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Het leggen van verbanden tussen passages uit Lucretius’ De Rerum Naturs en de turbulentiethe-
orie zoals gedaan door Serres is onzinnig.

M. Serres, La naissance de la physique dans le tezte de Lucréce; fleuves et turbulence.
Paris, 1977.

. Een gebrek aan historische kennis bij beoefenaren van een bepaalde tak van wetenschap uit zich

in de naamgeving van vergelijkingen en theorema's.

. Bij het schrijven van een numeriek programma moet men niet alleen letten op de convergentie

van het rekenschema zelf, maar ook op de convergentie van het schrijven vaa dit programma.

. De pogingen van Lumley en Kline om een relatie te leggen tussen Kuhns opvattingen over we-

tenschappelijke revoluties en de huidige crisis in het turbulentie-onderzoek zijn zwak en houden
ten onrechte geen rekening mes de kritiek zoals deze bijvoorbeeld door Laudan op Kuhns ideeén
zijn geuit.

J.L. Lumley (ed.), Whither Turbulence? Turbulence at the Crossroads.
Berlin, etc., 1990.

L. Laudan, Progress and its Problems; Towards a Theory of Scientific Growth.
Berkeley, etc., 1977.

. Eris geen goede rechtvaardiging te vinden voor het gebruik van een Gaussische verdeling van de

vorticiteit in de kern van een wervelring bij modellering daarvaa.

. Het schrijven van een historisch overzicht van de ontwikkeling van het onderwerp waarop men

promoveert is geen verspilling van tijd en moeite.

. Ondanks een eerbiedwaarige geschiedenis is het verschijnsel ‘wervel’ (vortez) nog aitijd onvol-

doende eenduidig gedefinieerd in de wetenschappelijke literatuur. Deze situatie hindert de voor-
uitgang van het onderzoek op het gebied van werveldynamica en haar raakvlakken met turbulente
stromingen.

. De invoering van het begrip inviscid dissipation van Aksman et al. draagt niet bij tot een

verklaring voor het niet behouden zijn van de zgn. interactie-energie bij numerieke simulaties
met vortonen.

M.J. Aksman, E.A. Novikov, S.A. Orszag, " Vorton method in three-dimensional
hydrodynamics”.
Phys. Rev. Lett. 55 (1985) 2510.

. Het bestaan van onderzoekscholen op een vakgebied is een noodzakelijke noch voldoende voor-

waarde voor ‘toponderzoek’.

Het is niet goed dat men in discussies bij voorbaat of zonder goede reden van zijn overtuiging
afwijkt of deze niet naar voren brengt. Het is echter ook niet goed, zoals Burgers lijkt te stellen,
dat men in zijn meningen geen enkele toegeeflijkheid betuigt jegens andersdenkenden.

J. M. Burgers, Het Atoommodel van Rutherford-Bohr.
Proefschrift. Haarlem, 1918.
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Quand lente nous l'ezpirons
Dans plusieurs ronds de fumée
Abolis en autres ronds

Atteste quelque cigare
Brilant savamment pour peu
Que la cendre se sépare

De son clair baiser de feu

Ainsi le choeur des romances
A ta lévre vole-t-il

Ezclus-en si tu commences
Le réel parce que vil

Le sens trop précis rature
Ta vague littérature

Stéphane Mallarmé
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Prologue

The history of the development, whether normal or abnormal, of ideas is of all subjects that
in which we, as thinking men, take the deepest interest.
J. Clerk Maxwell

This thesis deals with two topics which are related to the concept of vorticity. Therefore,
it consists of two parts. The ”vortex-atom-part” shows the development of a theory of matter,
introduced by the English scientist Lord Kelvin in 1867, which would attract the attention
of several 19th century scientists up to the beginning of our century. Kelvin’s ”vortex atom
theory” can be put into the context of several developments in 19th century physics, especially
those with regard to theories of matter and the still developing theory of rotational flow or
vorticity. Therefore, the vortex-atom-part not only tries to sketch the actual development of
the vortex atom itself, it also provides a historical background for this development.

The second part, the ”vorton-part”, is an account of the theoretical foundation and the
application to numerical simulations of the vorton method. This is one of the many vortex
methods, applied nowadays to the (numerical) study of flow phenomena. Vortex methods are
based on the fact that vortices play important roles in fluid flows and can be regarded as
important applications of the knowledge on vortex motion which has been gathered in the
past centuries and of the surging use of numerical techniques in fluid mechanics. The vorton
method will be investigated by means of numerical simulation of several test cases. Most of
these were already studied by the scientists who occupied themselves with the elaboration of
the vortex atom model or who were just incited to research on vortex motion by this model.
However, their investigations were largely hindered by mathematical difficulties. Today, the
use of vortex methods as computational tools may provide more insight into the kinematics
and dynamics of vortex structures.

In an ”interlude” between these two parts, I will try to indicate how several of the issues
which will be regarded in the vorton-part have a past going back to the period of the flowering
of the vortex atom (and even to earlier times) '. This part of the thesis may be of interest
to the historically interested reader who wants to become informed of results from research of
more than a century ago still have a bearing on modern research. It may also be of interest
for the ”physical” reader 2, who wants to know about the roots of concepts he is using today.
In the Interlude I will also take the opportunity to introduce some of the recent and essential
developments in vorticity theory and how several topics related to vorticity and vortex motion
play important roles in modern fluid mechanics, including turbulence.

In the Epilogue I will look back on the two parts of this thesis from a broader point of
view, i.e. on the development of scientific theories and the use of models. Especially, attention

!Nice illustrations of the continuing traditions in vortex dynamics can be found in Saffman’s recent book
[205].

2I.e. the reader interested in current scientifically obtained results, e.g. those presented in the vorton-part
of this thesis.



2 PROLOGUE

is given to the possible lessons that one may learn from the development of the vortex atom
with regard to the present modelling of turbulent flows.

During the research on both parts, I became convinced that their combination was more
interesting than I had initially realized. In the field of fluid mechanics, and probably in many
others, the appreciation of history is still largely absent or at most only commencing. I also
realized that it would be nonsensical to try to show any direct relationships between the two
parts. However, it should be possible to let the "physical” reader realize that modern science
has a past and, more importantly, is influenced by this past. Still later, I started to realize
that the development of the vortex atom might even teach modern scientists the use of models.
Both parts may be read separately but I have taken the opportunity to refer in the vorton-part
to equations and theorems which have been introduced in the vortex-atom-part.

The writing of both parts has required a different approach. In an historical account the
writer has to be careful in studying and treating the original research, which, consciously or
subconsciously, he is constantly comparing to present knowledge. He should try to treat the
developments which he describes from the point of the view which scientists had at the time
corcerned. Therefore, he has to take account of the status quo of science during the time he is
writing about, and usually also of the developments which led to this state.

In a "physical” account of a theory, the writer is usually not bothered with the origin of the
results he applies. First of all, he may not be aware of the historical development, secondly his
striving for clarity and a logical presentation of the different parts of his story does not allow
treatment of the sometimes confusing and obscure historical developments of the concepts that
he uses.

The style of writing is also be different between the two parts. As a historian, an author
is telling a story. He tries to indicate how the subject of his story could arise, how it has
developed, and, as in the case of the vortex atom, how it declined. In the treatment of his
subject he is also trying to convince the reader of some issue, e.g. of his opinion on the reasons
why a decline could happen. This view on the philosophy of science is implicitly valid in the
story he writes and the choices he makes. For him, the story is not just an historical account.

As a physicist, an author is trying to show whether a method or theory or, more generally, an
approach is suitable or unsuitable for certain applications. Usually, he gives some background
and details on the approach itself, but the most important part of his presentation are the
conclusions, in which he may refute other approaches and give suggestions for further research.
The ”physical author” will (and should) try to provide the facts and to draw his conclusions
objectively; he does not intent to present a story, but an account.

Prologue to the Vortex-Atom-Part

The development of a scientific concept is the result of both scientific discussion and of personal
circumstances, friendships, quarrels. A researcher writing on some specific area of the history of
science has to investigate all relevant information: not only the material published in journals
and books, but also the, mostly unpublished, letters, notebooks, etc. For the writing of the
history of the vortex atom, I have only investigated the published material that I could find
and consult, and, for reasons of time and financial support, made no attempt to search in the
archives; therefore, I will not claim that this story is complete by any means ®. However, I am

31 could trace only two papers dealing especially with the vortex atom: the paper by Silliman [215] and the
M.A. Thesis by Pauly {173].
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convinced that the most relevant information is presented here. In the presentation, I have
tried to take care that the story doesn’t become a summation of facts and opinions. In that
case, the reader would soon find himself lost and the "physical” reader would be confirmed in
his opinion on the relevance of historical surveys.

The vortex-atom-part tells the story of the rise, elaboration, and fall of a scientific theory
(or model; see the Epilogue). This story consists of six chapters of which the first three chapters
can be regarded as an exposition of the prehistory of the vortex atom and the road towards
its birth. In Chapter 1 the development of fluid mechanics will be shortly described, and more
specifically the rise of the concept of vorticity and its theory. This chapter ends with the
appearance, in 1858, of Helmholtz’s fundamental paper on vorticity theory which, because of
its special importance in the development of the theory, is treated separately in Chapter 2. To
understand the introduction of the vortex atom by Kelvin, in Chapter 3 I roughly sketch his
scientific development. Besides, this chapter contains an account of the direct incentive which
led to Kelvin’s proposal of the vortex atom, i.e. Tait’s experiment with smoke rings. In 1867
Kelvin not only introduced the vortex atom in his paper "On Vortex Atoms”, he also started
work on ”vortex motion” in general, leading to a seminal paper in 1869. Both will be discussed
in Chapter 4. In Chapter 5, I will treat the reception and development of the vortex atom
theory, both in and outside Britain. Not only fundamental criticism started to rise, elaboration
of the model also showed its inability to comply with several essential requirements related to
its status as a theory of matter. In Chapter 6 the decline of the vortex atom is treated. Despite
the general awareness of its weakness, the theory had drawn the attention of scientists building
models of the ether, one of the most haunting riddles in physics at that time. However, the
vortex ethers appeared as difficult to elaborate as the vortex atom model and they couldn’t
solve this riddle. Meanwhile, even Kelvin himself had lost faith in the vortex atom. The rising
consciousness of the importance of ”electricity” in the atom, accompanied by the discovery of
the electron, gave the vortex atom its final deathblow.

Prologue to the Vorton-Part

The study of vorticity and vortical flows has remained a constant topic of active research in
Auid mechanics after the fall of the vortex atom. Though a direct correlation may be hard to
prove, the last few decades have seen an extra stimulus in research on vortex motion, due to
the growing interest in the role of so-called coherent structures in turbulent fluid flows. These
structures are generally thought to be of vortical nature and understanding of their behaviour
and interaction may be essential to a solution of the turbulence problem.

Though nowadays it seems that turbulent flows can be simulated numerically by completely
solving the governing equations, available computational power still restricts the range of tur-
bulent flows (e.g. expressed by means of the so-called Reynolds number). Vortex methods,
tools to simulate only the vortical parts of flows, may be a means to circumvent these restric-
tions and, as a result, may increase our insight into turbulence. If we may represent a coherent
structure as an elementary vortex configuration, e.g. as a vortex ring, vortex methods are
the ideal means to study its behaviour. In a full ”phenomenological modelling” of e.g. tur-
bulent boundary layers one may then restrict the simulation to one or a few of these vortical
structures.

Chapter 7 contains a general review of vortex methods. One of the vortex methods which
have been introduced during the last few decades is the vorton method, whose merits and ca-
pabilities are still relatively unexplored. In Chapter 8 the general characteristics of the vorton
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method will be presented. The vorton fields and the equations describing the displacement
and deformation of vortons will be derived. Application of the vorton method means the rep-
resentation of continuous vortex structures by the discrete vortons and the numerical solution
of the vorton equations. This gives the behaviour of the vortex structures. '

To gain insight into the possibilities and limitations of (the application of) the vorton
method, I have simulated six basic configurations or test cases, all of them involving the
vorton equivalent of the vortex ring, i.e. the vorton ring. In Chapter 9 I defend the choice of
these cases and present the diagnostics used in their investigation. In Chapter 10, for each of
the six test cases the vorton simulation results are presented in combination with recent results
from literature. However, experimental data are scarce, especially quantitative data. This has
somewhat limited the possibility to investigate the value of the vorton method presented here.
Nevertheless, in the general discussion of the simulation results in Chapter 11, I have been able '
to formulate several conclusions; besides, some suggestions for future research are put forward.

Special attention is drawn to §10.6. The original aim of my work has been to regard
the question: ”can the vorton method be applied to the study of coherent structures in the
turbulent boundary layer?”. This layer is characterized by a shear flow profile and a no-slip
boundary condition at the wall. Since indications exist which point out an active role of
vortex rings in boundary layers, in §10.6.2 a vortex ring has been taken as basic ingredient to
investigate the above question.

In writing the vorton-part, I have assumed that the reader is familiar with the basics of
fluid mechanics, i.e. with the generally used equations and symbols. Besides, he is supposed
to be familiar with the results of vorticity theory mentioned in Chapter 2 and §4.2 * and of
the physical concepts introduced in the Interlude.

Regarding the numerical simulations, I want to remark that I only used the computing
facilities available at the Laboratory of Aero- and Hydrodynamics (a HP-minicomputer). Ob-
viously, a larger computer would have fastened the computations or would have made more
extensive computations possible. At this stage I found no need to resort to this.

Furthermore, I have not tried to optimize the numerical scheme on purpose such that
calculations ran as fast as possible; my attention has principally been devoted to getting a
correct vortex method, not the fastest one.

Further Remarks

e Throughout this thesis, I have tried to use the same symbols for all physical quantities
involved. This meant that I had to adapt several of the symbols used in the older liter-
ature. The reader could object that this attitude obstructs insight into the development
of notation in this part of physics and may deceive the unsuspecting reader, who will
believe that regarding symbols fluid mechanics did not develop or reached agreement im-
mediately after introduction. I have chosen for convenience and clearness and can only
encourage the reader to read the original literature himself.

For convenience a list of symbols is provided at the end of this thesis.
e For the same reason, vector notation is generally used for reasons of convenience. Note,

however, that in 19th century literature, e.g. the works of Helmholtz and Kelvin, this
was not yet common practice.

4For a more thorough and mathematical introduction to vorticity theory, consult [115], [268], [210], and [205].



PROLOGUE 5

e Unless otherwise stated, the theorems and equations used in this thesis are only valid
for:

— Incompressible flows: flows for which the velocity field satisfies V - v = 0, i.e. the
velocity field is divergencefree. Actually, most results in this thesis are valid for a
wider class of flows, i.e. barotropic flows: flows for which the the pressure is only a
function of density p and/or time t, i.e. f(p,p,t) =0 for some function f.

— Inviscid or perfect flows: flows in which viscosity plays no role.

— Flows under the action of conservative body forces, i.e. forces which can be repre-
sented as a gradient of a force potential (e.g. the gravitational force).

e Regarding terminology, I have to remark that the terms vortex motion, vorticity theory,
vortex dynamics, and some others are not used according to any strict rules.



Chapter 1

Vorticity before 1858

The concept of the vortex atom, the subject of the first part of this thesis, could only arise after
the mathematical and physical basis of the theory of vorticity and vortex motion ' had been
laid. This had happened mainly during the second half of the 18th and the first half of the 19th
century. The theory became definitely established as a serious branch in fluid mechanics when
the German scientist Helmholtz published a fundamental paper in 1858. The development of
fluid mechanics itself can be traced back to classical Greece, but has only been treated as a
serious part of mechanics since Newton. Since then it has constantly occupied and fascinated
many of the most highly esteemed scientists.

In §1.1 a concise survey is given of the development of fluid mechanics up to the middle
of the 19th century. It mainly serves as a means of setting vorticity theory in an historical
order and background and as a source of references on this development. In §1.2 the history of
man'’s fascination with vortices and the eventual introduction of vorticity into fluid mechanics
is treated. .

1.1 A Short Survey of the Development of Fluid Mechanics

Despite mankind’s long-standing interest in fluid mechanics, so far few, if any, serious compre-
hensive studies on its history have been published. A thorough account of scientific research
on fluid motion up to the works of Lagrange was published in an extensive "Prologue” to
the volume of Euler’s Opera Omnia devoted to fluid mechanics {267]. Naturally, one can find
accounts of the history of fluid mechanics in works on the history of mechanics in general, such
as [50] and [226]. Furthermore, two works on the history on fluid mechanics, though rather
global and superficial, have been published: those by Rouse & Ince [203] and by Tokaty [265].
An older "historical sketch” (particularly useful for the development of aerodynamics) can be
found in [64]. For a description of the developments in our century, we only have concise
surveys like [67].

A table showing essential parts of the development of fluid mechanics up to the Second
World War is given by table 1.1. This development is divided in four periods which can roughly
be characterized both by fields of research and by the various scientists who have contributed
to the development of these fields. In the last column some references are given 2,

1Yortex motion is usually called rotational motion nowadays [268, §29]. However, we will keep to this term

in honor of Kelvin’s paper treated in §4.1.
2For general biographical accounts of the scientists mentioned, we refer to the several volumes of the Dictio-

nary of Scientific Biography [65).
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hydrostatics

ARCHIMEDES (187 B.C.-212 B.C.)
STEVIN (1548-1620)
PascaL (1623-1662)

[226]
[226]

classical/mechanistic fluid mechanics:

fluid mechanics as part of (rational) mechanics

RossBy (1898-1957)

- fundamentals NEWTON (1642-1727) [267] [226]
D. BERNOULLI (1700-1782)
EULER (1707-1783) [267] [226]
- ballistics EULER [267] [226]
- potential flow theory D’ALEMBERT (1717-1783) (267] [226]
EULER [267]
mathematical fluid mechanics: mathematical treatment of physical flows
- viscous flows NAVIER (1785-1836) [226]
PoIssoN (1781-1840) [226]
DE SAINT-VENANT (1797-1886) [226]
STOKES (1819-1903) [281]
- vorticity theory HeLMHOLTZ (1821-1894) {110}
KEeLvin (1824-1907) (218]
- gas dynamics RIEMANN (1826-1866) [226]
HuconioT (1851-1887)
DE SAINT-VENANT [226]
modern fluid mechanics: towards (engineering) applications
- turbulence REYNOLDS (1842-1912) [150]
PRANDTL (1875-1953) [202]
TAYLOR (1886-1975) {20]
BURGERS (1895-1981)
VoN KARMAN (1881-1963) [100]
- aerodynamics LANCHESTER (1868-1946) [104]
VoN KARMAN
ZHUKOVSKY (1847-1921) [223]
PRANDTL [202]
- rheology MAXWELL (1831-1879)
BURGERS
- geophysical fluid mechanics RICHARDSON (1881-1953) [17)
BJERKNES (1862-1957) (55]

Table 1.1: Survey of the development of fluid mechanics.

7
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Some remarks have to be made about this table. First, the sequence of fields and names is
not meant to indicate any rate of importance. Second, the clgssification of periods and their
subdivions into areas of research is an oversimplification and only superficial. The names of
the periods and the short explicative slogans are our own interpretations. The representatives
mentioned here are generally regarded as some of the most famous ones, but several others
should certainly be included in any serious extension of this table. For the references only
the most relevant and readily available for each representative have been chosen. Third, one
should not get the impression that e.g. the development of hydrostatics ended with the works
of Pascal or that today the theory of potential flows has become useless or neglected after the
rise of the theory of viscous flows.

Although many entries of this timetable will not be relevant to the understanding of the
rise of vorticity theory, they are given here to enable the reader to place the development of
our topic in a historical context. In the next section, it will be shown how the parts which
are important (mainly the insuffiency of potential flow theory), have made their contributions,
eventually leading to Helmholtz's results.

1.2 History of Vorticity up to 1858

One of the first pronouncements on the role of vortices is by the Greek Democritus (400 B.C.),
who based his theory on that of Leucippus. In the 5th century B.C. Leucippus had supposed
that the collisions of atoms in random motion would give rise to a vortex. In Diogenes Laertius’
account of Democritus’s philosophy, we read:

All things come into being by necessity, the cause of the coming into being of all
things being the vortex, which he [Democritus] calls necessity.

The meaning of this statement remains obscure * and Democritus is better remembered
for his theory of matter, which has furnished him with the name of the Atomist.

For the followers of Democritus, the constitution of matter rested on the existence of an
infinite number of indivisible and impenetrable particles. These had weight and hardness but
didn’t exercise any force on each other. Where there was no "Being” (matter), there was
”Not-Being” which could be called vacuum or empty space. Other important characteristics of
the Democritean atoms were their invariability (no change of shape) and complete equality in
quality. According to the Atomistic viewpoint, the motion of bodies per se could be explained
in terms of the motion of the atoms. The difference between specific bodies were attributed to
the shape, position, configuration and kind of motion of the atoms; hence, mechanical concepts
played a fundamental role in this atomic model.

One of the interesting aspects of the Democritean theory concerned the origin of so-called
worlds: the atoms have been moving for ever in the infinite, empty space. Through interaction
they will form whirling conglomerates, which expand into the worlds, which can be regarded
as complexes of atoms. The worlds are born in an infinite number next and after each other,
but in course of time they will desintegrate again into their constituents. One of them is our
world. However, this process doesn’t take place randomly, but it happens by necessity. Maybe,
we have to regard Democritus’ words given above in this context of the worlds.

3 According to [224], a rich source of original texts on atoms, the whirling motion is actually a kind of shuffling
motion. For a survey of the role of vorticity in Greek antiquity, see the only general work on vortex motion, by
Lugt [134, Ch 1).
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The word vortez in its present meaning probably appeared for the first time in the discussion
of meteorological phenomena in De rerum natura, a didactic poem by the Roman poet Lucretius
(50 B.C.). Lucretius can be seen as a follower of the Democritean tradition, since his poem
treats the doctrine of the Greek philosopher Epicurus who in his turn was strongly influenced
by Democritus’ doctrine of nature.

Besides meteorology, Lucretius discussed matter. Everything was built up by an infinite
number of atoms and voids. The atoms were as indivisible, eternal and invariable as the
Democritean ones. However, whereas the motion of the Democritean atoms was completely
indeterministic, the Epicurean atoms had an additional ”degree of freedom” to which Lucretius
attached the name of clinamen *: the atoms’ motion along straight lines due to free fall could be
disturbed causing a small, spontaneous, deviation from these straight motions and a collision
and accumulation of the atoms. By this phenomenon, Lucretius explained the birth of the
"All”, i.e. of all beings.

Though the fascination with vortices must have been constantly present during the ages,
up to Descartes we only have some drawings of whirls as observed by Leonardo da Vinci
(1452-1519) °.

For Descartes (1596-1650) physical science, that is to say his theory of matter and motion,
rested on the basic assumption that matter equals extensiveness (eztension) in space. This
led him to reject the concept of actio in distans, which by that time had already been a
serious point of discussion in the explanantion of e.g. the working of gravity. The existence
of indivisible parts, the vacuum, and absolute motion also didn’t fit in Descartes’ picture.
Consequently, he rejected the Democritean and Lucretian theory of matter.

We won’t go into the details of Descartes’s ingeneous doctrines. We just mention his
original world system, which he thought able to describe every single motion on earth and
in heaven. One of the most intriguing parts of his system was the omnipresence of vortices
(tourbillons). Without going into any details of this vortex theory 8 we only remark that
according to Descartes push, pull, and (vortical) motion of material bodies could explain all
phenomena in nature.

Newton’s severe criticism of Descartes’ doctrines, which had appeared of little heuristic
value, initiated a new era in physical science at the end of the 17th century, the beginning of
the period in which the use of force and mathematical analysis became dominant. In the 18th
century the trend towards mathematization of different aspects of physics was continued. One
of its promotors was Euler whose contributions can be found in almost every branch of science.

In fluid mechanics, we owe to Euler the so-called velocity potential which can be traced to
the years 1752-1755 [268, §36]. If a velocity field v satisfies the condition

Vxv=0,

it follows that » can be written as the gradient of some scalar: » = V®. A flow for which the
above condition is satisfied, is called irrotational flow, a term which will become clear below.

4This term could be translated by "swerve” or "clash”. Although it appears only once in the whole text of
the De Rerum Natura, it has become closely associated with the Lucretian doctrine, partly, I think, because
of its intriguing nature. Serres [210] has taken the occurrence of the clinamen in the poem as evidence for
Lucretius’ role as founder of modern physics, as the first to recognize the difference between "laminar” and
"turbulent” motions, and as the first who recognized the importance of vortical flow.

5For a review of Leonardo’s work on fluid mechanics see e.g. [269].

6For a more extensive description of Descartes’s theory see e.g. [47, Ch IV] and [4].
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The vector V x v will be replaced by the vector w, i.e.

w=Vxov. (1.1)
Its components can thus be written as:
o o w0
V7T by 8z
vy o 0w
7 8 Bz
57 9r oy

where u, v, w are the components of the velocity vector v and z, y, z are the components of
the spatial location vector @, i.e. the vector which determines the position in space of a fluid
particle in a fixed frame of reference.

Despite the still small number of mathematical tools available at that time, the study
of irrotational flows appeared feasible since they were completely described by the velocity-
potential &. However, it soon became apparent that the theory of these so-called potential
flows hardly provided any flows relevant to the real world. Today, we know that most fluid
motions in nature and technology are rotational. Even in nearly irrotational flows, the relatively
small amount of vorticity present may be of central importance in determining major flow
characteristics.

The vector field determined by w, which is equal to zero for irrotational flows as we have
seen, has become known as the vorticity field 7. Although the mathematical concept of
vorticity cannot be found literally in 18th century works on fluid mechanics, these works
undisputably contained the first notions of the importance of rotational flows, i.e. flows in
which w # 0 in some parts of the flow. In the writings by D’Alembert and Euler two of the
most prolific writers on fluid mechanics during the 18th century, formulations of an important
equation in vorticity theory can be found, which has been called the D’Alembert-Euler
vorticity equation [268, §94]:

Dw
= X\ — 12 . s (1,
Dt =(w Vv —-w(V. v (1.2)

The derivative D/Dt is the so-called material derivative:

D 0

which is the rate of change when a material particle is followed during its displacement.

An important change that took place at the turn of the 18th century was the institution-
alisation of scientific research and specialisation of scientists, brought about by the rise of
scientific institutions.

For France, the most important institution became the Ecole Polytechnique in Paris, where
Laplace (1749-1827) and Poisson (1781-1840) propagated the physique mathématique as the
way of describing all sorts of physical phenomena. For them, the physical reductions, i.e. the

"For the introduction of the term ”vorticity” itself we refer to [268, §29]. For convenience, we will use this
term from this instance on, though from a historical viewpoint this is incorrect.
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making of models to represent physical phenomena, were equally important as the mathemat-
ical deductions, and consequently required the same rigorous methods. For Laplace these were
algebraic methods.

One example of the mathematical treatment of a physical phenomenon was the theory
of heat which Fourier (1768-1830) brought into the area of rational mechanics, at the same
time drawing attention to a distinction between a mathematical and a physical representation.
Another example is Fresnel who constructed a physical model of light, thereby abandoning the
corpuscular theory of light initiated by Newton and giving a stimulus to a new, mechanical,
view of the ether. Like actio in distans the ether had been haunting scientists ever since Newton
had proposed it as the medium for the action of gravity and light (hence its description as
" luminiferous medium”).

