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PREFACE

The object of this book is to present a logical development
of electromagnetic theory founded upon the principle of rela-
tivity. So far as the author is aware, the universal procedure
has been to base the electrodynamic equations on the experi-
mental conclusions ef Coulomb, Ampére, and Faraday, even
books on the principle of relativity going no farther than to
show that these equations are covariant, for the Lorentz-Einstein
transformation. As the dependence of electromagnetism on the
relativity principle is far more intimate than is suggested by
this covariance, it has seemed more logical to derive the electro-
dynamic equations directly from this principle.

The analysis necessary for the development of the theory has
been much simplified by the use of Gibbs’ vector notation.
While it is difficult for those familiar with the many conven-
iences of this notation to understand why it has not come into
universal use among physicists, the belief that some readers
might not be conversant with the symbols employed has led to
the presentation in the Introduction of those elements of vector
analysis which are made use of farther on in the text.

Chapter I contains a brief account of the principle of rela-
tivity. In the second chapter the retarded equations of the
field of a point charge are derived from this principle, and in
Chapter III the simultaneous field of a moving charge is dis-
cussed in some detail. In the next chapter the dynamical equa-
tion of the electron is obtained, and in Chapter V the general
field equations are derived. Chapter VI takes up the radiation
of energy from electrons, and Chapters VII and VIII contain
some applications of the electromagnetic equations to material
media, chosen as much for their illustration of the theory as
for their fundamental importance. Throughout, great pains
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iv AN INTRODUCTION TO ELECTRODYNAMICS

have been taken to distinguish between definitions and assump-
tions, and to carry on the physical reasoning as rigorously as
possible. It is hoped that the book may be found useful by
those lecturers and students of electrodynamics who are looking
for a logical rather than a historical account of the science.
The subject matter covers topics appropriate for a one-year
graduate course in electrodynamics and electromagnetic theory
of light.

The author wishes to acknowledge his debt to those great
thinkers, Mdxwell, Poynting, Gibbs, Lorentz, Larmor, and Ein-
stein, and to express his appreciation of the inspiration and un-
failing interest of his former teacher, Professor H. A. Bumstead.
His thanks are due his colleague, Professor H. S. Uhler, for many
suggestions tending toward greater clearness of exposition.

LEIGH PAGE
YaLe UNIVERSITY
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AN INTRODUCTION TO
"ELECTRODYNAMICS

INTRODUCTION
ELEMENTS OF VECTOR ANALYSIS

Addition and multiplication. A vector is defined as a quantity
which has both magnitude and direction. It will be designated
by a letter in blackface type, its scalar magnitude being repre-
sented by the same letter in dtalics. Geometrically, a vector may
be represented by an arrow having the direction of the vector
and a length proportional to its magnitude. The beginning of this
representative straight line is known as its origin, and the end,
as its terminus. To add two vectors P and Q place the origin
of Q at the terminus of P. Then the line drawn from the
origin of P to the terminus of Q is defined as the sum of P
and Q. To subtract Q from P reverse the direction of Q and
add. The components of a vector are any vectors whose sum is
equal to the original vector. Although, strictly speaking, the
components of a vector are themselves vectors, the term com-
ponent will often be used to denote the magnitude alone in
cases where the direction has already been specified.

A vector is often determined by its components along three
mutually perpendicular axes X, ¥, Z. These axes will always
be taken so as to constitute a right-handed set; that is, so that
a right-handed screw parallel to the Z axis will advance along
this axis when rotated from the X to the Y axis through the
right angle between them. Let i, j, k be unit vectors parallel

1



2 AN INTRODUCTION TO ELECTRODYNAMICS

respectively to the X, Y, Z axes. Then if the projections of P
along these axes are denoted by B, B, P,

xy Lyy Ly
"P=Pi+EBj+E 1
and, obviously, W+ Ik M
P+Q=(R+@)i+(F+Q)i+(L+A)k @
If two or more vectors are parallel to the same straight line,
they are said to be collinear. If three or more vectors are par-
allel to the same plane, they are said to be coplanar.
Two vectors P and Q may be multiplied together in three
different ways. The most general type of multiplication yields
the undetermined product given by

PQ = PQ,ii + BQ,ij + EQ,ik
+ 5.5+ £Q,ji+ £Q.jk C))
+E£Q.ki+ EQ kj+ FQ Kk '
This product is neither vector nor scalar ; it is known as a dyad.
The vector or cross product of two vectors is a vector perpen-
dicular to their plane in the direction of advance of a right-
handed screw when rotated from the first to the second of these
vectors through the smaller angle between them. Its magnitude

is equal to the product of the magnitudes of the two vectors by
the sine of the angle between them. Therefore

PxQ=—QxP. %)

Geometrically, this vector product has the magnitude of the
parallelogram of which P and Q are the sides, and a direction
at right angles to its surface. It follows from simple geometrical
considerations that the distributive law holds for this product,

that is, (>+Q)XxR=PxR+QxR. (5)
Therefore, inserting crosses between the vectors in each term
of (3),
P X Q = (I;Qz_ ‘EQy)i + (‘PzQx - I;Qz)j + (BQ,/ —‘PyQa:)k’ (6)

The scalar or dot product of two vectors is a scalar equal in
magnitude to the product of the magnitudes of the two vec-
tors by the cosine of the angle between them. Obviously the
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distributive law holds for this product. Therefore, inserting
dots between the vectors in each term of (3),

P.Q ='PzQx + I;Qy +}:Qz' (7)
The triple scalar product
®x QR |
evidently measures the volume of the parallelepiped of which
P, Q, and R are the edges. Hence the position of cross and
dot in this product is immaterial, and its sign is changed by
interchanging the positions of two adjacent vectors.
The triple vector product
PxQ xR
is obviously a vector in the plane of P and Q. From simple
geometrical considerations it follows that
(P x Q) x P= P*Q — P-QP, (®
and " (P x Q) x Q =P-QQ — @*P. '©))
Now R may be written

: R=aP +Q+ ¢(P x Q).
Therefore

PxQxR=aP xQXP+5PxQ) xQ
= (aP?+bP-Q)Q — (aP-Q + 5@") P
=P-RQ — Q-RP. (10)

This important expansion may be put in words as follows:
Dot the exterior vector into the remoter vector inside the pa-
rentheses to form the scalar coefficient for the nearer one, then
dot the exterior vector into the nearer vector to form the scalar
coefficient for the remoter one, and subtract this result from
the first.

The vector operator V (read del) is of great importance in
mathematical physics. This quantity is defined as

0 0 0
=il 432 k2.
v 6:c+jay+kaz
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Let ¢ be a scalar function of position in space. Then
1%, %, %
Vé=1z, i tE% B
is known as the gradient of ¢. It may easily be shown to rep-

resent both in magnitude and direction the greatest (space) rate
of increase of ¢ at the point in question.

Let V=Vi+Vj+Vk
be a vector function of position in spa.ce. Then
ov, o,
V= ay o 12

is known as the dwergence of V. If V is the flux of a fluid
per unit time per unit cross section, the divergence of V is the
excess of flux out of a unit volume over that into this volume.
If the fluid is incompressible, the divergence is obviously zero
except at those points where sources or sinks are present.

The vector

ov, OV, oV, OV, oV, oV,
vxv-l<ay 7z1>+j(az 6x>+k(8_x!_@> as)

is known as the curl of V. If V specifies the linear vélocities
of the points of a rigid body, the curl is equal in magnitude and
direction to twice the angular velocity of rotation.

The following identities may easily be verified by expansion :

VxVé=0, _ 14)
V-VxV=0, ' (5
VXV xV=VV.V-V.VV. (16)

Gauss’ Theorem. In treating vector integrals volume, surface,
and line elements will be denoted respectively by dr, do, and dA.
- The direction of an element of a closed surface will be taken
as that of the outward-drawn normal, and the direction of an
element of a closed curve will be taken as that in which a right-
banded screw passing through the surface bounded by the curve
must rotate in order to advance toward the positive side of
this surface.
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Let V be a vector function of position in space. Then Gauss’

theorem states that
f V-Vdr= f V-do, an

where the surface integral is taken over the surface & bounding
the volume 7

This theorem may be proved in the following way. In rectan-
gular codrdinates

f V.Vir= f <W + 35 +2 )dxdydz

Let z, y, z and z,, y, z be the points of intersection of the
surface bounding = with a line parallel to the X axis. Then

%dzdydz = f {Vo(zp 3 2)— V(2 y 2)} dydz

=fV,dydz.

Therefore f V-Vdr= f (V.dyde+V,dedz + V,dzdy)
T

=) f V.do.
L4

Stokes’ Theorem. If V is a vector function of position in
space, Stokes’ theorem states that

f VxV.do= f V.d), (18)
4 A

where the line integral is taken over the curve A bounding the
surface o.

To prove this theorem proceed as follows. In rectangular
codrdinates

foV-do'_f{< = gedr— 2 dsz) ({zdxdy_%’xdydz)
+(3y dydz— e dzdz)}.




6 AN INTRODUCTION TO ELECTRODYNAMICS

Let z, y,, 2, and 2, y,, 2, be the points of intersection of the
periphery of ¢ with a plane parallel to the YZ coordinate plane.
Then, taking account of the signs of the differentials involved,

o, AP
f,(a—z dedo— dzdy)-l[{?,(x, y+dy, 2+ d2)
—V.(% y+dy, }dze+{V, (2, y + dy, 2) =V, (% y, 2)}dr]
= f V(@ Y 2)—Vo(@ 9, 2)}do

=szda:.
A

Therefore foV-dcr: f(V,dz+V,dy+V,dz)

=fv-dx.
A

Dyadics. A dyadic is a sum of a number of dyads. The first
vector in each dyad is called the antecedent, and the second the
consequent. Any dyadic may be reduced to the sum of three
dyads. For if the dyadic ¥ is given by

¥ =al 4 bm + cn + do, a9
the vector o may be written

0=/1+gm + n,
whence Y=G@a+fd)1+(b+g9d)m+ (c+ id)n. (20)

Similarly, if either the antecedents or consequents of a dyadic
are coplanar, the dyadic may be reduced to the sum of two
dyads. Such a dyadic is said to be planar. If either anteced-
ents or consequents are collinear, the dyadic becomes a single
dyad and is said to be lnear.

Consider the dyadic

Y =al 4+ bm + cn.
If P is a vector,
y-P=al-P +bm-P + cn-P

is also a vector. Dotting a dyadic into a vector, then, gives rise
to a vector having a new direction and magnitude. This new
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vector is a linear vector function of the original one. If a dyadic
is planar, it will reduce to zero vectors having a certain direc-
tion, and if it is linear, it will cause all vectors parallel to a
certain plane to vanish.

Obviously any dyadic may be written in the expanded form

Y =a ii+a,ij+ a,ik
+a,ji+a,jj+a,ik @n
+ a, ki + a kj+ a kk.

It will now be shown that any dyadic may be put in such a
form that its antecedents and consequents each constitute a
right-handed set of mutually perpendicular vectors. Let a be
a unit vector -of variable direction extending from the origin.

Then B=1Yea

describes a closed surface about the origin as a varies in direction.
This surface may easily be shown to be an ellipsoid. Let i be
the value of a for which B assumes its maximum value a. Now
consider all values of a lying in the plane perpendicular to i.
Let j be the value of a in this plane for which B assumes its
greatest value b. Finally, let k be a unit vector perpendicular
to i and j in the sense that will make i, j, k a right-handed set.
Let ¢ be the value of B when a equals k. Then, as the dyadic
changes i, j, k into a, b, ¢, it may be written in the form

¥ = ai + bj + ck.
Now B = (ai + bj + ck)-a,
dB = (ai + bj + ck)-da,
B-dp = p-ai-da + B-bj-da + B-ck-da.
When a is parallel to i, p has its maximum value a, and
therefore a-bj-da + a-ck-da = 0.

If, moreover, da is perpendicular to j, a-c vanishes, and if da
is perpendicular to k, a-b vanishes. Hence a is perpendicular
to both b and c.
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Now let a be restricted to the jk plane. Then
B-dp = B-bj-da + B-ck-da.

When a is parallel to j, p has its greatest value b, and therefore
bec vanishes. Therefore a, b, and ¢ are mutually perpendicular.
If they do not form a right-handed set, the direction of one of
them may be reversed provided its sign is changed. Hence, if
i,, j,, k, constitute a right-handed set of mutually perpendicular
unit vectors parallel respectively to a, b, ¢, the dyadic may be

written . ¥ = ai,i + bj,j + ck k. (22)
If Y =al + bm + cn,
the conjugate of { is defined as
{.=1a 4+ mb + nc,

and a dyadic is said to be self-conjugate if it is equal to its
conjugate. Obviously, if ¢ is self-conjugate,

$-P=Py. (23)
The idemfactor 1 is defined as
I=ii+jj+kk
=Li, +j,j + Kk,
Evidently this dyadic is self-conjugate, and moreover
LP=P. (29

It will now be shown that any complete self-conjugate dyadic
may be written in the form

Y = aii + bjj + ckk, (25)

where i, j, k constitute a right-handed set of mutually perpen
dicular unit vectors.

It has already been shown that the dyadic may be written
V= aii+ bj,j + ck,k.
Now, as ¥ is self-conjugate,
Y.=¥
= aii, + bjj, + ckk,.
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Form the products
Y= a’iyiy + 8%y, + ik,

and Y = a’ii + 8%jj + kk.
These are equal, as the dyadic is_self-conjugate. Therefore
put ¥ ==y,

Now consider the dyadic
Y —al= (" — &) j,j, + (¢ — ) Kk,

Obviously W — a’I)-i, = 0.
But, a8 ' —a'T= (B~ @) jj + (¢ — <)k,
it follows that @' —a’I)i=0.

Hence, as (y*— @’I) is planar, but not linear, i, must be
parallel to i. Similarly, j, must be parallel to j, and k, to k.



CHAPTER I
THE PRINCIPLE OF RELATIVITY

1. Motion. The concept of motion comprises two essential
factors: a moving element, and a reference body relative to which
the motion takes place. A grain of sand lying on the floor of a
railway car is not in motion at all if the car itself is chosen as
reference body, although it may be moving rapidly relative to
the earth. If, however, the car, the earth, and all other objects
save the grain of sand are removed, the lack of a reference body
makes it impossible to form a conception of motion.

A moving element is characterized by a point— whether in
a material body or not—which can be continuously 'identified.
In the following discussion a point always will be understood
to have this property. A reference body is essentially a group
of points along the path of a moving element, together with a
device for assigning numerical values to the intervals of time
between coincidences of the moving element with successive
points of the body, and to the distances between these points.
For such characteristics are obviously necessary in order to
make possible quantitative evaluation of the motion of the
moving element. )

2. Reference system. A reference system is an assemblage of
points filling "all space. A device is provided for indicating
time at these points in such a way as to assure synchronism
according to some arbitrary standard, and for measuring distances
between them. This device is subject to the following con-
ditions, but otherwise it is quite arbitrary:

(1) Two points which are in synchronism with a third are
also in synchronism with each other.

(2) The distance between two points is mdependent of the

time at which it is measured.
10



THE PRINCIPLE OF RELATIVITY 11

Thus a reference system serves as a reference body for any
moving element. It must not, however, be imagined to offer
any obstruction to the motion through it of such an element,
or of another reference system.

A material body of finite extent may be considered to consti-
tute a reference system if the points of the body itself are sup-
posed to have points outside associated with them in such a
way that the whole assemblage possesses the properties described
above. In order that the material part of such a system shall in
no degree obstruct the motion through it of a moving element,
those portions of it which would be in the way may be regarded
as temporarily removed.

The motion of a given moving element may be described
relative to an infinite number of reference systems. However,
these systems are not in general of the same significance. For
let 4, B, and C be three systems from which the motion of the
moving element P may be observed. Suppose it is found that
the motion of P relative to 4 is conditioned by that of B, but
is independent of that of C. In such a case the motion of P is
said to be related to B, which is known as a related reference
system. C, on the other hand, is an wnrelated or ideal refer-
ence system. Thus for the motion of a shot, the gun from which
it is fired constitutes a related reference system. The velocity of
a sound wave is determined, not by the motion of the source,
but by the characteristics of the medium through which it passes.
Hence in this case the source is an ideal reference body, while
the medium is a related one.

3. Principle of relativity. In the case of light, it has been
generally recognized, ever since the vindication of the wave
theory by Young and Fresnel, that the source does not consti-
tute a related reference system. Recent analysis of the observed
motion of certain double stars has confirmed this supposition.
But most physicists have felt it necessary to postulate the exist-
ence of an all-pervading medium in order to form a mental
picture of the propagation of light waves through otherwise
empty space. For a long time they were accustomed to attribute
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to this medium, known as the ether, the properties of a related
reference system. Finally Michelson devised an experimental
method of measuring the velocity of the earth relative to the
ether, based on the assumption that the ether is a related refer-
ence system for the motion of light. Much to everyone’s
surprise, this velocity turned out to be zero. Excluding the
possibility of the earth’s being at rest relative to the ether, and
one or two other equally improbable explanations, the only con-
clusion to be reached was that the assumption that the ether is a
related reference system for the motion of light was unjustified.
The inference to be drawn from the result of this, experiment,
then, may be embodied in the following * principle of negation.”

For the motion of an effect which travels through empty space,
such as a light wave or one of the moving elements which form an
electromagnetic or a gravitational field, there i8 no related refer-
ence system.

An immediate consequence is contained in the following
statement. : :

If a law governing physical phenomena which are conditioned
solely by those effects which travel through empty space, is deter-
mined from observations made in two different reference systems,
the form of this law and the values of the constants entering into
it can differ in the two cases only in 8o far as the geometry and
devices for measuring time and distance, together with the units
of these quantities, may differ in the two systems. Their relative
motion in itself can affect meither the form of the law nor the
values of the constants involved. This is the principle of general
relativity.

Consider two reference systems which have the same geometry,
devices of the same character for measuring time and distance,
and interchangeable units of these quantities. Such systems
may be said to be reciprocal. It follows that

A law governing physical phenomena which are conditioned
solely by those effects which travel through empty space, has the
same form and its constants have the same values for two mutually
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reciprocal systems. In the subsequent discussion the phrase
“ principle of relativity ” will be understood to refer to this
restricted form of the general principle.

4. Reciprocal systems. Consider two reciprocal Euclidean
systems S and §’, such that all points of S’ have the same
constant velocity v relative to S. Let light travel in straight
lines in § with a constant speed ¢. Then the principle of
relativity requires that light shall travel in straight lines in §’
with the same constant speed ¢. Let 4 and B be two points
of either system a distance Ar apart. Since the speed of light
is the same in all directions, the time At taken by a light wave
in passing from 4 to B, as measured in the system in which
these two points are located, is the same as that taken by a
light wave in travelling from B to 4. Moreover,

Ar = cAt. ¢H)

5. Differential transformations. Let a set of right-handed
axes XYZ be fixed in S so that the X axis has the direction of
the velocity of S’. Let a similar set of axes X'Y'Z/, parallel
to XYZ respectively, be fixed in S’. Let z, g, 2, and ¢ be the
coordinates of a point and the time at the point as measured
in 8, and 2, ¥/, 2, and ¢ the corresponding quantities as meas-
ured in S’. It is desired to obtain 2/, 3/, 2/, and t' as functions
of z, y, 2, and ¢t. Let 4’ and B’ be two neighboring points of §'.
A light wave leaving 4’ at the time ¢ arrives at B’ at the time
t+dt, and one leaving B’ at the same time ¢ reaches 4’ at the
time ¢+ dt,, these times being measured in S. If the codrdi-
nates of 4’ and B’ relative to S at the time ¢ are denoted by
z, ¥, z and z + dz, y + dy, z + dz respectively, the time dt’ taken
by the first wave to travel from 4’ to B’ as measured in §' is

= — )4 — = —dt.,
dt 3 (dz +vdt ) + 5 dy + % dz + 7 %

and the equal time taken by the second wave in passing from
B' to A is o . o o
t t t t
t=— (— —— - —dt.
d o (— dz + vdt,) oy dy . dz + o dt,
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Subtracting,
% {as+ g )}+a‘ ay+ 2 a4 1% (at— =0, (2

and adding, 1 8t’ at

dr'= ot =3 0 %Y+ ar) 3)

But the squares of the distances travelled by the wave going
from 4’ to B’ and by that passing from B’ to 4’ as measured
in S are respectively

ddt = (dz + vdt )’ + dy* + d2’,
cdt} = (dz — vdt,)*+ dy*+ d2*
2v

ot'

Hence dt,— dt, = 5—; d, @
2Ve—of
dtl + dt,: Wi df, (5)

where dr’ = d2’ + dy*+ d2*, and v, is the component of v at right
angles to de Substituting this value of dt,— dt, in (@),

1 Jo ﬂat’) ot' ot
1 B’(ax"' dz +50 dy+ dz—O

where 8= ; .

