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An overview of the current status of CMB
observations

R.B. Barreiro

Abstract In this paper we briefly review the current status of the CasMi-
crowave Background (CMB) observations, summarising thestaesults obtained
from CMB experiments, both in intensity and polarizationgddhe constraints im-
posed on the cosmological parameters. We also present aaynofcurrent and
future CMB experiments, with a special focus on the questferCMB B-mode
polarization.

1 Introduction

In the last years, a series of high-quality cosmologicahdzgts have provided a
consistent picture of our universe, the so-called conameanodel. This model

presents a flat universe with an energy content of about 76guerof dark energy,

25 per cent of cold dark matter and only around 5 per cent ofdréc matter. The

data also indicate that the primordial density fluctuatiarmsprimarily adiabatic and
close to Gaussian distributed with a nearly scale invapanter spectrum.

The Cosmic Microwave Background (CMB) observations argiptaa key role
in this era of precision cosmology. The data collected frolarge number of ex-
periments measuring the intensity and, more recently, tferigation of the CMB
anisotropies are in very good agreement with the predistmnthe inflationary
paradigm. Most notably, the NASA WMAP (Wilkinson Microwavenisotropy
Probe) satellite, launched in June 2001, has constraireedabmological param-
eters down to a few per cent [35]. The detection of the E-madarjzation of the
CMB, first by DASI [37] and later by a handful of experimentscaprovided strong
support to the concordance model.
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The major challenge in current CMB Astronomy is the detectibthe primor-
dial B-mode polarization, which would constitute a direaiq@f of the existence of
a primordial background of gravitational waves, as predidiy inflation. A large
effort is currently being put within the CMB community in @adto achieve this
goal. Some experiments are already putting limits on thelitude of the B-mode,
while many others are in preparation. Complementary, a goocber of CMB ex-
periments are dedicated to the study of the CMB at very snealks, which will
provide very valuable information about secondary anigné&s, such as those due
to the Sunyaev-Zeldovich (SZ) effects or gravitationaklag. Moreover, the ESA
Planck satellite [67], that has been launched in May 200@pwavide all-sky CMB
observations, both in intensity and polarization, with teagedented sensitivity, res-
olution and frequency coverage.

Another very active field of research is the study of the terajpee distribution
of the CMB. The standard inflationary scenario together thighcosmological prin-
ciple predict that the CMB anisotropies should follow artispic Gaussian field.
However, alternative theories predict the presence of@aunssian signatures in the
cosmological signal. Interestingly, different works hdwand deviations of Gaus-
sianity and/or isotropy in the WMAP data whose origin, atiti@ment, is uncertain
(seel[43] for a review and references therein). Future Rldata is expected to shed
light on the origin of these anomalies.

The outline of the paper is as follows. Section 2 reviews smuent CMB obser-
vational results, both in intensity and polarization. 88t8 discusses current and
future CMB experiments, including the Planck satellite.

2 Observational results

In the last decade, there has been an explosion of CMB datd#saallowed a
strong progress in the characterisation of the CMB fluatunati In particular, the
unambiguous detection of the position of the first peak bfedéht experiments
(Boomerang[[19], MAXIMA [26]) determined that the geometf/the universe
is close to flat. In subsequent years, other experimentsauéticheops[3], VSA
[23] and, most notably, the NASA WMAP satellite confirmedsbeesults and, in
conjunction with other cosmological data séts [22,60[ 8), itnposed strong con-
straints on the cosmological parametérs [35]. In additiseries of experiments are
measuring the polarization power spectrum with increasagitivity, confirming
further the current consistent picture of the universe.

WMAP consists of five instruments (with a total of 10 diffecéamg assemblies)
observing at frequencies ranging from 23 to 94 GHz, with & tesolution of 13 ar-
cminutes. The latest published results are based in 5-yeata, although the satel-
lite continues in operation. The WMAP team found that them@six-parameter
ACDM model — a flat model dominated by dark energy and dark matéeded
by nearly scale-invariant, adiabatic, Gaussian fluctuatie continues to provide a
good fit to the data. In addition, the model is also consistatit other cosmological
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Table 1 Cosmological parameters, with the corresponding 68 pet cearvals, for the 6-
parameteiACDM model derived using only WMAP 5-yr data and combined WNIARryon
acoustic oscillations and supernovae data (s€e [35] failgpt

Parameter WMAP Combined
100Q,h%  2.273+ 0.062 22673938
Qch?  0.1099+ 0.0062 0.1131 0.0034
Q4 0.742+ 0.030 0.726+ 0.015
Ns 0.963"5312 0.960-+ 0.013
T 0.087+0.017 0.084+ 0.016

A2(ko)® (2.41+0.11) x 10°° (2.445+0.096) x 10~°

aky=0.002 Mpc L.

data sets. Tabld 1 shows the cosmological parameters fsintipde A CDM model

as obtained by [35] using only WMAP and combining data from YAR baryon
acoustic oscillations [49] and supernovael [38]. Movingdrey this simple model,
the combined data set also constrains additional parasnetieh as the tensor to
scalar ratior < 0.22 (95 per cent CL) and put simultaneous limits on the spatial
curvature of the universe0.0179< Qy < 0.0081 and the dark energy equation of
state—0.14 < 1+w < 0.12 (both at the 95 per cent CL).