Cauchy (1789-1857), another Polytechnicien, was one of the first, together with Lagrange
(1736-1813), to introduce symbols to stand for the vorticity components. However, their early
work, which appeared after that of d’Alembert and Euler, was still purely formal and somewhat
mystifying.

The kinematical significance of the vorticity vector did not begin to be recognized until
around 1840 the Irish scientist MacCullagh and Cauchy himself proved that the components
of the curl-operator (see (1.1)) satisfied the vectorial law of transformation {268, Ch III}. By
that time Cauchy had also provided a complete and explicit description of the convection of
vorticity. One of his results, the Cauchy Vorticity Formula [268, §94], is given by:

w= (wy Vo (1_.4)
or: 5
Z;
w; = (WO)J"a—X;

where the scalars X; are the components of the material location vector X, i.e. the location of a
fluid particle at time ¢ = 0 which can be regarded as the labels of the particle. This expression,
a general solution to the D’Alembert-Euler vorticity equation (1.2), has the following physical
interpretation, as illustrated in fig. 1.1: a cube, initially of sides X;, X3, and Xj, is deformed
in time; the vector from one corner to the opposite, which represents the local vorticity vector,
is thus stretched and rotated. These two important aspects of vortex dynamics will be called
vortex deformation.

Cauchy also reformulated a result which had already been present in Lagrange’s works.
This Lagrange-Cauchy Theorem ® says that inviscid flows, i.e. flows in which viscosity
plays no role, which are irrotational at a certain moment, have been so ever before, and will
remain so for ever.

The physical meaning of the vorticity vector only became clear in a paper of 1847 when
George Stokes, longtime Lucasian professor in Cambridge, discovered that at each point of a
velocity field the vector V x v may be regarded as twice the angular velocity of a small element
of the continuum [222, §2]. The same paper has appeared to be a treasure of many other
important contributions to fluid mechanics. One of his results was a fundamental theorem on
the kinematics of continua, nowadays called the Cauchy-Stokes Decomposition Theorem:
an arbitrary instantaneous state of motion may be resolved at each point into a uniform

8See [268, §104] for the controversies which have surrounded this theorem during the 19th century.
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Figure 1.1: Tilustration of vortex deformation as expressed by the Cauchy Vorticity Formula (1.4). The arrow
indicates time development.

translation, a dilatation along three mutually perpendicular axes, and a rigid rotation of these
axes [222, §2] °.

This result would again be discovered ten years later by the German scientist Hermann
von Helmholtz and led to the sound foundation of the theory of vorticity, as will be discussed
in the next chapter.

9See also [268, §34]. A more general and abstract version of this theorem has become known as the Hodge
Theorem in mathematics.



Chapter 2

Helmbholtz’s Contribution to Vorticity Theory (1858)

In Germany, towards the end of the 18th century and at the beginning of the 19th century,
science had been strongly influenced by the romantic Naturphilosophie in which a speculative
approach towards natural phenomena was advocated. All natural phenomena, both organic
and inorganic, both the microcosmos and the macrocosmos, had to be united into one model.
This conviction stimulated the use of analogies and interest in electricity and magnetism, not
without success. It also led to a rejection of mechanistic explanations and of the existence of
atoms. Newton’s mechanistic approach of nature had to be superseded by a dynamical view
of the world which was considered as one living whole.

In their search for knowledge, several German scientists were most of all guided by their
intuition. The deductive method and the use of experimental data were almost completely
absent. This strongly frustrated the German scientist Helmholtz, whose attitude, though
certainly influenced by the Naturphilosophical doctrines, was different 1. He was one of the
first to treat all the phenomena which had seemed so different from each other in the 18th
century (heat, light, electricity, and magnetism) as different manifestations of a new concept:
energy. In 1847, this resulted in his mathematical formulation of the principle of conservation
of energy.

Around 1857, Helmholtz, who had been trained as a physician and had become professor
of physiology in 1849 in Konigsberg, was working on physiological topics and became involved
in related areas like optics and acoustics. His study of the physiology of the ear incited his
study of the application of Green’s integrals to hydrodynamics, leading to a paper titled ” Uber
Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”,
writte:: in 1857 and published in 1858 {75].

Though, as discussed in Chapter 1, others before him had become aware of the fundamental
importance of vorticity in fluid flows, Helmholtz can be given the honour of being the first
to construct a rather completé set of theorems and equations describing the kinematics and
dynamics of vortex motion. His achievement, an impressive demonstration of mathematical
skill and physical insight, has become a classic and up to this day has been cited frequently
and respectfully. Below, some important results due to Helmholtz are presented.

After some introductory remarks and citing Lagrange and Euler as predecesors, Helmholtz
came to an analysis of the general movement of a small fluid particle (in old German: Wassertheilchen).
He noticed that part of this movement is described by the vector w, given by:

- %v X v 2.1)

which could be regarded as the rotation of the particle 2. Comparing with definition (1.1), we

'For a full treatment of Helmholtz’s scientific achievements, see [110].
2Compare the Cauchy-Stokes Decomposition Theorem mentioned at the end of §1.2.

13
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see that twice this rotation vector is the vorticity vector w, as Stokes had already noticed (see
81.2). ’

Furthermore, Helmholtz proposed some definitions of vortex structuresgtill used today:

vortex line: A curve which at each point in the fluid is tangent to the local
vorticity vector w.

vortex tube (see fig.2.1): The surface formed by vorter lines passing through
some closed contour is called a vortez tube.

vortex lines

Figure 2.1: A vortex tube.

vortex filament: A vorter tube (usually with an infinitesimally small cross-
section) surrounded by irrotational fluid.

In the paper one can find three important vorticity theorems which are still called after
Helmholtz. We should remark that he only regarded perfect (inviscid) fluids and did not take
into account the diffusion of vorticity. However, the first vorticity theorem is general and also
valid for real, i.e. viscous, fluids. In order to get a clear understanding of this theorem, we
have to introduce the following definition:

strength of a vortex tube: The strength of a vortez tube at a certain cross-
section A is defined as the surface integral

/ w-n.
A

We can now formulate

Helmholtz’s First Theorem: The strength of a vortez tube at a single time
is the same at all cross-sections.
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From the First Theorem, Helmholtz correctly concluded that vortex tubes cannot end inside
a fluid but must be closed or end at a boundary 3.

The other two theorems * are only valid for inviscid flows.
In order to state the second vorticity theorem we have to introduce the concept of

material lines: A4 line in o vector field is material if it constantly consists of
the same material particles.

We can now formulate:
Helmholtz’s Second Theorem: Vortez lines are material lines.

This means that, for the conditions mentioned above, vorticity can neither be generated
nor destroyed. Vorticity is a property attached to the fluid particles and is transported by
them.

Finally, we can state

Helmholtz’s Third Theorem: The strength of a vortez tube remains constant
as the tube moves with the fluid.

In §1.2, we saw that in the works of D’Alembert and Euler a vorticity equation can be
found as given by (1.2). Helmholtz rediscovered this equation, though for incompressible flows
only and his result is still called the Helmholtz (vorticity) equation 5

Dw '
-y =@ Vv, (2:2)

This equation describes the vortex deformation phenomenon, already illustrated in fig.1.1 since
the Cauchy vorticity formula is a solution of the Helmholtz equation 6,

Another important discovery by Helmholtz was the analogy between parts of the (older)
electromagnetic theory and vorticity theory. Helmholtz’s equation from which the velocity
field v can be calculated, once the vorticity field w is given, is usually called the rule of
Biot-Savart after its electro-magnetic counterpart.

The equation reads:

o(@) = V x 1 w@) 1 w(z')xr

= — 2.
47 \"d T 4 v’ r3 ( 3)

where V' is the vorticity-containing volume and r = & — 2'; see fig.2.2.

In the last section of his paper, Helmholtz treated circular vortex filaments or infinitesimally
thin vortex rings; see fig.2.3.

Showing his impressive mathematical skill, Helmholtz derived expressions for the velocity
field induced by one vortex ring on another one and extended his result to an arbitrary set

3This conclusion is not true of vortex lines; as has sometimes been claimed. See [268, §10] for a discussion
and for the proof that vector lines of any solenoidal field cannot possess any special properties.

“Helmholtz’s own proof of the Second and Third Theorem are not completely rigorous [268, §46).

5Lamb, in his famous text-book Hydrodynamics (see §5.1), has pointed out a flaw in Helmholtz’s derivation,
which may, however, be corrected 115, §146].

8Helmholtz does not seem to have been aware of this fact.
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‘e

Figure 2.2: Illustration of the rule of Biot-Savart: the velocity at location x is determined by the vorticity w in
vorticity-containing volume V'.

of coaxial 7 rings. From this he derived results for a single ring of infinitesimally small core
radius and in infinite space. The ring’s radius and velocity appeared to remain constant. At
its center the fluid had a constant velocity along the ring’s axis in the direction in which the
ring moved, i.e. fluid flowed through the ring’s aperture.

Helmholtz predicted that two coaxial rings, moving in the same direction behind each other,
would show what has since been called the leap-frog effect: the ring at the back will approach
the ring at the front; meanwhile the latter’s radius is increasing and its velocity consequently is
decreasing; at a certain moment the lagging ring will overtake the leading ring and the initial
situation will emerge again though with rings exchanged. This procedure, Helmholtz thought,
will repeat itself indefinitely.

Another situation discussed was that of two coaxial rings approaching each other (i.e.
having opposite direction of vorticity). They would grow in size and approach each other at
decreasing speed. Helmholtz remarked that this situation, if completely symmetrical, could
also be obtained by letting a single ring approach a fixed wall perpendicularly.

After publication of this paper, Helmholtz again directed his broad mind towards acoustics
and optics, in which areas he published several fundamental publications. Though occasionally
he still worked on hydrodynamical topics, this research mostly grew out of his other fields of
research [232, p.529]. Besides, he may have realized that further mathematical elaboration of
e.g. the interaction of vortex rings would be very difficult, as would be discovered by those
elaborating the vortex atom theory, introduced by Kelvin ten years after Helmholtz’s seminal

paper.

"Coaxial vortex rings: parallel rings having a common center axis line.
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core

Figure 2.3: A vortex ring: R = ring radius, a = core radius, w = angular velocity, V' = ring velocity. Curve C
is related to the definition of circulation (see §4.1).



Chapter 3

Kelvin and the Road towards the Vortex Atom

Physics in the 19th century can be characterized by unification and mathematization. In
the 18th century ”unification” had only meant the interpretation of phenomena other than
mechanical as so-called imponderable (i.e. electric, magnetic, and caloric) fluids. In the 19th
century, the unification became much broader: an explanation of nonmechanical phenomena
was tried by means of the methods which had been developed in mechanics. We have seen that
mechanical concepts had already played an important role in Descartes’ approach (see §1.2).
In the last century, this approach revived and the formulation of mechanical (or mechanistic)
models ! became a popular activity, especially in Britain. The new ”"mechanical view of nature”
saw matter in motion as the basis and explanation of all physical phenomena. It made possible
a mathematical formulation of physics and freed it from ad hoc interpretations such as the
imponderable fluids had been.

In Britain important developments started to take place at the beginning of the 19th cen-
tury. The pursuit of scientific research became a serious profession and universities expanded
their science faculties. In Cambridge, not only analytical mathematics was introduced from
the Continent, also Cauchy’s work on ether became known. The quest for an ether theory (see
§1.2) still occupied the minds of many scientists in the 19th century. Stokes, as one of the first
English scientists, began to elaborate the mechanical theory of the so-called elastic solid ether.
In order to avoid any speculation about the molecular structure of the ether, Stokes stressed
its physical structure. The same physical interest had become clear in his important paper
of 1845 (mentioned in §1.2) in which not only theory of viscous flows but also the theory of
"elastic solids” had been firmly established [222].

Stokes was a representative of a fairly large group of scientists, that became responsible
for the revitalization of British science: the Scottish and the Irish. Whereas in the South of
England (e.g. Cambridge) industry was despised and physics was mostly left to amateurs,
in the North a rather opposite attitude could be found. The Scottish were much more non-
conformists who turned to trade and, especially, technology. Other famous men of science from
the North, who would become representatives of the new Cambridge school of physics, were
William Thomson (1824-1907) (later Lord Kelvin) 2, Peter Guthrie Tait (1837-1901), James
Clerk Maxwell (1831-1879), and Joseph John Thomson (1856-1940). All these men have played
an important role in the story of the vortex atom.

Helmholtz’s 1858 paper, a fine example of ”applied mathematics”, was received with great
sympathy by British physicists. Among Helmholtz’s greatest admirers was Kelvin, who had
become professor of Natural Philosophy at Glasgow University in 1846 and would keep this

!Discussion on the meaning of the term "model” will be postponed to the Epilogue.

2In this thesis only the name Kelvin will be used in order to avoid confusion with another English scientist
who will also be playing an important role in the development of the vortex atom, J.J. Thomson. One should
realize that this is not really correct, as by the time W. Thomson wrote on the vortex atom, he hadn’t been

raised to the peerage yet.
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position for 53 years. In 1855 both men, who had deep respect for each other, met for the
first time, when Kelvin invited Helmholtz to attend a meeting of the British Association [110,
I,p.252]. Kelvin’s biographer, Thompson {232], holds that Kelvin had read Helmholtz’s 1858
paper already in its year of publication. However, according to the recent, very extensive,
biography by Smith & Wise [218], it was only in 1862, that Kelvin did become aware of
Helmholtz’s paper, when Tait drew his attention to it. Anyhow, in 1863 Kelvin told Helmholtz
about his views on the power of vortices to explain the rigidity of matter, during a visit
Helmholtz brought to Glasgow.

To get a better understanding of the birth of the vortex atom, we have to regard the
road leading towards Kelvin’s paper ”On vortex atoms” of 1867. Apart from the influence of
Helmholtz’s 1858 paper, several aspects related to Kelvin’s scientific development have to be
taken into account, which will be treated in §3.1. The most direct incentive towards the vortex
atom, Tait’s 1867 experiment with vortex rings, is treated separately in §3.2.

3.1 Kelvin’s Scientific Development towards the Vortex Atom

Up to 1847 Kelvin and others had succeeded in translating the observed analogies between the
theories of heat, electricity, magnetic forces, and hydrodynamics into a single mathematical
form, though each area still constituted a separate physical interpretation of the basic math-
ematical form. There was unity of language rather than of phenomena. The new dynamical
approach of heat brought about an alteration of this state: the "mechanical effect” (energy)
lost by gross bodies had to re-emerge in mechanical states of the ether and of constitutive
elements which, for convenience, were referred to as molecules.

At the end of the 1840s, his work on the foundation of thermodynamics would also incite
Kelvin to speculations on the molecular structure of matter. For the convertibility of heat
and work he stated the hypothesis that heat is a form of energy, consisting of molecular
motions. In this way, he violated one of the fundamental doctrines of his prior work: the
opposition against physical hypotheses. The Scottish anti-hypothetical tradition had always
limited natural philosophy to the sensible motions of bodies, without regarding molecular
motions. All the same, this shift to the molecular level determined his further work.

During the 1840s, Kelvin also sought an explanation for the dynamics of force distributions.
He stated important new concepts (e.g. energy), and transformed his kinematics of fields into
field dynamics. One important source of inspiration in this regard was the work by Faraday
(1791-1867). In his description of the forces between magnetic bodies, Faraday had introduced
in 1845 the term ”"magnetic field”, a concept that became of fundamental importance in the
further development of 19th century physics. Faraday regarded the field as an intervening
ether, but his representations couldn’t explain the mechanism by which forces were propagated.
According to Faraday, the transmission of forces takes place along the so-called "lines of force”.

Kelvin rejected Faraday’s view that all phenomena could be explained as ”force” and also
the view of the German romantic Naturphilosophen (mentioned in Chapter 2) that matter
was a state of dynamic equilibrium between opposing ”forces”. In both views all attempts at
mechanical reduction, such as Kelvin would like to formulate, had been despised. However,
Faraday’s results did stimulate Kelvin in attempting to find other, in casu mechanical, theories
of the ether, which could explain the propagation of forces. Furthermore, around 1850 he
came to a mathematical theory of magnetism in which Faraday’s concept of lines of force was
the central issue. Faraday’s experiments on the influence of magnetism on polarized light,
also stimulated Kelvin’s first thoughts on ”vortical” structures: he explained magneto-optic
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rotation as an elastic reaction in the ether to innate spiral structures that are also in orbital
rotation.

During the years 1847-1851, Kelvin still maintained his purely macroscopic ideal of de-
scribing physical phenomena by a mathematical theory. However, this had become threatened
by increasingly pressing demands for a physical conception of molecular reality. The mathe-
matical analogy was powerful, but also showed weakness: related physical theories were set in
parallel without relating them physically. To avoid this problem, Maxwell had proposed a less
restrictive use of mathematical analogy. Kelvin could not agree with this approach and began
to use the molecular theory and started his life-long pursuit for a theory of matter that would
unify all physical forces.

Though not directly apparent, Kelvin’s views on the ether must have influenced his view
on matter, since he was convinced that there was no dichotomy between ether and matter. His
opinion on the structure of ether would change fundamentally during these years. Initially,
he had regarded ether as air, later he thought the ether to be much finer-grained than air. It
was no longer air, it was like air {281, Ch.7]. The year 1851 showed an important transition
for Kelvin in his constant search for a consistent theory of ether and matter [218, Ch.12). He
proposed the "aer” to indicate a unity of ether and matter. However, Kelvin’s proposal to
treat matter and ether as structures of the same kind in an underlying continuous fluid was
regarded sceptically.

During this period, a typical example of a mechanical model was proposed by the Scottish
physicist Rankine. In Rankine’s theory of molecular vortices each atom of matter consisted of
a nucleys surrounded by an elastic atmosphere. The quantity of heat was the kinetic energy of
the revolutions or oscillations among the particles of the atmospheres, which Rankine supposed
to constitute vortices about the nuclei 3.

With his theory, Rankine became one of the first to regard the mathematical consequences
of the vortex hypothesis. Besides, he set the view on the ether as consisting of nuclei of atoms,
vibrating independently (or nearly so) of their atmospheres. The model also impressed Kelvin,
who in his paper introducing the vortex atom in 1867 (see §4.2 below) would remark that
Rankine had showed the ”possibility of founding a theory of elastic solids and liquids on the
dynamics of ... closely-packed vortex atoms”. To Kelvin this was "a most suggestive step in
physical theory” [243, p.3]. ’

Summarizing his views on the relation between matter and ether in a paper of 1856 [242],
Kelvin mentioned three possible conceptions. Besides Rankine’s notion of matter permeating
the spaces between the ether’s nuclei and the mechanical view in which matter and ether
consisted of particles, he suggested an alternative model, showing his slow movement into the
direction of the theory of vortex atoms. In the late 1850s he came to be convinced that the
ether should be regarded as a fluid. The vortical motions in the perfectly elastic ethereal
continuum were the cause of the molecular structure and the solidity and impenetrability of
bodies. But an important question remained: how could his speculations provide a physical
explanation if vortices in a plenum did not seem to possess the property of indestructibility?

Beside the requirement of indestructibility, another requirement showed up. The kinetic
theory of gases, developed in the 1850s and 1860s, had encouraged the notion that vibrating
molecules, supposed to consist of hard bodies, were the sources of spectral radiation. These
motions were transmitted through the ether as vibrations of definite wavelengths. This view

3A fuller treatment of this theory, and its role in the development of thermodynamics, is given in [218, Ch.10}.
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had led to the requirement of flexibility and elasticity of the atom. Among the British physicists
who tried to develop dynamical molecular models to explain results of spectroscopy, Kelvin
would become very ambitious. Years after his first work in this field he would mention the
fact that it was Stokes who, in 1852, had taught him the requirement that ”the ultimate
constitution of simple bodies should have one or more fundamental periods of vibration” [243,

p.3].

Except elasticity and thermodynamics, electricity and magnetism started to play a role in
Kelvin’s formulation of a theory of molecular structures. In 1847 he had suggested to consider
the propagation of electrical and magnetic forces in terms of the linear and rotational strain of
an elastic solid. His starting point was Stokes’ already mentioned 1847 paper [222] in which,
for the first time in a clear manner, rotation and strain in continuous media had been treated
mathematically. Kelvin regarded motions of electrical fluid as vortex motions and considered
thermo-electric rotations [218, p.405-].

Stokes would also stimulate Kelvin’s interest in hydrodynamics *. In 1857, Kelvin wrote
Stokes on his attempts to find a theory of rotating "motes” in a perfect fluid. The stress which
he had begun to put on rotational motion not only arised from his work in heat and magnetic
theory, but he also thought that the repulsion caused by the rotating motes would lead to a
stiff, stable structure required for e.g. luminiferous vibrations {218, p.409].

Kelvin’s attempts to implement rotational motion led in 1858 to a very speculative thought
on "eddies” in an universal fluid, which might explain gravity and inertia in the solar system.
He had started work on the hydrodynamics of the motes, parts of the molecules, and their
interactions and stability. In his correspondance with Stokes, we find the latter’s criticial
remarks, but Kelvin did not reply [218, p.411].

It seems that Kelvin would only start again on rotational motion after his acquaintance
with Helmholtz’s paper in the early 1860s [218, p.412], as will be discussed in Ch. 4.

3.2 Kelvin and Tait

Besides Kelvin’s general convergence towards vortex motion as discussed above, a more direct
incentive in the development of the vortex atom theory has to be mentioned. Kelvin’s inspirator
in this respect was Peter Tait, professor of natural philosophy in Edinburgh.

Like Kelvin, Tait admired Helmholtz and had made a personal translation of the 1858
paper directly after its publication [109, p. 127]. In a short epilogue to this translation, which
appeared only in 1867 [75], Tait spoke of "one of the most important recent investigations
in mathematical physics”. We can only guess why this translation was published ten years
after the original had been published, taking into account Tait’s remark that he had made it
”long ago”. Tait mentioned Helmholtz’s personal revision of the translation, though without
an indication when this had taken place.

Both men became close cooperators in 1861 when Kelvin proposed Tait to join in writing
a textbook [218, Ch. 11]. In 1866 and 1867 their collaboration was at its peak as they worked
on what would become one of the most important and influential 19th century references in
physics, the Treatise on Natural Philosophy. In the book they attempted to propagate the
use of ‘dynamics’ rather than simply ‘mechanics’. The significance of this choice in favour

4In a letter to Stokes of 1857, Kelvin wrote: ”Now I think hydrodynamics is to be the root of all physical
science, and is at present second to none in beauty of its mathematics.” As Smith [217, p.400] correctly remarks,
it would be absurd to regard these words as a "key to unlocking the mysteries of Thomson’s inner thoughts”;
they are a sign of his enthusiasm for this rising branch of physics.
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of dynamical explanation was fundamental: instead of an abstract, purely analytical, math-
ematical treatment of motions, they chose a physical approach based on the assumption of
Newton’s laws of motion, highlighting the importance of the concept of force. Instead of only
kinematical considerations, they put emphasize on the dynamical aspects. This program of
dynamical theories implied replacing forces acting at a distance by matter in motion. All
physical phenomena were dynamical, also those which appeared to be statical.

Because of the co-operation on the Treatise on Natural Philosophy, Kelvin visited Tait
regularly. During one of those visits, in January 1867, Kelvin witnessed a simple experiment
performed by Tait in his study, which can be regarded as the most direct incentive for the
vortex atom model °.

A description of Tait’s experiment can be found in a letter Kelvin wrote to Helmholtz a
few days after the experiment:

Just now, however, Wirbelbewegungen have displaced everything else, since a few
days ago Tait showed me in Edinburgh a magnificent way of producing them. Take
one side (or the lid) off a box ... and cut a large hole in the opposite side [see sketch
in fig.3.1]. Stop the open side AB loosely with a piece of cloth, and strike the middle
of the cloth with your hand. If you leave anything smoking in the box, you will
~see a magnificent ring shot out by every blow. ... We sometimes can make one
ring shoot through another, illustrating perfectly your description; when one ring
passes near another, each is much disturbed and is seen to be in a state of violent
vibration for a few seconds, till it settles again into its circular form. The accuracy
of the circular form of the whole ring, and the fineness and roundness of the section,
are beautifully seen. ... The vibrations make a beautiful subject for mathematical
work. The solution for the longitudinal vibration of a straight vortex column comes
out easily enough. The absolute permanence of the rotation, and the unchangeable
relation you have proved between it and the portion of the fluid once acquiring such
motion in a perfect fluid, shows that if there is a perfect fluid all through space,
constituting the substance of all matter, a vortex-ring would be as permanent as
the solid hard atoms assumed by Lucretius and his followers (and predecessors)
to account for the permanent properties of bodies ... and the differences of their
characters. Thus, if two vortex-rings were once created in a perfect fluid, passing
through one another like links of a chain, they never could come into collision,
or break one another, they would form an indestructible atom; every variety of
combinations might exist. Thus a long chain of vortex-rings, or three rings, each
running through each of the other, would give each very characteristic reactions
upon other such kinetic atoms. I am, as yet, a good deal puzzled as to what
two vortex-rings through one another would do (how each would move, and how
its shape would be influenced by the other). By experiment I find that a single
vortex-ring is immediately broken up and destroyed in air by enclosing it in a ring
made by one’s fingers and cutting it through. But a single finger held before it
as it approaches very often does not cut it and break it up, but merely causes an

SExperiments on vortex rings had been few up to that time. Helmholtz, in his 1858 paper, had suggested a
way to produce ring-like structure by means of a spoon, pulled through the surface of a water tank. However,
it seems that he never undertook any serious experiments on vortex rings. _

Early experimental work had been done by Rogers [197] in 1858 and by Reusch [187] in 1860.
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indentation as it passes the obstacles, and a few vibrations after it is clear. [232,
p.513]

Figure 3.1: Kelvin’s sketch of Tait’s experiment. From [232].

From Kelvin’s paper *On vortex atoms” [243] (to be discussed in §4.2) we learn that both
men also experimented with two smoke boxes and studied the behaviour of two vortex rings
approaching each other under different angles. Unfortunately, we only have a very concise,
quantitative description of their observations [243, p.11-12]. In one of his popular lectures,
first published in 1876 {229], Tait would perform the same experiments before an audience,
where he also showed vibrations of rings obtained by using an elliptical or square hole in the
box.

Clearly, the experiment with vortex rings caused the final convergence of Kelvin’s views on
vortex motion and only three weeks later, in February 1867, his theory of vortex atoms was
exposed in a lecture before the Royal Society of Edinburgh.



Chapter 4

Kelvin and the Birth of the Vortex Atom

In the 17th century, the time of the Renaissance and revaluation of the classical Greek philos-
ophy, the Democritean/Lucretian atom theory (see §1.2) had encountered a renewed interest.
Not only physicists, but also chemists, looking for models able to explain chemical phenomena,
came to favour a corpuscular-theoretical model [47, Ch II1].