Now dz, dy, and dz are arbitrary. Hence their coefficients
must vanish, that is,

ot B 8t’

. cat ©®

5= (0]

%o ®)
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To obtain dr/, substitute (5) and (6) in (3). Then

ot' vl
/= — L
dr—at 1 c,dr.

Giving dr the values dz,, dy, and dz, it is seen that
do' = %’ dz,, (10)
ay = LT Fay, an
de' = aait'x/l_-'-'ﬁ_’dz. 12

Now dz, in (10) is the distance of B’ from 4’ when the time
is the same at the two points. If dz is the distance of the position
of B' at the time ¢ + dt from that of 4’ at the time ¢,

dz, = dz — vdt.
So (10) becomes

, ot
dz' = % (dz — vdt).

Since the units of length in § and S’ are interchangeable, it
follows from symmetry that dy’'=dy, and dz' =dz. Hence if

p=_ L
=
ot'
Frimia

Hence the differential transformations between the two sys-
tems are

dt' = Ic(dt - cé da:), or dt=kFk (dt’+ gdz’), a3
&' = k(dz— vdt), de=k(dz'+vdt"),  (14)
dy' = dy, dy = dy', 15)
dz' = dz, dz=d7', (16)
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where the second column is obtained from the first by solving
for the unprimed differentials, or by changing the sign of .
From these expressions it follows that

dr'*— Pdt= dr*— Pdt?

is an invariant of the transformation.
Now the velocity +' of a point of § relative to §' is obtained
by dividing dz’ by dt/, z remaining constant. Therefore

v'=—v,

as might have been expected from considerations of symmetry.

6. Space and time transformations. Integrating the differ-
ential relations (13) to (16), and determining the constants of
integration on the assumption that the origins of the two sys-
tems are in coincidence when the time at each is zero,

t'=k<t—§z>, or t=k<t’+§x’), an
o'=k(z—ot), z=k(2 + ), as)
y=9 y=9, a9
=g, z2=2. (20)

These four relations are known as the Lorentz-Einstein
transformations.

Consider a moving element whose velocity components rela-
tive to S are V,, ¥, and V,. From the differential relations of
the preceding section it follows at once that

V.- y!
Vit ;, Cor V= ”';/’,, (21)
1-p8-2 1+8=
(4 c
!
V;=L, V,=_V"_., (22)
v 7
Ic(l—B—’) Ic(l+B—’”>
(4 (4
V. ) !
VN ., V=L. (23)

i
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For the resultant velocity

V2
1-Z

—_— .
k*(1_ /35)
¢
Hence if V=¢, V'= ¢ also, as should be. Now
’ 3 2
vy c’(l— %) 1- 1=F
(1-%))"

so the velocity of light is the only velocity independent of v
which is the same for the two systems.

Suppose that the velocity of S’ relative to S is nearly as
great as the velocity of light. Then 8=1— §, where & is small.
Consider a body moving in the X' direction with a velocity
relative to S’ only slightly less than the velocity of light.
Then V]=¢(1—¢), where ¢ is small. Equation (21) gives for
the velocity of this body relative to S,

2_8—¢
V’—02—3—-e+8€

'=,c<1—%),

whence 7, is less than ¢. For example, if v=0.9 ¢, and 7]=0.9¢,
V, would be 1.8 ¢ according to nineteenth-century conceptions
of space and time. But the addition theorem of velocities just
obtained from the principle of relativity gives 7,=0.994c.

The relations between components of acceleration as measured
on the two systems are obtained by differentiating equations (21)
to (23) with respect to the time, remembering that

4 _ad
dt'— dt' dt
1 d

EEE

yr=cl1-
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These relations are

P S I/ B
fi=- L o« amo AT eh)
oo I ALl .
S G A
r=-E v —sm) s+ Beavi—pm
fl= AV f.= AN . (26)
k’(l—ﬁf) k2<1+/3 )

Suppose that the moving element is at rest in §’. Then the
second column becomes

_z
J.= B’ @n
_
f=" e
£=L 29

7. Four-dimensional representation. The Lorentz-Einstein
transformations can be represented very simply by a rotation in
a four-dimensional manifold. For consider a set of rectangular
axes XYZL in four-dimensional space, such that the distances
z, 3, 2 of a moving element from the origin of S are measured
along the first three axes, and the quantity !/=<ct along the
fourth axis, where =V —1. The position of a moving element
at a given time is represented by a point in this space, and the
locus of the positions of such an element at successive instants
by a line. This line is called the world line of the moving
element. Thus the world line of a body permanently at rest
relative to § is a straight line parallel to the L axis. The world
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line of a point moving with velocity ¥ relative to S is inclined
to the L axis by an angle ¢ such that

.V
tan ¢ =—i—.
p=—i-

Hence the world line of a point of S’ is parallel to the XL
plane and makes with the L axis an angle a given by
tane =—1:08, sina=—1kB, cosa=*k
Therefore in terms of z, g, 2, and ! the Lorentz-Einstein trans-
formations take the form

l!=1cosa+zsine, or l=Ucosa—2'sineg, (30)

Z’=zcosa—lsina, z=2cosa+10'sina, (381)
y=9 y=9 32)
2=z, Cz=2, (33)

amounting formally to a rotation of the X and L axes through
the imaginary angle a.



CHAPTER II
THE RETARDED FIELD OF A POINT CHARGE

8. Electric field. Continuous lines may be imagined to spread
out from every elementary electric charge in such a way as to
diverge uniformly in all directions when viewed from the system
in which, at the instant considered, the charge is at rest. These
lines are called lines of force and, taken

together, they constitute the charge’s field. do
The number of lines emanating from an

element of charge de will be supposed to -~
be very large, no matter how small de 0

may be. A bundle of M lines, where M
is a very large number, will be considered
to constitute a tube of force. The field
strength, or electric intensity, E, at a point
in a field, is a vector having the direction
of the lines of force at that point and equa.l in magnitude to
the number of tubes per unit cross section. Thus if dV tubes
pass through a small surface of area do whose normal makes
an angle @ (Fig. 1) with the field, the magnitude of the field
strength is given by AN

“docosf

Fic. 1

Hence the component of the field strength parallel to do is

dN
de =g
or, in vector notation, E, = Zi\:dc.
g

The ratio of the number of tubes of force diverging from a

charge to the magnitude of the charge determines the unit of
20
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charge. The simplest unit, and the one which will be used in
the following pages, is that which makes the charge at any point
equal to the number of tubes of force diverging from that point. -
This unit is the one advocated by Heaviside and Lorentz and,
as will appear later, is smaller than the usual electrostatic unit
by the factor 1

Vinx

9. Motion of a field. Consider an electric field which is being
observed from the two reference systems S and S’ of the pre-
vious chapter. The principle of relativity requires that the
velocity of the moving elements comprising the field shall have
the same numerical value no matter whether observations are
carried on in S, S’, or some other system reciprocal to one of
these. In section 6 it was shown that the velocity of light is the
only velocity which satisfies this condition. Hence the moving
elements constituting an electric field must have the velocity
of light. .

Suppose a charged particle to be permanently at rest in S.
Although the moving elements constituting its field are in
motion with the velocity of light, the lines of force themselves
are stationary. -Hence the motion must be entirely along these
lines. Now consider a charged particle moving with a constant
velocity V relative to S. As the charge carries its field along
with it, the velocity of a moving element will be along the lines
of force only at points in the line of motion. At all other points
this velocity will make an angle with the lines of force which will
be greater the greater the speed. Therefore in general the com-
plete specification of an electric field due to a charged particle
requires the knowledge at every point of the values of two vec-
tors, the field strength E and the velocity ¢. Both magnitude
and direction of E must be given, but as the magnitude of ¢
is known its direction only is required.

10. Transformation equations. Suppose that the field strength
E and velocity ¢ relative to S are known for the field due to a
‘point charge. It is desired to find the values of these quantities
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as measured in §’. Let P and @ (Fig. 2) be two neighboring
points on the same line of force, the codrdinates of @ rela-
tive to P being dz, dy, dz when the time is the same at
the two points
according to
the standards
of 8. Then if
the time at Q
should be later
by dt than that
at P, the coor-
dinates of @
relative to P
would become

dz,= dr+c,dt,
dy, =dy+c,dt,
dz1= dz + c,dt. Fic. 2

Now, in order that the times at P and @ should be the
same when measured in §’, equation (13) of section 5 shows
it to be necessary that

dt = é dz,.
c
Hence when dt' =0,
dzl= dx P ’
1-8=
¢
B % dy
dy1= dy + ¢ z ’
I—Bf
B%dx
dz =dz+
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Substituting in the transformation equatioﬁs (14) to (16),

second column, of section 5,
dx

dr' = —————
Hi-52)
¢

Bﬁ'dx
e

dy'=dy +

ﬁfldx
¢

dZ=dz + -
l—B-ci‘

are found to be the coordinates of @ relative to P as measured
in S’ when the time is the same at the two points according to
the standards of this system. The position of @ at this time is
shown by @’ on the figure. Consequently the lines of force in
S’ extend from P to @', instead of from P to @ as in S.

- Let 8N be the number of tubes of force passing through the
area dydz in S. Then, since 8y’ = 8y, and &' = &z,

SN SN

e = = .
==y Sy e
E, E E
Dz _ Dy _ T
Moreover, = dy s ’
E_E _E
do dy d7
dy — B<&dy - ﬁdx)
| = E =
Hence E!=FE, -
=+ {5~ (%8~}
e c
= k{Ell— '-?(c X E),},

and similarly, E =k {E’z + g(c X E),} .
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The magnetic intensity H is defined by

_1
= ; (c X E).
Therefore E!=E,, 1 ¢))
B=tE-pEy=t{E+ exm,} @
=z +pEy=t{r+loxm}  ©®

where the primed and unprimed quantities may be interchanged,
provided the sign of » is changed.

The transformations for ¢ are obtained at once from the equa-
tions (21), (22), and (23) of section 6 for transforming velocity
components. They are

o=, &)
1-8%
4
6‘: = #— ’ (5)
cI
kO—B;)
o= ——t— ®)

" k(1-8 if)
4
From the transformations for the components of E and ¢
those for the components of H are readily deduced. For

! !

(4 [
! — ! z !
.Hz_.—;lEz——c E,

by definition. Substituting the values of the components of E'
and ¢’ in terms of the unprimed quantities in this identity and
in the corresponding expressions for H, and H,, it is found that

H;= H_ﬂ (7)
H,’:Ic{H,+BE,}=k{H,—%(v xE), }» ®
Hi=k{H,- BE}= k[ H,— Z(rx B),}- )

A field formed by the superposition of the individual fields
of a number of charged particles is termed a complex field, in
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contradistinction to the simple field of a single elementary charge,
and the electric and magnetic intensities in such a field are defined
as the vector sums of the corresponding intensities of the com-
ponent simple fields. It is to be noted, however, that the velocity
¢, in so far as its direction is concerned, always refers to the field
~ of an element of charge, and never to the resultant of a num-
ber of such simple fields superposed. If it is desired to avoid
explicit reference to the components of a complex field, the field
must be described by means of equations which do not involve
the direction of motion of the constituent moving elements.

Since the transformations that have been obtained for E and
H due to a single point charge are linear in these quantities,
they apply as well to complex as to simple fields.

11. Point charge at rest. Let ¢ (Fig. 3) be a point charge
momentarily at rest at the origin' of S at the time 0. It is
desired to find the ' QH

field strength E at \
P at a time t=1r/c,

where r is the dis- B P
tance of P from O.
Two moving elements
leaving e in slightly
different directions at
the time 0 will be at &
Pand Q at the time .
At a time dt, e will still be at O (to the second order of small
quantities). Consequently a moving element coming from e at
this time and belonging to the same line of force as that at P
will reach some such point as 4 by the time ¢. Similarly, one
belonging to the same line of force as that at @ will reach B by
the time ¢t. Hence, if r, denotes the distance 04,

Fi16.3

r=ct,
and r, = (c+ dc) (t—dt)
= ct — cdt + tdc,

where |c¢ + dc|=|c| necessarily, or dc is perpendicular to c.
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Put pP=r—ru,.
Then P= (cdt - -Z dc) ’
per = crdt.

Now since the lines of force, as viewed from S, diverge uni-
formly in all directions from O at the time 0, the number of
tubes per unit area passing through a small surface at P with
normal parallel to r is

[\

d

P
r* p cos QPH

__¢ P
4 7r por

e rdc .
arT= G i a0
Suppose that the charge e has an acceleration f relative to .
Then at the time d¢ it will be at rest in some reciprocal sys-
tem S’, which has a velocity fd¢ relative to S. As the lines of
force diverge uniformly from the charge when viewed from the
system in which, for the instant, the charge is at rest, and as
the velocities of the moving elements constituting the portions
of these lines in the immediate vicinity of the charge are along
the lines themselves when observed from this system, it follows
that if two moving elements, one of which leaves ¢ at the time 0
and the other at the time dt, are to lie on the same line of force,
the velocity of the second must make the same angle in S’ with
the direction of f as that of the first does in S. If the velocities
of these two elements are denoted by ¢’ and ¢, and if the X' and X
axes are taken parallel to f,

Hence E=

4

® §i e

d=e,.

(e, +dc,)— fdt
/=
But, from (4), .= . o Fit

6"
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Let a (Fig. 4) be the angle between ¢ and f. Then

¢, =cCosa,
de,=— csin ada.
cos @ —sinada — 'ﬁt
Hence cos @ = ¢
Jdt
1—<"cosa
(4
or da = -—f% sin a.
Now de = cda
=— fdt sin a,

which becomes, in vector notation,

(fxc)xc

cl

dec=— dat. an

Substituting in (10) it is seen that if a charge e which has an
acceleration f is momentarily at rest at O at a time 0, the field
strength at a point P distant » from O at a time /¢ is given by

E= [4 rz[c+ ,(fxc)xc]] az

where the heavy brackets are used to denote the fact that the
quantities contained therein are retarded; that is, these quan-
tities refer to the effective position of the charge, or its position
at a time r/c earlier than that for which the field strength at
P is to be determined.

Since HE%(C x E)

by definition, H= [4 — [ %{(f X €)X ¢} xc]]. 13

12. Point charge in motion. Consider a point charge e which
is passing the origin of S at the time 0 with velocity v and
acceleration f. Choose axes so that v is along the X axis. Then
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this charge is at rest, at the instant considered, in a system S’
which has a velocity v in the X direction relative to S. So

E = #gc[c' +:—:(f' x ¢') x c']
and H = Z—ﬂ_—%[— g{(f' x c')x ¢} x c']

are the values of E' and H' at a point P distant »’ from O at the
time #//e. It is desired to determine E and H at P at this same
instant. Since the velocity of light is the same in the two systems,
the time at P will be /¢ in § when it is #'/¢ in $'. Hence the
result of the transformation about to be carried through will
give E and H at P at the time r/ec.

Let a' be the angle in S’ which the line OP makes with the X’
axis. Without loss of generality this line may be supposed to lie
in the X’ Y’ plane. The Lorentz-Einstein transformations give

' cos @' = kr(cos @ — f3),

rsina’ =rsina;

whence . v =kr(1—Bcosa),
,__ cosa—f
cos@ “1—Bcosa’
sing' = S0&
k(1—Bcosa)
‘ / 01'—1)
From (4),(5),and (6), ¢, = T-RBoosa’

0'

- %
v k(1—Bcosa)

d=0;
and from (27), (28), and (29) of section 6,
Ji=Kfe
f; = szy’

S =¥f.
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Now
E1=E’

=1 r,, [c' +5{d x ¢)x c'},],

= k{E} + BH}
4:]:” [c’ +— ({(f’ x c')xc'} {1+B—} —{(f xc)xc'}, /3—!)]
E,= k{E’—BE}
4:_32 [0 +5{(E xe)x e {1+,3—}]

Substituting for the primed letters their values in terms of
the unprimed ones, and reducing,

e [ rk?
E.= 4 wr*k’e (1 — B cosa)® _c’_ v+?({f x (c—v)} x 0):], |

-

e

rk?
By= 4 7P (1 — B cos a)® K s {Ex (c—v)} x c)v]’

e i
B.= 4 wrkPc(1— Bcos a)® _O +7({f x(c—v)} x c)z]’

e

or E =|:4 ,,,.ekac<1 - ‘:;’)8[0 -v+ %’i—z{f x (¢ —V)} x c]] 14

H may be obtained from H' and E' in an exactly analogous
manner, but it is more easily found directly from the above
expression for E. For

H= 1(c x E),
whence ¢
[

|t

These expressions for E and H, it must be remembered, give
the values of these vectors at P at the time /¢ in terms of v
and f at O at the time 0, ¢ having the direction of the line OP.
In other words, all the quantities within the heavy brackets are
retarded. Each expression consists of a part involving the inverse
second power of the radius vector », and a part involving the

cX v+ k2c x ({f x (c—v)}xc)]]. as
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inverse first power only. The latter depends upon the acceler-
ation of the element of charge, and the part of the field which
it determines is known as the charge’s radiation field.

13. Retarded potentials. In differentiating expressions such
as those involved in (14) and (15) account must be taken of the
fact that the quantities enclosed in the heavy brackets are
retarded. Let [y] be a scalar whose value at P at a time ¢ is
given in terms of the position and velocity of a charged particle
at O at a time ¢ — r/¢, where r is the distance OP. Then, if the
coordinates z, y, z of P relative to O remain unchanged,

atvl=[ Y]

where, since dt =[dt] + @
c-vdt
- [=2),
it follows that [at]= 1 dt.
1-%¥
&
o [t ][
Consequently, i - 2 I
A
. o [ 1 e
or, symbolically, e —ov [5,‘] (16)
L 4

On the other hand, if z changes by an amount dz while g, 2,
and ¢ remain constant,

d[y]= %dz+2—‘fdt],
where [dz] = dx,

[dt]=— dz.

C.V
-
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Hence 244! —[_]_ —_— [ai'. ,
33: . _ COV ot
and similar expressions hold for dlﬂ’erentiation with respect to

y and 2. Therefore

v=[V]-

&

Consider the retarded scalar potential function

It will be shown that E and H due to a point charge may be
expressed as derivatives of this function in much the same way
as the field strength due to a point charge in electrostatics may be
given in terms of the gradient of the potential function 1/r. For

-c{(l —By— (1_ LA D c.f}]

ﬁc(l-i

0
‘a—t[‘ﬂ=

- ,32)—— £ 1——
- { ¢ }+v c, ,

r’c(1—7>
and gﬁ {(1_32)_ <1_ c.v) + Sac'f}v
c a‘[ 11,] e (1—%’) o fc<1- °c‘f>s '

A-H(Cc—-v+ {fx(c-v)}xc

~viv-12[2+]- Py :

Therefore
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and comparison with (14) shows that

! e e odlv
E—‘G”‘“‘ma[z"'}
Moreover,

vx[2v]=mvx[Z]-[F]rom
[ —Zoxt {(l—ﬁ“)+§,cof}cx v|
A(1-7) ro(1- 1)
f—(l— B“)cxv+§c x({fx(c —-v)}xcﬂ
e (1- °6';’>’
and comparison with (15) shows that

= ﬁr v X [% \p].