Fig.[d shows the temperature power spectrum measured keyetiffexperiments.
The solid line is the best-fitCDM model to the WMAP 5-yr data, which also
agrees well with the additional CMB data sets ug te 2000. However, some high
resolution experiments have found an excess of power aipulds/ > 2000, in
particular, CBI [63] and BIMA [[17] (which observe at 30 GHz)d at a lower
level, ACBAR [56] (at 150 GHz). The spectrum of the reportedess could be
consistent with Sunyaev-Zeldovich emission from clusfeyataxies but this would
imply a value ofag larger than the one favoured by other measurements [35, 73].
Another possible origin of this excess is the presence afibinagcted extragalactic
sources([68]. Very recently, two experiments, QUAD and SEaye reported new
measurements of the CMB power spectrum at small scalespgimh excess. In
particular, QUAD [[54] reports that, after masking the bt&gt point sources, the
results at 150 GHz are consistent with the primary fluctmstioxpected for the
ACDM model. The SZA experiment [61], that observes at 30 GHzifithat the
level of SZ emission is in agreement with the expected valuy 6= 0.8. The latter
work also suggests that the excess found by CBI and BIMA éxyeits could be
due to an underestimation of the effect of extragalactiofpsources. In any case,
further observations will be needed to clarify the origirttag excess.

Regarding polarization, several experiments have oldairey valuable data in
recent years, providing a further test of the concordanceeidn particular, the
large angle anticorrelation seen by WMAP in the cross powecsum between
temperature and polarization (TE) implies that the derfkitstuations are primarily
adiabatic, ruling out defect models and isocurvature meaethe primary source of
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Fig. 1 CMB temperature power spectrum measured by different axpats: WMAP [46], CBI
[63], ACBAR [56], Boomerang[33] and QUAD [52.54]. The solide corresponds to the best-fit
model obtained using the WMAP 5-yr data[35].

fluctuations[[48]. In addition to WMAR [46], the TE cross pavepectrum has also
been measured by a number of experiments: DASI [42], CBI,[BEJOMERANG
[50] and QUAD [52]. A compilation of these measurements drens in Fig.[2.
Regarding the E-mode of polarization, after its first détecby DASI [37,[42],
several experiments have delivered further measuremewsing different ranges
of angular scales: WMAR [46], CBL[62], CAPMAP][5], BOOMERABI[45] and
QUAD [52]. Fig.[3 shows the E-mode power spectrum measureithése experi-
ments, where acoustic oscillations are already seen. €alyeno detection of the
B-mode polarization has been found up to date, althoughakeseperiments have
imposed upper limits, including the polarization expenitsgreviously mentioned.
In particular, QUAD [52] has recently provided the tightapper limits for the B-
mode power spectrum &t> 200 (for a compilation of current B-mode constraints
see e.g[7]).

Although most observational results show consistency with concordance
model, it is also interesting to point out that QUAD has relefound some ten-
sion between their polarization data and the simp&>M model, which seems to
be originated by the TE power spectrdm|[53]. Although thigiation is not highly
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Fig. 2 TE cross power spectrum measured by different experiméMgAP [46], CBI [62], DASI
[42], Boomerang[[50] and QUAD [52].

T T
00~ WMAP best-fit 7
X WMAPS
% CB
sor DASI ]
O  Boomerang T
& QUAD
6ol —
5 V  CAPMAP
=
&
a
= 4o v 7
|S)
=
—
+ N \
~ 20 N
= / \ N
—_
%i y li ~ \’/ o
0 - .|
20 |
| | | | | | |
200 400 600 800 1000 1200 1400 1600 1800 2000
14

Fig. 3 CMB E-mode power spectrum measured by WMARE [46], CBI [62],3)442], Boomerang
[45], QUAD [52] and CAPMAP([5].
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significant, it will be interesting to see whether it is comfed or not by future po-
larization experiments.

A number of works have also found deviations from Gaussyaritl/or isotropy
in the WMAP data, including, among others, a large cold spttié southern hemi-
spherel[70., 12] north-south asymmetries [21/55[ 217, 2@nadies in the low mul-
tipoles [20,[4]9[10._39], anisotropies in the amplitude anéntation of CMB
features([72, 74], an anomalously low CMB variarice [44] aoraalous properties
of CMB spots[[40, 3(0,11]. Although several possibilities ddeen considered to ex-
plain some of the anomalies, eg.[32] 14,[13,[31, 25], thagjimis still uncertain.
The future Planck data, with a larger frequency coveragebetteér sensitivity than
WMAP, as well as a different scanning strategy, will allonedno carry out a more
detailed study of the temperature distribution of the CM8lping to shed light on
these results.

Different groups have also placed constraints on some ghilf)simotivated non-
Gaussian models characterised by fhe parameter[2] finding, in general, con-
sistency with Gaussianity, e.d. [35,]116) 51,[71,[64, a8particular, the best
limits up to date are-4 < 9% < 80 [64] and 151< foM' < 253 [385], for the
local and equilateral models respectively, at the 95 per €enHowever, [76] have
found a deviation from the Gaussian hypothesis at the 28 the local model,
in disagreement with the previous mentioned results. Rldata, as well as future
WMAP data with higher sensitivity, will help to confirm or disrd the presence of
such deviation.