By the 1860s the Lucretian theory of matter was still generally accepted as a way to regard
matter. At about the same time, the "hard bodies” had been taken up by the promotors of
the kinetic theory of gases. One of them was Maxwell and the theory had quickly gained much
support. It was a mechanistic-physical theory in which observable macroscopic properties of
gases were deduced to the movements of molecules or atoms, hard particles (or bodies) which
behaved according to Newton’s laws. Its success strengthened the general belief in the reality
of atoms 1. :

Kelvin, however, did not favour the Lucretian theory of matter, and hence the kinetic gas
model. The vortex ring, and the results in vorticity theory discovered by Helmholtz in 1858,
not only led to his own theory of matter but also to some new fundamental results on vortex
motion.

4.1 Kelvin’s Contribution to Vorticity Theory

The year 1867 could be named Kelvin's annus mirabilis with respect to his work on vorticity,
resulting in one short notice and two extensive papers: ”"On vortex atoms” [243] and "On
vortex motion” [245]. These three publications can be read completely independently, though
in the last we can detect how his vortex atom model ? influenced the kind of research on vortex
motion he thought necessary for the development of the theory.

Kelvin’s short notice appeared as an appendix to Tait’s translation of Helmholtz’s 1858
paper [244] (see §3.2), having been sent as a letter to Tait shortly before the translation was
published in the Philosophical Magazine [75). It contained only one result, but this expression
for the "translatory velocity of a circular vortex ring” has become one of the classical results
in vorticity theory and it has since often been referred to and applied. It is given by 3:

V = —(log — = =) (4.1)

1See e.g. [31] for a general treatment of kinetic gas theories.

2The terms " vortex atom model” and ?vortex atom theory” will be used without distinction. For a discussion
of the vortex atom as a model, we refer to the Epilogue.

3This result is only valid for the vortex ring which we will call the Kelvin-ring. See §A.2 of the Interlude for
its definition. In absence of further remarks, vortex rings in the discussion of 19th century research will mean
rings with core size small compared to their radius and of uniform distribution of vorticity, as Kelvin assumed.
Nowadays it is usual to add an order term to the expression for V. Kelvin realized the existence of lower order
terms but could neglect them due to his assumptions.

24
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where V is the ring velocity, w is the the approximate "angular velocity of the molecular
rotation” in the core (see relation (2.1)), a the radius of the ring’s core, and R the ring’s
radius; see fig.2.3.

Unfortunately, we get no indication about the way Kelvin derived his expression, but most
probably he based it on the analysis of vortex rings which had appeared in Helmholtz’s 1858
paper *.

Though read in 1867, the paper ”On vortex motion” would only be published in 1869, after
it had been ”recast and augmented” in 1868 and 1869. In Kelvin’s notebooks of 1867-9 we
find several calculations and drawings of vortices in preparation of this paper [218, p-422].

Contrary to the expectations raised by the title, the first part of the paper is devoted to "the
hypothesis, that space is continuously occupied by an incompressible frictionless liquid acted
on by no force, and the material phenomena of every kind depend solely on motions created
in this liquid”. Though it contains some references to vortex motion >, we only mention his
treatment of the topological concept of multiply continuous spaces, i.e. spaces of which the
bounding surface is such that there are irreconcilable paths between any two points in it. A
picture was presented of several knots showing a variety of knotted and knitted ”wires”; see
fig.4.1. Presumably, he needed this result to defend the existence of a large variety of vortex

atoms (see §4.2).

Figure 4.1: Knotted and knitted wires. From [245].

In the ”instalment” of 1869, the second part of the paper, we find Kelvin’s greatest contri-
bution to vorticity theory, i.e. the introduction of the concept of circulation:

Circulation: The circulation T' around a closed curve, say C, in some velocity
field is defined in the following way:

T= fo v, (4.2)

1Rott & Cantwell [201] remark that Helmholtz’s derivation included an erroneous factor of 2, but this did
not influence his final result as he used only a low order approximation. Kelvin derived the result for higher
accuracy and apparently corrected Helmholtz’s mistake.

See [212] for a recent discussion on Kelvin’s probable source of inspiration.

SKelvin’s definition of a vortex [245, §20] seems to be the first attempt in history, but has become only one
of many. A proper definition is still lacking.
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where v, is the component of v tangential to the curve C which is a loop enclosing any part
of the ring’s torus; see fig.2.3. We can regard I' as the mean value of the tangential velocity,
multiplied by the length of the circuit ©.

It is Kelvin’s merit that, due to the introduction of circulation, Helmholtz’s Third Theorem
and the Lagrange-Cauchy Theorem (see §1.2) could be proved elegantly and more rigorously.
Kelvin's reformulation of the Helmholtz’s Third Theorem is now called

Kelvin’s Circulation Theorem: An inviscid flow is circulation-preserving, i.e.
the circulation in any closed line moving with the fluid remains constant through
all time.

Kelvin’s reformulation of the Lagrange-Cauchy Theorem (see §1.2), i.e.:

Lagrange-Cauchy Theorem (Kelvin’s version): A motion is irrotational if
and only if the circulation about every circuit equals zero,

confirmed his belief in determinism in the mechanical philosophy which he and Tait had pro-
posed in their Treatise on Natural Philosophy (see §3.2). However, he also recognized that
it was only valid for simply-connected regions in which all curves are reducible, i.e. can be
shrinked indefinitely. This may explain his fascination for multiply-connected regions and the
knotted and knitted wires mentioned above. '

4.2 ”On vortex atoms” (1867)

Kelvin’s lecture ”On Vortex Atoms” 7 [243] was delivered before the Royal Society of Edin-
burgh in February 1867, only three weeks after Tait’s smoke ring experiment. Kelvin started
with some severely critical remarks on the "Lucretian atom” 8. To him justification for the
” monstrous assumption of infinitely strong and infinitely rigid pieces of matter” [243, p.1] °
could only be found in the fact that it allowed an explanation of the "unalterable distinguish-
ing qualities of different kinds of matter” {243, p.1]. Furthermore, the Lucretian model didn’t
"explain any of the properties of matter without attributing them to the atom itself” [243,
p.1]. Therefore, "the Lucretius atom has no prima facie advantage over the Helmholtz atom”
[243, p.2], i.e. the vortex ring which Helmholtz had introduced in his 1858 paper.

Kelvin realized that a "gas” consisting of his vortex atoms would have to obey several
requirements if it wanted to challenge the kinetic theory of gases. Referring to the experiment
in Tait’s lecture-room, he remarked that the elasticity of the rings was at least as good an
explanation for the elasticity of gases as the ”clash” of the Lucretian atoms [243, p.2], which to
him could be equalled to the atoms of the kinetic gas theory. Contrary to investigators in this

%Having defined circulation, we can rewrite equation (4.1) in its commonly used form (assuming a uniform
vorticity distribution in the core, as Kelvin had done):

r 8R 1
V=_zlog-——-72) (4.3)

where I' is the circulation of the ring.

"It will be referred to as the Vortex Atom paper in the rest of this thesis.

8The role of Lucretius in Victorian Britain is discussed in [270], where Kelvin is cited: "I have been reading
Lucretius ... and trying hard on my own account to make something out of the clash [= clinamen] of atoms,
but with little success” [270, p.348] (see §1.2).

9Wherever possible, for Kelvin’s work page numbering of the Mathematical and Physical Papers (referred to
as MPP in the Bibliography) will be used.
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field, Kelvin remarked that for his theory of matter he only had to assume the rings’ "inertia
and incompressible occupation of space” [243, p.2].

He must have realized that if one wanted to investigate the properties of a gas of vortex
atoms, their interactions would have to be calculated and that this would be very hard. Nev-
ertheless, with some confidence Kelvin stated that ”a full mathematical investigation of the
mutual action between two vortex rings of any given magnitudes and velocities passing one
another in any two lines, so directed that they never come nearer to one another than a large
multiple of the diameter of either, is a perfectly solvable mathematical problem”. And adding
with complete confidence: ”Its solution will become the foundation of the proposed new kinetic
theory of gases” {243, p.2].

With regard to the requirement of the explanation of the variety of atoms, Kelvin showed
diagrams and wire models "to illustrate knotted or knitted vortex atoms, the endless variety of
which is infinitely more than sufficient to explain the varieties [...] of known simple bodies and
their mutual affinities” (see §4.1 and fig.4.1). Helmholtz’s First Theorem gave him confidence
that the atom would be indestructible: ”a closed line of vortex core is literally indivisible by
any action resulting from vortex motion” [243, p.3].

With regard to the requirement of the capability of vibration and elasticity of the atoms and
the related requirement on the explanation of spectral properties, Kelvin remarked that in case
of the Lucretian model one had to assume that molecules cannot be single atoms, but are groups
of atoms ”with void space between them” {243, p.3]. However, "such a molecule could not be
strong and durable”, whereas vortex atoms had by nature "perfectly definite fundamental
modes of vibration, depending solely on that motion the existence of which constitutes it”
(243, p.4].

Kelvin admitted that elaboration of this last statement would be another difficult analytical
problem, "but certainly far from insuperable in the present state of mathematical science” [243,
p.4]. He pointed out that that this result could only apply to a vortex ring for which the core
radius was much smaller than the ring radius. However, he tried to defend his model by
remarking that the ”lowest fundamental modes of the two kinds of transverse vibrations of a
ring” were more serious than the deformation of the core {243, p.4].

show the fruitfulness of his new model, he regarded sodium. Since the sodium atom
had ..opeared to have two fundamental modes of vibration of slightly different periods, Kelvin
concluded that the ”sodium atom may not consist of a single vortex line, but might very
probably consist of two approximately equal vortex rings passing through one another like
two links of a chain” and this model would certainly ”fulfil the ‘spectrum test’ for sodium”
[243, p.5] °. Furthermore, Kelvin proposed to study the influence of temperature on the
fundamental modes of the vortex atoms.

Clearly, Kelvin did realize that his new theory of matter had to satisfy several severe
requirements: it had to compete with the kinetic theory of gases, it had to explain the variety
and indestructibility of the atoms, and it had to show spectral properties. He also realized
that to this end an analytical elaboration of the properties of both single rings and of the
interaction of several rings was needed. However, to him the elaboration of these issues would
only be a question of time and (great) mathematical effort.

1011 a footnote, added afterwards, Kelvin remarked that the sodium atom might after all be explained by a
single vortex ring.



Chapter 5

The Development of the Vortex Atom

In the introduction of Chapter 3 we mentioned the popularity of mechanical models among
British scientists. We especially treated Rankine’s molecular vortices, a typical example of
these models. The vortex atom model, however, was a different kind of model. It didn’t
involve "mechanical” concepts like springs (as Kelvin would indeed frequently apply for his
models), but was solely based on hydrodynamical concepts. v

This ”hydrodynamical” model meant a fundamental difference with the existing views on
matter. This was clearly expressed by the English scientist Pearson ! in 1889: "The old view
endowed its atoms with certain inherent forces, and having done so, more or less completely
ignored the existence of the medium; the new view endows its atoms with no inherent forces,
but with motion - it looks to the action of this motion on the medium to explain the action of
one atom on another. The old view saw everywhere in the universe force, the new view finds
everywhere motion - that is a gross way of putting the difference” [174, p.71].

However, one soon started to realize, Kelvin himself not in the least, that many properties
which had been attached to the vortex atoms in the Vortex Atom paper and other properties
which might still be unknown, had to be fully elaborated before the value of the new theory
of matter could be properly judged. Before discussing (in §5.3) the treatment of some of the
problems related to the properties of the vortex atoms, both by Kelvin and others, we first
look at the reception of the vortex atom in Britain (§5.1) and on the Continent (§5.2), in casu
in Germany and France.

5.1 The Reception of the Vortex Atom in Britain

Initially, Kelvin found little interest for his theory of matter. For one part, this can be ex-
plained by the circumstance that he had opposed the Lucretian atom and thus challenged the
foundations of the successful kinetic theory of gases. Kelvin’s theory was based on continuous
space-filling entities, a theory which could not find many adherents at that time. Another
reason is the fact that his Vortex Atom paper remained the sole publication on this topic for
several years after its publication. Only in December 1871, Kelvin spoke again to the Edin-
burgh Society on the continuation of his Vortex Motion paper. Unfortunately, only an abstract
of this lecture has been published [247].

As for Tait, from whom one would be inclined to expect at least some support for Kelvin’s
theory, his first reaction was only published in 1875, anonymously in a book titled The Unseen
Universe [221]. It was a typical example of the discussion on "natural theology” still prevalent
at that time in Britain. Tait, together with his colleague Stewart, tried to defend the modern
physics of their time against accusations of being too materialistic and hostile to religion. Tait’s

1n 1885, Pearson would propose an atom model resembling the vortex atom model in a paper from which
we cite here. It is exemplary for the research the vortex atom theory would set into motion in the 1870s and
1880s.
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chapter on the vortex atom theory was mainly used for treatment of mind-matter dualism and
did not contribute to a serious discussion on the vortex atom, since it was neither in favour of
the new theory nor against it.

Though Tait considered the vortex atom theory a subject worthy for one of his ”Lectures
on some recent advances in physical science”, first published in 1876 and still in print in 1885,
his final words in his lecture on vortex motion sound very reserved:

With a little further development the theory may perhaps be said to have passed
its first trials at all events, and, being admitted as a possibility, left to time and
the mathematicians to settle whether, really, it will account for everything already
experimentally found. If it does so, and if it, in addition, enables us to predict other
phenomena, which, in their turn, shall be found to be experimentally verified, it
will have secured all the possible claim on our belief that any physical theory can
ever have. [229, p.304-5]

The first real, and strongly needed, support for Kelvin’s theory from the physical commu-
nity was provided by Maxwell. Though around 1867 Maxwell was still an ardent supporter
of the kinetic gas theory (see the introduction to Chapter 4), he actually had preceded the
vortex atom model in 1861 by introducing an ether model involving so-called molecular vor-
tices (see e.g. [66, pp.146-]). Initially, he had reacted rather critically to the new theory of
matter in a letter to Tait of November 1867 [109, p.106]. However, in his address to the British
Association for the Advancement of Science 2 in 1870 [145], he appeared to have changed his
sceptical attitude, though his treatment of the vortex atom was mainly intended to show how
illustrative methods or expositions could help to represent physical phenomena.

He recognized that when a full mathematical elaboration of the model could be achieved,
the vortex atom would "stand in a very different scientific position from those theories of
molecular action which are formed by investing the molecule with an arbitrary system of
central forces invented expressly to account for the observed phenomena” (145, p.223]. These
theories he referred to were the then prevalent atom models which had earlier been proposed
by Boscovich and Dalton. Boscovich had proposed his point-atom model in 1745. He suggested
that matter consisted of points without extensiveness which could be regarded as centers of
force. Interaction took place through "fields” of force around the centers. During the 19th
century, Boscovich’s point-atomism was still in favour, although in modified versions, especially
with the French physicists, and with certain philosophically minded German physicists. In
Britain opinions were divided. It was strongly criticized for its artificial character by, among
others, Kelvin 3. The theory of matter proposed by the English physicist and chemist John
Dalton (1766-1844) had been intended to link the theory of atoms to Lavoisier’s theory of the
elements. Though most chemists in the 19th century were sceptical about the existence of
atoms, they recognized that this concept could be helpful in acquiring new insights in chemical
phenomena 4.

Maxwell also realized that this model could not ”fail to disturb the commonly received
opinion that a molecule, in order to be permanent, must be a very hard body” [145, p.224], i.e.
the opinion of those adhering the kinetic gas theory. According to Maxwell’s molecular theory

2To be called the British Association furtheron.

3A short description of Boscovich’s theory can be found in [65].

4This situation is well illustrated by a lecture by the English chemist Williamson [280] and the sequent
discussion [29] from 1869.
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of spectra, spectral lines were due to collisions of these hard bodies in diatomic molecules.
However, experiments showed that mercury vapor consisted of monatomic molecules and did
emit a spectrum. Maxwell realized that the vortex atom was a better model with regard to
this issue which is reflected in his most important supportive contribution to the vortex atom
theory, the ” Atom” article in the 1874 edition of the Encyclopaedia Britannica [147]. There,
he explicitly asserted that neither the Lucretian nor the Boscovichian atoms could account for
spectra and that the vortex atom alone was capable of internal motions or vibrations.

As the greatest advantage of the vortex atom, Maxwell mentioned the fact that no ”hypo-
thetical forces” are introduced to ”save appearances” {147, p.471]. He remarked that a theory
of matter had to explain mass and gravitation, but apparently thought that the model would
comply with this requirement. However, only three years later, Maxwell’s expectations had
faded away. In a review of a text-book on the kinetic theory of gases in Nature [144], he
expected that the vortex atoms ”would soon convert all their energy of agitation into internal
energy, and the specific heat of a substance composed of them would be infinite” [144, p.245].

By 1877 the vortex atom (and vortex motion in general) had drawn general attention
and Maxwell’s criticism does not seem to have influenced opinions. Several highly esteemed
mathematicians and physicists ® started research in the area. Beginning the same year two
Cambridge mathematical journals, the Quarterly Journal of Pure and Applied Mathematics and
the The Messenger of Mathematics, began to be filled regularly with papers by undergraduates
and younger fellows on vortex motion and the interactions of variously shaped bodies moving in
perfect fluids. However, the papers were mostly fragmentary and contained little explanation
on their motivation or their purposes. Besides, the Helmholtz’s theory of vorticity still didn’t
seem to have been grasped by all scientists. An amazing lack of proper understanding of the
theory can be found, for example, in a reaction on Kelvin’s theory published in 1883 by the
British geologist Croll [43](1883). Croll wondered about the force that counterbalances ”the
centrifugal force of the rotating material of the vortex-atom” and argued that it cannot be the
exterior incompressible liquid surrounding the vortex atom, since it offers no resistance to the
motion of the vortex atom. There is no cohesive force, Croll thought, s¢ ”What then prevents
the revolving material from being dissipated by the centrifugal force of rotation?”. Apparently,
he didn’t realize that vorticity was a property of the flow field itself.

The vortex atom even became an issue outside the physical community. In literature, the
vortex atom was alluded to in George Eliot’s novel Middlemarch [35]. S.T. Preston, private
scholar and prolific writer in physics, tried to introduce the vortex atom into a lively discussion
on the physical basis of the ”phenomena of thought” which took place in Nature around 1880.
According to him, these "phenomena” were influenced by ”changes or permutations of which
the molecules of matter were capable”. The old "hard” (Democritean) atoms could only move,
but the vortex atom had more kinds of permutations; its number of permutations was even
infinite, as thought was itself [183].

The theory of vorticity and vortex rings also became a common part of the text-books
on hydrodynamics which started to appear in the second half of the 19th century. The one
which would become famous for more than half a century, and is even referred to today, was
Hydrodynamics by Horace Lamb ®. Originally, it had appeared under a different title already
in 1879 [115], originating from the lectures Lamb had started somewhat earlier when still a

5Love published an important review of ”English researches in vortex motion” in 1887 [133).
8See [91] for a history of this text-book.
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fellow at Cambridge. That edition already contained a chapter on vortex motion (treating
e.g. the leap-frog of two vortex rings), but the subject of vortex atom was not treated. In the
1895 edition [115], Lamb remarked that ”the method of experimental illustration by means of
smoke-rings is too well-known to need description here”, referring to Tait’s lectures [229]. On
the vortex atom Lamb remarked that ”this lies outside our province, but it has given rise to a
great number of interesting investigations ...” [115, §166] but he recognized that the impulse to
some of the investigations on vortex motion mentioned in his book were suggested by Kelvin’s
vortex atom theory.

The changing attitude of the Cambridge community towards hydrodynamics was stimu-
lated once again when in 1873 Maxwell presided over the reformation of the famous Tripos
examination at Cambridge and managed to have hydrodynamics included. The following year,
Kelvin and Tait acted as examiners and introduced questions on motion of perfect flows and
Helmholtz’s theory of vortex motion.

Maxwell had only expressed his intuitive opinion on the vortex atom, but what was really
needed was a mathematical elaboration, followed by a physical interpretation, of the properties
of vortex rings, both of single ones and of several interacting ones. Only in this way the physical
community could be convinced of the consistency and usefulness of the model.

Around 1880, Joseph John Thomson had come to Cambridge on scholarship, where he
was completely dependent on University support for maintaining himself as a scientific worker.
Therefore, he sought a branch of physics which could earn him some esteem and a stable
position [239].

In 1881 the topic for the prestigious Adams Prize, to be awarded in 1883, was announced:
" A general investigation of the action upon each other of two closed vortices in a perfect
incompressible fluid. In particular it is suggested that the case of two linked vortices should
be fully discussed, with the view of determining (1) whether any steady motion is possible,
and (2) whether any motion can occur in which there are periodical changes in the forms and
dir.onsions of the vortices.” Kelvin probably had some influence in the choice of this topic as
it was a logical problem arising from his Vortex Atom paper.

Thomson, who had already published two papers on vortex motion, submitted an essay
entitled A treatise on the motion of vortez rings {234] 7 and won. It was the first comprehensive
attempt to get an analytical picture of interacting vortex rings, after the first attempts by
Helmholtz who, however, had only treated coaxial rings (see Chapter 2).

Thomson’s faith in the vortex atom theory as a theory of matter seems to have been weak.
In his Introduction, he had to remark that the vortex atom theory ”cannot be said to explain
what matter is, since it postulates the existence of a fluid possessing inertia”, and his claim
that it was "evidently of a very much more fundamental character than any theory hitherto
started” [234, §1] sounds as a hollow phrase, expressed out of politeness. To him, the most
important aspect of the new theory seemns to have been the fact that the vortex atom theory
allowed investigation into the mechanisms of intermolecular forces. Thus, it enabled one to
form "much the clearest representation of what goes on when one atom influences another”

-[234, §1]. Not surprisingly, Thomson chose to restrict his activities to an elaboration of a gas
consisting of vortex atoms, interacting with each other.

Therefore, he first needed a strong fundament with regard to the behaviour and interaction
of vortex rings. In the first part of the Treatise, Thomson derived, from the equations which

"To be referred to as the Treatise in this thesis.
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had been found by Helmholtz, quantities like momentum and kinetic energy for rotational
flows. Furthermore, he calculated the velocity and stability of vortex rings. The topic of the
second part was the interaction of two rings and one ring in the neighbourhood of a solid,
i.c. a flat plate and a sphere. However, to enable mathematical elaboration he had to assume
that the rings did not approach closer than several times their radii. The third part was on
linked or knotted rings, whose interest had been roused by Kelvin’s Vortex Motion paper (see
§4.1). As Thomson assumed that the shortest distance was small compared to ring’s radius,
the tubes could be regarded as straight cylindrical vortex columns, which again facilitated the
elaboration enormously.

In the final part, exposing his vortex theory of gases, Thomson had to admit that the theory
was much to complicated to be treated in general, but he mentioned he had tried to derive
results which could show some of the properties of a gas consisting of vortex atoms, such as
chemical affinity. This part, not surprisingly, was most speculative and after publication met
with several critical remarks. It induced Thomson to investigate several other aspects of gases,
mainly published in the Philosophical Magazine, of whose board Kelvin became a member in
1871. However, in a paper shortly published after the Treatise [235] on electric discharge in
gases, he clearly recognized that his gas model was not suited at all for his purposes. By then,
his faith had largely faded away.

Thomson’s Treatise did not remain unnoticed, which was partly due to the prestige of the
Adams Prize. However, though his work was generally prized for its impressive mathematical
achievements, criticism arose soon after its publication. In a review which appeared in Nature
in 1883, Osborne Reynolds, professor of engineering in Manchester ®, found one inconsistency
in Thomson’s derivations and one, apparently fatal, flaw in the vortex atom theory itself [190].

In the final part of his Treatise, Thomson had attempted a derivation of Boyle’s law. For
that purpose, he had assumed that the velocities at the solid boundaries were small. Reynolds
remarked that these boundaries also existed of vortex atoms and that no reason existed to make
this supposition. The flaw was concerned with Thomson’s proposal of a test experiment on
so-called thermal effusion. According to the current theories of gas at that time, the pressures
on the two sides of a diaphragm which were of unequal temperature had to be proportional to
the square root of absolute temperature. From his vortex gas theory, Thomson had derived
that the pressure will be proportional to the temperature raised to a power greater than one.
This experiment would be crucial for the theory, but he realized that it was hard to perform.
Reynolds remarked that he had aiready performed such an experiment around 1879 and that
Thomson had probably meant the phenomenon of ”thermal transpiration”, since effusion, he
remarked, was only a theoretical idea.

Reynolds proposed a more suitable experiment, which he supposed to be crucial. According
to his view, the velocity of sound must be limited by the mean velocity of the vortex atom. As
Thomson had shown that this mean velocity diminished with temperature, and as experimen-
tally it had been found that the velocity of sound increased as the square root of temperature,
Reynolds concluded "that the verdict must be against the vortex atom theory. However the
vortex atoms are very slippery things; and we should like to hear Mr. Thomson’s opinion
before adopting one of our own” [190, p.195]. However, Thomson never seems to have reacted
to Reynolds’s criticism, but, regarding the reputation of Nature and of Reynolds himself, it
must have been a severe blow to the status of the Treatise.

8Reynolds’s fascination with vortex motion is evident from a lecture given in 1877 [189], in which he treated
some experiments he had performed with smoke rings around 1876 [188].
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Despite this seemingly fatal attack, Reynolds, and presumably many with him, didn’t
dare to really challenge a theory introduced by someone of such high esteem as Kelvin. Or
they didn’t think it necessary. Instead of criticizing the vortex atom, however, there was the
possibility of attempting to adapt the original vortex atom in order to let it meet certain
requirements. The most important of these attempts was made by Hicks, one of the scientists
whom the 1881 Adams Prize had stimulated to take up research in vortex motion.

Hicks had found two properties of matter which were hard to explain by the vortex atom
theory: gravity and the different densities of the elements. The first, he thought, could be
solved by considering the theory of pulsating spheres in a fluid, a phenomenon which had been
initiated by the Norwegian physicist and founder of meteorology Bjerknes and which Hicks had
already considered in a paper of 1879 [78]. He had found that gravitation could be explained if
the circulations of the vortex atom exceeded a certain amount; this ”cyclic irrotational motion,
connected with the vortex, may be so large as to produce [a vacuum]” and hence he suggested
to consider hollow vortices, i.e. vortex tubes whose vorticity was concentrated on their surfaces.

Regarding the different densities of the elements, Hicks had to invoke the ether. In an
abstract [80] to the first of a series of three extensive papers on vortex motion ([81], [82], and
[87]), he remarked:

When the exceedingly small density of the ether compared with what we call ordi-
nary matter is considered, it is clear that the supposition that matter is composed
of vortices of the same density as the ether is surrounded with great difficulties,
and we are driven to the conclusion that, if a vortex ring theory be the true one,
the cores of the vortices must be formed of a denser material than the surrounding
ether, and that probably this core has rotational motion. [80, p.305]

For Hicks it was evident that for an explanation of the different masses, the original vortex
atom theory could not remain as elegant as it had been proposed by Kelvin. In the first two of
three papers mentioned above, written in 1884-85, Hicks fully treated the hollow vortex rings
and studied their steady motion and vibrations. Under his assumptions, he claimed, problems
with Kelvin’s vortex atom could be solved to any order of approximation.

