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An overview of the current status of CMB
observations

R.B. Barreiro

Abstract In this paper we briefly review the current status of the Cosmic Mi-
crowave Background (CMB) observations, summarising the latest results obtained
from CMB experiments, both in intensity and polarization, and the constraints im-
posed on the cosmological parameters. We also present a summary of current and
future CMB experiments, with a special focus on the quest forthe CMB B-mode
polarization.

1 Introduction

In the last years, a series of high-quality cosmological data sets have provided a
consistent picture of our universe, the so-called concordance model. This model
presents a flat universe with an energy content of about 70 percent of dark energy,
25 per cent of cold dark matter and only around 5 per cent of baryonic matter. The
data also indicate that the primordial density fluctuationsare primarily adiabatic and
close to Gaussian distributed with a nearly scale invariantpower spectrum.

The Cosmic Microwave Background (CMB) observations are playing a key role
in this era of precision cosmology. The data collected from alarge number of ex-
periments measuring the intensity and, more recently, the polarization of the CMB
anisotropies are in very good agreement with the predictions of the inflationary
paradigm. Most notably, the NASA WMAP (Wilkinson MicrowaveAnisotropy
Probe) satellite, launched in June 2001, has constrained the cosmological param-
eters down to a few per cent [35]. The detection of the E-mode polarization of the
CMB, first by DASI [37] and later by a handful of experiments, also provided strong
support to the concordance model.
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The major challenge in current CMB Astronomy is the detection of the primor-
dial B-mode polarization, which would constitute a direct proof of the existence of
a primordial background of gravitational waves, as predicted by inflation. A large
effort is currently being put within the CMB community in order to achieve this
goal. Some experiments are already putting limits on the amplitude of the B-mode,
while many others are in preparation. Complementary, a goodnumber of CMB ex-
periments are dedicated to the study of the CMB at very small scales, which will
provide very valuable information about secondary anisotropies, such as those due
to the Sunyaev-Zeldovich (SZ) effects or gravitational lensing. Moreover, the ESA
Planck satellite [67], that has been launched in May 2009, will provide all-sky CMB
observations, both in intensity and polarization, with unprecedented sensitivity, res-
olution and frequency coverage.

Another very active field of research is the study of the temperature distribution
of the CMB. The standard inflationary scenario together withthe cosmological prin-
ciple predict that the CMB anisotropies should follow an isotropic Gaussian field.
However, alternative theories predict the presence of non-Gaussian signatures in the
cosmological signal. Interestingly, different works havefound deviations of Gaus-
sianity and/or isotropy in the WMAP data whose origin, at themoment, is uncertain
(see [43] for a review and references therein). Future Planck data is expected to shed
light on the origin of these anomalies.

The outline of the paper is as follows. Section 2 reviews somerecent CMB obser-
vational results, both in intensity and polarization. Section 3 discusses current and
future CMB experiments, including the Planck satellite.

2 Observational results

In the last decade, there has been an explosion of CMB data that has allowed a
strong progress in the characterisation of the CMB fluctuations. In particular, the
unambiguous detection of the position of the first peak by different experiments
(Boomerang [19], MAXIMA [26]) determined that the geometryof the universe
is close to flat. In subsequent years, other experiments suchas Archeops [3], VSA
[23] and, most notably, the NASA WMAP satellite confirmed these results and, in
conjunction with other cosmological data sets [22, 60, 49, 38], imposed strong con-
straints on the cosmological parameters [35]. In addition,a series of experiments are
measuring the polarization power spectrum with increasingsensitivity, confirming
further the current consistent picture of the universe.

WMAP consists of five instruments (with a total of 10 differencing assemblies)
observing at frequencies ranging from 23 to 94 GHz, with a best resolution of 13 ar-
cminutes. The latest published results are based in 5-year of data, although the satel-
lite continues in operation. The WMAP team found that the simple six-parameter
ΛCDM model – a flat model dominated by dark energy and dark matter, seeded
by nearly scale-invariant, adiabatic, Gaussian fluctuations – continues to provide a
good fit to the data. In addition, the model is also consistentwith other cosmological
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Table 1 Cosmological parameters, with the corresponding 68 per cent intervals, for the 6-
parameterΛCDM model derived using only WMAP 5-yr data and combined WMAP, baryon
acoustic oscillations and supernovae data (see [35] for details).

Parameter WMAP Combined

100Ωbh2 2.273± 0.062 2.267+0.058
−0.059

Ωch2 0.1099± 0.0062 0.1131± 0.0034
ΩΛ 0.742± 0.030 0.726± 0.015
ns 0.963+0.014

−0.015 0.960± 0.013
τ 0.087± 0.017 0.084± 0.016

∆2
R(k0)

a (2.41±0.11)×10−9 (2.445±0.096)×10−9

a k0=0.002 Mpc−1.

data sets. Table 1 shows the cosmological parameters for thesimpleΛCDM model
as obtained by [35] using only WMAP and combining data from WMAP, baryon
acoustic oscillations [49] and supernovae [38]. Moving beyond this simple model,
the combined data set also constrains additional parameters such as the tensor to
scalar ratior < 0.22 (95 per cent CL) and put simultaneous limits on the spatial
curvature of the universe−0.0179< Ωk < 0.0081 and the dark energy equation of
state−0.14< 1+ w < 0.12 (both at the 95 per cent CL).