3 Summary of CMB experiments

The most notable CMB experiment to operate in the near fusuttee ESA Planck
satellite [67], that has been launched in May 2009. Plan¢kméasure the CMB
fluctuations over the whole sky, in intensity and polarizatiwith an unprecedented
combination of sensitivity4T /T ~ 2 x 10~6), angular resolution (up to 5 arcmin-
utes), and frequency coverage (30-857 GHz). The main ctaaistics of Planck are
summarised in Tabld 2. Planck will allow the fundamentaheol®gical parameters
to be determined with a precision ef1 per cent and will set constraints on funda-
mental physics at energies larger thart®1GeV, which cannot be reached by any
conceivable experiment on Earth. In addition, it will prdgia catalogue of thou-
sands of galaxy clusters through the SZ effect and very téduiaformation on the
properties of radio and infrared extragalactic sourceselkas on our own galaxy.
Complementary, a good number of ground-based and balloomefexperiments
are operating, or in preparation, in order to measure thengitty and polarization
of the CMB with increasing sensitivity and resolution. Soofighese experiments
are devoted to the study of the CMB fluctuations at very snealles (a few arcmin-
utes or below) and, in particular, to the study of the CMB selawy anisotropies,
including those produced by the SZ effects and gravitatitamesing. This will al-
low a further test of the concordance model as well as tofgltve possible excess
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Table 2 Summary of Planck instrument characteristics (taken fi&r)[

LFI HFI
Detector Technology HEMT arrays Bolometer arrays
Center Frequency (GHz) 30 44 70 |100 143 217 353 545 857

Angular Resolution (arcmin) (33 24 14|10 7.1 5.0 50 5.0 5.
AT /T per pixel (Stokes B 2027 47|25 2.2 4.8 14.7 147 6700
AT /T per pixel (Stokes Q & })|2.8 3.9 6.7(4.0 4.2 9.8 298 — -

a Goal (inuK/K) for 14 months integration, &, for square pixels whose sides are given in the row
angular resolution.

of power found at small angular scales by previous CMB ola@mns. Within this
type of experiments we can mention AMI[77], SPT[[36], ACT[68 AMIBA [75].

However, the major challenge of current CMB Astronomy is tletection of
the primordial B-mode polarization, which will imply theistence of a primordial
background of gravitational waves, as predicted by inflatitable[3 summarises
some of the main on-going and future experiments targetestuy the CMB B-
mode polarization. For comparison, we also include thedRiaatellite in the table,
as well as the C-Bass experiment which is devoted to the sifithe synchrotron
polarization and will provide complementary informatiordther experiments. The
different experiments cover a wide range of frequenciejltgions and technolo-
gies and will allow to detect (or to constrain) valuesrof 0.01 in the next few
years. In addition, design studies for the next generatisatellite missions are be-
ing conducted (BPol[18], EPIC][6]), which aim to achieve asivity of r ~ 0.001,
provided that foreground contamination can be properlyonesd.

Table3 Summary of the main characteristics of some B-mode polé@siz&xperiments

Angular resolution  Frequency | Goal|Starting

Experiment (arcmin) (GHz) (r) | Year
Ground Based

ABS [65] 30 145 0.1 | 2010

BICEP [66)] 54 - 36 100, 150 0.1 | 2006

BRAIN [8] ~ 60 90, 150,220 |0.01| 2010

C-BASS [47] 51 5 — | 2009

KECK 60 -30 100, 150, 220 | 0.01| 2010

MBI [B9] ~ 60 90 - | 2008

QUIET [59] 28-12 40, 90 0.01| 2008

QUIJOTE [57] 55-22 11, 13, 17, 19, 30 0.05| 2009

PolarBear[[4iL 4-27 150, 220 0.025 2009
Balloon Borne

EBEX [24] 8 150, 250, 410 | 0.02| 2009

PAPPA [34] 30 90, 210, 300 |0.01| 2010

PIPER ~ 15 200, 270, 350, 600.007 2013

SPIDER[11] 58 -21 100, 145, 225, 2%&.01 2010

Satellite
Planck | 33-5 | 30-353 [ 0.05] 2009
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4 Conclusions

During the last years, a consistent picture of our univehseso-called concordance
model, has emerged due to the availability of several higlityudata sets. In par-
ticular, CMB observations have significantly contributednprove our description
of the universe. However, some fundamental questiongetilkin to be answered
such as which is the nature of dark matter and dark energghydarameters char-
acterise the inflationary era or which is the origin of the WRIAnomalies. The
future CMB data from the Planck satellite, as well as fromeof@MB experiments,
will help to answer these open questions. In addition, thesgfor the B-mode of
polarization has already started and, if the scalar-tsgeratio isr ~ 0.01 or larger,
the primordial background of gravitational waves — expaétem inflation — could
be detected in the next years. This would constitute a magakihrough in our
understanding of the early universe.
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