Hicks’s introduction of the hollow ring must have impressed the physical community for
its ingenuity, but whether it could save the vortex atom theory remained unclear. However,
Hicks himself soon left any attempts to extend his hollow-vortex theory, though in 1885 he
received the Hopkins Prize, given for the best original discovery by an alumnus of Cambridge
in mathematical physics in the previous three years. His faith to the vortex atom remained.
In his address to the British Association of 1895 [85], he tried to explain static electricity by
means of vortex atoms and in a lecture read in 1898 on ”a kind of gyrostatic aggregate”, which
"has brought to light an entirely new system of spiral vortices” [86, p.332], he still wondered
whether his new theory could throw any light on a vortex atom theory. However, at the end
on this lecture he remarked to have found no point in pursuing his new results as he realized
that it was ”wild speculation” and that attention would be low.

We have to conclude that though outwardly the vortex atom seemed to be received with
sympathy, a closer look reveals that severe and fundamental criticism appeared. However, even
worse was the lack of appropriate attempts to defend the new theory of matter by elaborating
its characteristics. Besides, it is difficult to judge whether the esteem for the vortex atom was
due to the (supposed) scientific value of the theory, or to the status Kelvin had acquired, or
just to the attractive experiments with rings.
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5.2 The Reception of the Vortex Atom outside Britain
For reasons mentioned before, Kelvin’s vortex atom was most heartily received in Great Britain
itself, at least in the first instance. Reception elsewhere, which seems to have started slowly,
largely differed among countries and among scientists. The treatment in this section of some
of these reactions is especially meant to show distinctive nationalistic tendencies in physics.
Generally, on the Continent reception was hostile or, to say the least, indifferent. In both
Germany and France philosophical objections hindered scientists, especially those who could
be regarded as most able to do so, to contribute to the vortex atom theory. However, since no
really convincing physical arguments were raised against the theory, Kelvin and his followers
must not have been really disturbed by the reactions of their foreign colleagues (supposed they
knew them).

Our survey of reactions surely is incomplete and will be restricted to Germany and France 5,
As for Russia, for example, we have evidence that the theory was known in some circles, but
inaccessibility of Russian literature hinders a sketch of its reception there. Reception in the
United States seems to have been passive only.

5.2.1 Germany

As remarked in Chapter 2, in the beginning of the 19th century German science had been
largely influenced by the romantic Naturphilosophie, characterized by a search for underlying
unitary principles and conservation laws and by an absence of the, typically British, empirical
approach. However, by the time of Kelvin's introduction of the vortex atom, the romantic
Naturphilosophie had largely lost its influence and several German physicists had developed a,
sometimes extreme, desire for empirical evidence.

One of them was Helmholtz. After his 1858 paper, Helmholtz had returned to his research
in acoustics and optics. In 1870, he wrote Kelvin that he was still working on vorticity theory,
though only occasionally [232, p.529] and apparently not on the the vortex ring. Soon after
his 1858 paper, he became more and more convinced that agreement between theory and
experiment could only be acquired if viscosity was taken into account [111, p.23] and he
realized that this would be fatal to the vortex atom theory.

Published comments by Helmholtz on Kelvin’s vortex atom are scarce. In a funeral oration
of 1871, he remarked:

Ueber die Atome in der theoretischen Physik sagt Sir W. Thomson sehr bezeich-
nend, dass ihre Annahme keine Eigenschaft der Korper erklaren kann, die man
nicht vorher den Atomen selbst beigelegt hat [a remark from the Vortex Atom
paper; see §4.2). Ich will mich, indem ich diesem Ausspruch beipflichte, hiermit
keineswegs gegen die Existenz der Atome erklaren, sondern nur gegen das Streben
aus rein hypothetischen Annahmen iiber Atombau der Naturkorper die Grund-
lagen der theoretischen Physik herzuleiten. ... Man hat begriffen dass auch die
mathematische Physik eine reine Erfahrungswissenschaft ist; dass sie keine andere
Principien zu befolgen hat, als die experimentelle Physik. [76, vol.III,p.13]

The only direct reference to the vortex atoms can be found in Helmholtz’s preface to Hertz’s
famous book Prinzipien der Mechanik of 1894 in which we find a more fundamental reason for
Helmholtz’s passive attitude towards, Kelvin's theory:

9For a view on the reception of the vortex atom in The Netheriands, we refer to papers by the physicists
Lorentz [132], W.H. Julius [97], and V.A. Julius [96], and especially to the thesis by Quint [184].
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Englische Physiker, wie Lord Kelvin in seiner Theorie der Wirbelatome ... haben
sich offenbar durch dhnliche Erklirungen [i.e. deriving all known physical laws from
certain fundamental principles, e.g. from Newton'’s laws] besser befriedigt gefiihlt,
als durch die blosse allgemeinste Darstellung der Thatsachen und ihrer Gesetze,
wie sie durch die Systeme der Differentialgleichungen der Physik gegeben wird. Ich
muss gestehen, dass ich selbst bisher an dieser letzteren Art der Darstellung fest-
gehalten, und mich dadurch am besten gesichert fiihlte; doch mdchte ich gegen den
Weg, den so hervorragende Physiker, ... eingeschlagen haben, keine prinzipiellen
Einwendungen erheben. [77, p.xxi]

Hertz’s approach, as Helmholtz remarked, had been similar to Kelvin’s. Not surprisingly,
then, Hertz regarded Kelvin’s theory as a firm support for his own hypothetical approach:

Ich erinnere ... an die Wirbeltheorie der Atome von Lord Kelvin, welche uns ein Bild
des materiellen Weltganzen vorfuhrt, wie es mit den Prinzipien unserer Mechanik
in vollem Einklange ist. [77, vol.IIL,p.44]

Somewhat surprisingly, the vortex atom got a relatively important place in Oskar Meyer’s
well-known and influential text-book on the "rivalling” kinetic gas theory [155], whose first
edition was published in 1877. For Meyer the vortex atom was "die gliicklichste Hypothese”
which could satisfy the requirements of a theory of matter. However, Meyer’s arguments
for his enthousiasm seem doubtful and highly speculative. Regarding the chemical aspects,
he admitted that he couldn’t mention many results which had been derived from the vortex
atom theory. Apparently, however, the vortex atom was more than a Hypothese to him as he
supposed that the ringlike form of the vortex atom could represent the ”abgeplatte oder auch
langgestreckte Form” of most molecules. Even in the 1899 edition of his book, by which time
the vortex atom had become almost completely obsolete, a section on the vortex atom was
inserted in which Meyer suggested that electricity might be included in the model.

With the decline of the Naturphilosophie, new schools of thought on the development of
science arose in Germany. Lasswitz, a Gymnasium teacher of mathematics and physics and
prolific essayist on epistemology, was a follower of the so-called neo-Kantian school whose
pri:.-iples are evident in his discussion of the vortex atom theory in a paper of 1879 [120].
Though initially Lasswitz praised the vortex atom theory and thought that eventually one
couid even explain "die Gesetze der Warme und die Thatsachen der Chemie aus der Energie
und der Form der Wirbelatome”, he also thought it was still missing an essential element.

For him, a theory could only be of ” wissenschaftliche Bedeutung” if it was ”nicht bloss in
irgend einem Theile der Physik von praktischem Vortheil”, but also satisfied ”das Erkenntniss-
bediirfniss des Geistes”. "Der Bau der Wissenschaften muss ein einheitlicher sein.” To him,
a theory had to be extended "bis eine einfache Anschaulichkeit gewonnen ist; sie muss uns
nachweisen, wie durch das Zusammenwirken unserer Sinnen und unseres Denkens fundamen-
tale Begriffe unseres physikalischen Erfahrung erzeugt werden, bei welchen der ganzen Natur
unserer Organisation nach eine weitere Frage nach Erklirung nicht mehr auftreten kann” [120,
p-279]. This required an investigation of the concept of matter in a manner which Lasswitz
called ”erkenntniss-theoretisch”.

Lasswitz concluded that the vortex atom was not an acceptable model. Kelvin had
been able to propose his theory because ”er und die Vertheidiger seiner Theorie immer noch
die Atome als real-transcendente Dinge ansehen, nicht als Erzeugnisse unserer Erkenntnis-
sthitigkeit bei unserer Orientierung in der Welt.” Kelvin’s vortex atom moved problems from
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the macrostructure of nature to its microstructure since it was still a moving and changing
object; therefore, Lasswitz argued, the hard (Lucretian) atoms were preferable.

Though his arguments must have appeared vague and irrelevant to most physicists, es-
pecially the British, the rising popularity of the neo-Kantian attitude may be an important
explanation for the lack of enthousiasm, and interest, for Kelvin’s theory in Germany.

5.2.2 France

The strong bond beteen experimental and mathematical research in French science (see §1.2)
had led to a flourishing scientific community and a spreading influence in Europe at the be-
ginning of the 19th century. However, around 1830 this influence had started to decline and
Britain and Germany were taking its place. Part of this shift can be attributed to the rapid
adaption of education to the changed scientific attitude in these latter countries.

Recognition of the importance of vorticity had began early in France thanks to the results
found by Cauchy (see §1.2), who in 1827 had introduced the concept of "rotations moyennes”
(see e.g. [125]). However, the admiration of this preceding work, together with an even more
chauvinistic admiration of the Cartesian heritage, hindered the French in a full appraisal of
foreign vortex theories 1°. This is exemplified by Wurtz’s book on atomism of 1873 [286], in
which the author remarked that the vortex atom idea was not new, but essentially Descartes’s
theory: ”l'esprit humain semble tourner dans un cercle”. However, Wurtz admitted that Kelvin
had used more rational scientific arguments.

In an early French reaction of 1870, Bertrand, professor at the Ecole Polytechnique, argued
that the existence of vortex atoms was not consistent with the equations of fluid mechanics.
However, his arguments in the Journal des Savants of which Bertrand himself was the editor,
remain unclear to us [25] (see also (268, §29]). Apart from short references, and even some
appraisals, of the vortex atom theory (see e.g. [125] and [63]), around 1890 French interest
in Kelvin’s work seems to have been completely absent. Poincaré had chosen the vortex
theory for his 1891-1892 lectures at the Faculté des Sciences in Paris [180], and the published
version of the lecture notes can be regarded as the first text-book on this theory, which he
considered the greatest achievement of fluid mechanics at that time. However, he only shortly
mentioned Kelvin’s vortex-atom theory, and did not even refer to Kelvin in his introduction
of the circulation concept. :

The French attitude may be explained by the general rejection of the manner in which
physics in Britain was exerci. and which the French saw exemplified by Kelvin’s work. One
of the most important critics in this regard, together with e.g. Poincaré, was Pierre Duhem, a
highly prolific scholar on the history and philosophy of science and a respected physicist. He

_reproached the British scientists lack of order, method, and concern for logic and experimental
results. Furthermore, he criticized the provisional character of the various models they had
introduced and the incompatibility of these models.

Taking notice of Duhem’s strong opposition to atomistic theories, it is not surprising that
he was especially critical of the vortex atom. An example of his sometimes furious, and
not completely objective, treatment of Kelvin’s model can be found in his L’evolution de la
mécanique, where Duhem remarked that ”cette hypothese de W. Thomson nous presente le
plus haut degré de simplification auquel puisse parvenir explication des phénoménes naturels”
[52, Ch XIV]. Though Duhem admitted that it contained advantages such as the absence of

10Even in the 20th century, in France highly speculative books could appear (like those by Parenty [172] and
Varin [271]) in which Descartes’s vortex theory forms the basis of broad physical theories.
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nforce reelle”, and the possibility to explain diversity of the elements, he warned that the
vortex atom hypothesis "s’enfonce si profondement au-dessous des apparences sensibles, qu’il
devient bien malaise de remonter jusqu'a celles-ci et de fournir 'explication des faits que nous
constatons chaque jour.”

Duhem’s opinions were broadly propagated by himself and his own scientific work testifies
that indeed he had chosen for a completely different approach of physics. His views on the
differences between British science and French (and German) science must have been upheld
by many of his contemporaries and has been a main reason for the lack of interest in the vortex
atom on the Continent.

5.3 Issues surrounding the Vortex Atom

In the Vortex Atom paper, Kelvin had tried to show that his theory of matter possessed several
of the properties which at that time were generally imposed on such a theory:

e the indestructible and impenetrable nature of the vortex atoms meant satisfaction of the
requirement of conservation of matter;

e their elasticity and vibrations could explain the spectra;

e their many possible configurations could provide all elements with a signature of their
own;

e no need existed for an artificial mechanism to keep several atomic rings together in a
molecule; this explained chemical affinity.

The lack of any arbitrary parameters to be fixed made the model even more attractive.
Besides, it was recognized that the vortex atom had an external kinetic energy, due to its self-
induced velocity, and an internal form of energy, its vibration. For Kelvin, the only problem
seemed to be the mathematical elaboration.

However, Kelvin must soon have started to realize that several problems were not only of
mathematical nature. In the 1871 continuation of his Vortex Atom paper (247}, mentioned in
§5.1, he gave the description of three topics on which he intended to make further investigations:
a system of vortex atoms as a kinetic theory of gases ”"without the assumption of elastic atoms”;
the “realisation by vortex atoms of Le Sage’s ‘gravific’ fluid consisting of an innumerable
multitude of ‘ultramundane corpuscles™; and the " propagation of waves along a row of vortex
columns alternately positive and negative”. Still highly optimistic, Kelvin concluded that "the
difficulties of forming a complete theory of the elasticity of gases, liquids, and solids, with no
other ultimate properties of matter than perfect fluidity and incompressibility are noticed, and
shown to be, in all probability, only dependent on the weakness of mathematics” [247, p.576-7].

As evidenced by the papers on vortex motion which would follow the next years, we conclude
that by 1871 Kelvin already had planned a rather complete, and ambitious, research program
in order to strengthen the position of his theory. In the next sections we discuss some of these
fundamental issues, Kelvin’s contribution to these, and reactions by others. The issues can be
divided into two groups. The proof of steadiness and stability was a general problem related
to vortex motion. Problems more directly related the vortex atom model were the comparison
with properties exhibited by kinetic gases and the explanation of gravity and spectra.
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5.3.1 Stability and Steadiness

Fundamental to the viability of the vortex atom model was the stability and steadiness of the
vortex rings. The first issue was related to the question: is a vortex configuration conserved
under changes of its level of energy? For the second, the problem read: are all (stable) states
of a vortex configuration similar at a constant level of energy?

For Kelvin, the question of stability was familiar. Before the introduction of the vortex
atom, he and Stokes had already discussed the stability of vortical motes (see §3.1). During
the years 1872-1876, they discussed the topic again but this time it was concerned with a two-
dimensional vortex (a cross section of a straight vortex tube **) in a circular boundary 12 Both
men could not agree. Kelvin argued that it was stable or at least quasi-stable and according
to Stokes it was instable [218, p.433-].

Kelvin’s picture of the stability of vortex atoms was of the same kind as that of the 2-D
vortex. To tackle the issue, he regarded the change of the vortex from a stable maximum energy
state to stable minimum energy state. The intermediate states, corresponding to different
stages of vortex atom during its interactions with other vortex atoms, were called " maximum-
minimim?” states. To Kelvin these latter states meant that stability was uncertain, while Stokes
argued that they would not be stable at all, except under special conditions.

Kelvin was also convinced that any finite number of vortices would always equilibrate, as it
would gradually dissipate its energy and reach a state of minimum energy, i.e. state of maximal
stability. The vortex atoms would then still be real vortices and energy in the universe would
still be conserved. Stokes, who had clearly lost faith in the vortex atom model, tried to proof
that the rotational motion of vortex atom could be annihilated, but to Kelvin nothing that
God created could be destroyed (218, p.437].

In the Vortex Atom paper, Kelvin had tacitly assumed that ”Helmholtz’s rings” were
stable and steady. Only in 1875, he seriously regarded these issues in a paper entitled ” Vortex
statics” [248]. His aim was formulated as ”to investigate general conditions for the fulfilment
of this proviso [i.e. steady motion], and to investigate, further, the conditions of stability
of distributions of vortex motion satisfying the conditions of steadiness” [248, p-115]. His
"general analytical condition for steadiness of vortex motion” had already been developed in
the discussion with Stokes, as discussed above:

If, with ... vorticity and "impulse” given, the kinetic energy is a maximum or a
minimum, it is obvious that the motion is not only steady, but stable. If, with
same conditions, the energy is a maximum-minimum, the motion is clearly steady,
but it may be either instable or stable. {248, §4]

Though Kelvin realized that the energy of the vortex ring was a maximum-minimum, he
presented it as a case of stable steady motion. For more complicated vortex structures, such
as the "toroidal helix” 13, he could only speculate on their steadiness and stability.

11K elvin’s interest in this vortex may be due to the vortex which had arised in the work based on a centrifugal
pump designed by his brother James [218, p.412-].

2]y general, Stokes’s reaction to Kelvin’s ideas had become unfavourable. On Kelvin's theories of ether-
matter interactions he remarked: It is easy to frame plausible hypotheses which would account for the results,
but it is quite another matter to establish a theory which will admit of, and which will sustain, cross-questioning
in such a variety of ways that we become convinced of its truth” [282, p.xxxix].

13The nomenclature was mostly invented by Kelvin himself. For a description of this ”toroidal helix” we refer
to Kelvin’s paper.
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Kelvin realized that his results were rather unconvincing. ”Hitherto, I have not indeed
succeeded in rigorously demonstrating the stability of the Helmholtz ring in any case” [248,
§19]. From a simple and purely intuitional consideration of the ring, he concluded that ”from
the maximum-minimum problem we cannot derive proof of stability” [248, §19]. For rings
with ”ordinary proportions of diameters of core to diameter of aperture”, he could only rely
on "natural history”, i.e. the observation of his own smoke rings.

Kelvin also realized that as important as the stability of the single vortex ring would
be the stability (and steadiness) of configurations consisting of several vortices. One of the
questions which he wanted to solve in this respect was the greatest number of columnar vortices
or rectilinear vortex tubes that could be put in a ”vortex mouse-mill”, a regular polygon
with vortices at the corners. He supposed this to be a proper simplification of the much too
complicated case of interacting vortex rings.

In 1878, he discussed results of an experiment by the American Mayer [249], who had put
floating bar magnets vertically in a basin of water and had found their positions of stable
equilibrium to be at the vertices of regular polygons with one in the middle. Since infinitely
thin straight vortex columns interacted in the same way as the magnets, this experiment could
solve Kelvin’s question, which to him was ”of vital importance in the theory of vortex atoms”
[249, p.140]. However, though Kelvin could partly confirm Mayer's results by mathematical
calculation, he didn’t conclude on the stability of his atoms .

The number of investigations of the stability of vortex motion by others seem to have
been small. In his Treatise, Thomson remarked that Kelvin (possibly referring to [248]) had
"proved that [the vortex ring] is stable for all small alternations in the shape of its transverse
section”. Thomson himself concluded ”that it is stable for all small displacements” (234, §13].
Investigating the steadiness and stability of two linked vortices, he found that this configuration
was steady only when the rings were close together. Hicks, in his extensive papers on vortex
motion (51] and [82], investigated steadiness and stability of his hollow vortex ring. He found
stability for the ordinary hollow ring, but could only find (conditional) stability if he extended
his ring model with additional circulation and density differences (see
Chapter 4). In his final discussion of the vortex atom in 1895 [85], he still warned that this
issue had not been solved.

The issue of stability and steadiness remained unsettled, mainly due to a lack of appropriate
mathematical techniques. However, for Kelvin and his followers, the existence of smoke rings
seemed enough "evidence”, though they may have felt somewhat uneasy with the situation.

5.3.2 Compatibility with Kinetic Gas Theory

As mentioned in the introduction of Chapter 4, the popularity of the kinetic gas theory had
largely increased by the time Kelvin had introduced his vortex atom. Kelvin himself strongly
rejected the kinetic gas theory of elastic-solid molecules colliding by actual contact since he
supposed that all kinetic energy would be converted into vibrations and rotations. However,

1Gee [219] for a full account of Mayer's experiments and also for J.J. Thomson’s reference to Mayer’s results
in his speculation on a possible arrangement of electrons in atoms.

In his Treatise, Thomson treated the case of the ”mouse-mill” analytically and showed that the motion was
stable for the number of vortices n < 7 and instable for n > 7 [234, §54]. Only in 1931, Havelock showed
that the case n = 7 is neutrally stable. Re-examination 50 years afterwards by Dritschel [49] (numerically for
finite-core-sized vortices) and by Dhanak [46] (analytically) showed that n =7 is stable; Dritschel pointed out
the mistakes in Thomson’s calculations.



40 CHAPTER 5. THE DEVELOPMENT OF THE VORTEX ATOM

Kelvin realized that to show the superiority of his own vortex atom model, he had to show
that it possesed the same characteristics as kinetic gases. This would require a complete
determination of the interactions of large numbers of vortex atoms, and a statistical approach
was necessary as was common in kinetic gas theories. However, he had always despised such
an approach as it introduced indefiniteness.

His only paper in this regard concerned one of the main results of the kinetic gas theory, i.e.
the partitioning of energy: any concentration of energy within a gas had to spread throughout
the whole gas, giving a specific randomized distribution. In "On the average pressure due
to impulse of vortex-rings on a solid” of 1881 [252], he argued, without any proofs, that the
pressure exerted by a cloud of vortex atoms (the ”gas” which had been regarded by Thomson;
see §5.1) was the same as that shown by the kinetic gas theory.

However, Kelvin also correctly realized that the integral of the pressure on the wall would
be zero and thus the ”gas” was not able to transmit momentum as any kinetic gas could do.
Unconvincingly, he tried to show that the integral was nonzero if the flat plate was replaced
by a finite tube °.

Pressure was also regarded in Thomson’s Treatise which would remain the attempt to settle
the theory of a vortex atom gas. In his attempt to derive Boyle’s law, Thomson found an
additional term from which he concluded that ”the vortex atom theory explains the deviation
of gases from Boyle’s law”, adding the remark that other models were not able to show this
result [234, §56]. ‘

However, Thomson realized that his derivation in the Treatise had been somewhat obscure.
Besides, he might have been incited by Reynolds’s fundamental criticism (see §5.1). In a
paper of 1885 [237], he tried to apply a statistical method to derive again an expression for
the pressure that a system of vortex atom exerts in a vessel. First of all he warned that the
problem of the distribution of velocities of ordinary solid particles as founded by Maxwell
and Boltzmann (the Maxwell-Boltzmann equipartition theorem) had been based on identical
particles, whereas for the vortex atom model the sizes could differ. Nevertheless, after a long
investigation on the distribution of vortex atoms, he indeed derived Boyle’s law. However, this
time one quantity remained undetermined, for which he couldn’t indicate how to determine it.

The investigation of the relation between temperature and velocity of the rings, which
had already been proposed for investigation in Kelvin's Vortex Atom paper (243, p.11], led to
Thomson’s discovery of a remarkable property of the vortex atom. For increasing temperature,
i.e. kinetic energy, of a vortex ring its radius increased and consequently, according to expres-
sion (4.3) 8, its velocity decreased. For a kinetic gas, however, it had been shown that the
velocity of the particles increased. Thomson tried to weaken this last result by remarking that
it was based on monatomic gases; for diatomic gases, he thought, the velocity could indeed
decrease [234, §57].

Despite Thomson’s attempt, this property of the vortex atom would become much criti-
cized. The only one who seems to have tried to remove the opposition on this issue was Hicks.
However, his arguments only appeared in 1895 [85]), by which time the vortex atom theory
had largely been abandoned.

Meanwhile, Kelvin realized that the only way to avoid more criticism was to intensify his
attack on the kinetic gas theory. In a lecture before the British Association in 1884 [254],

15 his result indeed seems to be in error, as has been already recognized by Quint in his thesis of 1888 [184]

(see note 9) and recently by Saffman [205, §5.2).
18For which Thomson had, erroneously, found a factor 1 instead of 1 [234, §13].
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he tried to convince his audience that by his vortex atom model he had shown that inelastic
bodies could behave as elastic bodies by their motion. He accused the kinetic theory of gases of
being of no use on the atomic or molecular level and, surprisingly, claimed that the problem of
equipartition of energy was deadly for any kinetic theory like the kinetic gas theory. Besides,
he repeated his old argument that kinetic models had to assume elasticity, whereas the vortex
atom model had not.

Unfortunately, reactions by the defenders of the kinetic gas theory are unknown, but we
may suppose that the attempts by Kelvin and his followers were not taken very seriously, as
their argumentation had been weak and unconvincing.

5.3.3 Gravity and Inertia

Ever since Newton’s days, gravity had attracted the attention of scientists and, not surprisingly,
many theories had been formulated 7. The question how to include gravity in his vortex atom
model must have bothered Kelvin soon after the appearance of the Vortex Atom paper. In
1868, he had started a correspondence with Fleeming Jenkin '® who had immediately raised
several questions regarding the properties of the vortex atom model. One of these concerned
gravity, an issue Kelvin had not mentioned in his Vortex Atom theory.

A related issue, also raised by Jenkin [217], was inertia. In the Vortex Atom paper Kelvin
had remarked that the only properties required of the vortex atoms were "inertia and incom-
pressible occupation of space” [243, p.2]. Jenkin asked Kelvin how the fluid, possessing inertia,
»can leave a free passage to aggregate vortices called gross matter.” He could not understand
"how the inertia of the medium in a given space can be increased or diminished by motion”.
Kelvin seems to have replied by explaining the difference between ”what he saw as apparent
inertia and primeval inertia, the latter only being inherent” but, unfortunately, details are
lacking.

Also in Maxwell’s contribution to the Encyclopaedia Britannica [147] (see §5.1) the need for
an explanation of mass had been recognized. To Maxwell it seemed that Kelvin had proposed
that only by the motion of the rings we can define matter in the primitive fluid, i.e. matter as
a mode of motion. However, Maxwell remarked, the inertias of this mode of motion had to be
explained, because ”inertia is a property of matter, not of modes of motion” [147, p.472]

Thus, Kelvin could not avoid an attempt to comprehend gravity and inertia within the
vortex atom theory if it were ever to achieve completeness. He tried to formulate such an
explanation by means of the 18th century theory of gravity proposed by Le Sage, which had
been introduced to him by Jenkin during their discussion on gravity. Le Sage’s theory of gravi-
tational action essentially depends on the bombardment of so-called ultra-mundane corpuscles
on ponderable bodies °.

In ”On the ultramundane corpuscles of Le Sage” of 1872 [246], Kelvin extensively discussed
Le Sage’s theory of matter and added his own adaption to the vortex atom model. He noticed
that the postulate of hard atoms in a void underlying both the kinetic theory of gases (which
he had much criticized, as we have seen) and Le Sage’s theory, was open to doubt and he
tried to show that the specific problems he pointed out for Le Sage’s theory could be resolved
by replacing the hard atoms by his vortex atoms. The weakness of Kelvin’s attempt to in-
corporate Le Sage’s model was soon recognized. Nevertheless, Maxwell, in his enthousiastic

173ee [137] for an extensive survey of conceptions of gravity in the 18th and 19th centuries.

18 Jenkin, an engineer who had collaborated with Kelvin in submarine telegraphy, had been the first to treat
the vortex atom theory after its introduction, in a paper on the atomic theory of Lucretius [94].