Fig. 1 shows the temperature power spectrum measured by different experiments.
The solid line is the best-fitΛCDM model to the WMAP 5-yr data, which also
agrees well with the additional CMB data sets up toℓ ≈ 2000. However, some high
resolution experiments have found an excess of power at multipolesℓ & 2000, in
particular, CBI [63] and BIMA [17] (which observe at 30 GHz) and, at a lower
level, ACBAR [56] (at 150 GHz). The spectrum of the reported excess could be
consistent with Sunyaev-Zeldovich emission from cluster of galaxies but this would
imply a value ofσ8 larger than the one favoured by other measurements [35, 73].
Another possible origin of this excess is the presence of unsubtracted extragalactic
sources [68]. Very recently, two experiments, QUAD and SZA,have reported new
measurements of the CMB power spectrum at small scales, finding no excess. In
particular, QUAD [54] reports that, after masking the brightest point sources, the
results at 150 GHz are consistent with the primary fluctuations expected for the
ΛCDM model. The SZA experiment [61], that observes at 30 GHz, finds that the
level of SZ emission is in agreement with the expected value of σ8 ≈ 0.8. The latter
work also suggests that the excess found by CBI and BIMA experiments could be
due to an underestimation of the effect of extragalactic point sources. In any case,
further observations will be needed to clarify the origin ofthis excess.

Regarding polarization, several experiments have obtained very valuable data in
recent years, providing a further test of the concordance model. In particular, the
large angle anticorrelation seen by WMAP in the cross power spectrum between
temperature and polarization (TE) implies that the densityfluctuations are primarily
adiabatic, ruling out defect models and isocurvature models as the primary source of
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Fig. 1 CMB temperature power spectrum measured by different experiments: WMAP [46], CBI
[63], ACBAR [56], Boomerang [33] and QUAD [52, 54]. The solidline corresponds to the best-fit
model obtained using the WMAP 5-yr data [35].

fluctuations [48]. In addition to WMAP [46], the TE cross power spectrum has also
been measured by a number of experiments: DASI [42], CBI [62], BOOMERANG
[50] and QUAD [52]. A compilation of these measurements are shown in Fig. 2.
Regarding the E-mode of polarization, after its first detection by DASI [37, 42],
several experiments have delivered further measurements covering different ranges
of angular scales: WMAP [46], CBI [62], CAPMAP [5], BOOMERANG [45] and
QUAD [52]. Fig. 3 shows the E-mode power spectrum measured bythese experi-
ments, where acoustic oscillations are already seen. Conversely, no detection of the
B-mode polarization has been found up to date, although several experiments have
imposed upper limits, including the polarization experiments previously mentioned.
In particular, QUAD [52] has recently provided the tightestupper limits for the B-
mode power spectrum atℓ & 200 (for a compilation of current B-mode constraints
see e.g. [7]).

Although most observational results show consistency withthe concordance
model, it is also interesting to point out that QUAD has recently found some ten-
sion between their polarization data and the simpleΛCDM model, which seems to
be originated by the TE power spectrum [53]. Although this deviation is not highly
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Fig. 2 TE cross power spectrum measured by different experiments:WMAP [46], CBI [62], DASI
[42], Boomerang [50] and QUAD [52].
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Fig. 3 CMB E-mode power spectrum measured by WMAP [46], CBI [62], DASI [42], Boomerang
[45], QUAD [52] and CAPMAP [5].
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significant, it will be interesting to see whether it is confirmed or not by future po-
larization experiments.

A number of works have also found deviations from Gaussianity and/or isotropy
in the WMAP data, including, among others, a large cold spot in the southern hemi-
sphere [70, 12] north-south asymmetries [21, 55, 27, 29], anomalies in the low mul-
tipoles [20, 4, 9, 10, 39], anisotropies in the amplitude andorientation of CMB
features [72, 74], an anomalously low CMB variance [44] or anomalous properties
of CMB spots [40, 30, 1]. Although several possibilities have been considered to ex-
plain some of the anomalies, e.g. [32, 14, 13, 31, 25], their origin is still uncertain.
The future Planck data, with a larger frequency coverage andbetter sensitivity than
WMAP, as well as a different scanning strategy, will allow one to carry out a more
detailed study of the temperature distribution of the CMB, helping to shed light on
these results.

Different groups have also placed constraints on some physically-motivated non-
Gaussian models characterised by thefNL parameter [2] finding, in general, con-
sistency with Gaussianity, e.g. [35, 16, 15, 51, 71, 64, 28].In particular, the best
limits up to date are−4 < f local

NL < 80 [64] and 151< f equil
NL < 253 [35], for the

local and equilateral models respectively, at the 95 per cent CL. However, [76] have
found a deviation from the Gaussian hypothesis at the 2.8σ for the local model,
in disagreement with the previous mentioned results. Planck data, as well as future
WMAP data with higher sensitivity, will help to confirm or discard the presence of
such deviation.

