p. 304 (1905); Seientific Papers, vol. v. p. 265,
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If 8=1, the law of pressure is that under which waves

~ can be propagated without a change of type, and we sce that

the momentum 1s zero. In general, the momentum 1s
positive or negative according as B is less or greater than 1.

In the above formula (2) the calculation is approximate
only, powers of the disturbance above the second being
neglected., In the present note it is proposed to determine
the sign of the momentum under the laws (3) and (6) more
generally and further to extend the caleulations to waves in
a liquid moving in two dimensions under gravity.

It should be clearly understood that the discussion relates
to progressive waves. If this restriction be dispensed with,
it would always be possible to have a disturbance (limited 1f
we please to a finite length) without momentum, as could be
effected very simply by beginning with displacements un-
accompanied by velocities. And the disturbance, considered
as a whole, can never acquire (or lose) momentum. In order
that a wave may be progressive in one direction only, «
relation must subsist between the velocity and density at
every point. In the case of Boyle’s law this relation, first
given by De Morgan ¥, is

w=q log (p/po)y « . . e (9)
and more generally {

R ? ﬂp dp .
’Z{,—.’/\/(df;) " -;) . ’ . . . (10)

Wherever this relation is violated, a wave emerges travelling
in the negative direction.
For the adiabatic law (3), (10) gives

9 0 y--1 |
== e ALY 2 1L ... (11
¢ g1 (F'O) }: ( )

a being the velocity of infinitely small disturbances, and this
reduces to (9) when ¢=1. Whether y be greater or less
than 1, w 1s positive when p exceeds p,. Similarly if the
law of pressure bo that expressed in (6),

2 -5
= {l— (P—-)

E } .. (1)

Sinee B is positive, values of p greater than p, are here
also accompanied by positive values of .

* Airy, Phil. Mag. vol. xxxiv, p. 402 (1849).
+ Earnshaw, Phil. Trana. 1859, n. 146.
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By definition the momentum of the wave, whose length
may be supposed to be limited, is per unit of cross-section

Spudm, T @ )

the integration extending over the whole length of the wave.
If we introduce the value of v given in (11), we get

y+1

| 2000 2 |
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18)="PN (2) * £ Lae (1)

and the q_uéstim’l to be examined is the sign of (14). For
brevity we may write unity in place of p,, and we suppose
that the wave is such that its mean density is equal to that

of the undisturbed fluid, so that jp de=1, where [ is the

length of the wave. If! be divided into » equal parts, then
when n is great enough the integral may be represented by
the sum

!

3
'/

(15)

in which all the p’s are positive. Now it is a proposition in

Algebra that

y+1 Y+l y-+1
3

P1 2 +pg 2 +o g (P1+Pg+...)_ﬂ'

1 1t

y+i v+l vl
{Pl 2 +Pg 2 +p; * +... —=p1=p—...

when 1(y+1) is negative, or positive and greater than
unity ; bui that tho reverse holds when %(y4-1) is positive
and less than unity. Of course the inequality becomes an
equality when all the n quantities are equal. In the present
application the sum of the p’s is n, and under the adiabatic
law (3), v and (y+1) are positive, Hence (15) is positive
or negative according as 4(y+1) iz greater or less than
unity, viz., according as «y is greater or less than umty. In
either case the momentum represented by (13) is positive,
and the conelusion is not limited to the supposition of small
disturbances. ,

In like manner if the law of pressure be that expressed
n (6), we get from (12)

—1

(13)= ;ﬂj‘{%—(ﬁ)-ﬁ‘* }cz.q:, . . (16)

from which we deduce almost exactly as before that the
momentum (13) is positive if @ (being positive) is less than 1
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and negative if 8 is greater than 1. If 8=1, the molnentum-
vanishes. The conclusions formerly obtained on the sup-
position of small disturbances are thus extended.

We will now discuss the momentum in certain cases of
fluid motion under gravity. The simplest is that of long
waves in a uniform canal. If f be the (small) elevation at
any point x measured In the direction of the length of the
canal and w the corresponding fluid velocity parallel to w,
which is unifornt over the section, the dynamical equation is™

4 _dn |
P e A O (17}

As is well known, long waves of small elevation are pro-
pagated without change of form. If ¢ be the velocity ot
propagation, a positive wave may be represented by

n=(et—2z), . . . . . . (18)

where F' denotes an arbitrary function, and ¢ is related to
the depth /, according to

E=ghy . - . . . . . (19)
From (17), (18)

= I _ g o
U= - — \/(hu) « 7] . . . . (.—rO)’

is the relation obtaining between the velocity and elevation
at any place in a positive progressive wave of smalk
elevation. .