19For a full account of Le Sage'’s theory, see [137, p.111-].
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Encyclopaedia Britannica paper (147}, didn’t dare to criticize the vortex atom model on this
point despite his description of a fundamental flaw in Le Sage’s theory.

Kelvin himself, - recognized the weak position of his theory and explained its
failure to provide support to his vortex atom in 1881 [253]:

Le Sage’s theory might give an explanation of gravity and its relation fo inertia
of masses, on the vortex theory, were it not for the essential aeolotropy [= non-
isotropy| of crystals, and the seemingly perfect isotropy of gravity. No finger-post
pointing towards a way that can possibly lead to a surmounting of this difficulty, or
a turning of its flank, has been discovered, or imagined as discoverable. Belief that
no other theory of matter is possible is the only ground for anticipating that there
is in store for the world another beautiful book to be called Elasticity, a Mode of
Motion. (253, p.473]

An alternative model to explain gravity came from Hicks, whose research on pulsating
spheres has already been mentioned in §5.1. Hicks [78] tried to show how vortex atoms could
show attractive and repulsive forces by a pulsative change of their volumes. However, he had
to conclude that even for an incompressible fluid, for large collections of vortex atoms gravity
"would take time for its full effect to travel any distance” [78, p.284]. This obviously meant an
important flaw of his model and Hicks’s proposal gained little support [137, p.285]. In a paper
of 1883 [80], Hicks had become much more cautious. Though he could show that pulsating
rings would also attract or repel each other, he made no remarks on gravity anymore.

5.3.4 Spectra

In §3.1. we mentioned that the origin and nature of line spectra of elements had been estab-
lished by the middle of the 19th century and were found to originate in the motions of the
molecules or atoms which were transmitted to the ether as vibrations of definite wavelengths.
This led to the requirement of elasticity of the atom. Besides, different materials showed dif-
ferent spectra and any theory of matter should be able to show this. Kelvin realized that if
he would indeed be able to show correct spectral properties of his atoms, this would mean
an important step in the challenge of the kinetic gas theory, which, as remarked in §5.1, was
insufficient on this issue.

In his Vortex Atom paper, Kelvin had tried to convince his audience, by means of his
experiments with smoke rings, that "the vortex atom has perfectly definite fundamental modes
of vibration, depending solely on that motion the existence of which constitutes it [i.e. vortex
motion]” [243, p.4]. In "Vortex Statics” of 1875 [232] he derived the first four of these modes
from an anlogy with the deformation of an elastic wire; see fig.5.1.

However, he realized that mathematical treatment would, again, be complicated and he
proposed to consider the modes of vibration of an infinitely long, straight, cylindrical vortex.
He added that ”these results are, of course, applicable to the Helmholtz ring when the diameter
of the approximately circular section is small in comparison with the diameter of the ring ...
"[243, p.4]. Kelvin’s results on the vibrational properties of this ”columnar vortex” were only
published in 1880 [250]. He did indeed find the dispersion relation for long bending waves on
a rectilinear vortex with a constant-vorticity core, i.e. helical disturbances, but didn’t dare to
draw any further conclusions regarding the vortex atom model.

Though Kelvin’s elaboration of the vibration of the column was recognized as a fine piece
of analytical performance, many doubted the possibilities of the vortex atom model regarding
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Figure 5.1: Steady modes of a vortex ring according to Kelvin. From [248].

spectra. In Maxwell’s final deadly blow on the vortex atom theory in his critical 1877 paper
[144] (see §5.1), he remarked that spectral requirements only allowed a finite number of degrees
of freedom, whereas the vortex atom had an infinite number.

Hicks [80], on the other hand, seriously tried to elaborate the explanation of spectral lines by
means of his hollow vortex model. However, his calculations did not show any concrete results
and he found himself forced to remark that it would be ”venturesome” to draw conclusions
with respect to properties of the vortex atom, or to find analogies with kinetic theory of gases.
One of the reasons for his reserve was related to the fact that, contrary to the interaction
of hard bodies in kinetic gases, the interaction of vortex atoms depended on the mode of
approach. Furthermore, his evaluation of the dependence of the time of vibration on energy
showed disagreement with the result found by Thomson in his Treatise. This dependence of
spectra on energy seemed fatal to the vortex atom.

G -er, more detailed, critical remarks on Kelvin’s attempt to derive spectral results ap-
pearec . d were even more destructive. W.H. Julius (see note 9) remarked that a statistical
approach was necessary for a real comparison of the properties of a gas of vortex atoms. One
had to determine whether such a gas would give a single value of the spectrum if the number
of "collisions” was reduced i.e. if the temperature was lowered. From a numerical example
for carbonic acid, he showed that for a correct spectral property, the vortex atoms should not
approach more than 30 times their diameter; evidently, there was no reason why this should be
the case in a "gas” of vortex atoms [97, p.132-6]. Another Dutchman, Quint (see also note 9),
remarked that Kelvin’s suppositions in his treatment of the osciilations of the vortex column
were in violation of the law of continuity [184, p.70]. Furthermore, he argued that Kelvin had
just supposed that vortex atoms were elastic. His only proof seemed to lie in Tait’s experiment,
but Quint wondered whether this argument was not a hypothesis itself. The experiment had
been carried out in a viscous, compressible fluid, so translation to ideal fluids was questionable
[184, p.129].

The spectral properties of the atoms remained obscure and the results found showed severe
inconsistencies. Not surprisingly, in the discovery of the spectral series formulae, by Balmer
and Rydberg around 1885 (who were presumably only slightly familiar with Kelvin’s theory),
the vortex atom would play no role at all [151, p.172-]. Up to 1890 progress in the explanation
of spectra was slow. By then the electromagnetic ”viewpoint” was quickly gaining influence
(see §6.3). Though still new models were proposed to reconcile older models like the vortex
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atom with the developing electromagnetic view 2°, it had become clear that the search for
explanation of spectra by models like that of the vortex atoms had been in vain.

200pe of these was the model by Stoney in 1891, who suggested a connection between electrical charges
associated with each bond in a chemical atom called ”electrons” and vortex atoms [151, p.188-9].



Chapter 6

The Decline of the Vortex Atom

In 1884 Kelvin was invited for a series of lectures in the United States at John Hopkins
University, which have become known as the Baltimore Lectures [241] !. These lectures,
devoted to the propagation of light and its interaction with matter, still showed a seemingly
fully-resistent optimism regarding explanation by means of mechanical models: e.g. Kelvin
presented a mechanical model of a molecule consisting of spherical shells connected by springs
(called gyrostats). The vortex atom model, which we have called "hydrodynamical” to contrast
it with the mechanical models (see the introduction of Chapter 4), was not even mentioned
once 2. In general, after 1884 the vortex atom would be absent in Kelvin’s still steadily
produced papers on all kinds of physical subjects. '

Nevertheless, the vortex atom theory still played some role in physics, a role which Kelvin
himself might never have expected and to which he didn’t contribute very much himself. It
formed the source of inspiration for a new direction in the modelling of the ether: vortex ethers.
This is the subject of §6.1. As we have seen in Chapter 5, reception of the vortex atom had
been unfavourable to Kelvin. Despite his efforts to elaborate the several issues mentioned in
§5.3, and due to the flaws which these efforts had shown in the vortex atom model, the fame of
his theory steadily declined. In §6.2, we will discuss Kelvin's reaction. Besides the insufficiency
of the model itself, its decline can be related to the general conceptual changes which took
place in physics in the 1890s. These changes, which made the fall of any theory like that of
the vortex atom inevitable, will be treated in §6.3.

6.1 Vortex Ethers

The second (1904) edition of the Baltimore Lectures shows the fast developments which had
been taking place at the end of the last century. It is extended with several appendices,
containing some of Kelvin’s lectures and papers which had appeared after the first edition.
One of them was Kelvin’s 1900 paper on two "nineteenth century clouds over the dynamical
theory of heat and light” [259]. The first of these clouds concerned the relative motion of the
still mystical interaction of ether and ponderable bodies which had become known as the ether
drift: is the ether taken along with bodies (such as the earth) or is it always at rest; or: does
ether drag exist or not?

Around 1885, the answer to this question was still lacking and the elaboration of ether-
models had become a serious business. The elastic-solid ether model (see the introduction of
Chapter 3) seemed useful indeed but also showed difficulties in connection with reflection and
refraction. MacCullagh had proposed a rotationally elastic ether, but it could not be translated
into a physical conception of its mechanism. Kelvin himself, in his Baltimore Lectures, had
proposed a gyrostatic model which was based on MacCullagh’s proposal.

1The first edition appeared the same year. A modern annoted edition is [99].
2Recall Duhem’s criticism of Kelvin’s easy shifting between various models (see §5.2.2).
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Because of its characteristic of moving freely through the ether, the original vortex atom
appeared to be a popular alternative in the 1880s to both Fresnel’s ether drift with partial
ether drag and Stokes’s total ether drag. Since it was generally assumed that planetary bodies
had to be able to move unresistedly through the ether, one realized that many of its properties
had to be those of a perfect fluid. On the other hand, it was realized that in an ether model
also properties of solids had to be included to make the ether capable of transmitting waves
of light. Consequently, the question was raised whether a configuration of vortex atoms could
indeed transmit any kind of ”"waves”.

The relation of the vortex atom and the ether has a complicated history. Initially, in his
Vortex Atom paper, Kelvin had not mentioned the ether at all. However, the problem must
have started to bother him after one of the first letters he received from Jenkin (see §5.3)
in which the question was put whether the ether also consisted of some kind of vortex rings.
Unfortunately, we do not have Kelvin’s response but we have found no indications that the
perfect fluid in which the motion of the vortex atom took place was not the ether itself, as
some historians have suggested (e.g. Wilson [281, Ch.7]). Both on account of his old (ether
is aerial) and new (ether is air-like) vision on the substance of ether (see §3.1), it is probable
that indeed Kelvin would think the ether to consist of vortex rings.

Some followers of Kelvin’s theory of matter did identify the ”perfect liquid” in which the
vortex atoms existed with the ether, as is evidenced by their papers. In Hicks’s contribution
to the vortex atom theory, for example, a question had been raised concerning the explanation
of the large density of ponderable matter as compared with ether (see §5.1).

If, on the other hand, the "perfect liquid” could not be equalled to the ether, the unpleasant
situation of ”a dualistic physical conception” arose, as was remarked by Pearson in his 1885
paper [174] (from which we quoted in the introduction to Chapter 5). If an atom is not a
difference of motion in the ether, "we are compelled to suppose two primary substances, ether-
substance and atom-substance”. The problem is that "we should be explaining our atoms by
means of an ether which would in itself be atomic” [174, p.119].

For Kelvin, Pearson’s dualistic view seems to have been out of the question. He realized that
one of the ways to settle the question would be to show the possibility of the transmission of
waves by a ”vortex ether”. The only work which seems to have been intended for this purpose
is [255], presented at the 1887 meeting of the British Association in Manchester. Though
his lecture was titled ”On the vortex-theory of the lumniferous ether (On the propagation of
laminar motion through a turbulently moving inviscid liquid)” [256], the main title may just
have been meant to draw the audience’s attention, since in reality the paper is an attempt to
"investigate turbulent motion of water between two fixed planes”. The paper does not give
the impression of a man believing to have proposed another promising ether model. On the
contrary, it showed the signs of a man full of doubts, who at the end of the paper had to
conclude with the ”Scottish verdict of not proven” because he was still doubtful about the
stability on the arrays of vortex rings (see fig.6.1) which he supposed to transmit the "waves
of laminar motion”.

Somewhat earlier, in 1885, another strong adherent to the vortex ether * had proposed his
model. In 1880, FitzGerald, professor at Trinity College in Dublin, had already developed a

3The vortex ether has also become known as the vortex sponge. Though the introduction of this term has
generally been attributed to Kelvin, he does not seem to have done so in the context of his ether model. We
have only traced ”vortex sponge” omce, in a general paper on the stability of vortex motion [251].
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Figure 6.1: Kelvin's model of a vortex ether. From [256].

theory of the ethereal plenum to incorporate Maxwell’s theory of light, based on pure elec-
tromagnetic properties. However, Kelvin’s papers on vortex motion had changed his mind
towards a theory in which ether and matter were represented by vortex motions in a universal
plenum 4.

In "On a model illustrating properties of ether” [57] of the same year, FitzGerald proposed
his new ether model. He stressed the point that regarding the nature of matter he would not
make any supposition, the ‘sponge’was just a model of the ether. In the rest of the paper he
regarded a possible explanation of polarization, but drew no conclusions.

FitzGerald’s paper does not seem to have roused much reaction. The only other paper
related to this topic seems to have been a letter in Nature in 1889 [59] in which FitzGerald
reacted to Kelvin’s ether model, treated above [256]. His reaction consisted of a similar ”electro-
magnetic interpretation of turbulent liquid motion” as in Kelvin’s paper. To which he added
that ” a natural hypothesis would be that matter consisted of free vortex rings.” [59, p.34].

Kelvin in his turn reacted to FitzGerald’s remarks by regarding the ”stability and small
oscillation of a perfect liquid full of nearly straight coreless vortices” [257 ]. The most remarkable
aspect of this paper is Kelvin’s apparent conversion towards Hicks’s hollow vortex core (see
§5.1). The rotational vortex cores had to be discarded absolutely, and "we must have nothing
but irrotational revolution and vacuous cores” {257, p.202]. He concluded that Hicks’s work
on the hollow vortex together with his own paper on the columnar vortex [250] (see §5.1) "will
be the beginning of the Vortex Theory of ether and matter, if it is ever to be a theory” [257,
p.202]. Apparently, his faith was declining.

4Despite his enthusiasm for the vortex ether, regarding the vortex atom, FitzGerald was very critical. In a
paper of 1885 [56], he called the vortex atom "hardly ... an adequate theory ... It certainly is not sufficient to
explain luminous and electrical and magnetic phenomena, to suppose the ether to be simply a perfect liquid at
rest” (56, p.340].
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After the introduction of a new vortex ether model, consisting of a regular pattern of
straight hollow vortex tubes, Kelvin concluded:

I have been anxiously considering the effect of free vortex rings with vacuous cores
among the vortex columns of this tensile vortex ether, as suggested for cored vortices
at the end of your communication ... [i.e. FitzGerald’s paper [59]]. It will be an
exceedingly interesting dynamical question; though it seems to promise at present
but little towards explaining universal gravitation or any other property of matter;
so you may imagine I do not see much hope for chemistry and electro-magnetism.
(257, p.204] ‘

These remarks seem to have ended the life of the vortex ether on both FitzGerald’s and
Kelvin’s side, though in his address at the 1888 meeting of the British Association, the former
still suggested that the problems could be overcome [58, p.562]. Ironically, nowadays FitzGerald
is best known for the contraction theory named after him and Lorentz, which at the end of
the 19th century was one of the signals that the ether would definitely disappear as a topic in

physics.

In the meantime, a crucial experiment had been performed by Michelson and Morley in 1887
which showed the incorrectness of any stationary ether hypothesis and actually meant the death
of the ether hypothesis. The properties of ether had suddenly become self-contradictory 5,

The Michelson-Morley experiment did not immediately put an end to model-building. On
the contrary, Hertz’s discovery of wireless waves, an experimental demonstration of Maxwell’s
electromagnetic theory, must have stimulated new research, as that by Hicks and Lodge.

In 1885, Hicks had discussed the possibility of transmitting waves through a medium con-
sisting of an incompressible fluid of closely-packed small vortex rings [83] and in 1888 had
proposed ”a vortex analogue of static electricity” (84]. He still discussed the possibilities of a
vortex‘sponge‘model in his address to the Section of Mathematical and Physical Science of the
British Association in 1895. However, Hicks had to conclude that ”we can make little further
progress until we know something of the arrangement of the small motion which confer the
quasi-rigidity [of the ether]” [85, p.601], but he nevertheless considered some possibilities. He
even tried to show how the explanation of "the magnetic rotation of the plane of polarisation
of light” could be explained from vortex rings and how gravity could be explained from the
vortex ether. "In all cases, whether a fluid ether is an actual fact or not, the results obtained
will be of special interest as types of fluid motion” (85, p.606].

Still in 1893, Lodge ©, then professor of physics in Liverpool, argued that all phenomena
and all experiments, except that by Michelson and Morley, could be explained in terms of the
vortex atom. Probably, he suggested, even this last result could be ”explained away”, though

5Still, in a series of lectures given in 1899, Michelson [156] stated that "the ‘ether vortex theory’ which, if true,
has the merit of introducing nothing new into the hypotheses already made, but only of specifying the particular
form of motion required.” After an explanation of his experiment with Morley, he treated the characteristics of
vortex rings: ”In fact, there are so many analogies that we are tempted to think that the vortex ring is in reality
an enlarged image of the atom.” Apparently, at that time Michelson still strongly believed in the unification
which the ether could provide to physics though deep inside he must have had different opinions.

®Tn 1885 Lodge had done some really fundamental work to determine the value of the vortex atom [130].
To approach the difficult subject of interaction vortex rings, he had calculated and drawn their streamlines, a
much more ”experimental” approach than had been done in other papers before by anyone else. In the same
paper he mentioned his experiments with smoke-rings using a ” powerful intermittent induction-coil Leyden-jar
discharge” [130, p.70].
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on the other hand the vortex atom model might have to be adapted [131] .

Clearly, the adherents of the vortex ether were unable to put up a really satisfactory model.
Their papers remained full of suggestions and lacked concrete results. Consequently, the role
of vortex models never became generally accepted.

Not surprisingly, Kelvin turned his attention towards new ether models. His final opinion
on the ether was published shortly before his death in 1907 and shows his transition towards
the new "electric particle” approach (see §6.3 below). Looking back, he concluded:

I do not propose to enter on any atomic theory of ether. It seems to me indeed
most probable that in reality ether is structureless. ... We sometimes hear the ”lu-
miniferous ether” spoken of as a fluid. More than thirty ® years ago I abandoned,
for reasons which seem to me thoroughly cogent, the idea that ether is a fluid pre-
senting appareances of elasticity due to motion, as in collisions between Helmholtz
vortex rings. Abandoning this idea, we are driven to the conclusion that ether is
an elastic solid. [262, p.236]

However, by 1907 the ether had already become an obsolete concept in physics due to the
introduction of Einstein’s theory of relativity.

6.2 Kelvin’s Reaction to the Decline of the Vortex Atom

From the discussion in §5.3 of Kelvin’s elaboration of the several issues surrounding his vortex
atom theory, it appeared that his mind was still directed towards its problems at least up to
his 1884 lecture before the British Association (see §5.3.2). Thereafter, as discussed in §6.1,
Kelvin shortly directed his attention towards the vortex ether, though with an apparent lack
of enthusiasm and hope.

In 1883 he still lectured on the vortex atom in Newcastle, where he received a copy of
Thomson’s Treatise [232, p.1046]. Not surprisingly, this support for his theory pleased him
very much; to one of his colleagues he wrote: "I am becoming hot on vortex motion through
having ... J.J. Thomson’s book at hand” [213, p.212]. Though the same year, Tait wrote
Kelvin that he had found a means for destroying the vortex atom for good, apparently Kelvin
was not dissuaded by Tait’s proof [213, p.214].

However, the still rising popularity of the vortex atom at that time and the attempts to
apply the vortex atom theory to physical phenomena had also had its negative consequences:
the weakness of the theory became clear. One of Kelvin's biggest worries must have been his
inability to proof the stability of the vortex ring (see §5.3.1). However, in a footnote to a paper
of 1905, we learn that Kelvin’s doubts on this point had only become a real conviction after
writing a paper entitled ”On the stability of steady and of periodic fluid motion” published in
1887 [255]:

It now seems to me certain that if any motion be given within a finite portion of an
infinite incompressible liquid originally at rest, its fate is necessarily dissipation to
infinite distances with infinitely small velocities everywhere; while the total kinetic
energy remains constant. After many years of failure to prove that the original

7 Actually, Lodge performed an experiment of the same rank as that of Michelson and Morley which, by its
confusing result, aided to the declining faith in the ether [65].

8From this remark a problem of chronology arises, as by 1877 Kelvin was still favourably inclined towards
the idea of elasticity resulting from vortex motion. He probably meant twenty years, as by 1887 his faith in the
stability of the vortex ring had definitely been lost (see §5.3.1; see also [281, p.178]).
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Helmholtz circular ring is stable, I come to the conclusion that it is essentially
unstable, and that its fate must be to become dissipated ... . [261, p.370]

Regarding the fate of the vortex atom theory with regard to other issues - gravity, spectra,
and the compatibility with the kinetic gas theory - we only have some scattered remarks by
Kelvin. In 1886, he told Merz, author of an excellent survey of 19th century science, that the
vortex atom did not realize his expectations, inasmuch as it did not explain inertia or gravity.
[232, p.1046] In 1898 he wrote Holman, professor at M.I.T. and surveyor of physics at the end
of the 19th century: "I am afraid it is not possible to explain all the properties of matter by
the Vortex-Atom theory alone, that is to say, merely by motion of an incompressible fluid;
and I have not found it helpful in respect to crystalline configurations, or electrical, chemical,
or gravitational forces. ... With great regret I abandon the idea that a mere configuration of
motion suffices” 232, p.1047].

Kelvin’s recognition of the failure of the vortex atom model led to a short refuge in the
Boscovichean theory of matter (see §5.1). This seems remarkable as in the early 1860s he had
completely rejected this theory. However, he must also have realized that the space-filling force
of Boscovich’s theory was not so very much different from the space-filling vortex ether theory.
While in his 1884 Baltimore Lectures he had put the Boscovich model behind the vortex atom,
in the 1890s he was readily employing Boscovichian force curves (see e.g. [281, Ch.9]). While
he retained a speculative belief in the sufficiency of explanation by means of models like that
of the vortex atom, he had shifted, as a practical matter, to the more positivistic approach
of Boscovich. However, he still insisted that atoms had to be considered as having finite
dimensions and structure, properties which the Boscovichean atom was lacking.

Finally, however, as for the vortex atom, Kelvin recognized that the Boscovichean atom
could provide no sufficient explanation for matter. Kelvin’s final atom model of 1901 [260] was
a static arrangement, which contained electric particles which he called electrions.

6.3 The Rise of a New Physics

British physics after 1880 showed a complex interaction between Maxwell’s electromagnetic
theory, vortex ether theories, new insights into the nature of the electric charge, and modified
vortex atom conceptions of matter. This "struggle” would eventually be lost by the vortex
atom and all related models that had failed to incorporate the electromagnetic theory of light.
This is apparent by the change in Kelvin’s opinion on matter as we already indicated at the
end of §6.2.

Several incentives towards the new development in physics, i.e. the shift towards ” electric”
models, can be mentioned.

One incentive was related to the second cloud over the dynamical theory of heat and light,
which Kelvin had treated in [259] (see §6.1): the Maxwell-Boltzmann equipartition theorem
(see §5.3.2). While Kelvin had tried to dispel its meaning and to show its failure, in the 1890s
other British physicists incorporated the electric charge into vortex atom conception in an
attempt to reconcile the difficulties related to the equipartition theorem.

Another incentive came from the still ongoing attempts to adapt the vortex atom to new de-
velopments in physics. Larmor, then lecturer in Cambridge and eventual successor at Stokes’s
position, attempted to resolve the problems of constructing an ether theory that would rep-
resent all optical and electromagnetic phenomena. In the first part of his extensive paper A
dynamical theory of the electric and luminiferous medium” of 1893-1895 [116], we encounter a
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man still fighting with the heritage of the declining vortex atom and the vortex ether models.
However, Larmor came to the conclusion that some other bond for the atoms of a molecule
had to be found, in addition to the hydrodynamic one. This he found in the attractions of the
electric charges of the atoms. Thus, while the first part of his paper had been a last attempt
to reconcile the vortex theory with the newly emerging concept of electrons, the second part
would be completely devoted to the electrons.

Not surprisingly, Larmor’s theory encountered the same attacks as the vortex atom theory:
it was too complex and far-fetched to be real. Nevertheless, Larmor’s work found some support
in a paper by Pocklington [179](1895) who discovered that the missing energy in the model
could be found in the electric charge of the vortex.

Though British physicists like Larmor were still trying to integrate Maxwell’s theory of
electromagnetic fields into Kelvin’s ethereal continuum, others just formulated field equations
without any involvement of (mechanical) ether models. The development of ether and field
theories more and more challenged the hegemony of the view of nature expressed in e.g. the
vortex atom theory.

The final blow to the vortex atom was given by J.J. Thomson, former defender of the vortex
atom (see §5.1).

The Treatise had given Thomson some reputation. In 1884, at 28, he was chosen as
Cavendish Professor of Experimental Physics at Cambridge University (Maxwell and Rayleigh
had been his predecessors), above men like FitzGerald and Reynolds. Recalling the failures he
had met in his elaboration of the vortex atom theory (as treated in §5.3), it is not surprising
that after 1885 Thomson had growing doubts on the vortex atom and acquired a positivistic
viewpoint on matter. After 1886 he stopped research on vortices and went over to experi-
ments on rarified gases to verify his ideas on chemical combinations. Nevertheless his work
was still based on his investigations on the vortex atom. His research with cathode rays showed
that their long path lengths could only be explained by assuming a very small particle, very
much smaller than an atom, which would be inconsistent with the vortex atom model. Even
if Larmor’s model would be used, Thomson realized, no explanation could be found for this
phenomenon. However, the vortex theory still guided his search [266]. A theory of cathode
rays based on linking and unlinking vortex rings led Thomson to think that the phenomena
would be clearer in a higher vacuum. The final result of these experiments was the discoverv
of the electron in 1897 [151, p.173-]

Thomson’s discovery meant a definite justification for the newly arising ”electric” atom
models. A new physics had been born. As Pearson accounted in 1900:

The end of the nineteenth century ... marks the advent of experimental knowledge
requiring an entire revision of the hypotheses and theories as to the constitution of
matter. ... Whereas through the greater part of the nineteenth century, "matter”
was the concept which was looked upon as fundamental in physical science, of
which there was a curious accidental property called electricity, it now appears
that electricity must be more fundamental than matter. in the sense that our once
elementary matter must now be conceived as a manisfestation of extremely complex
electrical phenomena. [176, p.356-]

Related to this shift in ”fundamental concept”, i.e. from mechanical towards electrical, the
end of the 19th century saw the decline of devising mechanical and hydrodynamical models
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(see the introduction of Chapter 5). If the supposed mechanical explanation provided no new
insight, and if it led to no further progress, in what sense did it provide an explanation?
Planck’s attack on the kinetic gas theory, for example, in the 1890s, can be seen as the growing
challenge of the whole "mechanical programme”. Even the position of matter was attacked.
If all matter is made of elements which are of an electrical nature, is not electricity instead of
matter the fundamental physical reality? It was the fate of the vortex atom model to introduce
the theory of fields into Britain, which would result in field theory of the atom in which the
vortex atom was no longer needed.