Whether the field is due to a single point charge or to a
number of such charges, if

$=3, - [¥]

> ;cv , (18)
[4w(1— a)] |

Il

and a 52{7,.[%"']
Ez[ﬁ] 19)
m™re bl ?
then E=—-V¢— %é., 20
H=vyxa @n

Hence an electromagnetic field may be specified by the values
at all points and times of either the two vectors E and H or
the scalar potential ¢ and the vector potential a.



CHAPTER III
THE SIMULTANEOUS FIELD OF A POINT CHARGE

14. Constant velocity. Let a point charge e which has a
constant velocity v relative to S be at the origin O of § at the
time 0. It is desired to find the values of E and H at a point P
(Fig. 5) at the same instant in terms of Y
the cobdrdinates of P and the velocity v. P
Choose axes so that the velocity of the
charge is along the X axis and the point
P is in the XY plane. The point @ occu-

. . - S
pied by the charge at the time —2 is its <
effective position. Hence equation (14), / %I/ A
section 12, gives for the field strength ( Y R X
at P at the time 0, Fic. 5

e
E= [4 wr’k’ (1— B cos a)® te— v}].
‘Now QO=RBr*
and therefore the vector ¢—v, and consequently E, have the
direction OP.
From the geometry of the figure
=%+ R*+ 2 BrR cos 6,

R -
or —=V1— B%sin*@ — B cos¥.
r
1 :
Hence ~|¢ — v|=V1— 8?sin’0 —p cosb.
c
Moreover,
1—Bcosa =V1— B%sin?0{V1— B*sin?d— B cosb}-
* In order to avoid cumbersome equations in this and the succeeding article,

the retarded quantity r is not enclosed in brackets.
33
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Therefore E=_° a-£) . @
4 7B (1— B sin’0)t

The magnetic intensity H is directed upward at right angles

to the plane of the figure. Its magnitude is given by '
H=Esin (6 —a).

But ¢8in(0— @) =vsiné.

e (1-B"HBsind @
4 wR* (1— Bsin? )

The expression for E shows that the lines of force diverge
radially from the moving charge (Fig. 6), but, instead of spread-
ing out uniformly in all directions, as in the case of a static
charge, they are crowded together in
the equatorial belt and spread apart
in the polar regions. The greater
the speed the more pronounced this
disparity, until, if the velocity of
~light is attained, the entire field is
confined to the equatorial plane.

If lines are drawn so as to have
everywhere the direction of the vector
H, these magnetic lines of force will
be circles in planes at right angles
to the line of motion with centers lying on this line. If the
magnetic lines, like the electric lines, indicate by their density
the magnitude of the corresponding vector, a similar crowding
together in the equatorial belt and spreading apart in the polar
regions will exist. However, the total number of magnetic lines
of force in the field, unlike that of the electric type, will be
greater the greater the speed of the charged particle.

15. Constant acceleration. Consider a point charge moving
with an acceleration ¢, which always has the same value relative
to that system, reciprocal to S, in which the charge happens to
be at rest at the instant considered. Let this charge come to
rest momentarily at the origin O of §at the time 0. It is desired

Hence H=

Fi1c. 6 *
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to find the values of E and H at a point P (Fig. 7) at the same
instant in terms of the codrdinates of P and the acceleration ¢.
Choose axes so that ¢ is along the X axis and P lies in the
XY plane. The effective position of the
charge is the point @, which it occupied

at the time — 1—; . From (27), section 6,

F=$A-AY
Integrating, the velocity at @ is found
to be given by

and the distance 0Q by
__c_ﬂ o B }
0Q = qb{\’l+ -1y

If the components of E along and at right angles to QP are
determined separately, it follows from equation (14), section 12,
that

e 1
E=\gmre (1+Bcos a)’]’ 3
Ea: = 09

showing that E is parallel to c.
Now, from geometry,

2 P2
\]1+ cos0+¢R

r=R

1+¢7 cosf

Rcos@=rcosa+ 0Q.

LR
cﬂ

o
1+c4

cosé
Hence 1+4+Bcosa=
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Substituting in the expression for £,

E =2
r 2 2
47E ( L8R o ¢‘R)

To find the components of E along and perpendicular to OP
it is necessary to obtain the values of cos & and sin 8. From the
geometry of the figure it follows that

@

1+¢—cos€
5 2¢
COS 0 = —
¢R ¢1P2
1+ id
;—fzsmﬁ
s:n8= —3
1+¢(f 0030+¢R
1+¢—§cos0
. e
whence E,= g Py ¢2 y= ®
<1+ cosf+ Lt — )
¢—R}sm0
-1 o ®
T 4aR?, 2 p2
<1+£Ecost9+¢;R>

To obtain the equation of the lines of force, use may be made
of the relation

dé
RE tan ¢}82
_ o sin @
$E '
1+ ¥ cos€
The solution of this differential equation is

¢R 1

cotf+ 5 2 sind =b
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where b is the constant of integration. Writing this equation in

2 4
the form <Rcos€+_§)+(Rsi_n0—b)2=b2+%7 )

it is seen that the lines of force are circles passing through O
with centers in a plane at right angles to the X axis and at
a distance —c’/¢ from O. Fig. 8 shows the section of the field
cut by a plane through the
X axis. The full lines repre-
sent the lines of force.
Consider an electric field
all parts of which happen to
be at rest in a single system
S at the same time. A sur-
face in S, so constructed as to
be everywhere normal to the
lines of force, is called a level Fic. 8
surface. For a field perma-
nently at rest in S level surfaces are identical with the equipo-
tential surfaces of electrostatics. In the case under discussion of
a charged particle moving with constant acceleration, E has been
shown to be parallel to ¢ simultaneously at all points. Hence all
parts of the field are at rest at the same time and consequently
level surfaces can be constructed. The differential equation of

these surfaces i
S R ‘—iﬂ =—cotd
= cosd
_ 1+ 9 4 cos
o sin @ ’
of which the solution is 2¢

{Rcos@—(h—g>}2+{li¢ sin 6= h’—gy ®)

where 4 is the constant of integration. This is the equation of
a family of spheres with centers at the effective positions of the
moving charge. Their traces are shown by broken lines in Fig. 8.

Since E is parallel to ¢ at the instant considered, H is every-
where zero.
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16. General case. The retarded expressions for E and H
deduced in the preceding chapter show that the field at a point
P and time 0 is conditioned by the motion of the charge pro-

ducing that field at a time — [—1, where [r] is the distance of P

from the effective position of the moving particle. Therefore
the specification of the entire field at the time 0 involves the
complete past history of the charged particle. Since, for physical
reasons, the motion of this particle must be continuous, the past
history of its motion is contained in its present position, veloc-
ity, acceleration, and higher time derivatives of the positional
vector. Hence the simultaneous values of E and H may be
expressed as series in these quantities. While these series may
fail to converge for distant portions of the field, or for very
rapidly changing motion, their form will make evident their very
rapid convergence for all cases to which they will be applied.
If the point at which E and H are to be evaluated is chosen
as origin, and if [z], [y], [¢] are the coordinates of the effec-
tive position of the charged particle relative to this origin,

11

etc., and the z component of the retarded expression (14),
section 12, for the field strength, may be written

e [y ver\7® P fr\/ =z v
e[ () {05595 @
If z, y, z are the coordinates of the simultaneous posmon of the
charge, and v, f, f. .. its simultaneous velocity, acceleration, etc.,
then
RN W 0 s R 3 s D O o D W
[x]_z Y, ¢ +2f:c ca 6]; +24fz .f; ]
MY (s P sl -5 i PR e O
[vzl—vz' f.‘t ¢ +2L7- 6f:: 24f

. 1 1 -
i=f-fd 2R 0 _L7E.
and similar expressions hold for the Y and z components. Put

IR O LA .

=_,B "Yz c’ c’,é——}-, z— 05.



SIMULTANEOUS FIELD OF A POINT CHARGE 39
Then
Pi=r{1-2pul s quiam Ll S @mtayp U]

+—:L (eem+48-p+39%) Iﬂ

— 36 (g m+5e-p+108- y) [rﬁ] . }

Now put T=h [r]

= p.m k,
b = ym#’,
e=(8-m+3y-p)A,
d=(em+48B+ 39Dk,
e=(C{m+5eB+108-y) %,
whence the previous equation becomes simply
P2=1— 2a'r+b-r’—1c~r’+ fpdrt—gyer. .., a0

ver 1 1 1
and[l —_ {1—a-r+0+ ert— d'r+40 }
I

Ic“‘-r2
After some reduction it is found that

_v_tn\( z_» _fLr< E)
[(1 ¢ 7)( r c) c’1+cr]
4 . 5 6
=— kss{'m(l 2a-r+0+60'r 1—2—d7+40 )
+0
1 ., 4
— gk (—1404+0+2 2 o d e 1'5...)

e EE . )
+38Jc 2+a7+0+6e'r 12d'r+40 .o

_1 44( 1 >
8‘:""' —8+2ar+0+4+0— 12d'r+40e7"“
1 1, 1
+—30§J¢ﬁ1'6(—4+3a7+0—60'r+0+me-r°...>...}
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a € 3
Hence E, g J. an

Returning to (10) and solving for T by successive approxi-
mations, it is found that

t=1-a(l-}a+0+}a’+0)
+31b(1—-2a+3a+0)+38°(A-3a)
—%c(1—3a+4a’)—%bc+§11d(1—4a)—iéve-n. 12)
Substituting this value of 7 in (11) and reducing, the fol-

lowing expression is obtained for the X component of the
electric intensity,

_ ek 8 ,,15 , 1, 9,
E’——47rr'" m,,(l 2a+ 8 a ---+2b—4ab---

8py 1, 1, 1 ) 1 (_§a 8,4 )
+86+2ac d+15 . +2'ch21 2a+21-" gc e

—-gsxlc”<l—ga+2b--~)+ge,k‘(l—ga--->—%§,’€5-"}- 1s)

The X component of the magnetic intensity may be obtained
most easily from the relation

S H i H

which gives, after some reduction,

__ ¢k _ 8yl .>
H. = 4 Wrz{(vaz Bzmv) (1 9 a+ 9 b.-..

+ ak(y,m,— y,m,) — % K (8,m,— 8 m,)+ % K (e,m,— em,)

1 2
— SR OB~ 1B+ RBR~8) ) (14)
Equations (13) and (14) give E and H at the origin in terms

of the simultaneous codrdinates, velocity, acceleration, etc. of
the charge e. To obtain the values of E and H at a point z, y, 2
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due to a charge e at the origin, the signs of the codrdinates in
these two equations must be changed, giving

_ ek PR GOV PR 8.,
E,_4 ; m,(l gutgal--. 2bl+4az,bl----4-§l>1
1 1 1 3 4
+2altl+ d 15 ~~->—2'yxkz( 2 l §b1+§cl°'0)

+—8,1c=<1+—a,—2bl. : .)__e,k*<1;|-§al. : .)+% ep.-}, a5
H, = {(B,m‘ B.m,) (l —=al- %bl .. )

1
— ak(y,m,— vy,m,)— 3 Ic’(Sym, —&,m,)+ 3 K (eym,— em,)

+ BB B~ S PBA~88) -} (16)
where a,=B-mk,
b =ymk,

¢,=(m—3yBH,
d =(em—48B— 39,
e,=(t:m—5ep—108-y) %"



CHAPTER IV

THE DYNAMICAL EQUATION OF AN ELECTRON

17. Electrical theory of matter. All matter will be assumed
to be made up of positive and negative electrons. An electron
will be defined as an invariable charge, of magnitude approxi-

mately 4.77(10)"*VEx

Heaviside-Lorentz units, distributed over a surface which is
spherical in form to an observer in that system, reciprocal to S,
in which the electron happens to be momentarily at rest. A
positive electron will be considered to differ from a negative one
only in the sign of the charge involved and the radius of the
spherical surface over which it is distributed.

The electromagnetic force dK on an element of charge de, as
measured in that system, reciprocal to S, in which this charge
happens to be at rest at the instant considered, is defined as the
product of the field strength E by the charge de. The extension
of this definition to the case of a system in which de is not at
rest, will be given in the next section.

The distribution of charge on the surface of an electron will
be supposed to be such as to make the tangential force due to
its own field zero at all points of the surface, all measurements
being made in that system relative to which the electron is
momentarily at rest. This assumption is introduced merely for
the purpose of simplifying the analysis (section 20) involved in
determining the dynamical equation of an electron moving with
constant acceleration. To the number of terms to which the
analysis is carried in the general case (section 21), no change
in the dynamical equation is introduced if this hypothesis is
replaced by the more probable assumption that the distribution

of charge is such as to make the tangential force due to the
42
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total field, that is, the resultant of the impressed field and the
electron’s field, equal to zero, or by the simple assumption that
the distribution of charge is always uniform.

18. Dynamical assumption. In the previous chapters the
discussion has been concerned with the determination of the
field of a charged particle. It must be borne in mind, however,
that the lines of force constituting such a field are nothing
more than convenient geometrical representations to be em-
ployed in describing the effect of one charged particle on
another, and that no reason exists for attributing a greater
substantiality to them than to any other arbitrary convention,
such as, for instance, parallels of latitude on the earth’s sur-
face. The representation of a field by lines of force has led to
the concept of electric intensity, and the electromagnetic force
on an element of charge, as measured in the system in which
the charge is momentarily at rest, has been defined in terms
of this quantity. In order to pass from these definitions to
* the quantitative description of the effect of one electron on
another, it is necessary to introduce the following dynamical
assumption : R

The motion of an electron is such as to make the total electro-
magnetic force on it, as measured in that system, reciprocal to S,
tn which it happens to be momentarily at rest, equal to zero.
By the total electromagnetic force is to be understood the
resultant of the force due to the impressed field and that due
to the charge’s own field. With forces which are not electrical
in nature, such as must exist if a dynamical explanation of the
stability of the electron is possible, the present discussion is
not concerned. While extra-electrical stresses on a single elec-
tron may be of great intensity, their resultant will be assumed
to be always zero. Moreover, such forces will be supposed to
be comparatively negligible when the effect of one electron on
another is under consideration. Thus no account will be taken
of the gravitational attraction between two electrons, as it will be
deemed quite unimportant compared to the electrical attraction
or repulsion.
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Consider an electron which is at rest in S’ at the instant
considered. Then the dynamical assumption stated above re-

ires th
quires that f E'de = 0. &Y

Substituting for the components of E' their values in terms
of the components of E and H, as given in equations (1), (2), (3),
section 10, it is found that

f E de=0,

f{E,+%(vx H),} de=0,
f{E,+%(vx H),}de= 0.

Hence it is natural to extend the definition of electromagnetic
force given in the preceding section so as to read: '

The electromagnetic force dK on an element of charge de, as
measured in a system, reciprocal to S, relative to which the
charge has the velocity v at the instant considered, is defined by

dK= {E + %(v x H)} de. (2

Then the dynamical assumption may be stated in the more
general form:

The motion of an electron is such as to make the total electro-
magnetic force on i, as measured in any system reciprocal to S,
equal to zero. Thus the dynamical equation of an electron may
be found directly for any system, no matter whether the elec-
tron is at rest in that system or in motion with respect to it.
However, in order to avoid unnecessary analysis, the method
pursued will be first to deduce this equation relative to that
system in which the electron is momentarily at rest, and then
to extend it to other systems by means of the transformations

already derived. ’
~19. Constant velocity. Consider an electron permanently at
rest in §'. Relative to an observer in this system the electron is
a uniformly charged spherical surface of radius ¢ with a uniform
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radial field. To an observer in S, however, this electron has
a constant velocity v along the X axis, and the transforma-
tion equation (18), section 6, shows that its dimensions in the
direction of motion are shorter in the ratio 1:% when viewed
from this system, while those at right angles to this direction
are unchanged. Hence to an observer relative to whom an
electron is moving. its surface is that of an oblate spheroid with
_ the short axis in the direction of motion.

Describe two right circular cones with vertices at the center 0/
of the electron and axes along the X axis such that elements of
the cones make angles 8’ and 6'+ df' respectively with their
common axis. If e is the charge on the electron, the number of
tubes included between the cones is

dN= %sin 0'de’.

But cosd’ =—co———_L,
V1-—8%sin®@ -
sing'df’ — a-g sin0d0.

(1-RB*sin?6)}

e (1-8% sm0d0

21— g sinto)t

and the electric intensity in § at any distance R from O’ is

e a-#»

Hence dN =

T 4nE a-s sin?0)¥ ‘ @)
The magnetic intensity is given by
=- |c x E|
= EBsiné,
and substituting for E its value from (3),
e (1- B’)Bsme @

47 (1 gsin*0)t
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Comparison of these expressions with (1) and (2), section 14,
shows that the external field of an electron moving with con-
stant velocity is the same as that of an equal charge located at
its center. It follows from symmetry that the resultant force
on the electron due to its own field is zero. Hence the dynamical
assumption requires that the impressed force shall be zero as well.

20. Constant acceleration. Consider an electron each point of
which moves with an acceleration which always has the same
value relative to that system, reciprocal to .S, in which this point
happens to be at rest at the instant considered. Let ¢ be the
value of this acceleration for the point O of the electron. Choose
axes 80 that ¢ is along the X axis. Then (27), section 6, gives
for the acceleration f of this point relative to § at any time

F=¢-AHk ®

Integrating, the velocity of O relative to S is found to be
given by ot
(4

B=——, )
20
1+ 3
and the displacement by

z=§{\‘l+%.— } )

Consider a neighboring point P of the electron such that OP
is parallel to the X axis and equal to dA when O is at rest in S.
Then, since O and P have constant accelerations relative to the
systems, reciprocal to S, in which they happen to be at rest at
the instant considered, the principle of relativity requires that
the length OP as measured by an observer in any system recip-
rocal to S when O is at rest in that system shall be the same as
the length OP as measured by an observer in S when O is at

rest in S. Hence 55 _ AV1i—g ®
is the distance OP as measured in § when O has the velocity Be.

Now, when O is at rest in S, P may have a velocity du in
the X direction. But the principle of relativity requires that du

™~



THE DYNAMICAL EQUATION OF AN ELECTRON 47

shall be the same relative to any other system, reciprocal to S,
at the instant when O happens to be at rest in that system.
Hence, adding to d\ the difference between the displacements
of P and O in the time ¢,

<>_P=dx+”’;’;”{1—~/1-ﬂ=}+ﬁ% ©

is found to be the distance OP as measured in S when O has
the velocity Be.
Equating coefficients of like powers of 8 in the identical
expressions (8) and (9), it is seen that
dp =0,
__ ¢
dp = 3
The first of these equations shows that when one point of the
electron 18 at rest in S, every other point v8 likewise at rest. Inte-
grating the second, é
0

%’
14+

¢= 10

where ¢, is the acceleration of 0. This equation shows that points
on the forward side of the electron have smaller accelerations
than those on the rear. Such a difference is obviously necessary
in order to produce the progressive contraction of the electron
required by the principle of relativity as its velocity relative
to § increases.

Obviously, the relations just obtained between the velocities
and accelerations of points of the electron under consider-
ation apply equally well to points of the field of Fig. 8, p. 37.
Hence any one of the level surfaces of this field, such as that
upon which the point P lies, may be considered to constitute
the surface of the electron. As the charge is distributed entirely
on this surface, it is necessary, in order that the external field
should be the same as that due to an equal charge at O, that
the density of charge should be everywhere equal to the electric
intensity just outside this surface.
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If e is the electron’s charge, and E, the strength of the external
field, the impressed force is .
K,=c¢E,. (€8))

In Fig. 8, @ is the geometrical center of the electron and a
its radius. The electric intensity &, at its surface due to an
equal charge at O is given by

e 1

E,= 4 wa’k® (1+ B cos a)* ’ a
ﬁ
where B = ——.cz=_..— ’
oa
1+ a

¢, being the acceleration of the point O. As the field due to the
electron vanishes everywhere within its interior, the resultant
force K, on this charged particle due to its own field is

K,=3 f E?cosado,

where do is an element of the surface. Substituting for % its
value in terms of a and integrating,

x __ _€b ’ ¢, a’ ;
K,= 6 wac® 1+ & s

The point on the axis of symmetry of the electron through
which a perpendicular plane would divide its surface into parts
having equal charges, will be called the center of charge. If ¢
is the acceleration of this point,

d=b,\1+ L.