3 Summary of CMB experiments

The most notable CMB experiment to operate in the near futureis the ESA Planck
satellite [67], that has been launched in May 2009. Planck will measure the CMB
fluctuations over the whole sky, in intensity and polarization, with an unprecedented
combination of sensitivity (∆T/T ∼ 2×10−6), angular resolution (up to 5 arcmin-
utes), and frequency coverage (30-857 GHz). The main characteristics of Planck are
summarised in Table 2. Planck will allow the fundamental cosmological parameters
to be determined with a precision of∼ 1 per cent and will set constraints on funda-
mental physics at energies larger than 1015 GeV, which cannot be reached by any
conceivable experiment on Earth. In addition, it will provide a catalogue of thou-
sands of galaxy clusters through the SZ effect and very valuable information on the
properties of radio and infrared extragalactic sources as well as on our own galaxy.

Complementary, a good number of ground-based and balloon-borne experiments
are operating, or in preparation, in order to measure the intensity and polarization
of the CMB with increasing sensitivity and resolution. Someof these experiments
are devoted to the study of the CMB fluctuations at very small scales (a few arcmin-
utes or below) and, in particular, to the study of the CMB secondary anisotropies,
including those produced by the SZ effects and gravitational lensing. This will al-
low a further test of the concordance model as well as to clarify the possible excess
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Table 2 Summary of Planck instrument characteristics (taken from [67])

LFI HFI
Detector Technology HEMT arrays Bolometer arrays
Center Frequency (GHz) 30 44 70 100 143 217 353 545 857
Angular Resolution (arcmin) 33 24 14 10 7.1 5.0 5.0 5.0 5.0
∆T/T per pixel (Stokes I)a 2.0 2.7 4.7 2.5 2.2 4.8 14.7 147 6700
∆T/T per pixel (Stokes Q & U)a 2.8 3.9 6.7 4.0 4.2 9.8 29.8 – –

a Goal (inµK/K) for 14 months integration, 1σ , for square pixels whose sides are given in the row
angular resolution.

of power found at small angular scales by previous CMB observations. Within this
type of experiments we can mention AMI [77], SPT [36], ACT [58] or AMiBA [75].

However, the major challenge of current CMB Astronomy is thedetection of
the primordial B-mode polarization, which will imply the existence of a primordial
background of gravitational waves, as predicted by inflation. Table 3 summarises
some of the main on-going and future experiments targeted tostudy the CMB B-
mode polarization. For comparison, we also include the Planck satellite in the table,
as well as the C-Bass experiment which is devoted to the studyof the synchrotron
polarization and will provide complementary information to other experiments. The
different experiments cover a wide range of frequencies, resolutions and technolo-
gies and will allow to detect (or to constrain) values ofr ≈ 0.01 in the next few
years. In addition, design studies for the next generation of satellite missions are be-
ing conducted (BPol [18], EPIC[6]), which aim to achieve a sensitivity of r ≈ 0.001,
provided that foreground contamination can be properly removed.

Table 3 Summary of the main characteristics of some B-mode polarization experiments

Angular resolution Frequency Goal Starting
Experiment (arcmin) (GHz) (r) Year

Ground Based
ABS [65] 30 145 0.1 2010
BICEP [66] 54 - 36 100, 150 0.1 2006
BRAIN [8] ∼ 60 90, 150, 220 0.01 2010
C-BASS [47] 51 5 – 2009
KECK 60 -30 100, 150, 220 0.01 2010
MBI [69] ∼ 60 90 – 2008
QUIET [59] 28 - 12 40, 90 0.01 2008
QUIJOTE [57] 55 - 22 11, 13, 17, 19, 30 0.05 2009
PolarBear [41] 4 - 2.7 150, 220 0.025 2009

Balloon Borne
EBEX [24] 8 150, 250, 410 0.02 2009
PAPPA [34] 30 90, 210, 300 0.01 2010
PIPER ∼ 15 200, 270, 350, 6000.007 2013
SPIDER [11] 58 - 21 100, 145, 225, 2750.01 2010

Satellite
Planck 33 - 5 30 - 353 0.05 2009
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4 Conclusions

During the last years, a consistent picture of our universe,the so-called concordance
model, has emerged due to the availability of several high quality data sets. In par-
ticular, CMB observations have significantly contributed to improve our description
of the universe. However, some fundamental questions stillremain to be answered
such as which is the nature of dark matter and dark energy, which parameters char-
acterise the inflationary era or which is the origin of the WMAP anomalies. The
future CMB data from the Planck satellite, as well as from other CMB experiments,
will help to answer these open questions. In addition, the quest for the B-mode of
polarization has already started and, if the scalar-to-tensor ratio isr ≈ 0.01 or larger,
the primordial background of gravitational waves – expected from inflation – could
be detected in the next years. This would constitute a major breakthrough in our
understanding of the early universe.

Acknowledgements The author thanks Patricio Vielva and Enrique Martı́nez-González for a care-
ful reading of the manuscript. I acknowledge partial financial support from the Spanish Ministerio
de Ciencia e Innovación project AYA2007-68058-C03-02.
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