Larmor, who had seen the decline of his own model, tried to formulate the merits of the
vortex atom model in his 1900 presidential address for the British Association, which can be
regarded as a summary of the state of matter and ether theories at the turn of the century:

The vortex-atom theory has been a main source of physical suggestion, because it
presents, on a simple basis, a dynamical picture of an ideal material system, atom-
ically constituted, which could go on automatically without extraneous support.
The value of such a picture may be held to lie, not in any supposition that this is
the mechanism of the actual world laid bare, but in the vivid illustration it affords
of the fundamental postulate of physical science, that mechanical phenomena are
not parts of the scheme too involved for us to explore, but rather present them-
selves in definite and consistent correlations, which we are able to disentangle and
apprehend with continuously increasing precision. [117, p.625]

Kelvin not only had to accept that his theory of "matter as motion” had failed, it must
also have bothered him that the new generation of physicists had stopped using his kind of
models and had shifted towards analytical models °. Kelvin’s methodology would die with him
and with his vortex atom.

®See the Epilogue.



Interlude: Between Vortex Atom and Vorton

As we have seen, the introduction of the vortex atom by Kelvin meant a new impulse to
research on vortex motion. The impressive works by Thomson, Hicks, and several others (see
§5.1) marked a transition towards a serious, mathematical treatment of vortex motion. Though
the decline of the vortex atom may have caused a temporary stagnation in the development
of vorticity theory , since Kelvin’s days the subject of vorticity and vortices has been steadily
enriched and and is still actively explored. Moreover, it has become generally recognized that
vorticity is an essential part of most fluid flows. Several new topics in research on vortex motion
have been introduced of which we mention, without further exposition, vortex-breakdown (see
e.g. [205, §14.4]), geophysical vortex flows, vortices in wakes of solid bodies, vortex shedding,
vortex buckling, vortex sound, and vortex merging '°.

As has become clear from §5.2, in the 1880s and 1890s research on vortex motion hardly
spread from Britain to other parts of the world, and seems to have remained a British speciality
for some time after the decline of the vortex atom and vortex ether. Only in the first decade
of this century, a growing interest can be detected on the Continent.

In the beginning of the 20th century new areas in fluid mechanics developed, like the
theory of boundary layer flow and the theory of airfoils . Their popularity temporarily
hindered recognition of interesting and important results which were still discovered in vorticity
theory 2. At the same time, however, discoveries in these fields showed new and unsuspected
aspects of the role of vorticity in fluid flows.

In 1904, the German Prandtl proposed the boundary layer, a thin layer near the surface
of a body in which vorticity is generated due to the so-called no-slip boundary condition 2.
Due to the realization that the viscous boundary layer could be regarded separately from the
inviscid flow above it, adoption of his theory permitted mathematical simplifications of the
hydrodynamical equations which resulted in the solution of some long-standing viscous flow
problems in fluid mechanics (e.g. the drag met by bodies in fluid flows). The early developments
in the design of airplanes gave an important stimulus to the field of aerodynamics. The new
theory of airfoils, formulated by the Russian Zhukovsky and others, showed the important
connection between the lift of a wing and Kelvin’s (still underrated) concept of circulation.
Besides, this new field stimulated the study of compressible (vortical) flows [134, §4.7].

In another major field of 20th century fluid mechanics, turbulence, developments at the
beginning of the 20th century were still slow and few '*. Only in the 1930s vorticity became
involved (again) in turbulence research, as will be discussed in §B.

Here, we will not review all developments in vorticity theory up to our days '*. The choice

10The only available general survey of vortex flows, both in nature and technology, is the book by Lugt {134],
A survey of present-day topics related to vortex motion is {13].

1'We refer to [67] for a concise survey of research in fluid mechanics in the first part of the 20th century.

12A pice example in this context is the publication in 1906 by the Italian scientist Da Rios of the dynamical
equations for the global behaviour of vortex filaments. This paper fell into complete oblivion, to be only
rediscovered in the 1960s [192].

138ee [230] for a history of boundary-layer theory.

MLamb inserted one (short) section on turbulent motion in the second edition (1895) of his Hydrodynamics
(see §5.1). This was kept unaltered up to the last, 6th, edition of 1932.

15Unfortunately, no (comprehensive) review seems to exist on the development of vorticity theory in the 20th
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of the topics presented in this Interlude has been guided by the subjects to be treated in the
vorton-part of this thesis. In §A developments in experimental and analytical treatment of
vortex rings will be discussed. The last three sections contain an introduction into the role of
vorticity in modern fluid mechanics: §B on turbulence, §C on topological fluid mechanics, and
§D on vortex methods.

A Vortex Rings

In this section we will present some of the 20th century developments in the experimental
and analytical treatment of vortex rings. Although their use in theories of matter or ether
had become almost completely abandoned by 1900, their recognition as the most fundamental
(closed) vortex structure caused a continuing interest in their characteristics.

A.1 Experiments
At the end of the 19th and the beginning of the 20th century, the essentials of experimental work
on vortex rings were largely based on the first achievements by Tait '® though the execution
of the experiments became more sophisticated. During the 1870s, Ball, professor of applied
mathematics and mechanics at the Irish Royal College of Science, had received a grant from the
Royal Irish Academy to develop a machine for producing smoke rings. In his highly impressive
experiment he studied the retardation of vortex rings due to viscous diffusion (see e.g. [19]).

In 1901, Wood, then instructor at the Physical Laboratory of the University of Wisconsin,
published several experiments with smoke rings [285] and one of his pictures (see fig.a) showed
the ”fusion of two rings moving side by side into a single large ring. ... At the moment of
union the form of the vortex is very unstable, being an extreme case of the vibrating elliptical
ring. It at once springs from a horizontal dumb-bell into a vertical dumb-bell ... and then
slowly oscillates into the circular form ...”. This result seems to be the first description of
an important aspect of vortex dynamics, which has only recently got more serious attention:
vortex reconnection (see §C below).

In 1911, similar results though from a more sophisticated experiment on vortex rings were
published by Northrup, then at Princeton University (see [166] for full details and [167] for a
summary of his results). Introducing his investigations, he remarked:

It seems strange ... that though the laws of vortex motion were exhaustively exam-
ined by the ablest mathematicians of the time, few if any experiments were made
to study vortex motions in air and fluids, beyond the first experiments with smoke
rings. ... The experiments which are about to be described would, if made earlier,
have possibly had a greater interest as bearing upon Lord Kelvin's ingenious theory
of the vortex atom. [166, p.213]

Northrup had constructed an ingenious ”gun” with which he could make vortex rings in
almost any initial configuration he wanted. He was even able to make beautiful stereoscopic

century. To get an impression of the development in this field, one could consult bibliographies like the Royal
Society of London Catalogue of Scientific Papers 1800-1900 (Cambridge, 1909) and the annually published
Annalen der Physik und Chemie and Die Fortschritte der Physik. For developments in the last three decades
we can refer to the reviews which have been published in the Annuel Review of Fluid Mechanics.

16 An alternative method to produce rings was suggested by J.J. Thomson. In 1885 he presented results of
experiments he had done together with Newall at Cambridge. They noticed that a drop of ink became unstable
when it fell into water and secondary smaller rings developed [240]. This work on rings formed from liquid drops
was only reconsidered in 1966 [34].
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Figure a: Illustration of reconnecting vortex rings from Wood’s 1901 experiment [285]. The rings are moving

away from the reader.

photographs of the interaction of these rings. Besides experiments on elliptical rings and
their instability, Northrup repeated Wood’s experiment on the interaction and subsequent
reconnection of two initially parallel rings. His sketch of the process (see fig.b) was accompanied
by the following comment: '

In Fig.[b] a shows two rings a few centimeters from the gun. They are shown
in side view, moving in the direction indicated by the arrow, m. The velocity
of the fluid in reference to the rings is indicated at three points by the arrows
1, 2, 2. Since this velocity is greater at 1 than at 2 and 2!, the points on the
circumferences of the rings which are adjacent lag behind the points which are
opposite, and consequently the planes of the two rings begin to tilt forward in the
manner indicated.

Furthermore, as the velocity of the fluid is greater at 1 than at other points
equally distant from the filaments of the rings, here will be acting a pressure,
according to Bernoulli’s principle, which will tend to force together adjacent points
of the circumferences of the two rings. Hence, a moment later the rings will assume
a position indicated at b. The rings should now be viewed from behind, when their
form will be (at a very brief instant later than shown in b) as indicated in full line
at ¢, or in dotted line at d, which is a side view. The high velocity of the fluid at
the point of contact has caused the two rings to unite and assume the form of a
figure 8, with its upper and lower ends greatly tilted forward in the direction of
motion of the now single ring.

As this distorted single ring has everywhere an equal tension along its filamen-
tary line, it tends to assume a circular form and lie in a plane normal to the forward
direction of motion. But in changing its form to assume the circular plane ring form
it overshoots this equilibrium position and assumes, as seen from behind, the form
shown at d in heavy line. This double oscillation about the form of equilibrium
now continues, and the ring advances ... [166, p.366-8]

It seems that only in 1939 the next extensive experiments on vortex rings were performed,
in Germany by Krutzsch [112]. Krutzsch discovered that instability of rings led to a pattern of
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Figure b: A sketch of reconnecting vortex rings, drawn by Northrup in 1911 to illustrate his experimental
results [166] (see text).

sinusoidal variations of the ring’s radius, called azimuthal instability; see fig.c. The following
war period seems to have prevented continuation of his work. Not before the 1970s experiments

Figure c: Instability of a vortex ring in the form of an azimuthal wave disturbance as found by Krutzsch in his
1939 experiment [112].

on vortex rings seem to have been resumed. Although the equipment had become even more
sophisticated, researchers were still mainly concerned with the classical configurations: the
head-on collision of two vortex rings (as Helmholtz had already discussed; see Chapter 2), the
reconnection of two initially parallel vortex rings (as had been done in the experiments by
Wood and Northrup), and the leap-frog effect. The latter, which had already been predicted
by Helmholtz in 1858, was first demonstrated experimentally in 1978 [287] 7.

A.2 Analytical Treatment
The analytical work on vortex rings by Kelvin and others in the last three decades of the
19th century had been impressive and their results were generally regarded as physically well-

17Discussion of more recent experimental results will be postponed to Chapter 10, where the simulation of
six vorton configurations is treated.
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founded for several cases. However, in their derivations the following properties of the rings
had been assumed (compare fig.2.3):

e uniform vorticity distribution in the core and no vorticity outside the core;
e circular core;
e core radius a small compared to the ring radius R: a/R <« 1.

A vortex ring satisfying these conditions will be called a Kelvin-ring in this thesis. One started
to realize that in most circumstances these ”ideal” rings would be only very approximate
representations of real vortex rings '®. However, mathematical techniques were lacking for
fuller treatment and the investigation of vortex rings whose conditions differed from those of
the Kelvin-ring only started in the 1970s (see e.g. [276] and [205] for a survey).

One of the most elementary results on the vortex ring had been its velocity, for which
Kelvin’s expression (4.3) became a landmark. Hicks, who had been one of the most dedicated
followers of the vortex atom theory and the main propagator of the hollow vortex ring (see
§5.1), had confirmed the correctness of expression (4.3). However, he also showed that for his
hollow ring (see §5.1) the factor ; had to be replaced by 3, thereby providing a direct proof
of the influence of the vorticity distribution in the core [82]. Further analytical confirmation
of Kelvin's result appeared in an impressive paper of 1893 by Dyson, communicated by J.J.
Thomson [54]. Dyson extended the expression to rings of non-circular cross-sections and found
a higher order error estimation of expression (4.3). In 1914 Gray again confirmed Kelvin’s result
[69], but only in 1970 the velocity of a ring of small cross section with arbitrary distribution of
vorticity within the core was derived for the first time (see [276] and [205] for details). For an
arbitrary distribution of vorticity in the core (but still a small and circular core), it was found
that the ring velocity could be written as:

V:L(logﬁ—i-A—l)
T a

where the factor A depends on the vorticity distribution only. For uniform vorticity A = %,
confirming Kelvin’s result !°.

The attempts by Thomson in his Treatise of 1883 (see §5.1) had shown the limitations of
analytical treatment of the interaction of vortex rings ?°. Subsequent analytical research had
necessarily been limited to the relatively simple cases of head-on collision and leap-frogging of
coaxial rings. Thomson'’s followers also realized that only configurations of coaxial vortex rings

81n 1888, Chree [38] had already shown that cores of vortex tubes may not remain circular.

197.J. Thomson in his Treatise (see §5.1) had proposed a factor 1 [234], but Hicks convinced him that he was
wrong [82]. Experimental confirmation of the above equation for V was only tried by Sullivan et al. in 1973 {see
[276]); they found differences within 20% of the theoretical values. In the last few decades expressions have also
Eeen found for unsteady rings, for compressible rings, viscous rings, and rings with swirl; see for a discussion
{205, §10.3].

*ORoberts [193] took up J.J. Thomson’s analytical work on interacting vortex rings in 1972. He remarked that
the interaction of rings are ”strongly reminiscent of those given in standard texts for scattering under central
forces”, which suggested to him that it could be described from the standpoint of classical Hamiltonian dynamics
of interacting particles. However, Roberts noticed that rings cannot be compared to elastic particles since a
ring has an infinite number of degrees of freedom (compare Maxwell’s remark mentioned in §5.3.4). However,
if the separation of the rings is large compared to their diameter, collision is elastic and for this case Roberts
presented a Hamiltonian formulation. He showed that J.J. Thomson had made an error in his derivation, which
did destroy the Hamiltonian character of his final results.
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would be feasible for analytical treatment. Dyson’s paper (see above) contained fundamental
results on the leap-frog interaction and on the head-on collission of two Kelvin-rings. For the
latter, he (like Helmholtz in 1858) recognized that it was equal to the interaction of a single
ring with a ”"fixed plane”; in this case the ring interacted with its "mirrored” image on the
other side of the plane. By means of impressive calculations Dyson was able to provide an exact
analytical expression for the trajectory of the core center of the ring '
approaching the plane. Besides, he derived an equation for the rate of change of radius R when
the ring had approached the plane closely:

_ T
" 27R

where I is the circulation. For the relation between R and the distance d between the ring and
the plane, he found the curve shown in fig.d. For leap-frogging rings he derived conditions for
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Figure d: Dyson’s figure showing the relation between the radius R (korizontal) and distance d (vertical) of a

vortex ring approaching a ”plane”. From [54)].

the unbounded continuation of the process. In 1922, Hicks [88] would also investigate the leap-
frog interaction and head-on collision. However, his work once again demonstrated the strong
restrictions imposed by the available analytical techniques and the need for new methods to
handle vortex interaction. Only the advent of numerical techniques would make an important
progress on this point possible (see §D below).

A.3 Steadiness and Stability

As discussed in §5.3.1, proof for the steadiness and stability of the vortex atom became an
important issue in the discussion of the model. Regarding steadiness, only attempts by Kelvin
himself have been traced and his results on this issue, as on other ones, lack sufficient rigour.
Apparently, a real proof for the existence of steady Kelvin-rings was only given by Maruhn in
1957 and Fraenkel in 1970, though the question remains a subject of study (see e.g. [7]).
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Regarding stability, in 1875 [248] Kelvin was still convinced that the Kelvin-ring was a
steady and stable configuration. By 1905, however, he had changed his opinion and realized
that it was "essentially unstable” (see §6.2). His main attempt with regard to this issue had
been his 1880 paper [250] on the stability of "columnar vortices” by means of a dispersion
relation for linearized perturbations ?!. However, he had to admit that he was unable to give a
proof 2. Thomson had tried to show that up to O(log a/R) all modes of oscillation are stable
and that each mode had a definite natural frequency [234, §13].

Others also came to recognize that no convincing proof existed on the stability of vortex
rings. In 1885, Lodge [130] analytically investigated a ring moving in a "oblique direction”
and found "a good deal of vibration, both of the ring as a whole and of its cross section; and it
looks as though a very little would suffice to break it up altogether.” In his lectures on vortex
theory of 1893 (see §5.2), Poincaré showed that there were no sufficient guarantees for the
stability of the vortex atom [180].

As for vortex ring experiments, new investigations on their stability only reappeared in the
1970s. Maxworthy [149] has showed experimentally that a laminar ring is only stable at low
Reynolds number ?* though stability of the ring configuration seems to set in again when the
core becomes fully turbulent. The instability of the laminar ring takes the form of bending
waves around the perimeter, and these waves grow in amplitude as time proceeds. Some of
these "steady modes” had already been drawn by Kelvin in 1875 (see fig.5.1) and had been
observed in the experiment by Krutzsch (see fig.c). Maxworthy attributed this instability to
the method of generation of the rings and did not regard it as an intrinsic property.

However, the analytical work by Widnall and co-workers on the stability of vortex rings
(or locally curved vortex filaments in general) showed that even for inviscid rings instability
can arise regardless of their generation (see [277], [278], [279]). They showed that the proper
treatment of the internal structure of the flow within the core as influenced by bending waves
is crucial to stability analysis. This was something which both Kelvin in his investigation of
the columnar vortex [250] and Thomson [234] had not considered 4.

Notice, however, that Widnall’s analysis is based on the Kelvin-ring. Studies on the stability

of more general vortex rings representations, e.g. with nonuniform core distributions, are still
lacking and may only be possible by means of numerical methods (compare §10.1.2 below).

211t appears that Kelvin's work was experimentally investigated only in 1989 by Vatistas [272]. He found
unstable transitional regions between equilibria, which Kelvin had not noticed.

The perturbations studied by Kelvin are nowadays called Kelvin waves [205, §11.3]. The variational principle
proposed by Kelvin in [248] has again been applied in the 1980s [205, §14.2].

223ee [194] for a recent review of Kelvin’s approach.

23The Reynolds number can be defined by:

Re = vp
v
where U is a characteristic velocity, D is a characteristic dimension, and v is the kinematic viscosity. For its
history, see [200]. For vortex structures, another definition of Re can be found: Re = I'/v, where I is the
circulation.

*4Ironically, Kelvin’s analysis for the neutral waves can be used as one of the ingredients to a simplified
demonstration of the instability mechanism [212].

Recently, Lifschitz in [33] investigated stability by another method. His geometrical optics approach allows to
describe short wavelength instabilities, which ”play an important role in many situations”. Whereas Widnall’s
theory was only applicable to thin rings with constant vorticity in the circular core, Lifschitz could study thicker
rings. He showed that all laminar rings are unstable.
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B  Vorticity and Turbulence

Without doubt, at the time of the birth of the vortex atom (1867) the phenomenon of tur-
bulence had already been encountered in many flow configurations, but it certainly had not
become an object of study. In 1883, Reynolds [191] had been the first to investigate by experi-
ment the transition from laminar to turbulent flow and his work meant an important stimulus
to research on turbulent motion 3. Kelvin’s 1887 paper on a possible model of the vortex ether
[256] (see §6.1) had originally been entitled ”On the propagation of laminar motion through a
turbulently moving inviscid liquid” and had been an attempt to investigate ”turbulent motion
of water between two fixed planes” 2. In 1889, FitzGerald [59] reacted to Kelvin’s paper by an
investigation of turbulent motion and possible analogies with electro-magnetic equations. He
remarked that desintegration by diffusion of turbulent flow (as represented by Kelvin’s model
shown in fig.6.1) could be avoided by supposing the turbulent liquid to consist of interlocked
vortex rings, or of infinite intercrossing lines ...” [59, p.34] *’. However, Kelvin’s crude vortex
ring model of a turbulent motion was not based on any physical knowledge of turbulence,
which around 1887 was still very limited and mostly experimental.

This connection between turbulent motion and vortex motion followed the fate of the vortex
ether itself and dropped from the general attention at the beginning of this century. Subsequent
attempts to study turbulence from the general equations of fluid mechanics showed that the
mathematics needed for full (analytic) treatment of turbulent flow was too difficult to handle,
and approximations had to be made. This necessitated the use of physical insight. Prandtl’s
mixing-length model, introduced in the 1920s, was based on an analogy with the kinetic gas
theory 28. However, the prewar period was mainly a period of mathematical modelling and of
experiments. Only in 1932, Taylor [231, Vol.I1,§24] developed a theory in which the dynamics
of turbulent motion was regarded as an effect of diffusion of vorticity. He showed that his
suppositions led to better agreement with experimental results than the diffusion of momentum
theories popular at that time 2°. In 1938 [231, VolII,§41], he showed the importance of the
stretching of vortex filaments in turbulence.

Regarding contemporary literature on turbulence, we can conclude that Kelvin’s and
FitzGerald's original idea of representing turbulent motion by arrays of vortex rings has re-
turned. Already in 1943 a similar attempt at modelling turbulent flow by restricting attention
to the influence of vorticity was made by Synge & Lin [225]. They tried to derive the sta-
tistical characteristics of turbulence from a model consisting of interacting vortices. Their
initial choice for vortex rings, however, had ”undesirable features” and the authors turned to a
model involving ”spherical vortices”. Since this attempt, many researchers have been incited
to building turbulence models in which the basic concept is some kind of vortical structure 30,

25Unfortunately, as for the theory of vortex motion, no historical survey of the early history of turbulence
research has been traced.

26K elvin seems to have actually introduced the term ”turbulence” [115, 4th ed.,§366]. Reynolds, in 1883, had
spoken of ”sinuous flow”.

27The idea of representing turbulent motion by means of a system of vortex rings has been a topic ever since.
One example is Roberts’s model [193], mentioned above. More recently, Aref & Zawadzki in [16] wondered
whether turbulence can be described as a "gas” of vortex rings.

28Notice that this meant a shift in the use of analogy in turbulence research from the vortex atom theory to
the rivalling kinetic gas theory.

29Nowadays, this diffusion theory is no longer accepted.

300ne of the latest models is by Lundgren [136], to whom we also refer for a discussion of preceding theories.

One of the central issues in the investigation of ”vortex models” has been the quest for the correct energy
spectrum. The energy cascade at high wave numbers is believed to be independent of viscosity, so the classical



INTERLUDE 61

The purpose of the models mentioned above has been to obtain a simplified view on turbu-
lence and to derive some of its essential properties 3'. The vortical elements were not supposed
to be physical models of real structures in turbulent flows. Today, however, it has become
clear that vortical structures are indeed present in turbulence. To elucidate this development,
we will first give a short historical review.

In the 1930s the main treatment of turbulence, regarded as a random fluid motion, had
become statistical. However, during the 1940s and 1950s the suggestion arose that besides
the random part also a non-random part existed. A growing amount of experimental results,
amongst others the observation of the so-called intermittency, led to the idea of the existence of
"structures” in turbulent motion. Moreover, these so-called coherent structures (CS) were
defined as regions of relatively high vorticity. Hence turbulence became envisaged as a number
of interacting vortex structures. Especially in transitional flows, vortices were supposed to
play an important dynamical role. By the 1970s this view of turbulence had become generally
accepted 32. However, it also became clear that, as Betchov in [60] remarked, ”it is not the
mere presence of vorticity that characterizes turbulence. It is the complexity of the vorticity
field. In a laminar boundary layer, the vortex lines are parallel and stacked near the wall, like
uncooked spaghetti. In the turbulent boundary layer the vortex lines are constantly changing
and twisting. Near the wall, major entanglements appear, and the vortex lines may develop
knots and crossover points. The spaghetti is cooked.”

Although nowadays the existence and importance of CS is generally recognized and has
been investigated both experimentally and numerically, still consensus is lacking on many
aspects 33. Several different structures have been proposed, but limited quantitative evidence
hinders demonstration of the role these structures play. According to Kline & Robinson in [73],
three main issues in the present research on CS can be detected: ”spatial relationships among
the forms of structure; temporal relations in creation, evolution, and decay of structures; a
complete model of the important structure(s)”.

Even a generally acceptable definition of CS still seems remote and may even be unattain-
able. P ides, it is still debated whether CS are the remnants of some kind of instability process
or whether they are manifestations of some intrinsic universal properties of any turbulent flow.
Up to now, research on CS has been done only for transitional or rather low Reynolds number
flows and the question has been raised whether CS will survive in ”fully developed” turbulence,
i.e. at high values of Re. Unfortunately, research on CS is hindered by the difficulties involved
in the direct measurement of vorticity in a flow. In numerical research the main problem is a
lack of detection methods of CS [196, Ch.9]. However, it is generally agreed that both experi-
mentally and numerically the importance of CS has been established and for the moment we
will therefore disregard these problems.

On the close link of CS with vortex dynamics, we quote from the contribution ”Whither
coherent structures?” by Bridges et al. in [135]:

Kolmogorov 5/3-spectrum may be obtained from interaction of inviscid vortex filaments. Kiya & Ishii applied
an inviscid vortex method to show how only a few vortex rings, arranged symmetrically on a cube, can produce
a Kolmogorov energy spectrum [105]. Moffatt, in [135] and [16], has proposed another model to attain the
same results. He suggested that a random distribution of spiral structures (rolled-up vortex sheets) shows a
Kolmogorov spectrum. ’

31Gee the Epilogue for a discussion of models.

328ee [196, Ch.2] for a historical review of turbulence structure experiments.

33The literature is overwhelming and we only mention [92]. A more recent topic in turbulence, related to that
of CS. is the study of the structure of vorticity in (isotropic) turbulence; see e.g. [95].
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What troubles us most is our inability to embody information gleaned from the
experimental studies of CS into a mathematical framework. We feel that providing
a mathematical basis for the CS concept will be the topic of considerable effort for
years to come and will bring about a much better understanding of turbulence [i.e.
explanation, prediction, control]. ... Given the topology of the vortical CS we can
say roughly how it will evolve and interact with other CS. This is an advantage
not held by other specific definitions of CS. Vortex dynamics gives local, short-
term predictability of the dynamically important aspects of the flow. .. If CS
are defined by vorticity, their evolution and interactions are directly connected to
their topology through vortex dynamics. This is why it is important to categorize
CS morphologically. ... Vortex dynamics is the missing mathematical framework
for the study of CS. ... Using vorticity to define CS also allows us to predict flow
evolution in complicated flow situations using intuition ... instead of having to
resort to direct calculation ... . [135]

Although this view on the role of vortex dynamics in research on CS seems reasonable,
we should also realize that the deformation and interaction of CS may well be a much more
complicated matter than in case of "ordinary” vortex structures like vortex rings. For example,
Melander et al. in [216] have mentioned five categories of close CS interaction: self-deformation
of a single isolated CS, including effects of turbulence it may generate; interaction of a single
isolated CS with background potential; interaction of a single isolated CS with turbulent back-
ground; isolated interaction of two CS in very close proximity; and isolated interaction of two
CS in the presence of a turbulent background. To which they remark: ”Only a thorough insight
into the dynamics of key vortex interactions can further the present level of understanding of
turbulence and the role of CS.”

C Vorticity and Topological Fluid Mechanics

Kelvin in his paper ”On vortex motion” (see §4.1) was the first to perceive dimly the bridge
between mathematical topology and classical fluid mechanics. In this paper he had explained
how to avoid the consequences of multiply continuous spaces **, probably intending to show
the possible existence of the many varieties of the vortex atom; see fig.4.1.

Induced by Kelvin’s still primitive results, Tait decided to classify and catalogue all knots of
increasing order of complexity [227](1876). This catalogue of knots remains as the cornerstone
of knot theory, now a well-established branch of topology *.

Only recently, the link between topology and fluid mechanics has resulted in the field of
" topological fluid mechanics”, which today seems to be a firm branch of fluid mechanics (see
e.g. Moffatt’s lecture in [160] and [162]) and has partly been stimulated by the research on
Cs.