Hence K,=— a $. - (14

6 mac?

The rest mass m is defined by

e2

mEﬁ'rrac2 )
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Hence, as the dynamical assumption requires that

K, +K,=0,
it follows that the acceleration of the center of charge is deter-
mined by . ¢E, = mf 15)

at the instant that the electron is at rest in S.

Consider an electron which has the type of motion under
discussion, and which is at rest in S’ at the instant considered.
Let the acceleration f' of the center of charge make an angle
with the direction of $”s velocity relative to S. Then, dropping
the subscript, ¢E' = mf'.

Substituting in each of the component equﬁtions the values
of E/, E}, E! from (1), (2), (3), section 10, and those of f,
Vs Jo from (27), (28), (29), section 6, it is found that

eE, = mk'f,, 16)
e {E, + %(v x H),} = mkf,, an
e{E, + %(v x H);} = mkf. as)

As the electromagnetic force in S is defined by
K= e{E +:-:-(v X H)},
it is seen to be necessary to distinguish between the longitudinal
mmass m, = mk’, a9
m, = mk. ' (20)

and the transverse mass

Both masses increase with the velocity, becoming infinite as
the velocity of light is approached. In terms of the transverse
mass the dynamical equation may be written in the compact form

=2 (mo), (1)
where K is the impressed force.
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21. General case. Consider an electron a point P of which
is at rest in § at the time 0. Denote by f, , etc. the acceleration,
rate of change of acceleration, etc. of this point. Choose axes
so that the X axis has the direction of f. Then if @ is a neigh-
boring point of the electron whose codrdinates relative to P are
dz, dy, dz at the time 0, the values of these coordinates at the
time dt will be

dz, dz+( —Zdz +.ajdy+%dz>dt

Y gy s %o gy L Ve )a
+2(8zdz+@dy+azdz dete -

and similar expressions for dy, and dz. But, as f.=f,

f’=0’f;=0’ 27¢3
dx,:dxy’l—f—’;g—t—
= 17 40
—dx(1—2e,dt ),
dy, = dy,
dz,= dz.

Equating coefficients of like powers of dt and dz, dy, dz in
the equivalent expressions for dz,, dy,, dz,, it is found that

dv, v, v, _

a—x‘—@—az P =etc. =0

of, o |
5;=—?’ (22)
o _ o _ . _ |

Prink il whl

Hence the velocity is not a function of the coordinates, and when
one point of the electron is at rest in S, all other points are also
at rest. Moreover, the y and z components of the acceleration
are not functions of the coordinates, and the z component is a
function of z only.

Before proceeding further, it is convenient to distinguish
between the orders of possible factors which may appear in the
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dynamical equation of the electron. If ¢ denotes the radius of
the electron, it will be considered that

B is of the first order,
fa

I is of the second order,

]
id;‘- is of the third order,

4
ﬁ- is of the fourth order, and

04

..
fj‘? is of the fifth order.

The dynamical equation to be obtained will be carried through
the fifth order as thus defined.
As before, the impressed force on the electron is
K =¢E. (23)
The next step is to evaluate the reaction on the electron of
its own field. Let the origin be located at a point O on the
surface of the electron, and for the purposes of the following
analysis let the orientation of the axes relative to f be arbitrary.
Then if P is another point on the surface of the electron whose
coordinates relative to O are z, y, 2, equation (15), section 16,
gives for the force exerted by a charge de at O on a charge de at P

-ilgg-m+§s.y ‘e )
—%'rx<1—gy-m+§8-m.- .>+§8,(1—2y-m. )

Integration of this expression with respect to de, will give the
force exerted on the rest of the electron by the charge de at O.
Finally, on integrating with respect to de, the X component of
the force on the electron due to the reaction of its own field
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will be obtained. In performing these integrations, the charge
on the electron may be considered to be uniformly distributed
over its surface, for, even under the conditions assumed in the
last section, reference to (12) shows that the divergence from
uniformity there implied leads to no term of less than sixth
order which does not vanish upon integration. Moreover, it is
unnecessary to take into account the variation of f from point
to point of the electron, since (22) shows that the only term
involved of less than sixth order vanishes when the integration
is performed. A fortior: the variations of the derivatives of f are
negligible.

Omitting from the integrand all terms which vanish on inte-
gration, (21) leads to the expression

_1 R SAN zé_1&< _f)
K’z‘ﬁ[fd“d"‘ 2(r2r<1+r2>+3c” B\
1 fort 2 }
S (u-a2)
Since

.2‘2 2m+l 2
ffr’"dedel= z;ff?wdedel =
eﬂ 2

e - eza .. e2a2 ece
- eeey (25
s 6 wcsf’ 9 rc‘f’+ 18 wc® owenr (29
and similar expressions hold for the y and z components. Hence

the dynamical assumption leads to the vector equation

2 2 - 52 2,2
¢ e a v a2
¢E, = f

_ _ 26)
6 mac? (0 f+ 9wt 18 #c® (26

K, =—

6 rac?

Consider an electron which is momentarily at rest in S’
Then, dropping the subscript,

eE' = ¢ f— ¢ -
© 6 mac’ 6 mc® 9wt 18 wc®
Equations (27), (28), (29), section 6, give
fe=Ff,
Sy =FKf,
S =Ff.

o' e2a nc' 02a2 ceece

fr ...
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Differentiating (24), (25), (26), section 6, once, twice, and
thrice, with respect to ¢/, and then placing V' equal to zero, it

is found that

Fi=#f+3kepL,
fi=#,+ 3 pepL,

fl=rf+ 3Ic‘f-p'—§;

1=k, + terms of sixth and higher orders,
j;’ = k‘.f'+ .oy
1=k 4
Fim ki
:}:: ks.fy-*- .o ey
:f.‘;, = ks:f.‘;-’— .o,

Substituting in each component of the dynamical equation
these values of f], f!, f!, and their derivatives, as well as the

zY

values of E!, E/, E!, from (1), (2), (8), section 10, the dynam-
ical equation of an electron for a system relative to which it
has a velocity v is found to have the following components:

eﬁkﬂ -Icﬂ
eE, = Brad Jo— f-pf. -

et . ak®.. 'kt - °
6 'rrc“f’+ 9 wc‘jx_ 18 wcs‘f; e DN

e‘.‘k&

1 ek
R e L A

e . fak® . ea’kt ...
_67rc°‘f"+91rc‘f:'— 187ty

e {b+ Lx B} =g fm

etal® a’kt .
6 7rcsj 9 et j‘ 18 7rcf'f' B (29)
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These equations show that it is necessary to distinguish
between the coefficients of the longitudinal and transverse
components of the acceleration and of each of its derivatives.
All the coefficients approach infinity as the velocity of the
electron approaches that of light, and the series cease to
converge.

Including all terms not higher than the third order, the
dynamical equation of an electron may be put in the form

K=mf—nf..., 30)
where KEe{E'-{-%(V X H)}
is the impressed force, and \
"= mac’
e2
"=l

22. Rigid body. Consider an element of volume dr of a
material body large enough to contain a vast number of positive
and negative electrons, but small compared to the total volume
of the body. A rigid body will be defined as one all such
elements of which maintain the same relative configuration and,
on the average, the same internal constitution with respect to
the system in which the body is momentarily at rest, whatever
external conditions the body may be subject to.

Consider a rigid body momentarily at rest in system S
Equations (27), (28), (29) give for the dynamical equation of
an electron in this body

1 e e
e{E+;(va)}_mf—6—f~-, (81)

e’

through the third order, which is as far as the analysis will be
carried in this section.

The electric and magnetic intensities appearing in this expres-
sion may be separated into the intensities E, and H, due to the
impressed field, and the intensities E, and H, due to the fields



THE DYNAMICAL EQUATION OF AN ELECTRON 55

of the other electrons in the rigid body. For the latter, equa-
tions (13) and (14), section 16, give

ek 3 1 1 2
e O L DR A LRR

where the summation extends over all the electrons except the
one under consideration.

Suppose now that there is no external field and that the
rigid body is permanently at rest in S. Symmetry requires that
as many electrons in any element of volume dr shall have a
given velocity or acceleration in one direction due to the internal
motion as in any other direction. This same condition must be
satisfied in the presence of an impressed field, for the internal
constitution of a rigid body is independent, by definition, of
the external conditions to which it may be subject.

To return to the case of a rigid body momentarily at rest in
S in the presence of an impressed field, let f, and f, be the
acceleration and rate of change of acceleration of the body as
a whole, and v,, f, and f'o the velocity, acceleration, and rate of
change of acceleration of an electron of the body due to the
internal motion. Summing up over all the electrons,

ee 1 .
Bt (s (Fof -
';: Eevo X H = 0,
and therefore

Ee)E {6m’2 El_zﬁ}f‘

Ty

- {6 e 2"*’ tone Z%}i ceny(82)

where the double summation is for all values of both 7 and j .
such that

LR
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Consider a rigid body at rest in S. Then, dropping the
subscript e, :

(Ze)E'={61?2£ 67022 }
{6 Frd 20 G Eeef}f'

Substituting for E' its value in terms of E and H, and for f'
and f' their values in terms of f a.nd f, the dynamlcal equation
of a rigid body takes the form

Ze){E+ SvxH}= {6-”22@ 6qrc=2 }
—{m Zef+ m%e‘ej}f e (33)

The first term in the brace multiplying f is the sum of the
masses of the electrons composing the rigid body, while the
second term is the sum of the mutual masses of these electrons.
While the mass of an electron must be positive, the mutual
mass of two may be positive or negative according as they have
like or unlike signs. Hence the mass of a rigid body is greater
the more electrons there are of the same sign. The same is true
of the coefficient of the rate of change of acceleration. In fact
this coefficient vanishes if the body is uncharged.

Denoting by K the impressed force, and by m and n the con-
stant coefficients of f and f respectively, the dynamical equation
of a rigid body takes the form

K=mf—nf.... (39

A conductor carrying a current may be considered, in so far
as the expressions arrived at in this section are concerned, as one
rigid body through which another is passing. As the electrons
carrying the current are all of the same sign, their mutual masses
are positive, and the mass of the current is greater than the sum
of the masses of the individual electrons which constitute it.

23. Experimental determination of charge and mass of electron.
Consider a stream of negative electrons from the cathode of a
discharge tube travelling at right angles to the lines of force of
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mutually perpendicular electric and magnetic fields. The electro-
magnetic force on each electron is given by

K=e{E+1VXH}‘
1 (4
Hence if ;va:-—E,

this force will vanish, and

v=—2¢0
1

By adjusting crossed electric and magnetic fields so as to
produce no deflection in a beam of cathode rays, J. J. Thomson
has found the velocity of these charged particles to be about
one-tenth that of light.

If, now, the magnetic field be suppressed,

K =¢E,
and to a first approximation
mf = eE.
If the rays suffer a deflection d in travelling a distance s
2
through this field, fe 2:’; :

and the ratio of charge to mass is given in terms of measurable
quantities by the expression

e _ 2E ‘z;’z. (85)

m

Similarly, if the electric field be suppressed, the value of the
ratio of charge to mass may be obtained from the deflection
suffered in traversing a magnetic field. In this case

e 2dve

m H§ (6
By these methods it is found that

i =1.77 (10) eVix 37 -

for the negative electron.
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Determinations of this ratio for beta rays moving with veloci-
ties only slightly less than the velocity of light verify the theo-
retical expression (20) for the increase of transverse mass with
velocity.

In order to measure ¢ and hence m other experimental
methods are necessary. Suppose an electron to be attached to
a minute oil drop situated between the horizontal plates of a par-
allel plate condenser. If the electric field is adjusted so that the
oil drop remains at rest, its weight w is balanced by the force
eE. Now if the drop is allowed to fall freely through the sur-
rounding gas, its radius may be calculated from its rate of fall
by Stokes’ law. From the radius and density of the oil w may
be determined and hence ¢ computed. In this way the electronic
charge has been found by Millikan to be

e=4.77 (10)~*V4 x, (88)
and, combining this with (87), the mass of the negative electron
is found to be m=9.0 (10)~*gm,, (39)

which is about one eighteen-hundredth of the mass of a hydro-
gen atom. Hence the radius of the negative electron is

a=1.88 (10)"cm.

Since the positive electron has not yet been isolated, it has
been impossible to measure its mass and radius, although there
are reasons for supposing that it has a much greater mass and
consequently a much smaller radius than the negative electron.



CHAPTER V
EQUATIONS OF THE ELECTROMAGNETIC FIELD

24. Divergence equations. The field due to a point charge is
completely specified by any two of the three vector functions*of
position in space and time, E, H, and c. In the case of a com-
plex field, E and H are the resultants of the electric and mag-
netic intensities respectively of the component simple fields, but
¢ must be given for each elementary field. Hence in order to
avoid explicit reference to the components of a complex field,
as well as in order to give the field equations as great a sym-
metry as possible, the field is usually described in terms of
E and H.

To find the divergence of the electric intensity due to any
given distribution of point charges consider a small region dr
surrounded by the closed surface o. By Gauss’ theorem,

V-Edr= f E-do.

Let letters with strokes over them refer to component fields.

Then E,= I 4

do?

for each element of charge.

Therefore V-Edr= z f dN.

Now the part of this sum due to charges outside the region
dr vanishes, while the part due to the charge de inside this
region becomes equal to de itself. Hence

V-E =p, @

where p is the density of charge at the point in question.
59
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In section 18 it was shown thét
H=V xa.
Therefore V-H=0 &)

identically, or the divergence of the magnetic intensity is every-
where zero.

25. Vector fields. Any vector function of position in space
‘and time may be represented by moving lines such as have
been employed to give a geometrical significance to the electric
intensity. These lines will be continuous at all points where
the divergence of the vector function vanishes, as is obvious
from the discussion contained in the preceding section. At
other points lines will either begin or end. Equation (1) shows
that the resultant electric intensity may be represented by con-
tinuous lines at all points except those at which electricity is
present, while equation (2) shows that the resultant magnetic
intensity may be represented everywhere by continuous lines.

Let V be a vector function whose magnitude and direction
are represented by lines all points of which are moving with
velocities of the same magnitude ¢. If dNV tubes of these lines
(a tube being a bundle of M lines) pass through a small surface
ds, with normal parallel to the X axis, -

For the moment assume that no new lines are formed. Then
in a time d¢, ¥, may suffer a change due to three causes. In
the first place, the number of lines passing through ds, may
increase by virtue of the fact that the lines whose motion will
bring them through this surface at the end of the time dt are
more closely packed than those passing through ds, originally.
The increase in 7, due to this cause is

{ +—c}dt

Secondly, the velocity assomated with the new lines may have
a different direction from that of the old. This will produce a
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crowding of the lines during the time dt and account for a
change in ¥, equal to

—{V,—'+V —} dt. )

Finally, if ¢ differs in direction at neighboring points on the
same line, there will ensue a twisting of the lines which will
produce in ¥, an increase

{ =+V } dt
in the time dt.
Therefore the total rate of change of 7, is

aa—’t’ =— cVV,—V,Vec+VeVe,,

or %g +cV-V=Vx{cxV}. (©))

Now consider the increase in V due to the formation of
new lines. Attention will be confined to those fields whose
lines terminate only on sources. Let
the points O ete. in Fig. 9 be each the
source of a new line emitted in the direc-
tion of the arrows, the line sources them-
selves having a velocity v to the right. W
The number of tube sources per unit
volume is obviously

Vv, o Q
and as the direction of the lines at P

is QP, the increase in the value of
V at P in a time dt due to the formation of new lines is

(c—=v)V-Vdt,

F1a. 9

Therefore the complete expression for the rate of change of

V becomes o
—+vV~V=Vx{ch}. @
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If the field under consideration is due to the superposition
of a number of simple fields of the character of those just dis-

cussed, ov _ —
o +2,9V-V=vx 3 {exV}, &)

where the stroked letters refer to the component fields. More-
over, since a number of point sources emitting lines in different
directions may be considered to coalesce, this equation applies
equally well to point sources from which lines diverge in all
directions. It is to be noted that equation (5) is a consequence
of the properties of three-dimensional space, and nothing more.
26. Curl equations. Replace V by E in (5). Substituting
from (1), the second term of the left-hand member becomes

S7.
Since, however, only one element of charge may occupy one
point in space at a given time, the summation sign may be

dropped.
" The right-hand side of (5) becomes

v x E{EExf},

where Ty is the velocity of a moving element of an electric line
of force of one of the component fields.

But = % EEEX E.
. ' 1.
Hence VxH= - {E + pv}. ()

If V is replaced by H in (5), it follows from (2) that the
second term of the left-hand member vanishes. Hence the

equation becomes 1 — 1.
szz{iax H}=;H, )

where the velocity Ty of a moving element of a magnetic line
of force of one of the component fields does not in general have
the same direction as the velocity ¢z of a moving element of an
electric line of force of the same field.



EQUATIONS OF ELECTROMAGNETIC FIELD 63

But if a is eliminated from the equations obtained by curling
(20) and differentiating (21) with respect to the time, in section 18,

it is found that 1.
Hence, as (7) and (8) apply equally well to simple or com-
plex fields, comparison of these two equations shows that for a

single elementary field _ -
8 " E=—%c,x H+ Vv, @)
a relation which is complementary to the definition
H= 1;53 x E. 10)
Therefore E=— %CH X (Cg % E)+ Vv,
_ TooC 1_ — -
or E(l - ETE> E ? CE‘V'\PcE"'V\P‘ 5 o
= [ 1_ —
or H(l-—-%’)=zc3xv\p. :

Hence it follows that Ty is parallel to Tz when, and only
when, V4 is parallel to g

27. Electrodynamic equations. Equations (1), (2), (6), (8)
specify ‘the electromagnetic field in terms of the distribution
of density of charge p and velocity v. If (2), section 18, is
written as an equation instead of ‘as a definition in order to
signify that it includes the dynamical assumption immediately
following it, this equation suffices to determine the effect of
an electromagnetic field upon matter. These five equations
contain the whole of electrodynamics. Collected they are:

VE=p, dl) V-E=O, 13)
VxE=—%ﬁ, (12 VxH=li+pm}, (19
F=p{E+l-;(va)}: a5)

where F is the electromagnetic force per unit volume.
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28. Energy relations. From (12) and (14) it follows that
HYVXE—EVXxH=-— % (EE+ H-f[)— %pE-v.

But HVXE—-EVxH=V-(E x H),
and pE«v =Fe-v.

Hence %{% (E*+ H’)}+ cV*(E x H) + Fev=0.

Integrating over any arbitrarily chosen portion of space, and
applying Gauss’ theorem to the second term,

%f%(E’+H’)d’r+cf(EXH)'d‘-"""fF"’d":"O’ (16)

where dr is an element of volume, and do an element of the
bounding surface having the direction of the outward drawn
normal. The third term of this expression measures the rate at
which work is done by the electromagnetic field on the matter
contained in the region selected. Hence, if the principle of con-
servation of energy is to hold, the first two terms must be
interpreted as the rate at which the energy of the field increases
plus the rate at which energy escapes through the surface
bounding the field.

Suppose E and H to be zero everywhere on this surface.
Then no energy escapes from the region enclosed, and the rate
at which work is done on the electromagnetic field equals the
rate at which its energy increases. But the integrand of the
second term of (16) is everywhere zero. Hence the rate of
increase of energy of the field must be represented by the first
term, the form of which suggests that '

w=} (B HY)
is to be considered as the electromagnetic energy per unit volume.