Equation (20), however, does not suffice for our present
purpose. We may extend it by the consideration that in «
long wave of finite disturbance the elevation and velocity
may be taken as relative to the necighbouring parts of the.
wave, Thus, writing du for w and A for A, so that n=dh,

we have
diu = ,\/ (z) dh,

u=2,\/g-{ hs 4 C}.

The arbitrary constant of integration is determined by the
fact that outside the wave w=0 when h=h; whence and
replacing /& by y-+n, we get

u=2y/9}8/ (hotm) =/ ho}, - - - (21)

¥ Lamb's Hydrodynamies, § 168.

and on integration
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as the generalized form of (20). It is equivalent fo a
relation given first in another notation by De Morgan #,
and it may be regarded as the condition which must be
satistied ify the emergence of a negative wave is to be
obviated. - - |

We uare now prepared to calculate the momentum. Tor
a wave In which the mean elevation is zero, the momentum
corresponding to unit horizontal breadth is

p§ulhe+u)de=3py/(alke) {Pdz, . . (22)

when we omit cubes and higher powers of 5. We may
write (22) also in the form

Momentum = 3 Lotal EHEI‘HY, .« . (23)
4 ¢

¢ being the velocity of propagation of waves of small
elevation.

As m (14), with ¢ equal to 2, we may prove that the
n}mnmtum 1s positive without restriction upon the value
of #. '
~As another example, periodic waves moving on the surface
of deep water may also be referred to. The momentum of
such waves has been calculated by Lamb t, on the basis of
Stokes’ second approximation, It appears that the momen-
tum per wave-length and per unit width perpendicular to the
plane of motion is '

mTpAe, e e (24)

where ¢ is the velocity of propagation of the waves in
question and the wave form is approximately

Qar

Y (ct—2) . . . . . (25)

N=q COY

The forward velocity of the surface layers was remarked
by Stokes. Tor a simple view of the matter reference may
be made also to Phil. Mag. vol. i. p. 257 (1876) : Scientific
Papers, vol. i. p. 263.

# Airy, Phil. Mag. vol. xxxiv. p. 402 (1849),
+ Hydrodynamies, § 246,
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XLVIIL, The Lzpression for the Electrical Conductivity of
Metals as deduced from the Electron Theory. By W. F.
(xr. Swawy, D.Sc., A R.C.S., Assistant Lecturer in I’hysics
at the University of Sheffield ™.

Introduetion.

FPYHE theory of the electricul conduectivity of metals has

been worked out on many assumptions, One of tho
simplest and best known of these methods is that employed
by Drude, in which the assumption is made that in the
ahsence of the electric field all tho electrons move with the
same velocity, and that the velocity produced by the field 1n
an electron is tho veloeity which 1s produced in 1t while it 1s
travelling between two points of collision, the essontial
assumption being that at cach collizion the effect ot all
previous actions of the ficld on the eclectron are wiped ont.
The value of the conductivity o which has been deduced from
these agsumptions 1s

ne Ay

o=-rath - .. (1)

where » is the number of clectrons per c.c., A is the mean
free path, » is the velocity, and «f is the kinetic energy of a
gas molecule at a temperature 6. .

" The object of Part 1. of the present paper is to show that
the above assumptions do not lead to (1), but to the formula

o neEA

c=T2 L (9)

The difference between (1) and (2) is partly due to what 1is,
in the opinion of the author, an improper use of the quantity
known as the mean free path, and partly due to another
cause which will be better understood at a later stage of the
aper. ' i

' }'i‘he thermal conductivity £ calculated with the proper unse
of the mean free path gives, for the above case, tho ordinanly
accepted value k= !nAva ; and the interesting point is, that
while at 0° C. (1) gives k/o=63 x 10%, (2) results in
kloe =4-Tx 10 The experimentally found value of %/o for
most pure metals is about 63 x 10" at 0° C.; so that the
coneclusion to be drawn is, that the assumptions on which (1)
and (2) are based are nothing like as representative of the

* Communicated by the Author (now of the Carnegie Institution of
Washington).
¥ J. J. Thomson, ‘ Corpuscular Theory of Matter,” p. 56.