In this new field an important role is played by the so-called helicity field. In the 1960s
Moffatt [157] discovered that the topology of vortex structures is closely linked with one of the

3 Kelvin adopted terminology introduced by Riemann, known to him through Helmholtz. Although the theory
he developed here has never been applied to the vortex atom theory or any related subject, Kelvin’s solution of
the problem (which had been posed by Helmholtz) of extending Green’s theorem to multiply-connected regions
was certainly a high mathematical record of this paper. His proof technique is still used today, which shows an

unsuspected heritage of this paper.
35Gee Millett in [162] for a historical account of the development of knot theory and Tait’s role.
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motion-invariants of the Euler equation, i.e. helicity:

Hz/w-v
v

where V is the volume in which the fluid flow under consideration is taking place. Conservation
of helicity means that the "topology” of vortex structures )

in the flow remains unchanged, something which Kelvin had already recognized in his
paper ”On vortex motion” of 1869. In viscous flows changes of topology can take place, and H
is no longer a motion-invariant. Helicity may also be of profound importance in the non-linear
dynamics of turbulence, e.g. to characterize organized or coherent motion in turbulent flows.
This supposition has been extensively studied and propagated by e.g. Levich [124], but others
found opposing results (see e.g. [275]). Lack of experimental results hinders reliable opinions
or conclusions .

One important aspect of modern research in the topology of vortex structures concerns
vortex reconnection.

The experiments performed by Wood and Northrup at the beginning of this century (see
§A.1 above) had already shown that vortex rings may become united into a single structure.
Today this phenomenon is indicated by the terms cut-and-connect or reconnection 37. How-
ever, the importance of vortex reconnection, of which the linking of vortex rings is one example,
was not realized until many years later. During the last few decades, as computer technology
and numerical possibilities rapidly advanced and new aspects of reconnection were discovered,
interest grew quickly *.

It is now generally accepted that vortex reconnection is only possible when viscous diffusion
of vorticity is present 3°. See fig.e for a elementary sketch of the reconnection process and
compare with Northrup’s sketch in fig.b. In the initial stage of the reconnection, vortex tubes

36We refer to [161] for a review of helicity in fluid mechanics.

37We will stick to the use of the term ” (vortex) reconnection” throughout this thesis, but recognize that the
term " cut-and-connect” sometimes is a better description of the phenomenon discussed.

38 An interesting revival of the use of analogies between hydrodynamical and electromagnetic phenomena,
initiated by Helmholtz and Kelvin, can be detected in the present interest of fluid mechanicists in some parts
of research from magnetic field theory, where helicity and reconnection have also become familiar concepts.

Berger and Field [24] showed that magnetic helicity is also closely associated with many aspects of topolog-
ical structure of the magnetic field. In plasmas with high but finite magnetic Revnolds number, it has been
conjectured that reconnection of field lines can alter the field topology, while approximately conserving helicity,
as in fluid mechanics. This suggests that helicity is not a good indicator for change in topology.

Greene in [160] has applied mathematical techniques from the theory of magnetic reconnection, ”perhaps
slightly better understood” than vortex reconnection. However, Hegna & Bhattacharjee, also in [160], notice
that for their treatment of magnetostatic equilibria, the analogy between magnetic fields and Euler (i.e. inviscid)
flows is only valid up to a certain point.

3%The theory of viscous vortex motion had already started during the time of the vortex atom, initially because
some had argued that the theory was based on inviscid flow, whereas the experiments obviously produced viscous
vortex rings.

In 1879 [233] Thomson had treated the vortex equations for viscous fluids and remarked the analogy with the
equation for the conduction of heat. He concluded that any vortex motion in an initially irrotational flow must
come from the boundary of the fluid: ”if vortex motion be set up in any part of a viscous fluid, the motion
throughout the fluid immediately becomes rotational”. Reynolds [188] had observed that contrary to Kelvin’s
inviscid picture, the volume of the ”vortex ring bubble” continually increased due to entrainment of external
irrotational fluid and its velocity decreased because its momentum has to be shared with a greater mass of
fluid. Lodge in [130] (see §6.1) had shown analytically that a viscous ring showed a decrease in velocity and an
increase in size.
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annihilation

(0)

Figure e: Reconnection of two vortex tubes: (a) Alignment of oppositely directed vorticity; (b) Annihilation
by viscous diffusion of oppositely directed vorticity in anti-parallel aligned vortex tubes; (c) Formation of new

connections (bridging).
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of oppositely directed vorticity show alignment. Alignment is the tendency of approaching
vortex tubes which initially are positioned in a random orientation with regard to each other, to
become aligned with the direction of the vorticity vector in both tubes directed anti-parallelly;
see fig.f. Then, annihilation of vorticity takes place by diffusion. In the third stage new

N
—

\—

Figure f: Anti-parallel alignment of vortex tubes. Arrow indicates time development. Double arrows indicate

direction of vorticity.

connections are formed, a process which has been called bridging. Two of the main aspects
of reconnection which have been generally recognized are the deformation of the core of the
vortex structures and the influence of local strain on the reconnection process. Recent research
suggests that reconnection results in a rapid local increase of the strain rate and vorticity.
Shelley & Meiron in [10] have suggested that core deformation plays an important role in the
process. For example, it has been shown that deformation of the core effectively prohibits
unbounded growth of vorticity during reconnection.

However, the exact mechanism of reconnection remains unclear. Most research on this phe-
nomenon has been done by means of numerical simulation of generic test cases: two segments
of vortex tubes, placed either orthogonally or anti-parallel (see e.g. [27]).

Analytically, reconnection is hard to treat. The only analytical model known is the one
by Saffman [204], who found some agreement with experimental data, but had to admit that

Due to an early paper by Bobylew of 1873 [26] it was realized that whereas Helmholtz’s first theorem was
valid for real flows, the second theorem was not and vorticity could both be generated and destroyed by viscous
effects, which led to discussions on the origin of vorticity in initially irrotational flows [134, §4.6]. Furthermore,
it was realized that in viscous flows circulation was not preserved and the Helmholtz equation (2.2) had to be
adapted to take viscous diffusion into account. '

The study of viscous vortex rings seems to have been only taken up in the early 1970s, especially by Maxworthy
[148].
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some large discrepancies exist and that the model contains ”questionable choices”. Analytical
work by Takaki & Hussain (see [13]) showed that reconnection takes place within a time scale
of the order of the convective time scale rather than of the diffusive time scale °; nevertheless,
they concluded that viscosity is necessary in the process.

Some have suggested that vortex reconnection is an important aspect of turbulence. It
has been proposed as the mechanism for isotropization, for the production and dissipation of
vorticity in the flow, for the so-called energy and enstrophy cascades, and for the production
of helicity. However, on this issue opposing views exist. Ashurst & Meiron [18] speculate that
reconnection may occur in a turbulent flow whenever two opposite-signed vorticity regions
approach each other, whereas Boratav & Zabusky remark in [162] that it has not been proved
whether reconnection really takes place in turbulent flow fields at all.

Unfortunately, since reconnection may occur randomly in space and time in a turbulent
flow, it is hard to investigate experimentally or by means of direct numerical simulation (DNS).
Therefore, our understanding of reconnection in turbulence is still limited and scattered *'.

D Vortex Methods

In one of his Lectures on some recent advances in physical science, first published in 1876 [229]
(see §5.1), Tait noticed the enormous mathematical difficulties involved in the elaboration
of the vortex atom model. As an example, he thought that the interaction of two rings
positioned non-symmetrically about an axis "may employ perhaps the lifetimes, for the next
two or three generations, of the best mathematicians in Europe; unless, in the meantime, some
mathematical method, enormously more powerful than anything we at present have, be devised
for the purpose of solving this special problem” [229, p.302]. The attempts by Thomson in his
1883 Treatise, and by some others (see §5.1), indeed showed that analytical treatment of this
topic could only be achieved if severely restrictive assumptions were made.

One way to avoid unsurmountable mathematical difficulties is a simplification towards two-
dimensional (2-D) flow. Kelvin himself had already realized that for the demonstration of the
stability of single or interacting vortex atoms, a reduction of the configuration towards infinitely
long, straight, and constantly parallel ”columnnar vortices” would improve the possibility of
analytical treatment (see §5.3.1). In [249] he had discussed regular configurations of such
columns, apparently without knowledge of the work that the German Kirchhoff had done
some years before 2. Kirchhoff had shown that the dynamics of these vortices, assuming an
infinitesimally small core size, could be described by a Hamiltonian set of equations. In the
second half of the 19th century, this subject was taken up by several contemporaries, e.g. by
Grobli [14].

The theory of these essentially parallel vortex filaments, or point-vortices as the 2-D cross-
sections of these filaments with a flat plane perpendicular to their axes are called, came to
be used in the 1920s and 1930s during the first attempt to solve flow problems by means
of discretization of a continuous vortex structure. In 1931, Rosenhead [199] approximated a
2-D vortex sheet 4* by means of point-vortices, and in this way he was able to simulate the
roll-up of such sheets. This attempt can be called one of the very first attempts to apply a

40his timescale is related to a typical convective velocity in the flow.

415ee Caflisch in [32] and Boratav & Zabusky in [162] for a short review.

42See for references e.g. [14]. In his 1858 paper Helmholtz had also shortly treated the theory of parallel
vortex filaments [75, §5].

43 A vortex sheet is essentially a surface formed by vortex lines. It had already been described by Helmholtz
in his 1858 paper, as Rosenhead remarked.
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vortex method, i.e. to simulate the dynamics of vortex structures by means of discrete vortex
elements. This enabled the investigation of vortex configurations which experimentally and
analytically had been beyond any hope for solution.

However, vortex motion in two dimensions is essentially different from that in three dimen-
sions. As can directly be seen from the Helmholtz vorticity equation (2.2), 2-D vortices do
not deform. As it was realized that vortex stretching was an important mechanism in vortex
dynamics, interest in the treatment of 3-D vortex motion started to draw attention.

Tait’s ”enormously more powerful” mathematical method which would finally bring new
progress (both for 2-D and 3-D vortex dynamics) was the application of numerical techniques
to solve the vorticity equations on computers. The advent of powerful computers in the 1970s
made the use of so-called vortex methods a wide-spread tool in fluid mechanics with which the
research into interaction of vortex structures (such as vortex rings) could be and indeed was
revitalized. Not only did they enable the investigation of finer details of the interaction, also
configurations could be investigated which had been inaccessible by experimental means.

The general set-up and a short survey of vortex methods will be the subject of the next
chapter.



Chapter 7

Vortex Methods

During the last few decades, the availability of powerful computers has resulted in a completely
new branch of fluid mechanics: computational fluid dynamics (CFD). Today, CFD has become
an enormously broad field of research in which a great diversity of numerical techniques is
used. Vortex methods form one part of this field and several widely differing examples have
been introduced in fluid mechanics literature. In this chapter we consider general set-up of
3-D vortex methods, some of the requirements they should satisfy, and some of the pros and
cons of some vortex methods. We also give a short survey of some classes of methods in order
to point out several drawbacks of existent vortex methods L

7.1 General Set-up of Vortex Methods

Vortex methods are computational methods aimed at the simulation of fluid flows by following
the evolution of their vorticity field. The vortical structures in the flow field are represented
by so-called vortex elements whose behaviour follows from solving their dynamic equations
numerically.

The existence of vortex methods is related to the fact that fluid flows can be described by
means of equations like the Helmholtz equation (2.2). The use of this vorticity formulation
of the hydrodynamical equations has several important advantages above other formulations,
e.g. the velocity-pressure formulation of the classical Euler equation 2

e vorticity, contrary to e.g. velocity, is frequently localized in space; consequently the
amount of computational elements to be taken into account can be kept relatively small 3

e according to Helmholtz’s second theorem, vorticity behaves materially; consequently a
Lagrangian approach is attractive, i.e. we can follow the vorticity field by tracking vortex
structures which move along with the flow;

e since reconnection and intermittency in turbulence (see §§B and C of the Interlude) occur
randomly in space and time, these phenomena are hard to investigate experimentally or
by means of direct numerical simulation (DNS); simulations by means of vortex methods
may be more appropriate.

Besides these general incentives to use vortex methods, in case of turbulent flows the gen-
erally recognized importance of coherent structures and their presumed relation with vorticity
(see §B of the Interlude) has been another important motivation for the use of vortex methods.

1For a general review of vortex methods, see e.g. [121] and [207].
2Notice that the Helmholtz equation (2.2) can directly be obtained from the Euler equation by applying the

”? curl” -operator.
3Related to the above characteristic of the vorticity field, it has been thought that, though fluid motion itself

has an infinite number of degrees of freedom, a study of vorticity fields may only require a finite number.

68
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The general set-up of every vortex method follows from answering the following three
questions:

1. How do we discretize the vorticity field? or: What are the vortex elements?

Several vortex elements have been proposed, both of infinitesimal and finite dimensions.
The simplest elements are vortex points, which just have a location and a strength.
The so-called vortex blobs (or smoothed vortex points) are characterized by additional
smoothing functions which determine the (variable) shape and size of the vorticity
distribution in these elements. Another element is the vortex filament (see the definition
in Chapter 2), which is determined by its location, torsion and curvature, and by its
strength. Again, like vortex points, vortex filaments can be smoothed.

2. Which equations for displacement and deformation of vorticity do we use and
how do we transform these equations into equations for the chosen vortex
elements?

For the calculation of the displacement of the vortex elements, the following expression
may be applied:
— =v(x,1) (7.1)

where @ is the location vector and v the velocity vector at this location.

The velocity field can be derived from the vorticity field according to the rule of Biot-
Savart (2.3). However, application of this rule may require a method to avoid the singu-
larity in the kernel of this integral equation (so-called regularization). In case of smoothed
vortex elements, this problem is avoided as a result of the finite "core” size. Another
approach is the so-called cut-off of the integration interval of the rule of Biot-Savart *.

The deformation (rotation and stretching) of vorticity can be described by either the
Cauchy vorticity formula (1.4) or the Helmholtz equation (2.2). The first is generally
applied in Lagrangian methods (defined above). The second are used in so-called Eulerian
methods, i.e. methods in which the vorticity is regarded at fixed locations in the flow.

3. How do we solve these equations numerically?

The numerical scheme will depend on the choice of the vortex elements, the deformation
equations, the required accuracy and computational speed, etc. Therefore, no general
recommandations can be given on this issue.

7.2 Vortex Method Requirements

A reasonable ® vortex method as to meet several requirements. Some, in our view indisputable,
requirements are given in this section; their order conveys our opinion about their relative
importance ©.

~4See [121] for a review. The cut-off technique was already applied in Thomson’s 1883 Treatise [205, §11.1].

51t may be clear that discussion of the meaning of reasonable vortex methods is difficult. It strongly depends
on the intention one has in mind applying a specific vortex method. Unfortunately, most authors
working with vortex methods avoid a discussion of their intentions and of the applicability of their methods.

50One might argue that an additional, important, requirement should be added, i.e. no undesirable effects
should be caused by the numerical scheme. One example of these effects is the influence of numerical or artificial
viscosity. However, Beale & Majda [22] and Engquist & Hou in [9] have stated that vortex methods contain
no inherent errors which act like the numerical viscosity of conventional Eulerian difference methods. Other
requirements, like correct timestep adaption, are regarded as trivial and not typically related to vortex methods.
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. divergence-free vorticity field .

In an inviscid flow, the net flux of vorticity normal to the surface of any closed volume
V, given by by [,, w - n, should be zero. This requirement can be translated into: the
vorticity field should be divergence-free, i.e.

V-w=0 (7.2)

and is directly satisfied by a flow in which the relation (1.1) is preserved. Since this
relation is the foundation of vorticity theory, this requirement is of significant importance.

. correct modelling of continuous distributions of vorticity

The vortex elements chosen for a vortex method have to provide a sufficiently accurate
representation of continuous structures, like vortex rings. In general, one would like a
representation which shows as many similarities in physical behaviour as possible com-
pared with their "real” counterparts. However, this may not always be necessary or
possible 7.

. correct representation of deformation and interaction of vortex structures

A correct modelling of vortex structures is no guarantee that the deformation (e.g.
stretching, core deformation, stability) of vortex structures and the interaction of two
or more of them (e.g. reconnection, alignment) will be correctly simulated. Comparison
with experimental results is necessary to decide on this issue.

. conservation of motion-invariants

For inviscid vortex methods, the conservation of so-called motion-invariants should be
satisfied. For 3-D vortex flows, the relevant invariants are total vorticity, total linear
momentum, total angular momentum, total kinetic energy, and total helicity.

Some authors (see e.g. [206)) have stated that this requirement can be reformulated as:
the vorticity representation should be a weak solution of the equation describing vortex
deformation. E.g., a weak solution of the Helmholtz equation has to satisfy the condition:

[ 1@ (5 (- Ty} =0 (7.3)

for any so-called (smooth) test-function f(z).

A related requirement is conservation of the circulation ( Kelvin’s Circulation
Theorem; see §4.1) of any closed vortex structure, e.g. a vortex ring.

. no negative effects of remeshing

Vortex methods may allow regions with fine-scale structures to develop in an intermittent
manner. Nevertheless, remeshing may be required when lack of resolution arises. Care
should be taken that the remeshing scheme (changing the time and/or space step in
numerical simulations) involved in any vortex method should not introduce undesirable
effects, which have no physical meaning or are forbidden from a physical point of view.

"In the Epilogue, some additional remarks on modelling can be found.
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6. correct boundary conditions

Boundary conditions should be imposed correctly. For vortex methods, free-slip condi-
tions (i.e. zero velocity normal to the wall) may be imposed relatively easily by means
of "mirrored” vorticity indicated by w*; see fig.7.1.  However, the application of the
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Figure 7.1: Imposing a free-slip boundary condition by addition of "mirrored” vorticity.

no-slip condition (i.e. zero tangential velocity at the wall as required in viscous flows)
usually requires much more care and effort.

7. convergence

The requirement of convergence is related to the question: does the approximate solution
obtained from the vortex method approach the exact solution? Convergence has been
investigated both analytically and numerically for several vortex methods 8.

8. acceptable computational effort

Though one of the attractions of vortex methods is the fact that computational points
(vortex elements) are only required in rotational parts of the flow, the computation time
is roughly proportional to the square of the number of vortex elements or coordinates.
A Lagrangian method takes much computation time (usually claimed to be proportional
to N2, where N is the number of vortex elements). On the other hand, in an Eulerian
approach, also parts of the flow field have to be regarded which may be insignificant.

8See Caflisch in [32] for a short survey of the issue of convergence. Anderson & Greengard [8] have pointed
out that an investigation of the convergence of the numerical method used in the application of a vortex method
should also be investigated. A more detailed discussion of convergence in case of vortex methods is postponed
to §11.1.7.
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7.3 A Short Survey of Vortex Methods

It is not easy to provide a fairly clear, short, and general survey of the vortex methods,
which have been introduced and applied in the last few decades. The conceptual questions on
vortex methods treated in §7.1 allow the division into several classes, though alternatives to
our method of categorization may be proposed. Below, we will give a short survey of some
inviscid, mainly 3-D, vortex methods. This survey is only intended to give an impression of
the "state of the art”.

7.3.1 Vortex-Filament Methods

In these methods, the elements are vortex filaments represented by 3-D curves, on which
points are defined. In the so-called thin-filament method the core of the filaments is supposed
to remain nearly constant in time and the wavelengths of disturbances along the filament
are supposed to be much larger than the core radius. This vortex-filament method converges
without smoothing, as is claimed in [90)].

However, both assumptions mentioned above are not sufficient for accurate approximations
of vortex motion [121] °. Therefore, smoothed-vortex-filament methods have been proposed.
However, a parameter has to be chosen for these methods to get an appropriately averaged
velocity of a collection of vortex lines. This leads to different schemes and to a dependence of
conservation of e.g. energy on this parameter [121, p. 539].

In vortex-filament methods, the rule of Biot-Savart is applied to calculate the evolution of
the space curves. No account is taken of the deformation of the vorticity field.

7.3.2 Vortex-in-Cell Methods

A rather different method is the vortex-in-cell method. Although the vorticity field is treated
in a Lagrangian way, the Poisson equation for the streamfunction is solved on an Eulerian mesh
to obtain the velocity field. It appears that because of the errors involved in this method, the
simulations are sensitive to the size of the mesh, the number of vortices, the time-step, etc.
Besides, they require relatively much computational effort. Artificial viscosity is introduced by
the numerical scheme which makes this actually a viscous vortex method. For details we refer
to e.g. [122, §4] and [207, §2.6].

7.3.3 Vortex-Point Methods
The oldest and perhaps best-known example of the vortex-point methods is the 2-D Lagrangian
unsmoothed vortex-point method, which is better known as the point-vortex method (men-
tioned in the Interlude; see also [122, §2] and [153]). The (scalar) vorticity field is approximated
by 2-D delta-functions:

w=Y Tib(z —z,) (7.4)

where « is the label of a point-vortex, I'y its strength, and z, its location. Since vortex
deformation is zero for 2-D vortices, I_is constant. The equations for these point-vortices can
be written as a Hamiltonian system, in which the Hamiltonian is the total kinetic energy minus
the so-called self-energy of the point-vortices. This subtraction of self-energy is necessary due
to its infinity caused by the singularities in the velocity field at the locations of the point-
vortices 9.

9These same restrictions had hindered Kelvin in his investigation of the vibrations of a ”columnar vortex”
[250]; see §5.3.4.

9Campbell in [32] has applied a vortex lattice to simulate point-vortex dynamics. In this method one also
encounters the ”problem” of self-energy of the vortices. However, he claims that self-energy does not affect the
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Only recently the convergence of the point-vortex method for the 2-D incompressible Euler
equation with smooth solutions has been proved (see e.g. [140]).

For 3-D flow simulations several vortex-point methods have been introduced.

One example of unsmoothed point-vortex methods is the one presented by Hou & Lowen-
grub [90]. In their set-up, vorticity is defined on a grid and a grid size is introduced. The
displacement of the grid points is calculated from the rule of Biot-Savart. The Biot-Savart
kernel is not regularized, since the authors show that for this method the kernel has a ”natural
cut-off” or vortex core. Vortex deformation is calculated by means of the Cauchy vorticity
formula. Hou & Lowengrub claim to have proved the stability and convergence of this method.

Anderson & Greengard [8] have introduced two smoothed versions of the method of Hou
& Lowengrub: one in which the Cauchy vorticity formula is retained and another one in which
this formula has been replaced by the Helmholtz equation. For the former they have proved
convergence. A detailed mathematical treatment of this method can be found in [70].

The grid-less variant of the Hou & Lowengrub method is the so-called vorton method as
introduced by Novikov [168]. This 3-D method can be regarded as being closest to the 2-D
point-vortex method. The essence of this method will be treated in Chapter 8, where we
introduce our own (improved) vorton method. The second smoothed version as introduced by
Anderson & Greengard has become known as the soft-vorton method, the smoothed version
of Novikov’s vorton method .

dynamics.
1The soft-vorton method is briefly discussed in Appendix B.



Chapter 8

The Vorton Method

8.1 Introduction

For the vortex methods mentioned in §7.3, several drawbacks have been mentioned. The most
important ones will be repeated here. ,

For the use of any vortex element other than the unsmoothed vortex point, a drawback with
regard to computational effort exists. Vortex methods involving vortex blobs (i.e. smoothed
vortex-points) and (smoothed) vortex filaments often require a large amount of detailed in-
formation for the tracking of their location, strength, and vorticity distribution.
Therefore, vortex points are preferable since they require less book-keeping.

With regard to the use of smoothed vortex elements, whether vortex points or vortex
filaments, the somewhat arbitrary choice of the smoothing function has to be mentioned. It
has become clear from literature that the numerical results also depend on this choice. Another
characteristic of vortex methods using smoothed vortex elements is the requirement of overlap
of the vortex elements, i.e. the distance between vortex elements has to be smaller than the
sum of the characteristic dimensions of the smoothed vorticity distributions around them.
According to Sarpkaya, in the overlap regions Helmholtz’s First Theorem is not valid anymore
and conservation of energy is violated [207, p.11].

Another important objection to all vortex-point methods mentioned in §7.3.3, is the fact
that the vorticity field is not divergence-free in general (requirement 1 in the list of §7.2).

The vorton method is an unsmoothed vortex-point method according to the terminology
introduced in §7.3. In this chapter the set-up of this method will be presented. Its original
version, first elaborated by Novikov ! [168] in 1983 and to be called the ”original vorton

!Novikov has mentioned that his inspiration has partly come from the theory of superfluid vortices. Super-
fluidity has appeared to be one of the most successful applications of vorticity theory outside the field of classical
fluid mechanics. In superfluid helium, a form of liquid helium that flows without viscosity or friction, very thin
vortex filaments have been found experimentally with cores of atomic order of magnitude [48]. Researchers in
this area have developed numerical simulation methods which show much resemblance to the vortex-filament
method (see §7.3.1). Reconnection of these quantized vortices happens when distances between vortex lines are
on atomic scales and thus involve quantum mechanics; it is claimed that on this scale there is no violation of
Kelvin’s Circulation Theorem (this suggests that also in inviscid flows reconnection might take place). However,
in certain respects superfluid vortex motion is different from that in ordinary fluids. Vortex stretching does not
take place, due to the quantization of circulation. Furthermore, at a given temperature and pressure a quantized
vortex must always have the same core radius. The last few years, numerical studies of tangles of superfluid
vortices have profited from the development of vortex methods in hydrodynamics [1].

Another vortex structure playing an important role in superfluids is the roton, a quantum-mechanical micro-
scopic vortex ring. Brush [30] remarked, after a short discussion of Kelvin’s work on vortex rings:

. a succesful investigation of the interaction of two vortex rings, in their modern reincarnation
as rotons, would be an important contribution toward the synthesis of quantum mechanics and
hydrodynamics, and toward the construction of a theory which promises to achieve a consistent
and unambiguous deduction of observable properties from postulates about collective molecular
motions, without attempting the apparently hopeless task of describing the motions of all the
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method”, may be regarded as the 3-D counterpart of 2-D point-vortex method (see §7.3.3), since
it is based on a vorticity field consisting of 3-D delta-functions (compare (7.4)). These have
been called ”vortons” 2. However, in 3-D flows we have to take into account the deformation
of the vorticity field; this phenomenon is absent in 2-D flows.

Though the equations derived by Novikov for the displacement and deformation of vortons
(the vorton equations) have appeared to provide the basis for seemingly correct simulations
of vortex motion, it has also been realized that his derivation suffers from the fact that the vor-
ticity field he applied is not divergence-free. This same weakness in Novikov’s derivation causes
the inconsistency between his vorton deformation equation and that derived by Kuwabara (see
e.g. [114]). The only difference between these derivations is the choice of the basic equation:
for Novikov this has been the Helmholtz equation (2.2), for Kuwabara it has been the so-called
transposed representation of the Helmholtz equation.