The second term of (16), then, must be interpreted as the out-
ward flux of energy through the surface enveloping the field, and
its form suggests that s=c(E x H)

is to be considered as the flow of energy per unit cross section
per unit time.
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29. Electromagnetic waves in space. For empty space the
electromagnetic equations take the form

V-E=0, an V-H=0, 19)
VxE=—%fI, (18) Vxn_% (20)

. To eliminate H, curl (18) and differentiate (20) with respect

to the time. Thus
: 1

VxVxE=—;Vxﬁ
1 e
-5k
But VX VXE=VV.E—-V.VE
' =—V.VE.
Therefore V-VE — %E =0, @n
and, similarly, V-VH - :-,ii 0. (22)

- These are equations of waves moving with velocity c.
Consider a plane wave advancing along the X axis. Then E
is a function of z and ¢ only, and (21) reduces to
FE_10E
@A S
The solution of this equation for the case of a wave moving
in the positive X direction is

'E:t:f(x - Ct)’
E'= g(x— ct),
E,=h(z—ct).

Hence it follows from (17) that E, is a constant, and since
the present discussion is concerned only with the variable part
of the field, this constant may be taken as zero.
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Therefore E.=0, (249)
E=g@—d), (25)
E,= h(z—ct). (26)

From (18) it follows that
H,=0,
H = ck (z — ct),
H=—cf (z—a),

and hence H =0, @n
H=—h(z—ct), (28
H,=g(z— ct), (292

except for a possible constant of integration. Therefore the
variable parts of £ and H have the same magnitude at any
point and time, and lie in a plane at right angles to the direc-
tion of propagation.

The cosine of the angle between E and H is proportional to

EH,+ EH,=—gh+gh
=0,

showing that E and H are at right angles in the wave front.
The preceding section gave the flow of energy as

¢(E x H)y=c(g*+ F)i
- c{% (B+ I-I”’)} i (30)

showing that the propagation of energy is along the X axis and
that the entire energy of the wave front is advancing with
the velocity of light. It follows from this equation that the
direction of propagation of the wave is at right angles to the
plane of E and H in the sense of

E x H.
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Consider a spherical wave having its center at the origin. In
this case E is a function of the radius vector » and ¢ only,
and (21) reduces to

E 20E 10°E
wtie am " G

of which the solution is

=150z e,
r
1
E,=;g(r + ct),
1
E¢= ; h(r + L‘t).

As in the case of the plane wave, it may be shown that
E and H are mutually perpendicular, and at right angles to the
direction of propagation. If r, is a unit vector along the out-
ward drawn normal to the wave front, the flow of energy is

g+
A

¢(ExH)=ztc¢

- c{% (E*+ H")} I, (32)

showing that the amount of energy passing through unit cross
section in unit time varies inversely with the square of the dis-
tance from the source, and that the entire energy of the wave
front is advancing with the velocity of light.

30. Radiation pressure. Substituting in'(15) the values of p
and pv from (11) and (14), the electromagnetic force per unit
volume takes the form

F = V-EE + (V x H) x H—%é x H,
and making use of (12) and (13),

— 10 %(Ex H)+ V-EE+ V-HH+(V X E) x E+(V x H) x H.
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The total electromagnetic force on the matter in any given

region 1is
K= f Fdr
= K‘l’+ Kw
where K,E—}- i(ExH)d'r
e/ dt
1d ,
= —’;, a Sd‘l‘, (33)

and K,Ef{V-EE +V-HH+(V x E)x E+(V x H) x H} d.
Now let J = f {V-EE+(V x E)x E} dr
= f {V'EE + E-VE — } V(E-E)}dr

- f {V-(EE)— } V(E-E)} dr.

By Gauss’ theorem,

f V-(EE)dr = f EE-do,

and f V(E-E)dr=i f V-(GE-E)dr + etc.

=i f E-Ei-do + etc.

= f E-Edo.
Therefore J= f EE«do — } f E-Edo,
and K, is given entirely by the surface integral
K,= f (EE + HH)ydo — } f (EE+HH)dsr (34)

taken over the surface bounding the chosen region.
Consider a region which is the seat of either stationary radia-
tion or undamped periodic vibrations. In the former case the
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average K, is zero, and in the latter case K, vanishes provided
the value of the force desired is the average over a whole num-
ber of periods. Hence the force on the matter within the region
is given entirely by K,.

Consider a box (Fig. 10) with perfectly reflecting walls con-
taining homogeneous isotropic radiation. Describe the pill-box
shaped surface 4BCD about an element do of that part of the
wall of the box which is perpendicular to the X axis. The only

Y

Fic. 10

matter within this closed surface is the portion MN of the wall
of the box. In so far as the effect of the radiation inside the
box is concerned, the average force on MN is given entirely by
K,, which reduces to an integral over BC, since 4D lies com-
pletely outside the field, and the sides 4B, CD of the pill-box
have a negligible area. Hence if X, Y,, Z, are the forces per
unit area on the surface MN of the box due to the pressure of
the radiation inside it, parallel respectively to the X, Y, Z axes,

X=3(E;— B - B+ {(H;— Hj—H), (35)

Y,=EE,+ HH, (36)

Z~EE+HH, 37
and similar expressions hold for the parts of the wall perpen-
dicular to the ¥ and Z axes.
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As the radiation is assumed homogeneous and isotropic,

where the stroke denotes the average value of the quantity over
which it is placed. Similar relations hold for the components

of the magnetic intensity.
Therefore
=—%u (38)
Y,=2,=0, 39
showing that the radiation
within the box exerts a
normal stress on the walls
equal to one third of the
electromagnetic energy per
unit volume.
Consider, now, a box
similar in shape to that of
Fig. 10 with perfectly con-

ducting walls. Instead of being filled with homogeneous radia-
tion, suppose the box to contain a train of undamped plane
waves which are incident on the surface MN (Fig. 11) at the

angle 6.

Referred to the XY, Z, axes in the figure, equations (24) to

(29) give for the incident wave
E, =0,
E,=g,(z— ct),
E, = h(z— ct),

and H, =0,

H, =—h(z— ct),

¥,

H, =g,z et).
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Therefore the components of the electric and magnetic
intensities along the XYZ axes due to the incident wave
alone, are

E =g, sinb,
E,=—g, cosb,
E,= hl,

H, =—h, sin6,
H, = h, cosé,
H,=g,

where the argument of the arbitrary g, and % functions is
z —ct=—2zcosd— ysinf— ct.
Similarly, for the reflected wave,
E,=g,sinb,
E,=g,cosé,
E=h,
H,=—h,siné,
H,=— h,cosb,
H=g,
where the argument of the g, and %, functions is
z,—ct=zcosf — ysinf—ct.
At the reflecting surface the arguments of the functions with
different subscripts become the same. Moreover, as this surface

is perfectly conducting, the tangential component of the resultant
electric intensity must vanish. Therefore

—g,co80+g, cosf=0,

h1+ h2= 0,
or gl=gQEg’
h1=— h2§ h.

Hence it follows from (30) that all the energy brought up
in the incident wave is carried away in the reflected wave.
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Therefore a perfectly conducting surface is a perfect reflector of
electromagnetic waves.
The resultant electric and magnetic intensities just to the

right of MN are E = 2gsiné, (405
E=0, - 41)
E,=0, 42)
H.=0, 43)
H,=2hcosb, 44
H,=2g. (45)

Hence, as there is no field to the left of MN, this surface
must have a charge 2g sin@ per unit area. If g is a simple
harmonic function, this charge will be alternately positive and
negative. ’ :

Substituting the values (40) to (45) in the expressions (35),
(36), (87) for the components of the stress on the reflecting
surface, X,=— 2(g*+ h?) cos?d, (46)

Y,=2,=0, "
showing that the stréss due to the radiation is a pressure nor-

mal to the surface.
Now, the energy density of the incident wave is

U= g’ + h’,
and therefore X,=— 2u, cos’d. (48
Let I stand for the energy striking the reflecting surface per
unit area per unit time. Then

I=w,ccosb,

and X,=—27 cose. (49)

Suppose that instead of containing a single train of plane
waves, the box is filled with plane waves travelling in all direc-
tions at random ; that is, with a homogeneous isotropic radiation.
Then if u is the energy density of the radiation, the energy per
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unit volume of that portion of the radiation which is incident
on MN between the angles 6 and 6+ d@ is

U= %u sin 60d6,

and ‘ X =— 22111 cos’d

=— f‘_"cos’()sin()de
0
=—=1u
agreeing with (38).

31. Electromagnetic momentum. Consider a closed surface
ABCD (Fig. 12), surrounding some matter. Let the field inside
this surface be in a stationary state. Then the force on the matter
contained is given by K, integrated over the bounding surface,
the outward-drawn F
normal being posi-
tive. Denote by 4..M lp
K,, the part of K,
obtained by inte-
grating over BC. >do
Then the force K
on the matter under
consideration, due g pu
to the electromag-
" neticfieldextending
through the surface Fic. 12
BC, isequal to K, .

Let BCEF be a closed surface which surrounds no matter,
such that the radiation field inside it comes into contact with the
surface only between B and C. Then the value of K, integrated
over this surface is equal to —K,‘, since the outward-drawn
normal to BC in this case has the opposite direction to that for
ABCD. Hence —K, +K,=0,

as no matter is present inside the surface. Therefore
K -K.=0, (50)

E
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where K is the force exerted by the electromagnetic field in
BCEF on the matter in ABCD. Hence, if the law of action and
reaction is to hold, — K, must be interpreted as the force exerted
by the matter in 4BCD on the electromagnetic field in BCEF.
The form of this expression, namely,

!
1

suggests that 25

is to be considered as the momentum per unit volume of the
electromagnetic field. '

Suppose the matter in ABCD to consist of a rigid body with
a plane, perfectly reflecting surface just to the left of BC. Let
a limited train of plane waves be incident on this surface at
the angle 6. Reference to (80) shows that the electromagnetic
momentum per unit volume of the incident radiation is

l1,_%, (51)

aé ¢

Therefore the momentum of the radiation striking each unit
area of the surface in unit time is », cosf, and the momentum
of the reflected radiation is of the same magnitude. The force
exerted by each unit area of the reflecting surface on the train
of waves is equal to the vector increase in momentum per unit
time ; that is, — K,= 2u, cos’d

along the outward-drawn normal. Consequently the stress
exerted by the radiation on this surface is

K =— 2u cos’d
=—2 g cos 6,
agreeing with (48) and (49).
32. Four-dimensional representation. In four-dimensional space
two mutually perpendicular lines may be drawn at right angles
to an element of surface. Consequently the vector properties

of such an element cannot be expressed by the direction of its
normal. In fact, it is necessary to distinguish between directed
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linear elements, directed surface elements, and directed volume
elements. The first have as components their projections on
the four codrdinate axes, the second their projections on the
six coordinate planes, and the third their projections on the four
coordinate planoids. Hence the first and third are often called
four-vectors, and the second six-vectors. Here they will be called
vectors of the first, second, and third orders respectively.

Let a, b, and ¢ be three vectors of the first order. Then the
vector product a X b is a directed surface having for its area the
parallelogram of which a and b are the sides, and so directed that

bxa=—axbh.

Similarly, a X b x ¢ is a directed volume having for its magni-
tude that of the parallelepiped whose edges are &, b, and ¢. In
the case of any cross product, interchange of two adjacent vectors
changes the sign of the product.

Let k, k,, k,, k, be unit vectors of the first order parallel
respectively to the X, ¥, Z, L axes. Then

szE k’ x k‘
is a unit vector of the second order in the YZ codrdinate plane, and

k, .=k xk Xk

=k, xk

is a unit vector of the third order in the ZLX codrdinate
planoid. From their definition it is obvious that two adjacent
subscripts of a unit vector of the second or third order may be
interchanged provided the sign of the vector is changed.

The dot product of two unit vectors is defined as follows.
If the vector of lower order has a subscript which the other
lacks, the dot product vanishes. Otherwise, the product is the
unit vector remaining after like digits in the subscript of each
vector have been brought to the end and cancelled. Thus

kxaq.’kxz: kcn'ku
= kq. ;

k,k,= 1;

k, k,=0.
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Thus, while the order of the cross product of two unit vectors
is equal to the sum of their orders, the order of the dot product
is equal to the difference of the orders of the two factors.

Consider the vector of the second order

M=Mk,+ MK, +M K, + Mk + Mk, + Mk, (52)

The dual M* of M is defined as a vector of the same order

with components such that
MY, =M,

op?

where mnop is formed from zyzl by an even number of inter-
changes of adjacent letters. Hence

M*= Mk, + Mk, + Mk, + M K+ M & + Mk, (53)
If P= Pk, + Ek,+ Fk,+ Fk,, (54)
the rule for forming the dot product shows that
P-M=( +BM,,— BM,+ BM)k,
+(—EM, +PM +EM)k,
+ (P,M., —BM,  +ERM)EK,
+(-BM,—~EM,—PM, k. (55

n

In four-dimensional analys1s the vector operator

g 0
0= kla ’8g/+k‘6z a0

plays much the same part as V in three dimensions.
Consider the product
oM, oM, oM

M= Oy OMer | 0¥
OM—< +3 az+al)k*

oy
+<—-a-g—f1 "'_af"'—L)k'
+< a%_%ﬁ +azd>k'
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Remembering that ! = ict, equatlons (11) and (14) of the
electromagnetic field may be written '

oH, _oH, #E, 1

dy oz a _ef®
_om, L om, @B, 1.
oz 0z o ¢’
a.ill E —_ aZE‘ = 1 P,
or 0oy ol z
0E, OE, 0E, .
x ety z _
iz oy T o P

Ty T e T al
HE HE, OH
— 3 —_— —_—V =
o % ' al 0,
HE, = E oH
Oy =
2 | oy +5 =0
_9%H, oH, 0H, 0
o 63/ 0z )

Comparison with (52), (63), (54), and (566) shows that if
M=Hk,+ sz”+ Hy— iBX, ~ ik, — iEk,,

and ——pvzkl+ pvyk,+ pvk,+zp

the two scalar equations (11) and (138) and the two vector equa-
tions (12) and (14) of the electromagnetic field are expressed
by the pair of four-dimensional vector equations

O-M=P, 1G1p)
O M= 0. (58)
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The equation (15), which gives the effect of an electro-
magnetic field on matter, and the energy equation may be written
together in the form

1 1
F = +va,H, - ;pv,Hv+ pE,
F’-——1 v, H, +11’H+E
v cP "2 cP 2 1T PLyy
1 1

F = ;pvzHy - ;pvaI +pE,
¢ du 1 . 1 . 1 .
Pl zpv,cE,+;pv,zEv+ ;pz,zlf?,.

Hence, if ~ F=FXk +Fk,+Fk+ % ‘;—'t‘k.,

these relations are contained in the four-dimensional vector

equation F=PM. (59)
The scalar operator
_ 63 a‘) 32 a’
is known as the d’Alembertian. In four-dimensional analysis
the wave equations (21) and (22) are expressed by

O-OM=0. (60)

In addition to those just mentioned, many other electrody-
namic relations may be expressed in far more compact form in
terms of four-dimensional vector analysis than in the analysis of
three dimensions.



CHAPTER VI
RADIATION

33. Radiation from a single electron. Let v and f be the
electron’s velocity and acceleration respectively at the time ¢
Take its position at this time as origin, and choose axes so that

 the X axis is parallel to vand the XY plane contains f. Describe
about the origin a sphere of radius r, large compared with the
radius of the electron. Consider an element do of the surface
of this sphere such that the radius vector drawn to it from the
origin makes an angle @ with the X axis. The energy emitted
from the electron during an interval of time d¢ in the direction
of this radius vector will reach the surface of the sphere at a
time ¢+ r/¢, and will take a time

(1—Bcosb)dt

to pass through this surface. Hence, as the flow of energy per
unit cross section per unit time is equal to

’ s=c(E x H),
the energy emitted by the electron during the time dt is given
by the inte
el Rdt =fs-do' (1—-Bcos)dt
taken over the surface of the sphere. Therefore the rate of
radiation from the electron is

R =f8od¢r (1—Bcosb). ¢))
As = 1 ¢ X E,
¢
it follows that s = E% — E«<E.

The sphere over which the surface integral is to be taken

may be made as large. as desired. Consequently the terms in
9
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equation (14), section 12, for the electric intensity which involve
the inverse square of the radius vector may be made so small
compared with the term involving the inverse first power of
this quantity that they may be neglected. As the term involv-
ing the inverse first power defines a vector perpendicular to c,

s=E"c

{ 28f.  _(1-B) Lo
161r’r’c a- Bcosﬂ)‘ (A—Bcosf)*  (1—Bcosf)

where f, is the component of the electron’s acceleration along the
radius vector. For small values of 8 this becomes approximately

eff2 sin’e
~ 16 7wt

where @ is the angle which the radius vector makes with f.
Hence the radiation vanishes in the direction of f and is maxi-
mum at right angles to this direction.

To find the rate of total radiation from the electron, integral
(1) must be evaluated. Substituting the expression for s given

by (2)»
J.fdo
{fzf r»(1- Bco&ﬁ)8 ﬂf r*(1—Bcosd)*

Sido .
_(1 ﬁz) f 2
(1—Bcosh)®
2 2 2 2
= _C;a L st Jy +f; z}
6rd L(A-8) A-8)

If f is the acceleration of the electron at the time ¢ relative .
to the system in which it is, at that instant, momentarily at
rest, reference to equations (27), (28), (29), section 6, shows that

7’2
E= 6 e €

34. Radiation from a group of electrons. In the calculations
of this section it will be assumed that the greatest distance
between two electrons of the group is small compared with the
wave length of the radiation emitted, and that the velocity of
the fastest moving electron of the group is small compared with

C))
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that of light. If a sphere of radius », large compared with the
dimensions of the group, is described about some point in the
group as center, the energy passing through the surface of this
sphere in unit time is found as in the last article to be

R= f s-do, b)
where s= E% .
=c EE °E;,

the summation being taken over the » electrons in the group
_e{fpcc—cM}

NOW .' 1 'n_rc (6)
at a great distance from the ith electron.
Therefore | =1 b Z{c“f ofj— f;ecfoc}. )

Suppose that the sum of the components of the accelerations
in any direction is equal to that in the opposite direction.
Then s vanishes for all directions of ¢. Hence a ring of any
number of evenly spaced electrons which are rotating about a
common axis with constant speed, will emit no appreciable
radiation.

To get the total radiation from the group of electrons, sub-
stitute (7) in (5) and integrate. In this way it is found that

e2
6 cs;fi fj‘ (8)
35. Energy of a moving electron. The dynamical equation of
an electron has been shown to be-

K = mf — uf,
through terms of the third order, where

R =
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The work done on the electron in a time ¢ by the impressed
‘field is

W= f K.vdt
=m f fovdt —n f fovdt
1

&
=3 m (03 — o) — n(Vof, — Vo) + mffzdt’ ®

where the subscript 1 denotes the value of the quantity to
which it is attached at the beginning of the time ¢ and the sub-
script 2 the value of this quantity at the end of this time.
The first term in this expression represents the kinetic energy
of the electron, the second term its acceleration energy, and the
third term the energy which has been radiated. The first two
terms are reversible in the sense that the energy which they
represent may be recovered when the electron returns to its
original state of motion, but the third is irreversible.

Consider an electron which starts from rest and acquires a
velocity v by virtue of a very small acceleration continued for
a very long time. By making the derivatives of the accelera-
tion small enough, the second and succeeding terms of the
dynamical equation may be made as small as desired com-
pared with the first term. Hence, if account is taken of the
variation of mass with velocity, this equation is given to any
desired degree of accuracy by

=™
a- gyt

and the work done is expressed as closely as may be desired by

K

- "’{ 1 _1}. (10)
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In this case the energy radiated is inappreciable, so all
the energy acquired by the electron may be recovered if
it is brought back to its original state of rest by a similar
process.

Now the energy of an electron moving with constant velocity
v is given by 1
U=3 f (E*+ HY)dr.

Inside the electron’s surface both E and H vanish, while out-
side the surface the values of these intensities are given by
equations (3) and (4), section 19. Hence if the angle which the
radius vector makes with the direction of the electron’s velocity
is denoted by 6,

_ A= 1+ B%sin’@ .

U= 6w ffr’(l—B’ S0y’ sin 6d6dr,
aVl1l-p2

V1—B*sin%f

where r goes from

to infinity, and 6 from 0 to .

2 S
Integrating, U = e_{ S N - .32}’ ai)

2 1 1. ,/—= 38
U—Uo=m{-—1-_—/82—1\/l—ﬁ —Z}' a2

The discrepancy between equations (10) and (12) arises from
the fact that in the calculation from which the former was
obtained no account was taken of the work done against the
electron’s field in connection with the progressive contraction
which takes place as its velocity increases. In order to deter-
mine the work done in this process of contraction, it is neces-
sary to evaluate the stress K on each unit area of the electron’s
surface. From the expressions for the electric and magnetic
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intensities given in section 19 it follows that the electromag-
netic force per unit volume just outside the surface is given by
F,=pE, Y
_ pe. (1—pB*"cosb :
T dmr (1 gsin*0)}
F,= p {E,~ BH}
_ pe (1-BYH’sinéd
T 4w’ (1 grsinig)}
where the X axis is taken in the
direction of the electron’s velocity.
If a« (Fig. 13) is the angle which
the normal to the surface makes
with the X axis,

tan @ = (1—B*) tané. Fie. 13

D el
-’

Therefore the tangential component F, of F is given by
F,=—F,sina+F, cosa
=0, 13
and the normal component F, by
F,=F,cosa+F, sina
_ P (1—B")Veos*d +(1—p**sin’

T 4 p? 1-g sin’a)* aH
Now the charge per unit area is easily shown to be
— 2

P=mr V1—B5in%6 Vcos*d + (1 — B%)?sin*0 .
Therefore, as the electromagnetic force just inside the electron’s

surface is zero, 1
K=3(F,+0)
_ ez (1 _32)2
T 827t (1—B%sin’6)?
e‘.’

= 32 rlat ‘ (16)
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As this stress has the nature of a hydrostatic tension inde-
pendent of the velocity of the electron, Poincaré has been led
to suggest that the electron may be held together by an equal
and opposite hydrostatic pressure of an extra,-electrodynamlcal
character.

As the electron’s velocity increases from 0 to v, its volume
decreases from

$ ma®
to $ma’ v1-83
Therefore the work done against the stress of (16) is
¢ 1 1 ——
=_2 J-o_ =V 2y,
W= 6ma \4 4 1-# an

Adding this to (10), (12) is obtained.

36. Diffraction of X Rays. Equation (3) of section 33 shows
that in general an electron will radiate energy whenever it is
accelerated. However irregular its motion may be, the radiation
emitted may be analyzed by Fourier's method into a series
of superimposed simple harmonic waves. Waves of a length
from 4000 A to 8000 A constitute light of the visible spectrum,
whereas waves of a length of the order of 1 A are called X rays.
These rays have great penetrating power, and all attempts to
diffract them were unsuccessful until Laue suggested in 1913
that the distances between adjacent atoms in crystals were of
such a magnitude as to make these substances suitable natural
gratings for the diffraction of X rays. The following theory is
presented very nearly in the form given originally by Laue.

Let a,, a,, a, be vectors having the lengths and directions
of the edges of an elementary parallelepiped of the crystal.
Then if z, y, 2z are the codrdinates of an atom relative to an
origin O at the center of the crystal,

z=ma,,+ na,,+ pa,,
y = ma, ,+ na,,+ pa, , 18)
z=ma,,+ na,.+ pas,,
where m, n, p are positive or negative integers. Let r be the
distance of this atom from the observer at P, and B the distance



86 AN INTRODUCTION TO ELECTRODYNAMICS

of the center of the crystal O from P. These two distances
will, in general, be so nearly equal that they may be considered
the same, except in so far as the phase of the radiation is
concerned. o

Let the incident radiation be plane, the direction cosines of
the wave normal being denoted by @, 8, v, Then if the intra-
atomic vibrators are all alike, the displacement of any vibrator
at a time ¢ will be given by the real part of

27
i (¥ + VB, + 2o — €t)
e ,

and the field strength at P due to this displacement by

ﬁ 8‘27" (r+zay+ yBy+ 2v,—ct)

R 9
since the electric intensity at a distance from the atom great
compared with the wave length varies directly as the acceler-
ation of the vibrator, which is proportional to its displacement,
and inversely as the distance. The coefficient 4 is a function
of the direction cosines @, B, v, of the line OP, as well as of
@y, By Yy

The total electric intensity at P, then, is equal to

.2
EAexT"(rnaowswm-ct)

kR
2T —c iz—" x(@)—a o — z(yo—
:_T_%e.A(R x)ze - {#(@ = @)+ 5 (Bo — B) + 2 (v v)}, a9
since r=R— (za+yB +2y)
is a sufficiently close approximation for the exponent.
9 :
Put FE'x_w{a'u(“o— @)+ a,, (By—B)+ a,.(%— N}
27
G= ~ {85, (@ — @) + 5, (By— B) + 3. (%, — M)}
_2m
H= {asx(ao_q)"'aw(ﬂo—ﬁ)"'asz(')'o_')')}-
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Then, .by virtue of (18),

E= 4 ei¥(k'“)222ee<mr+na+pn)
A t—(R-c‘)Z .mi‘zemazelpil (20)

Hence the intensity of the diffracted radiation at P is maxi-
mum for those directions for which

2 eimlv', 2 einG’ 2 eipil
m " P
have their greatest absolute values.
Suppose the illuminated portion of the crystal to be bounded
by planes parallel to the sides of the elementary parallelepiped.

Then m varies from — M to + M, » from — N to + N, and p from
— P to 4 P, where M, N, P are positive integers. Hence
Eem.r 14 &F 4 *F 4 . . .  MF
+ e~ tF+ e—2|P+ + e—HiF
=1+ 2{cos F+cos 2F+ - - . + cos MF}.

The absolute value of this expression is obviously a maximum
when F=%2gm,
where ¢, is a positive integer.

Therefore the conditions for maximum intensity are

a,,@ + alvﬁ +a.y= 2,.%, + alvBo + 2. 91)"

0,0+ a,, B+ 4y = 4,0, + a,, B, + a7, £ A, (21)

a; @ + aayB + a;,y = a3, + aayleo + a3, 7, £ ¢ '
where g, and g, are also positive integers.

The left-hand member of each of these equations is propor-
tional to the cosine of the angle between one of the sides of
the elementary parallelepiped and the diffracted ray, while the
right-hand side is equal to an integral number of wave lengths
plus a quantity proportional to the cosine of the angle between
the same side of this parallelepiped and the incident ray. So
for each value of g, ¢,, and ¢, these equations define three cones
in @, B, and . The loci of maximum intensity will be the
lines of intersection of these cones.
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Consider the simple case where a,, a,, and a, are mutually
perpendicular and equal. Choose axes parallel to the sides of
the elementary parallelepiped, and consider an incident wave
advancing along the X axis. Then the con- -
ditions contained in (21) reduce to

a@=a + g\, }
aB =+ g, 22
ay ==+ gA\.

If a screen is placed at right angles to the
X axis on the side of the crystal opposite
to the source, the intensity of the trans-
mitted radiation will be greatest along the
traces on the screen of the cones defined
by (22). The trace on the screen of the
cone defined by the first of these equations
is a circle, while those defined by the second and third are
hyperbolee. The greatest intensity of all will be produced at
those points on the screen where two, or better three, of these
plane curves intersect.

Consider radiation incident on the crystal under consideration
at a small glancing angle 6 (Fig. 14). If the wave normal is

in the XY plane, @, = sin,
B, = cosé,
Y= 0,
"and ae=asind + g\,
aB =acosb + g,
ay =+ 93 .
Consider the reflected radiation. For this
@ =— giné,
B =cosb,
v=0,
and 2asinf=x g, (23)
2.=0

for reinforcement.

Pl



CHAPTER VII
ELECTROMAGNETIC FIELDS IN MATERIAL MEDIA

37. Fundamental equations. Consider a medium composed of
positive and negative electrons. Experimental observation of
the field in such a medium is limited, by the coarseness of avail-
able instruments, to the investigation of the average values of
the electric and magnetic intensities. These average values are
defined in the following way. Divide the medium up into fixed
elements of volume T so large that each contains very many
electrons, but yet so small that no measuring instrument which
may be used to investigate the field can detect a variation of
electrical properties from one point to another in any one of
these elements. Then the average value at any point of a
scalar ¢ which depends upon the state of the electrons in the

medium is defined by _ 1
¢E; $dr,

where the integral is taken through the volume element 7.
Similarly, the average value of a vector V is defined by

VE—I- Vdr.
T

In the absence of an impressed field, each volume element of
the medium will be supposed to contain equal numbers of posi-
tive and negative electrons moving about in a fortuitous manner.
Consequently the average charge and average current will
vanish. In the presence of a field, however, the electric inten-
sity may cause electrons of opposite sign to be displaced in
opposite directions, with the result that the average density of
charge may no longer be everywhere zero. In the same way,
the magnetic intensity may orient intra-atomic rings of electrons

in such a way as to produce an average current different from
89
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zero. Analytical difficulties involved in discontinuities in the

medium may be avoided by imagining every charged surface to be

replaced by a region of finite but very small thickness, in which

p varies rapidly but continuously from one value to another.
As the elements of volume 7 are fixed,

;Z 1 a¢d
s 40}
4>,

?;f 3t¢’

etc., and similarly for the vector function V.

To find the average value of p, consider a volume element =
of dimensions Az, Ay, Az. In the time dt¢ the charge entering 7
through those sides of this volume element which are perpen-
dicular to the X axis is

prAyhadt — {7, + o () As | Ayt
- 5‘1.(,%,) AzAyAzdt.

Therefore, taking the six sides of = into account,
0

7P =~V
Put Q= | pvdt.
Then p=—V-Q, Q
and pv=0. )

Hence, for a material medium, the equations of the electro-

magnetic field given in section 26 take the following form:

V-(E+Q)=0, 6)) V-H=0, ®)
1 *
e

E+0). ®

trll°

VxE=—-H, (4) vxH=

| -t
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The method used in deriving these equations has not been
such as to limit their applicability to media which are homo-
geneous or isotropic. They apply to all media made up of
electrons whatever their nature. Moreover, as two media in con-
- tact may be considered equivalent to a single non-homogeneous
medium containing a thin transition layer in which the prop-
erties of the medium change rapidly but continuously, these
equations may be applied in the region of contact.

In order to determine the relation between Q on the one
hand and E and H on the other, it is necessary to consider the
motion of individual electrons in the medium. These electrons
consist of two classes: (a) the free electrons, which move among
the atoms, and (b) the bound electrons, whose displacements are
limited by the boundaries of the atoms to which they belong.

As an electron is of very small dimensions compared with an
atom, the number of times a free electron collides with another
electron is negligible compared with the number of times it col-
lides with an atom. Hence if an electron strikes against an atom
v times a second, its average drift velocity is given by

f

V=§—;,

where f is the average acceleration produced by the intensities
E, and H, due to all charges other than that on the electron
under consideration. Now

mf=e{E,+%v x H,}

approximately, and therefore if v is small compared to ¢ the
current due to the free electrons is given by

—  Né =
PV = S E,, )
where NV is the number of free electrons per unit volume.
Describe a sphere of volume 1/N around the electron under
consideration. Then if E, is the average electric intensity within
this sphere due to this electron,

E,=E-E,




92 AN INTRODUCTION TO ELECTRODYNAMICS
In general E, is small compared to the other quantities
involved in this equation. Hence (7) may be written

Né*
Y =
PY=3

my
=CE, (8
where C is the conductivity.

A bound electron is supposed to be held in the atom to
which it belongs by a force of restitution proportional to its
displacement R from the center of the atom. In addition, it
is supposed to be subject to a frictional resistance proportional
to its velocity. Hence, if E, is the electric intensity and H,
the magnetic intensity due to all causes external to the atom
under consideration, the equation of motion of a bound electron
insidé this atom is

mR +aR + BR =e{El+%l.2 X Hl},

where those terms in the dynamical reaction other than the one
due to the mass have been omitted as negligible.

Put 2l=

9

Slm I

k=

Then the equation of motion becomes

ﬁ+2lﬁ+k:R=7%{El+%ﬁxH,}. O]
The displacement R satisfying this equation consists of the
solution R, of the complementary equation
R+ 21R,+ kiR, = — R, x H, (10)
added to a particular solution R, of the original equation.

Obviously R, represents the part of the displacement pro-
duced by the electric field E,, while R, is the part due to the
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natural motions of the electrons inside the atom as modified by
the presence of the magnetic field H,. Since I.{, is in general
negligible compared to ¢, the particular solution may be obtained
to a sufficient degree of accuracy from the equation

ii,+2zﬁ,+kgn,=7%n,. oan

Now if there are N atoms per unit volume, and each of these
contains n electrons, the current produced by the bound electrons
is given by —_ —_—
PV = NneR,+NneRo.

While ¢R, may vary greatly from one electron to the next,
it is evident that eR, will have more or less the direction of
the average electric intensity. Consequently the contribution to

=,
due to the entrance of new electrons into the volume element 7
through which the average is being taken will be negligible com-

pared to the part.of this quantity dependent upon the electrons
already inside this region. Therefore

eR,':; eR,,
and PV = NneR,+ NneR,. 12)
If the electrons inside the atom are subject to different re-
storing and resisting forces, this equation must be replaced by

- NZn,.Zﬁ;+ Nzn‘Tﬁ,, (13)

where n; denotes the number of electrons of type ¢ inside
each atom.
The electric polarization, or electric moment per unit volume, is

defined as. P= NueR,,

or, if each atom contains more than one type of electron,

P= NZn,Eﬁ;.
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Hence (13) may be written
=B+ N neR,. 14
i

At first sight it would seem as though el.!o must always vanish.
In a magnetic substance, however, this is not necessarily the
case, as will now be shown.

Suppose that for certain types of electrons the damping
coefficient ! in equation (10) is zero, and that the motion is
constrained to a plane. Then motion in a circle with con-
stant frequency is a solution of this equation. A substance
each of whose atoms contains one or more rings of electrons
" revolving about their respective axes is said to be magnetic.
The electrons in each ring will be assumed to be evenly spaced,
and to have a constant angular velocity @ about the axis
of the ring so long as the external magnetic field remains
unchanged.

In the presence of a magnetic field each electron will be
subject to a force which will tend, in general, to change the
radius R of the ring and the frequency of revolution. More-
over, the ring as a whole will be acted on by a torque which
will tend to orient it. The force on an electron resulting from
the magnetic intensity H, due to all causes external to the
atom: in which it lies is given by

K=§(val)
e
=;(QXRO)X H‘,

as R, is measured from the center of the ring. The torque about
this point is 6 =2Ro < K

e
=-2R/HQXR,

for the entire ring. The form of this expression shows that G
is perpendicular to Q. Denote by ¢ the angle which R, makes
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with the plane of @ and H,. Then if 6 is the angle between Q
and H,, the component @, of the torque parallel to the plane
of these two vectors is

e

G== > BJQH, sinf sin ¢ cos
=0,
and the component G, at right angles to this plane is

G, = % 3, B}QH, sin6 cos’d

R$ .
= n; c" QH siné,
where n is the number of electrons in the ring. The quantity
_ neR; |
M= 2¢
is called the magnetic moment of the ring. Therefore the torque
is given by G=MxH, (15)

Denote by dN the number of atoms per unit volume in which
the axes of the rings of electrons have a given direction. Then
the intensity of magmetization, or magnetic

moment per unit volume, is defined as »
I=NM
= f MdN, N 4
6"
or, if each atom contains more than one 0 P Q% X
a2 ~,
ring, ~
I=NY'M, P
2 f Fio. 16

Consider a ring of electrons whose center is located on the
X axis (Fig. 15) at a distance p to the right of the origin. Denote
by 6 the angle which M makes with the X axis, and by ¢ the
angle which the MX plane makes with the XY plane. It is
desired to find the value of Zeﬁ

0
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due to electrons in this ring which lie to the right of the ¥Z
coordinate plane. Evidently this sum will differ from zero only
if the ring is cut by this plane; that is, if )
—R sinf < p <R siné.
Moreover, it is obvious that this sum will have no component
in the X direction. If y is the angle between R, and the inter-
section QP of the plane of the ring with the MX plane,

(Eeﬁo)y= sin ¢‘2eiio cosyr

% sin qbfcos Yydyr
. — cos-1[ P
integrated from cos ( E, sin 0)
(P ).
to cos ( Ro pr 0)

. 2 2 — n?
Therefore (zeRo)y= neQd \/R" S}n 0—p sin ¢.

ar sin 6

Summing up over a prism of unit cross section extending from
p=— R sind
to p=R sinb,
the y component of the current to the right of the YZ plane due to
all rings which are cut by a unit area of this plane is found to be

> (Eel.io),-‘—- neQ) ("sin de\/RO’ sin?6 — p*dp

T sin @

= f Msin 0 sin pdN

‘=fM,dN

=cl,.

Similarly, 3. (Zek,),=—cI,

and, in general, 2 (zel.!o)= clxn, 16)
where n is a unit vector normal to the surface on the positive
side of which the current is to be computed.
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Consider a volume element 7 of dimensions Az, Ay, Az The
current contained in it on account of those rings of electrons
" which are cut by the sides perpendicular to the X axis is

el xiAyAz — c<l+a—IAx> X iAyAz
= c{— —=+k —l}AszAz.

Therefore, taking the six suies of T into account,

NneR,= ¢V x1, an
or, if each atom contains more than one ring of electrons,
N Zn,.el.lo= cVxL 18)

Hence the entire current due to bound electrons is given by
pv=P+cVxL (19)
Consider a medium in which there may exist currents due

both to conduction by free electrons and to the displacement
of bound electrons. Then it follows from (8) and (19) that

Q= C§+P+chI (20)
and equation (6) becomes
Vx(H- 1)=;(E+i’+cE). (1)
In accord with the usual practice put
D=E+P,
and B=H.

The vector D is called the electric displacement, and B the
magnetic induction. The average magnetic intensity due to all
causes other than the intensity of magnetization I of the medium
is usually denoted by H. As this letter has been used with
another meaning in the preceding pages, this quantity will be
designated by L. Then, omitting strokes, equation (6) gives

V x L.—.%(ﬁ +P + CE),

and comparison with (21) shows that
L=B-1,
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since L vanishes with B and I. As B is the total average mag-
netic intensity, I represents the average magnetic intensity
produced by the magnetization of the medium. Equation (21)
may now be written

VxL= %(1’) +CE). 22)

Returning to (20), it follows that
V:Q=CV-E+V-P,
and V-Q=C [ V-Edt +V-P, (23)

as Q and P vanish everywhere when no external field is present.
Therefore, omitting strokes, equation (3) becomes

V-D=—C f V-Edt. 24)

Hence the equations of the electromagnetic field in a medium
containing both free and bound electrons take the form

V-D=—C f V-Edt, (25) V-B=0, @n
1

VxE=—;l§, (26) VxL=%(l')+0E), (28)
when the field is investigated from the macroscopic point of view.
As already noted, these equations apply whether or not the
medium is homogeneous or isotropic, and they are valid in the
region of contact of two media.

If, in addition to the processes of conduction and displace-
ment, charges p and currents pv are produced by convection
through the medium, the electromagnetic equations for this most

general case assume the form

V.D=— f V-Edt+p, (29) V-B=0, (€2))
1

Vx,E=—;l§, (30) Vx L=%(l.)+CE+pv). (32)
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38. Specific inductive capacity. In order to obtain the relation
between P and E, and hence between D and E, it is necessary to
solve equation (11) of the preceding section. The following dis-
cussion will be confined to the case of simple harmonic fields,
a steady field being considered as a simple harmonic field of
zero frequency. The electric and magnetic intensities are given
by the real parts of the following complex quantities,

E=E; ™,

H= Hoe' ot

d .
and % =—1l0.

Hence the solution of (11) is

£
%=Et4%mmﬁ’
Nné
and P is given by P=E;?:n—2;m—lﬁl. (33)

To find the relation between E, and E, describe about the
center O (Fig. 16) of each atom a sphere of volume 1/N. Then
if E, is the average electric intensity
within one of these spheres due to the

electrons which it contains,

E =E-E_.

Evidently E, has the direction of
the displacement R, caused by the ex-
ternal field E,, and its magnitude is
given approximately by Fic. 16

e .
E= Nrff T30 0 (2 r? sin 8d@dr),
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where 6 is the angle which the radius vector makes with R,.
As r goes from zero to

f 0, S?
Rp{—- cos 0 + + | cos 0+E_“‘_1}’

4

it follows that E,=—} NneR,, 39
Therefore E,=E+}P, ’
Nn é
and (33) becomes P= ]ca—_mg—-/'_nél._wli, (35)
_ 1. &
where BP=k—>Nn—.
3 m
Nn 12
m
* Put P —o— 2l
Then, omitting strokes,
P=¢E, . (86)
and D=(1+¢)E. D)

The specific inductive capacity « is defined as the ratio of the
displacement D to the electric intensity E. Hence
k=1+¢€
e2
Nn—
m

=1+ (38)

o' — 2wl
or, if each atom contains more than one type of electron,

k=1 +ze..

—14+8% o 39
N m ki —o’— 240l 9

In the case of a steady field,
' Nne

k=1 + W (40)
if there is only one kind of electron in each atom, and
Nne” _ €1

(1)

3k5‘n1-—x+2.
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The number of atoms per unit volume varies directly with
the density d. Therefore i1

i +2) (42)

should be a constant. This relation has been verified for many
gases. ,

The force of restitution in a polarized atom may be easily
evaluated if n positive and n negative electrons are assumed
to be distributed uniformly over equal and coincident spheres.
If the center of one of these spheres remains stationary, while
that of the other is displaced a distance R,, the force drawing
them together is approximately

ne <i wR? ne)
47R} v
1 n%? .
=35

where v is the volume of a sphere. Hence the force on each

electron is 1 ned
3y P
1 ne

and k}=5—.
° 3wm

Substituting in (41), it is found that

c—1
k+2

is the portion of the volume under consideration which is
actually occupied by the atoms. If an estimate of N has been
obtained from other sources, the atomic volume v may be com-
puted. In this way the radius of an atom is found to be of
the order of (10)-* em.

39. Magnetic permeability. It has been pointed outin section 37
that a magnetic field tends both to change the radius and the
frequency of revolution of the ring of electrons inside a magnetic
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atom, and to orient this ring. To determine the magnitude of
the first effect, integrate both sides of the equation

V><E,=—%1!t1

over the surface bounded by a ring of electrons. Then
fo El-dc=—%fﬁ‘-dc.

But by Stokes’ theorem

VX E do= [ Eqd\,
Jyxweae=f

where the right-hand member is integrated around the ring.
Hence the work done on the ring when the magnetic field is
increased by dH, is nell

=— M-dH,. (44)

Now the increase in the kinetic and potential energies of the
electrons in the ring is

dU = nm (vdv + k;R,dR,)

=nmRQ (R dQ + 2 QdR,),
as k= Q.
But M= ”;’:f' (BAQ + 2 QdR).
Therefore av = 2mQe dM. 45)

Equating this to the expression for the rate at which work
is done on the ring, .



MATERIAL MEDIA 103

Let a be the angle which M makes with dH,. If initially the
axes of as many atomic rings pointed in one direction as in any
other, dI has the direction of dH, and is given in magnitude by

dI=fndos adN

eMdH, .
=1 ‘ad N
2mﬂc‘fcos ad

NeM =
- H.. 47
6 mﬂcd ! S
To find the relation between dH, and dH, describe about the
center of each atom a sphere of volume 1/N. Then if H, is the
average magnetic intensity within one of these spheres due to
the electrons which it contains,

H -H-H,

But it has been shown that the average magnetic intensity H,
due to rings of electrons is equal to the intensity of magneti-
zation I. Therefore as

B=H,
it follows that H,=B-I
=L,
NeM
d =— L.
an dl 6 mQde d (48)

The permeability p of the medium is defined as the ratio of
the magnetic induction B to the external field strength L.
Therefore in the case under consideration

NeM
Pl e (49

The effect under discussion is known as diamagnetism, and is
characterized by a value of the permeability less than unity.
It is shown in the greatest degree by bismuth.

The tendency of a magnetic field to orient a ring of electrons
will be considered next. The torque on such a ring has already
been shown to be G=MxH,
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Let H be the average total magnetic intensity inside a sphere
of volume 1/N described about the center of the atom under
consideration, and let H, be the average magnetic intensity
within this sphere due to the electrons which it contains. Then

H=H-H,
where H, evidently has the direction of M. Therefore
G=MxH. (50)

Consider a ring of electrons which is rotated from a position
" where M is perpendicular to H to one where M makes an angle
with H. The potential energy acquired is

U=MH | sinada

=—MH cosa
=— M-H. (51)

Therefore if the tendency of the magnetic field to bring all
the atomic rings into line is opposed only by the disorganizing
effect of thermal agitation, the number of rings per unit volume
whose axes make angles with H between « and a + da is given by

U
dN=14e * sinada
MHAcosa
=}4e ¥ sinade,

where 7' is the absolute temperature and } 27 the average
kinetic energy associated with each degree of freedom.
Integrating, the constant 4 is found to be given by

Nz
A=
sinhz’
where z= —]’—[E
$iT
MB

_mo



MATERIAL MEDIA 105

The magnetic moment per unit volume has the direction of B
and is given in magnitude by

I= f McosadN
cosh z
—NM { z} 52)

sinh z

As B increases I does also, approaching the saturation value
NM for large values of the field. For small fields

.1
IS NMz
2 NM*?
=-""_B,
9 kT 3
showing that the intensity of magnetization is proportional to
the strength of the field. The permeability is given by

2
p= 1+2NM

9 kT &H

The effect under discussion is known as paramagnetism, and
is characterized by a value of the permeability greater than
unity. It is shown to an exceptional degree by iron, in which
the effect is given the special name of ferromagnetism. The theory
given above cannot be considered as more than very roughly
approximate to the facts, especially as it gives no explana-
tion of hysteresis, or the lagging of the magnetization behind
the field.

40. Energy relations. From (30) and (82) it follows that

LVXE—EVXL=-— lc(E-l') + L-ﬁ)— % (CE*+ pE+v).

But LVXE—E.VxL=V.(E x L).
Hence

d 1 (/cF’+ p.L’)} + cV+(E x L)+ CE*+ pE-v= 0.
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Integrating over any arbitrarily chosen portion of space, and
applying Gauss’ theorem to the second term,

0% f % (cE*+-uL?)dr+e [ (ExL)do+(CE+pE-v)dr=0. (55)

The third term of this expression measures the rate at which
work is done by the electromagnetic field on the conduction
and convection currents in the medium. Following the line of
reasoning pursued in section 28, the conclusion is reached that
the first term represents the rate of increase of energy of the
field, and the second the flux of energy through the surface
enveloping the field. The forms of these expressions suggest that

u=1(kE*+ pL?)

is to be considered as the electromagnetic energy per unit
volume, and —¢(ExL)

as the flow of energy per unit cross section per unit time.

41. Metallic conductivity. In developing the electron theory
of metallic conduction, the atoms in a metal may be treated as
immobile compared with the electrons. Conduction currents of
electricity in a metal will be supposed to be due entirely to the
drift velocity of the free electrons in the direction of an im-
pressed electric field, and heat conduction will be attributed to
the transport of energy by these electrons from one atom to
another in the direction of the temperature gradient.

If » is the average velocity of an electron due to thermal
agitation, and ! the average path described between collisions
with atoms, the number of times an electron strikes an atom
per second is given by

w
It
~| 8
.

and equation (8) for the conduction current becomes

Ne¥l
2mu

CE= E.
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As dmu® =3 kT,‘
the electrical conductivity is given by
Ne'lu
C=%rr" (56

In determining the heat conductivity, take the X axis in the
direction of the temperature gradient. Consider an electron
which is just about to collide with an atom at a distance z from
the origin. This atom will have, on the average, a kinetic energy

§A7,
but the electron will have the energy

8 orT
-2-Ic(T— alcos 0)

of the last atom with which it collided, where @ is the angle
which the electron’s path makes with the X axis. During the
collision the electron will come into thermal equilibrium with
the atom, giving to the latter an amount of energy equal to

3. 0oT

- 6.
2 k 92 ! cos

Now the number of electrons per unit volume whose paths
make angles between 6 and 6 + df with the X axis is

} N'sin 046,

and the number of these which pass through unit area at right
angles to the X axis in unit time is

3 Nu cos @ sin 9d6.
Hence the flux of energy is
&% 3 n1u®T (" oos?9 sin 046
oz 4 oz J,
1 orT

giving for the thermal conductivity
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The ratio of thermal to electrical conductivity,

2

. 3('5) 7, (58)
varies directly with the absolute temperature and is the same
for all metals at a given temperature. Its value for any tem-
perature depends only upon the universal constants & and e,
whose values may be determined from experiments having no
connection with the metallic conductor in question. The ratio
of the conductivities as thus computed is in fair agreement
with the ratio as determined directly by experiment.

In obtaining the expressions for the conductivities given
above, use has been made of the average velocity of thermal
agitation and the average length of path between successive
collisions. A more exact calculation gives a slightly different
numerical coefficient for the ratio, but one which shows rather
worse agreement with the experimental value of this quantity.

42. Reduction of the equations to engineering form. If free
charges and currents — either conduction or convection — are
present in a material medium, the equations (29) to (32),
section 37, of the electromagnetic field may be written in
the form

V-D=— f VJdi, (59) V-B=0, (61)
VXE=—1B  (60) vxL=1(b+7), ©2
where J is the current density; that is, the current per unit cross
section. Moreover, J=CE +pv, (63)
D=E+P
= kE, (64)
B=L+1

The quantities involved in these equations are measured in
Heaviside-Lorentz units. If the same quantities as measured
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in electromagnetic units are designated by letters with the sub-
script m, and as measured in electrostatic units by letters with
the subscript s, then

p=cVimp,=Vimp,

J=cVin),=Vin],
P=c¢VinP,=V4nP,
I=Virnln=cVinl,
D=cV4xD,=V4nD,

1 ¢
B=—B,=——B,,
\Z X Virx .
1 -1
E=——E_= E,
Vg " Vag °
L 1 L l_L

TVir ™ oVax ®
C=4n’C,=4=C,

Therefore, in electromagnetic units the field equations take
the form

V-D,=— f V. di, (66)  V-B,=0, (68)
VXE,=-B, 67) VxL,=47®,+],) (69
where J.=C.E.+p.V, (70)

1

D,= e E,+P,

K

=i AEm G
n= L+ 47l,
= uL,,. (72)
In electrostatic units these equations are

V.D,=p, (73) V.B,=0, (75)

VXE,=—B, (74 VxL,=4x(D,+]), (76)
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where the charge accumulated at any point has been denoted by

p! instead of
- f V.1, dt,
and J: = CnE3+ an’ (77)
1
D,= —E,+P,
K
= E E:’ (78)
1
B‘= ? L‘+ 4 71'1‘
= % L, 79

In practical applications of electrodynamics these equations
are generally made use of in integral form. For instance, con-
sider a small charge ¢ permanently at rest at the center of a
sphere of radius ». Integrating (73) throughout the region
enclosed by the spherical surface,

=e,
But fV-D,d'r =fD,'d0'

=4 TI'TQD,
by Gauss’ theorem. Hence
: .
D= &’
and, by virtue of (78), E,=K%- (80

Again, integrating (67) over a surface,

f V x Eyedo =— f B, ~do.
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' But, by Stokes’ theorem,

f VX E,do = f E,-d\,

where the line integral is taken along the boundary of the
surface. Therefore ]
f Ed\=— f B,+do, (81

which is the usual form of Faraday’s law of current induction.
Similarly, (69) leads to

f Lgod\=4m f (D, +1,)do,  (82)

which is the form in which Ampére’s law is generally expressed.



CHAPTER VIII
ELECTROMAGNETIC WAVES IN MATERIAL MEDIA

43. Isotropic non-conducting media. For wave lengths long
compared with atomic dimensions, the electromagnetic field is
specified by equations (25) to (28) of the last chapter. For
non-conducting media these take the form

V-D=0, ¢)) V-B=0, )
v x E=—l;]§, ) VxL=101'), @)
where D =«E,
B=uL.
Eliminating B as in section 29, it is found that
V.VE - — E 0, ®)
or, eliminating D, V-VL - — L 0. (O}

These are equations of a wave travellmg with velocity
c

The permeability of all substances is practically unity for
frequencies as great as that of light. Hence for light waves it

is permissible to write
P vt ()

Vi

V=

The index of refraction n of a medium is defined as the ratio
of the velocity of light #n vacuo to that in the medium.

Therefore n*=x, . ®
and, as was shown in section 38,
K—’1+N zk—z—-w 5wl 10

112
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In the case of a plane wave it is often convenient to make
use of the wave slowness S in place of the wave velocity V.
This quantity is defined as a vector having the direction of the
wave velocity but equal in magnitude to its reciprocal. Hence
the index of refraction may be defined as the ratio of the wave
slowness § in the medium to the wave slowness S, in vacuo.
The electric intensity in the case of a simple harmonic plane
wave advancing in a direction making angles a, 8, v with the
X, Y, Z axes, may be expressed in terms of the wave slowness
by the real part of E=E o6,
which is far more compact than the equivalent expression

D e
involving the wave velocity.
Equation (8) shows that the wave slowness is given by

8= 8,Vk, an

where « is in general complex. To show the significance of a
complex wave slowness, put

S=8'+1:8",
where S' and S" are real. Then
E= Eoe‘ wS”.r e-'u(S’-r—t)’ (1 2)

showing that the imaginary part of the wave slowness measures
the damping of the wave as it progresses into the medium,
whereas the real part determines the actual velocity of propa-
gation. The same statement applies to a complex index of
refraction. If

n=v(14+yx),
where v and y are real, it follows from (10) that
) = e n; (kb — o)
V2(1 X)_1+Nmz(k?_ma)2+4w‘zl‘a’ (13)

nwl;

, e
V’X=A Ez(k‘z _ w’)’—{- 1 wal.?. (14)
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For the portion of the spectrum to which these expressions
are to be applied it will be assumed that

B ol Nn‘g.
Then x<1,
_ f n, (k! — %)
and W=1+N_3 = o d o (15)

approximately. Consider the denominator
(= a?)+ 4}

of one of the terms in the right-hand member of this equation.
Except for the region where w is very nearly equal to %; the
second term of this denominator is negligible compared to the first.
W ithin this region the first is negligible compared to the second.
So if »* is plotted against »® in a region extending from o} to 7,
such that k, lies between o, and w, and £k, %, etc. lie outside
this range,

+ ete. (16)

P T
except in the neighborhood of k7, where

e . e
an; (ki —o" Nn,—

m
=1+ Tl +k’,_m,+etc. an

Plotting each term separately, the dotted curves of Fig. 17
are obtained. Adding these curves, the full line curve is found
to give the relation between »* and w®. The portion of the curve
from 4 to B corresponds to regular dispersion, the index of
refraction increasing as the frequency becomes greater, whereas
the part BC accounts for the anomalous dispersion observed in
the neighborhood of an absorption band. It must be remem-
bered that the index of refraction refers always to the phase
velocity of a train of waves. Hence the fact that this index
becomes less than unity on the short wave length side of an
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absorption band may not be adduced to show that an electro-
magnetic signal can be despatched with a velocity greater than
that of light tn vacuo. In fact Sommerfeld has shown that the

)2

B

1"” \\ i
booo— 1
bt "f\\ ,// ol
Fie. 17 =

forerunners of a limited train of waves travel with the same
velocity ¢ in all media and are undeviated when they pass from .
one medium into another.

44. Anisotropic non-conducting media. For wave lengths long
compared with atomic dimensions, the first four equations of the
electromagnetic field are the same as for isotropic media. The
relation between D and E, however, is different, as the atoms in a
body which is not isotropic must be supposed to exert different
restoring forces in different directions. Hence equation (36),
section 88, for the polarization must be replaced by the more

general relation P,=¢,E . +¢,E +e¢,FE,

1 x 1277y
and similar expressions for P, and P,. In the following dis-
cussion damping will be assumed negligible. Therefore the
coefficients of the components of E will be real, though func-
tions of the frequency of the radiation traversing the medium.
In vector notation P=y-E, 18)

where ¥ is the dyadic e di +ejj +e, ik

+ eﬁlji + 622jj + eﬁBjk
+ emki + e”kj + e“kk.
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If u denotes the energy per unit volume of the medium,
du = E«dP
=(e B, + ¢, E,+ ¢ E)AE,
+ (e B+ e E +¢,E)dE,
+ (e E. + ¢, ,E +¢,E)dE,.
Now the law of conservation of energy requires that this
expression shall be an exact differential. Therefore
€= €0
and the dyadic ¢ is self-conjugate. Hence by a proper choice
of axes ¥ may be put in the form

¥ =ei + 6,jj + ekk.

Now D=E+P
=1+vy-)E.
Put & = rji + «,jj + x Kk,
where k,=1+¢,
k,=1+¢,
k,=1+¢€,.
Then D=%E, a9

showing that the specific inductive capacity is a dyadic instead
of a scalar factor as in the case of an isotropic medium. For
D and E are not in general in the same direction in a medium
which is not isotropic. Eliminating B and D from equations (1),
(2), (8), (4), and (19), it is found that

V-VE-VV.E — %@—i& =0. (20)

Confining attention to plane waves, the electric intensity and
displacement are given by the real parts of

E=Egu®r-9,

and D = D¢l S T-9,
respectively.
Therefore dE =dr:(i0S) E — dtiwE.

But dE = dr*VE + dtE.
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Comparing, V=108,
and 5=
Hence (20) becomes
Sy@-E +SS‘E—S-SE=0. (¢2))

Multiplying by S-, it is seen that
S:D=0,

or the vector D is at right angles to the direction of propa-
gation of the wave. Moreover, equation (21) shows that D, E,
and S are in the same plane.

The magnetic intensity may be found from (2). This equation

gives SxE=SL,

showing that L is perpendicular to both S and E, and hence
to D. The vectors D and L lie in the wave front, although E
makes an angle with this plane. The flux of energy is given by

s=cExL,

which is a vector at right angles to E in the plane of D, E, and S.
Fig. 18 shows the relative directions of the vectors under
discussion. Since the flux of energy is not along the wave
normal, limited wave fronts will side-
step as they advance, as indicated in the
figure. A line drawn in the direction
of the flux of energy is known as a ray,
~and the velocity of propagation of energy
along this line as the ray velocity.
Consider an infinite number of plane >D
waves passing through the origin at the
time 0 in all directions, the vector D
having all directions in the wave front.
The envelope of these plane waves one second later is known
as the Fresnel wave surface. To find the equation of this sur-
face, it is necessary to obtain from (21) a relation involving
~ the wave slowness as the only unknown quantity; that is, an

Fie. 18 E
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equation between S, S,, and ¢ which is true for all possible

directions of E. Equation (21) may be written in the form
(8% +SS—S-SI):E, =0, (22)

where I is the idemfactor
ii + jj + kk.

The dyadic in the parentheses in (22) causes the vector E,
to vanish. Hence either its antecedents or consequents must be
coplanar. This dyadic may be written in the expanded form

{(Sie,— 8*—8i+85,8,j+ 8,8k}
+ {8, 81+ (Sik,—8*—8)j+ 8,8k}
+{8.8i+58,8,j + (S, — 8- §) k} k.

As the consequents are not coplanar, the antecedents must
be. Therefore the scalar triple product of the latter must vanish.
HORCO (S — 57+ 92) (530, — 5+ 57) (Siw,— 5"+ 5)

— 8383 (S, — 8+ S2) — 8282 (82K, — 8+ 82)

— 8282 (S, — S*+ 8 + 2828282 =0,
or, reducing, ‘
sz sz

1 x
tSh—st Se, — S

S 2
Sik,— S

0.

+

If I, m, n are the direction cosines of the wave normal, this

equation becomes

A m? n?

Vz_a2+ Va_ba+ Vz_cs=0’ (23)
where V7 is the wave velocity, and
1
az = S:"z’
1
b= 7
o"y
= —1— .

]
A



ELECTROMAGNETIC WAVES - 119

The equation of a plane wave advancing in the direction
specified by I, m, n is I+ my+nz=V 24)
one second after leaving the origin, where I, m, n satisfy the
condition Pymienizl. (25)

The Fresnel wave surface is the envelope of the family of
planes obtained by varying [, m, » in equation (24), subject to
the conditions specified in (23) and (25). This surface is most
easily found by differentiating (23), (24), and (25), and elimi-
nating I, m, n, and ¥ by means of the original equations. The
equations obtained by differentiating are

zdl + ydm + zdn = d¥, (26)
ldl +mdm +ndn=0, @n
ldl mdm ndn
A_atr_g g o 9
I m? n’
Whel'e - k= (V’— a’), + (Vg_ b’)ﬁ + (Vs_ 0’)’. (29)

Let —p and — ¢ be factors by which (27) and (28) respectively
may be multiplied so as to eliminate dl and dm when the three
equations are added together. As the other differentials are
independent of one another, the coefficient of each differential

in the sum must vanish, giving
. l 3
z=pl +g¢q Vi’

m
y=pm+9m 5 30)

z=pn + q Iﬂ%’ ) )
Multiplying equations (80) by I, m, n respectively, adding,

and making use of the original relations (23), (24), (25), it is

found that p=7. (32)
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Squaring and adding the two sides of equations (30),

r=p+ gk
the product term disappearing on account of (23). Combining
with (81) and (82) q=F—-VHV. (3%)
Substituting in (30) the values of p and ¢ just found,
V:(P?—-vHl vi(*-a’
z=VIi+ gf’—a’) = Iga_az)’
Lz VI x=Vl
o pe bl Cmpe .
y _ Vm y—Vm
P V-8 AT
z Vn _z—Wn
P— V- -2
V4 X 4
b
a
o % X
(@) ©®) : ©
Fic. 19
Multiplying these equations by z, y, zrespectively and adding, the
required equation  ,2 e 2
PatA ptp_a! (Y

of the Fresnel wave surface is obtained.
In discussing this surface, it will be considered that
<< A
The trace of the surface on the YZ coérdinate plane is
expressed by A
(ﬁ—a’)<§+z;—l>=0,
which is a circle inside an ellipse, as in Fig. 19(a). On the ZX

lane the trace is
P (f—b*)<§+’§_1>=o,
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which is a circle cutting an ellipse, as in Fig. 19(%). Finally,
the trace on the XY plane is given by

(r’—c’)(zz—:+;f1>= 0,

which is an ellipse inside a circle, as in Fig. 19 (¢).

One octant of the surface is represented in Fig. 20 (), and
a section through the point P is shown in 20(4). As D lies in
the plane of the wave normal and the ray, this vector must be

Y Y

©®)

Fic. 20

tangent to each of the elliptical traces, as indicated by arrows
in the combined figure. Consequently it must be perpendicular
to the planes of the circular traces.

The primary optic axes of a crystal are defined as those direc-
tions in which the wave velocity is independent of the state of
polarization, that is, the direction of D in the wave front. Hence
the perpendicular 0¢ to the tangent Q7 [Fig. 20 (a)] is one
of the primary axes. The other is also in the ZX plane, making
an equal angle with OX on the other side of the X axis. A
crystal which has two optic axes is known as diaxial. Obviously,
there can be no more than two such axes. Since the constants
which determine the intercepts of the Fresnel surface depend -
upon the three principal specific inductive capacities, which are
themselves functions of the wave length, the directions of the
optic axes of a biaxial crystal vary with the wave length.
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The secondary optic axes are defined as those directions in
which the ray velocity is independent of the state of polari-
zation. One secondary axis has the direction OP, the other
making an equal angle with OX on the other side of the X axis.

A uniazial crystal is one in which two of the quantities 4, b, ¢
are equal. If b and c are equal, the crystal is said to be positive
or prolate. The Fresnel wave surface is shown in Fig. 21 (a).

Y

@ Fi6. 21 ®

There is only one axis, and there is no longer any distinction
between primary and secondary axes. Moreover, the direction
of this axis is independent of the wave length.

If a and b are equal, the crystal is said to be negative or
oblate. The Fresnel wave surface for such a crystal is shown in
Fig. 21 ().

45. Reflection and refraction. Consider a train of plane waves
incident at an angle ¢, (Fig. 22) on a plane surface separating
two transparent isotropic media. The incident light will be
partly reflected and partly transmitted. Let 4, be the amplitude
of the electric vector in the incident radiation, 4 that in the
reflected, and 4, that in the transmitted radiation. Then the
coefficient of reflection R is defined by

_ 4
.R = _A_l I
and the coefficient of transmission 7' by

TEﬁZ.
Ax
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Let the subscripts 1 and 2 refer respectively to the media
above and below the plane OY. In the case of the upper medium,
letters without primes will refer to the incident light, and letters
with primes to the reflected light. Attention will be confined
to electromagnetic radiation of wave length long compared to
the distances between adjacent molecules of either medium.
Hence equations (1) to (4) inclusive specify the field. Moreover,
if the media under consideration are transparent, the damping
term in expression (10) for the specific 1
inductive capacity is negligible, and
this qudntity is real.

Choose axes as indicated in the
figure, the Z axis extending upward
from the plane of the paper. Consider
a short pill-box shaped surface, with
bases parallel to the ¥Z plane and axis
bisected by this plane. Integrating

Ir

r-
(1) over the volume enclosed by this :
surface, and transforming the volume I
integral into a surface integral by F‘\ v

1G. 2

means of Gauss’ theorem, it is found
that the components of D normal to the surface of separation
are the same on the two sides of this surface. A similar relation
between the normal components of B follows from (3).
Consider a rectangle of which one pair of sides is very much
longer than the other, so situated that the short sides are perpen-
dicularly bisected by the YZ plane. Integrating (2) over the
surface bounded by this rectangle, and transforming the left-
hand side of the equation into a line integral by Stokes’ theo-
rem, it is found that the components of E parallel to the surface
of separation are the same on the two sides of this surface,
provided B is not infinite at the surface. A similar relation
between the parallel components of L follows from (4).
Suppose the electric vector in the incident wave to be perpen-
dicular to the plane of incidence; that is, the light is polarized
in the plane of incidence. Then the z and y components of the
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electric intensity are zero for each wave, and the z components
are given by the real parts of

El =kAlel'w{sl(xeol¢| + wsing,) —t} s

E1’ = kAl'eim{S. (—xcosd +ysind)) ~ t:-’

E’ =kAzeiu {3, (xecosds+nsingy) — e}

Hence, remembering that =» Eg-
0

=S,

and that the permeability is unity for the frequenciqs under
consideration, it follows from (2) that

L, =iEn sin¢ —jEn cosé,

L!=iE/n sin¢ +jE/n cosd,

L,=iEpn, sin¢,—jEn, cos ¢,
showing that L,=En,, L)/=En, and L,=Emn,.

Therefore the relations between E and L on the two sides of

the surface of separation lead to the three equations

E +E'=E, (35)
(E+E))n sin¢, =En,sin¢, (36)
(E,— E])n cos,=En, cos ¢, (C1P)

From (385) and (86) it follows that

sing, n, S’
sin ¢2_n1 - Sl’ (38

the familiar relation attributed to Snell. Dividing (87) by (86),

E —E' sin¢ cos¢,
1 1 1 2,
E +E! sin¢,cos¢, (39

Now the exponentials in £, and E| are the same when z is
zero. Hence the electric intensity may be replaced by its ampli-
tude in this equation. Thus

1-RE, sin¢ cos¢,
1+R, sing,cos¢,
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determines the coefficient of reflection B, for the case where the

electric vector is perpendicular to the plane of incidence. Solving,

. 2 =sin¢:cos¢l— sin ¢lcos¢2=_sin(¢l—¢2). (40)

17 sin ¢, cos ¢, + sin ¢, cos ¢, sin (¢, + ¢,)

To find the coefficient of transmission 7, eliminate E, between

(85) and (39). Since it follows from (88) that the exponentials

in E, and E, are the same when z is zero, the electric intensity
may be replaced by its amplitude, as before. Hence

2—T, sing cos¢,

T,  sin ¢, cos ¢, ’
2 sin ¢, cos ¢
whence r=——F31—3 (41

L sin(g,+ )

In the case where the electric vector is in the plane of incidence,
E, = {— id,sin ¢, +j4, cos ¢ } el Siecondrtyeing)—s},
E!={—id!sin ¢, —jd] cos b} e {S(-cord +yaing)—e}

E, = {— 14,5in ¢, + ], cos ¢} e (et ronsd =),
and it follows from (2) that

L =kEn,
L; = kE'{nl,
L’ = kE'znz.

In this case the relations between E and L on the two sides
of the surface of separation lead to the three equations

(E,+E)n?sin ¢ =Epn?sin ¢, (42)
(¥,— El)cos ¢, =E, cos ¢, (43)
(E1 + El’) n1= Eznz’ . (44)
since K=

These equations lead to Snell’s law and the following ex-
pressions for the coefficient of reflection R, and coefficient of

transmission T,

R _Sing cosd —sing,cos¢, tan (¢ — )

™ sin $,cosd +sing cos¢, tan (¢, +,) > (49
_ 2'sin ¢, cos ¢,
= sin (¢, + ¢,) cos (¢, — ¢,) 9
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Examination of the four coefficients of reflection and trans-
mission shows that R, is the only one which can vanish. The
polarizing angle ®, is defined as the angle of incidence for which
this coefficient becomes zero. Therefore

tan (,+P)=oo0,

and @, and ®, are complementary. Consequently

D = tan"(g'z)-
. n

Consider unpolarized light striking a surface at the polarizing
angle. The energy associated with the component of the electric
vector in the plane of incidence will be entirely transmitted.
Consequently the reflected light will consist altogether of radia-
tion in which the electric vector is at right angles to the plane
of incidence. Although polarization by reflection should be
complete at the polarizing angle, experiment does not show it
to be so. This is largely due to imperfect surface conditions.

If n is greater than n, the incident radiation may be totally
reflected. For convenience the discussion will be restricted to

the case for which n=n> 1,-

1
n,=1.

Then, for total reflection,
¢, > sin“<1>
1 n)’
and sin ¢, =n sin ¢,
is greater than unity, and
cos ¢, =1 vV sin’p —1

is imaginary. Reference to (40) and (45) shows that both
coefficients of reflection will be of the form

_a— ib= i
a+1b
Therefore E}= A Reio{si0+ysing)—c}

— Ale‘“’ {510 +yeindy)— ¢} — is’
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showing that total reflection has produced an alteration in phase
without change in amplitude.
Consider the transmitted ray in the case of total reflection.

-E.z= Azeiw {Sa(meondy+ysing,) - '}’
and as cos ¢, is imaginary,
— Aze" wyz gio { Sy sin a1}
where iy = S, cos ¢,

This is a wave travelling along the surface, with an amplitude
which falls off exponentially with-2. As the wave does not
pass across the surface, no energy is taken from the incident
radiation.

46. Rotation of the plane of polarization. Consider a beam of
monochromatic plane polarized light travelling through a trans-
parent medium in the direction of an impressed magnetic
field H. Choose axes so that the X axis is parallel to H. Fol-
lowing the method developed in section 38, it is found that
equation (9), section 37, leads to

e

m - LW =
=k2_w2{E—2;RXH},

where the term involving the damping constant  in the denom-
inator of the outstanding factor of the right-hand side has been
omitted as the medium is transparent.

Solving for R,

il

_ 1 .
,=——{AE —i%4 HF}
1-2 gm0
— 1
R,=—{AE +z—A‘HE}
1-2 eme :
£
m

where A=
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Therefore, dropping the strokes,
.0
D,= «E —1 = eiHE,

D,=«E,+i~edHE,
c

where =1+ A:+A ’
1- = A*H?
€= 1—%&1—2: «—1.
-z A*H
Hence, in vector notation
D=xE—i%’eAExH. @

Since the electric intensity is at right angles to the direction
of propagation,

V-E=0,
and elimination of B from the field equations (1), (2), (3), (4)
gives 1..
V.-VE = 2 D, (48)
the relation between D and E being specified by (47).
Now E=E -9,
0% E

Therefore V- VE—

{ — o*S’E, + 208 Eﬂ} eiw(sz—1),
and = D {—- E + z— eAE X H}ew(Sx 0,

Equating real and imaginary terms in these two equal
expressions,

PE, (5 — kS)E (49)
axz 0 [}

J3
By _ o’ €54 E, x H. (50)

ox 28
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The second of these equations shows that if e is positive the
plane of polarization rotates in the counter-clockwise sense when
viewed from the source of light. Such rotation is called positive.
Reversing the direction of the applied magnetic field reverses
the sense of the rotation. Hence if a beam of plane polarized
light is passed through a transparent body along the lines of
force of an applied magnetic field, and then reflected and re-
turned over its original path, the rotation of the plane of
polarization is not annulled, but doubled. This magnetic rota-
tion was discovered experimentally by Faraday in 1845.

If the angle rotated through is denoted by «,

da = dE,
FE
[
= o’ EL';;—‘I- de,
Nne? o’

= 2wy (F — o*)? Hdz, G
where v is the index of refraction. Hence the rotation varies
with the strength of the magnetic field and the length of the
path. In the neighborhood of an absorption band, » approaches
k, and the rotation becomes very large. If the vibrating part
of the atom is positively charged, the rotation will be positive
when the direction of propagation is the same as that of the
magnetic lines of force, while if the vibrating part of the atom
is negatively charged, the rotation will be negative. Obviously,
only the component of the field in the direction of propagation
is effective in producing rotation.

To find the wave slowness, eliminate E, from (49) and (50)
and solve for S. Thus

2 _ 2
8" — Sy 4«

or, approximately,
sovas (1 2L
= (1 -—5—)-

= &)
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47. Metallic reflection. As a metal contains both free and
bound electrons, the equations of the electromagnetic field take
the form

VeD—=— Cfv.Edt, (63) V:‘B=0, (55)
° 1 N
VXE=—%B, (54  VxL=_(D+CE), (56)
where D =«E,
B=puL.
If E = Eoei«’(s-r—t)’
then V = 10S,
a—t‘—'_——'lw,

‘and integration with respect to the time is equivalent to multi-
plication by 7/w. Therefore the field equations become

V-(/c+z—)E 0, V-B=0,
C

1 °
o VxL== ) — .
VxE—=—_8, c("“w)E

le—l

These are identical with equations (1) to (4), section 48, for
a non-conducting medium, provided the specific inductive capacity
is replaced by the complex quantity

x+ig-
®

Therefore, remembering that the permeability is unity for
light frequencies, the wave slowness is given by

S=SO\jx+ii’~ (57)
(0]
Hence, if S = 8'+:8",
then 8% — 8" = xS?,
2s.s"=C g,
(0]

and E=E, ¢ 8" t¢i(8-1-0, (58)
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Let the YZ plane (Fig. 22, p. 123) be the surface of separation
between a region free from matter above this plane and a
metallic medium below. Consider a train of plane waves inci-
dent on the metallic surface at an angle ¢ . Put

' 4= 8, sin,= Ssing,
C,= 8§ cosd,

C,= Scos ¢,
Then equations (40) and (45), section 45, show that
R, 4—CC

k[ P
R, A£+ccC, 69
4 and C, being real, and C, complex. This ratio may be put

in the form B

. .Ril = pe~ 4, (60)
where p and A are real.

Suppose the incident light to be polarized in a plane making
an angle of 456° with the plane of incidence. Such radiation
may be considered to
consist of two trains of
waves, one polarized in
the plane of incidence
and the other at right
angles to this plane,
which have the same
amplitude and are in
phase with each other.
After reflection these
two trains of waves may
have different ampli-
tudes, and their phase
relation may have been
changed in such a way as to produce elliptically polarized light.
The ratio of amplitudes after reflection is given by p in equa-
tion (60), and the difference in phase by A. These guantities
may be conveniently represented by means of a graph (Fig. 23)
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in which real quantities are plotted horizontally and imaginaries
vertically. Starting from the origin O, lay off the real component

OM = «S?

of 8% and the imaginary component

' av=Cs
[0}
From the same origin lay off the real quantities

0Q =4,
QE=C},

determined by the angle of incidence. Then
Q—N:‘ sz ’

and : QP=CC,

is laid off by bisecting the angle RQN and making
0P| =V]ci]|c]-
Connecting O with P and P/,

OF = 4—C,C,
OP = A4*+C,C,
Hence the ratio of amplitudes after reflection is given by
p= oF], (61)
|OP |
and the difference in phase between the two components by
A=/P'OP. (62)

48. Zeeman effect. Consider an electron which may vibrate
under the influence of a force of restitution proportional to the
electron’s displacement from its position of equilibrium inside
the atom. The equation of motion of such an electron has the

components 4%
7
d2
mg =k
d%
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showing that its natural vibration has a frequency defined by

k

W ="

m
In the presence of a magnetic field H parallel to the Z axis
the electron under consideration is subject to an additional force

e
-vxH,
[+

so that the components of the equation of motion become
d’z eH, dy

mﬁ e dt’
d’y eH, dx
maes T
s
dt?

=— kz.

Solving these equations, it is found that
z=Acos(ot+38) and y=—4ssin(ot+4) (63)
or z=A,cos(ot+8) and y=4,sin(wt+39), (64)

z= A, cos (ot +98), (65)
where m“——-H—m,
me
. . e
or, approximately, o, Set+g M. (66)
and (1’92"'2(2?}1,:“)29
me
: . e
or 0, =0 — 2_m(—,‘II'. (67)

Equations (63) and (64) represent rotation in circles in the
XY plane in the negative and positive senses respectively rela-
tive to the Z axis. The effect of the magnetic field is merely
to change the central force from

kr

to kr F eBI.
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Consider a body which emits light in consequence of the
vibrations of electrons which are held in the atoms by simple
harmonic forces of the type under discussion. Suppose a mag-
netic field to be applied in the direction of the Z axis, and let
the source of light be viewed along the X axis. Vibrations in
the X direction will emit no radiation in the direction from
which the light is being observed. . Vibrations in the ¥ direction
will give rise to light polarized with the electric vector parallel
to the Y axis of frequencies w, and w,, while vibrations in the
Z direction will produce light polarized with the electric vector
parallel to the Z axis of frequency w. Therefore when a source
of light in a magnetic field is viewed in a direction at right
angles to the lines of force, each spectral line will be resolved
into three components. The central undisplaced component will
be polarized with the electric vector parallel to the field, and
the two displaced components with the electric vector at right
angles to the field.

If the source of light is viewed along the Z axis, no radiation
will reach the observer due to vibrations parallel to this axis.
Vibrations perpendicular to the Z axis will give rise to circularly
polarized light of frequencies », and w,. Consequently, when a
source of light in a magnetic field is viewed along the lines of
force, each line will be resolved into two components, circularly
polarized in opposite senses and equally displaced on either side
of the original line. There will be no undisplaced component.
The sense of the circular polarization of the two displaced com-
ponents depends upon the sign of the vibrating electrons, which
are thus shown to be negative. The ratio of charge to mass
of the negative electron may be calculated from the displace-
ments observed. This method was one of the earliest employed
to obtain the numerical value of this important constant.

While the results obtained from theory are entirely confirmed
by experiment in many cases, a large number of lines are split
up into more than three components by a magnetic field. It is
believed that these are compound lines, which the optical

apparatus employed is not powerful enough to resolve.
PRINTED IN THE UNITED STATES OF AMERICA
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