To clarify the different representations of the Helmholtz equation and for convenience in
our further elaboration in §8.3, we rewrite (2.2) as:

Dw

57 = @) ow (8.1)

where the matrix (v') is defined by:

Q1 Oui  duy
dz 3y Oz
Bva  Bv2 vz ( 8.2)
oz dy 9z 4
Bva Ova dvz
oz Sy dz

where v;, vy, v3 are the components of vector v.
It can be shown that for vorticity fields satisfying relation (1.1) the Helmholtz equation
(2.2), which in Cartesian coordinates reads:

D’UJi 31}1-
= —W:
Dt oz j 77
can be reformulated into the transposed representation of the Helmholtz equation:
D'LU.,; 811]-
Dt 8:1;,- J

individual particles, The possibility of constructing such theories is of considerable significance for
both physics and chemistry. [30, p.536]

Whereas, as discussed in §5.3.2, a fundamental critiscism of the vortex atom concerned its decrease of velocity
with increasing energy, for the roton this is just the desired property!

Also in the related field of superconductivity, the vortex concept has gained a much-studied position. Recently,
vortex analogies have also been found in lasers (see Weiss et al. in [33]).

For a popular account of superfluids, we refer to [48]; a text-book on both superfluidity and superconductivity
is [263].

2The term ”vorton” has been proposed in other areas of physics. In particle physics the vorton is defined
as a stationary vortex ring, which can spin, have electric charge and behaves like a magnetic dipole. In many
ways they are like ordinary particles, hence the name vorton in analogy with electron, photon, etc. Related to
this quantum-scale vorton and based on its properties, ” cosmic vortons” have been proposed. Generally, it is
suggested that vortices, or cosmic strings, appear in a cosmological phase transition. During the period of the
early universe, vorton-like structures which may even have extended over astronomical distances, could have
been formed out of a Brownian network of vortices [45]. The name "vorton” has also been given to a monopole
configuration with electromagnetic charge whose fields satisfy Maxwell’s equations [61]. If such vortons should
really exist as physical particles, ”they would be quite different from presently known particles”.
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or

2 ) ow (8.3)

where =~ (v')* is the transposed of (v’).
Consequently, a third formulation may be the mixed representation:

Dw _ —;—[(v’) + () ow. (8.4)

Our derivation of the vorton deformation equation differs from Novikov’s approach in two
ways. First, it is based on a divergence-free vorticity field, which is an extension of Novikov’s
field; this is the subject of §8.2. Second, in §8.3 we apply a so-called weak formulation of the
continuous equations from which the vorton equations are derived. This leads to a new vorton
deformation equation and a proof that the inconsistency between Novikov’s and Kuwabara’s
equations can only be removed by the use of a divergence-free vorticity field 3,

8.2 The Vorton Fields
In the original vorton method, the vorticity field is represented by:

w(z,t) =Y Ya(t) §(Ra(=,1)) (8.5)

where R.(2,t) = &—1.(t), d(...) is the 3-D delta-function, and summation is over all vortons.
The vortons are determined by a label , a location vector 7, and a strength vector 7y, (which
depends on time only).
The vector 4, has dimension of (volume/time) and can be regarded as a local vorticity
distribution, given by:
Yo~ [ w (8.6)
ch
where the volume V,, around the location #, of vorton a gets infinitesimally small, while the
integral remains finite.

From (8.5) Novikov derived the velocity field by applying the rule of Biot-Savart (2.3),
giving:
1 Y. X R,

e T (8.7)

v(z,t) =

where R, =| R, |.

However, the field (8.5) is not divergence-free. Consequently, it does not satisfy one of the
basic requirements of vortex methods (see §7.2) and consequently the rule of Biot-Savart may
not be applied. In order to derive a divergence-free vorticity field, we have to take account of
definition (1.1). The following procedure takes account of this requirement, while at the same
time it provides a divergence-free velocity field and avoids application of the rule of Biot-Savart:

v:ng

vector potential A velocity v w=g xv vorticity w .

3An alternative to the (original) vorton method is the soft-vorton method (already mentioned in §7.3.3)
which is discussed in Appendix B.
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For the vorton vector-potential field we take *:

Azt = —S Lo

i —~ R,
= Y 6(Ra)Va (8.8)
where we have introduced the function:
1

In mathematical terms ¢ is a Green’s function, which is defined as the solution of the Poisson
- equation
Vi = -4(z) .

From this field we find the following velocity field:
v(z,t) = ) Vo(R.)xVa (8.10)

1 Y. xR,
4 &~ R}

where Vé(R.) = (V9)|p_R -
Finally, from (8.10) we get the following vorticity field by applying (1.1) %:

w(@,t) = ) {Ya0(Ra)+¢"(Ra) 0o} (8.11)

= 3 {Va 6(Ra) + VIV - ($(Re)¥a)]}

= Xa: {¥a 6(Ra) - 4_[3—2 - 7 1}
where
¢"(Ra) = ¢"lz_R. (8.12)

and the matrix ¢" is defined by:

226 2% 2%

68226; 65,,26; Bézzz?;

8zdy Oydy  Oz0y ‘ (813)

s %9 %%

8zdz dy9z 8z0z

Comparing this result to the original vorton field (8.5), we conclude that the second (gra-
dient) part of (8.11), which is due to the the vector potential field not being divergence-free,

“The choice of the vector potential remains  to be elucidated. We have chosen a function ¢ such that
Novikov’s velocity field (8.7) is obtained. If, for example, we require a divergence-free field A, the choice of
A (or ¢) is restricted as explained in Appendix A. At the end of this Appendix we further discuss our vorton
vector potential.

A more general treatment of (8.8), without determining function ¢, can be found in Appendix B where the
soft-vorton method is treated.

5This expression can also be found in Novikov’s original paper [168].
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renders the vorticity field divergence-free. It can be regarded as the nonlocal vorticity field
surrounding the original singular vorton represented by the first part of (8.11). In a plane
parallel to the strength vector and going through the location vector, the vortex lines of the
nonlocal vorticity field resemble the ”coil-like” streamline pattern of a doublet or dipole; see
fig.8.1.

Figure 8.1: Vortex lines around one vorton (located at center, directed upwards).

Below, it will appear that this nonlocal part is crucial for a consistent derivation of the
vorton deformation equation. Though it does not contribute to the integral of the rule of Biot-
Savart (2.3), i.e. to the velocity field, it is of fundamental importance to a correct derivation
of the vorton deformation equation, as will be shown below.

Mathematically speaking, the original vorticity field (8.5) has been projected onto a divergence-
free field (8.11), without affecting the convolution with the Biot-Savart kernel.

8.3 The Vorton Equations

As indicated before, vorton dynamics consists of vorton displacement and vorton deformation.
Below, the equations which describe both phenomena are presented; details of the derivation
can be found in Appendix C. For the deformation equation, its superiority over Novikov’s and
Kuwabara’s equations is discussed and an interpretation of our equation is attempted.

Derivation of the vorton displacement eugation is elementary. It follows directly from
relation (7.1), which can be formulated here as:

ro =0"(ra,t) (8.14)

where #, = dr,/dt and the tilde indicates the field induced by all vortons except a 5,

8This suggests that "self-displacement” of vortons is eliminated. Justification for this elimination is given in
the derivation presented in Appendix C.
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Elaboration of (8.14), by applying (8.10), gives:

= V¢(Rap) x s (8.15)
B#a
where the function ¢ is given by (8.9) and Ry = ro—1r5 .

With regard to vorton deformation, it is essential to remove the earlier mentioned incon-
sistency between the vorton deformation equations derived by Novikov and Kuwabara. We
have devised a method for deriving vorton deformation equations from both representations of
the Helmholtz equation which do not show any inconsistency. Its full details are revealed in
Appendix C; below we give a short indication and the resulting equations.

We split the vorton velocity and vorticity fields derived in §8.2 into two parts. One part is
the field induced by a vorton « for which we want to derive the deformation equation: velocity
ve(x,t) and vorticity w*(e,t). The other part is the contribution from all other vortons,
which is indicated by a tilde: *(z,¢) and w®(=,t).

The fundament of our approach is a weak formulation of the vortex deformation equations,
i.e. these equations will be integrated about a small sphere B, with radius ¢ and centred
around the vorton location #,. It is assumed that € is so small that no other vorton locations
are inside sphere B,, ”.

Using the splitting of the velocity and vorticity fields mentioned above, we get from (8.1) the
following expression for the vorton deformation equation (in case of the Helmholtz equation):

/Bm Dw°‘+w / ((v o (w® + w") . (8.16)

Elaboration of expression (8.16) shows that the vorton deformation equation can be written
as (see also (C.4) in Appendix C):

¥, =No+ Sa (8.17)
where
Na = Z [¢”(Raﬁ) O‘Ya] XYs
B#a
and
a=3 Z Yo X[¢" (Rag) © 5] (8.18)
ﬁ#a

where definition (8.12)has been used.

In the same way, from the transposed Helmholtz equation (8.3) one can derive (see also
(C.6) in Appendix C):
Yo =Ko—So (8.19)

where

Ko=) ¢"(Rap) o (V5XVa) -
B«

Elaboration of (8.17) and (8.19) shows that both vorton deformation equations are equiv-
alent, i.e. Ny + S, = K, — S,.

"Note the resemblance of this approach to definition (7.3) of so-called weak solutions given in §7.2.
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If we compare the deformation equations derived here with those found by Novikov [168]
from the basic representation of the Helmholtz equation and by Kuwabara [114] from the
transposed representation of the Helmholtz equation, we remark that Novikov’s original vorton
deformation equation is related to our expression N,, i.e.:

Yo =Na. (8.20)

This equation will be called the N-equation.
Kuwabara’s vorton deformation equation is related to our expression K,, i.e.:

Yo = Ka . (8.21)

This equation will be called the K-equation.

The inconsistency between Novikov's and Kuwabara’s equations can now be stated as:
N, # K, Addition of the expression S, to N, and substraction of S, from K, causes complete
equivalence. Remark that S, is related to the nonlocal part of the vorton vorticity field (8.11),
which explains why it is not present in the deformation equations derived by Novikov and by
Kuwabara, who applied only the local field (8.5).

By adding equations (8.17) and (8.19), S, disappears:

. 1
Yo = 5{Na + Ko} (8.22)
This will be called the N+K-equation.

Equation (8.22) suggests that S, does not contribute to stretching of the vortons. This can
be seen by taking the vector product of S, (given by (8.18)) and «,.

Comparison of the expression (8.18) with the Euler equation for rigid body motion shows
that S, can be interpreted as a pure ”"spin” contribution. This can be demonstrated by
regarding the rotation of a rigid body. For the angular momentum M of a rigid body we have:

M=I-Q

where I is its inertia tensor and {} its angular velocity. Furthermore, for the rate of change of
the angular momentum in time, we have:

M=MxQ.
Combining these equations, we get:
M=MxIT"'oM).
Compare this expression with the vorton deformation due to S, i.e.

Yo=Sa=_ Yo x[¢'(Rag) o) -
B#a

Some insight into expression (8.22) can be gained by observing that it can be rewritten as:

5 — G
e

(8.23)
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where

DO =

Ga Z (0" (Rap) © Yol - (V5XYa) - (8.24)

B#a
In its turn, expression (8.24) may be rewritten as:

_ 0H,
«= By Ya

(8.25)

where 1
Ha = 5 Z Y 'vﬁ(ra) :
B#a
H, may be called the local helicity density, defined as the integrand of total helicity (see §C
of the Interlude). Apparently, the deformation of vorton « is related to the change of helicity
density at its location caused by all vortons § # «, due to the movement of vorton « in the
direction of its strength vector «,,.
From (8.23) and (8.25) we derive:

0 (0H,

from which follows: o OH OH,
Yo = (3‘712{ 81‘0, }) °Ya ¥ 61‘0, . (826)

Comparison with (8.22) shows the first part of (8.26) to be equal to N, while the second part
is equal to 1K, 8.

Since G, (8.24) is homogeneous of second degree in 7y,, we find the following expression
for the stretching of vorton a:
dya
dt
We conclude that levels of constant stretching of vorton « are equal to levels of constant G,.
To investigate these levels of constant nonzero vorton stretching, we regard the configura-
tion of two vortons, 1 and 2. Without violating generality, we take

=4G, .

0 0 z 0
r = 0 y N = 0 y T2 = Yyl Y2= 1
0 1 z 0

We investigate levels on which vorton 2 has constant stretching due to vorton 1. From
(8.24) we find surfaces given by z y = C (22 +y?+ 22)%/2, where C is a constant. In fig.8.2, the
surface for C = 1 has been drawn. We see that the area of influence of vorton 1 is symmetrical
around its strength vector. The four ”lobes” are separated by the zero-stretching surfaces
G2 = 0, which in this case are given by z = 0 and y = 0. Two oppositely placed lobs have the
same stretching levels, of either positive or negative value.

8This last result has also been derived by Kuwabara (see e.g. [114]).
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Figure 8.2: Surface given by zy = (2 + y® + 2?)%?, illustrating the influence of vorton 1 on vorton 2 (see text).



Chapter 9

Numerical Simulations: Preparatory Remarks

The vorton equations, presented in §8.3, will be used to simulate the dynamics of continu-
ous vortex structures. This is done by constructing a discrete vorton representation of these
structures and solving the vorton equations by means of a numerical scheme. Comparison of
the numerical results with results from other numerical simulations and from experiments will
clarify the applicability of the vorton method. More specifically, the simulation will provide
information on the fulfilment of requirements 2 (correct modelling of continuous distributions
of vorticity), 3 (correct representation of deformation and interaction of vortex structures),
4 (conservation of motion-invariants), and 5 (no negative effects of remeshing) as posed in
§7.2. If we find a satisfactory performance of our vorton method and agreement with results
found by others, confidence in the applicability of the method to other, more complicated, flow
phenomena, will be established.

In the last decade, several vorton simulations have been reported in literature in which
both the N-equation (8.20) and the K-equation (8.21) have been used. We mention those by
Novikov in [168] and [170]; by Novikov et al. in [6]; by Novikov and Aksman in [5]; and by
Kuwabara in e.g. [113] and [114].

Besides, at least two dissertations have been (partly) devoted to the vorton method and
its application to numerical simulations. Pedrizzetti [178] applied the N-equation !, while
Winckelmans [283] studied both the N-; K-, and N+K-equations and also regarded the soft-
vorton method (see Appendix B) and the possibility of adding viscous diffusion to the vorton
equations 2.

In Chapter 10, we will present the results of the numerical simulations of several test cases.
In this preparatory chapter, we discuss the choice of these cases and their relation to the aim
of our research (§9.1); we give some details of the numerics (§9.2); we introduce the so-called
diagnostics which are used in our evaluation of the numerical results (§9.3); and we describe
the technique of vorton division whose applicability and value will be investigated by means
of some of the simulations of Chapter 10 (§9.4).

9.1 Aims and Choices

The choice of the test cases which have been regarded and the choice of the characteristics
and diagnostics calculated for these cases have been directed by the following considerations
(compare some of the requirements mentioned in §7.2):

1Note that Pedrizzetti has added a ”divergence filtering procedure”. Apparently, this seemed to him the only
way to ascertain reasonable results from his simulations, despite the non-divergence-free vorticity field. This
procedure tends to align the vorton strength vectors  with the local vector V x v. However, he admitted that
the filtering has "no clear physical meaning” [177].

*Winckelmans has applied a technique called ”relaxation of the vorticity divergence” to ensure a (almost)
divergence-free vorticity field. This technique requires the solving of a system of linear equations. However, it
appears that these equations act dissipatively.
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¢ availability of experimental, numerical, or analytical data

Only when comparison of the simulation results with the same kind of data obtained
by others is possible, an evaluation of our vorton method (i.e. application of the N+K-
equation) and its applicability can be made. We realize that experimental data always
relate to viscous vortex structures, and that the influence of viscosity may not always be

disregarded.

possibility of the representation of elementary vortex phenomena

Among the many phenomena related to vortex motion, we have tried to find test cases
which, in a generic way, allow the study of vorticity deformation (stretching), vortex core
deformation, vortex reconnection, and alignment of anti-parallel vortex tubes (see §C of
the Interlude).

possibility of the imposition of boundary conditions

In case of the vorton method the possibilities to impose boundary conditions are limited.
As has already been indicated by Novikov [169], only the free-slip boundary condition
can be realized. This can be done by adding so-called mirrored vortons, similar to the
situation sketched in fig.7.1. For the simulation of non-closed infinite vortex filaments
periodic boundary conditions should be imposed, requiring a substantial extra amount of
computational effort. We have restricted the simulations primarily to (elliptical) vortex
ring in 3-D unbounded space or near a planar free-slip boundary.

The two main aims of our numerical research have been to:

e investigate the characteristics of the vorton method introduced in Chapter 8 (i.e. the

N+K-equation (8.22) for the vorton deformation): its possible applications, its limita-
tions with regard to simulation of flow phenomena, and its satisfaction of the vortex
method requirements as mentioned in §7.2;

compare the simulations obtained from applying both the N-, the K-, and the N+K-
equation; though we have shown in §8.3 by means of theoretical arguments that the last
one is to be preferred, we will find confirmation of this claim by means of the numerical
results.

All test cases chosen for our numerical simulations involve the interaction of vortex rings.

Several reasons exist to concentrate on this vortex structure:

e As indicated in the vortex-atom-part and the Interlude, the vortex ring has been the

subject of long-standing research into several of its aspects. Today it is still one of the
most studied vortex structures.

o Furthermore, a vortex ring may be characterized by only a few quantities, i.e. the ring

radius R, the number of vortons N, and the circulation I'; see fig.2.3 3.

e A vorton representation of the vortex ring is relatively easy: the vorton locations r, are

put at equal distances on a circle of radius R, and the vorton strength vectors 4y, - all of
the same modulus v - are tangential to this circle; see fig.9.1 4.

3However, as the reader may already realize, real vortex rings are also characterized by a distribution of

vorticity in the ring’s core.

4Other representations of vortex rings by means of vortons can be imagined. One example is shown in

fig.10.28 in §10.4.2. Alternatives like these will not be investigated in this thesis, but we will return to their
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Figure 9.1: A vorton ring; vortons are indicated by arrows. (Curve C is related to calculation of the ring’s
circulation.)

e Despite their simple appearance, the interaction of vortex rings is far from simple and
trivial and shows the elementary vortex phenomena which we want to study (see above).

o Vortex rings are closed structures, requiring no special attention with regard to boundary
conditions in the numerical simulations as in case of (infinite) vortex filaments (see above).

e Finally, vortex rings have been proposed as candidates for the role of coherent structures
in turbulence (see §B of the Interlude and §10.6). Therefore, knowledge on their behaviour
may increase our understanding of turbulent phenomena.

The following six test cases have been chosen, the essence of which will shortly be explained
here:

¢ single vorton ring

Before regarding the interaction of several circular vorton rings or the behaviour of a
single noncircular vorton "ring”, one should get an impression of the characteristics (e.g.
its core) and the behaviour of a single circular vorton ring (e.g. stability). Since a single
circular vortex ring will not exhibit deformation without influences from other vortex
structures or boundaries, the simulation results for this case will not depend on the
vorton equations applied and consequently no comparison has been made between the
three different vorton equations.

possible significance in Chapter 11.
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¢ single pseudo-elliptical vortex ring

The simplest variation on the circular vorton ring is an elliptically shaped ”ring”. For
reasons of convenience we only regard the so-called pseudo-elliptical vorton ring (see
fig.10.7). Contrary to the circular ring, an elliptical ring will deform during translation;
therefore, it forms a test case for the three different vorton equations. It turns out
that the behaviour of this ring depends on the aspect ratio of the ellipse and can involve
reconnection. Therefore, it is a good test case for the simulation of this last phenomenon.

e head-on collision of two coaxial vorton rings

This configuration consists of two identical circular vortex rings which approach each
other along a common axis. It is especially attractive since it has been treated analytically
(though only for Kelvin-rings; see §A.2 of the Interlude). Besides, it is suited for the study
of core deformation during close approach of vortex tubes.

¢ oblique interaction of two initially parallel vortex rings

This configuration is one of the most elementary test cases showing the phenomenon
of vortex reconnection. Besides, it is one of the few which can be compared rather
extensively with experimental results.

e interaction of two knotted vortex rings

This configuration, though unfortunately it cannot be studied experimentally, is one of
the most elementary test cases to investigate the phenomenon of vortex alignment.

¢ single vorton ring in a shear flow above a flat plate

This configuration is chosen to increase our insight into the behaviour of coherent struc-
tures in a boundary layer. Though the model may be too simple to describe all aspects
of coherent structures, at least it shows the applicability of the vorton method in this
kind of research and the influence of shear flow and (free-slip) walls.

9.2 Details of the Numerical Simulations

In most of the simulations to be presented in the next section, a so-called standard vorton
ring has been used. The standard vorton ring is characterized by circulation I' = 820 cm?/s
and radius R = 0.8 cm.

All simulations have been carried out on an HP9000 835 minicomputer. Unless otherwise
stated, the N+K-equation (8.22) has been used. To solve the vorton equations, which are
ordinary differential equations, use has been made of a 4th order Runge-Kutta method.

The time step At has been adapted constantly during the simulation to a value given by
R, [Ymaz: Ot = CR3 . [Ymae (C is constant). Rpi, is the minimum distance between any
two vortons ® and v, is the maximum vorton strength of the two vortons between which R,
OCCUTS: Ymaz = Max(y,72). See fig.9.2. This procedure is based on the following consideration:
if we consider vorton 2 of this pair of vortons as a passive particle, we find from the vorton
displacement equation (8.15) that it will turn around vorton 1 in a time proportional to the

expression mentioned above. The proportionality factor C used in our simulations has been of

5This minimum distance Rm:n only concerns the distances between vortons not belonging to the same vortex
structure, i.e. not in the same vorton ring. This time step adaptation procedure has not been applied in case
of the pseudo-elliptical vorton ring.
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Figure 9.2: The vorton configuration on which time-step adaptation is based (see text).

order 1. A maximum time step At., was imposed, usually 10™*s. Both values are based on
experience obtained during the performance of the simulations.

Unless otherwise stated, all length scales are in ¢cm, and all time scales in s.

9.3 Diagnostics
Our numerical study of vortex phenomena consists of considering the general, qualitative
behaviour of the simulated test cases and comparing it with experimental results. Besides,
an investigation will be done regarding some flow diagnostics, i.e. quantitative data which can
be visualized either by means of graphs or data visualization packages.

In general, diagnostics can serve three purposes:

1. they may be indicators of the accuracy of the numerical simulations;
2. they may be useful in the comparison of different simulation methods;

3. they may be useful in the comparison of results from simulations with those from exper-
iments.

For our simulations we introduce two kinds of diagnostics: motion-invariants and fields. The
first serves the purposes 1 and 2 mentioned above. The second one is meant to serve purpose 3.
By means of these diagnostics, we get insight into the behaviour of the cases studied, into the
applicability of the proposed vorton method, and into the latter’s performance as compared to
Novikov’s and Kuwabara’'s vorton method (see §8.3).

9.3.1 Motion-Invariants
As for any vortex method, for the vorton method an investigation into the conservation of
so-called motion-invariants may be an important test of its accuracy (see §7.2). -

In any infinite, inviscid, 3-D flow the following motion-invariants have to be conserved by
the flow &:

6The existence of motion-invariants and their expressions in fluid mechanics can be derived by representing
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e total vorticity:

ﬂE/w.
v

Q is always conserved for flows with a velocity field approaching zero at infinity at an

appropriate rate, since
[w=[ vxn
v av

where 8V is the (infinitely distant) boundary of volume V.

For the original vorton vorticity field (8.5), we get the simple resuit:

Q=5 .. (9.1)

For the divergence-free vorton vorticity field (8.11), the integral related to 2 is not
defined due to the singular nonlocal part. However, Appendix C shows that for a volume
V equal to a small sphere around a vorton location r,, {2 is proportional to v,. This
may suggest that (9.1) remains valid for our vorton method.

However, expression (9.1) is easily shown to be an inappropriate expression for 0 It
can only be conserved if the expression for 4, is pairwise anti-symmetric for any pair
of vortons « and 3. This is only the case for the K-equation (8.21), but not so for the
N-equation (8.20) and the N+K-equation (8.22). This shows that our assumption on
the validity of (9.1) is not valid. Consequently, we have decided to disregard (9.1) as a
motion-invariant.

e total linear momentum:

PE/b. (9.2)

Due to the singular behaviour of the vorton velocity field (8.10) an expression for P
cannot be obtained for the integral in expression (9.2).

Expression (9.2) can be rewritten into the form of the so-called Kelvin impulse 7 (see
(A.3) in Appendix A):

1
== / X w (9.3)
2y
if the vorticity field satisfies the condition

n

|w(@) |~2™,n>3 as ¢ = © (9.4)

is satisfied. This condition is not fulfilled by our vorton vorticity field (8.11). If instead
we apply the original vorticity field (8.5) to (9.3), we get:

1
P=§§a:"a><%~ (9.5)

the Euler or Helmholtz equation in terms of so-called Poisson brackets, related to Lie-algebra (see e.g. [72]).
However, for of a divergence-free vector potential the existence of the first three motion-invariants mentioned
below can directly be derived as shown in Appendix A. Though our field (8.8) is not divergence-free, the results
provided in Appendix A explain some of the problems in the derivation of motion-invariants given below.
"This denomination seems historically incorrect, since this expression has not been traced in Kelvin's work.
It bas been derived by J.J. Thomson in his Treatise (see §5.1).
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Since expression (9.1) is unequal to zero, { g.5) shows lack of invariance with
regard to the location of the frame of reference. Nevertheless, it will be taken as repre-
sentation of P in the simulations presented in Chapter 10.

e total angular momentum:

JE/mev. (9.6)

As for linear momentum, no expression for J can be derived from expression (9.6) due
to the singular behaviour of the vorton velocity field (8.10).

Under the same condition (9.4) as mentioned above for P, we find (compare (A.5) in
Appendix A):

J=%/me(m><w). (9.7

As for linear momentum, our expression to be used as diagnostic for total angular mo-
mentum is derived by applying the original vorton vorticity field (8.5) to (9.7):

= %Z ro X (To X,) . (9.8)

e total kinetic energy:
E = / v-v. (9.9)
v

Direct calculation of F by substituting the vorton velocity field (8.10) into (9.9) can be
achieved (see [283]) if the so-called self-energy E, of the vortons is subtracted (compare
with the case of 2-D point-vortices; see §7.3.1), which in the final result is indicated by
+he omission of terms a = 3. The remaining part of E is called the interaction-energy

o .

i

Lo de Yo (Yo Rep) ¥ - Bag) ) (9.10)

T 8w =" Rag R3,
The same result can be derived by a different approach, which makes use of an expression
for the energy spectrum E(k) 8. The energy spectrum also consists of a self-energy part
and an interaction-energy part °:

E(k) = Eo(k) + Ex(k) (9.11)
where
EO(k) = 6_:;'2- Yo Ya (912)
E,(k) —_ _4_:;__2 Z {¢1(kRaﬁ)(7a . ‘7;3) + ¢2(kRaﬁ)(7a "R'2R:ﬂ) (‘Yﬁ ) Raﬂ)} (913)
a#f o

8For details we refer to [6].
9This spectrum can be obtained from that for soft vortons derived by Kiya and Ishii in (105] by taking o — 0
(see Appendix B).
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where
(22 —1)sinz + zcos 2
$i(2) = 3
_ (3—Z%sinz—3zcosz
d)g(Z) = 23 .

Integration of E(k) over all wave numbers k ranging from 0 to oo again shows that total
kinetic energy is only finite if the self-energy Ej is subtracted.

To have a possible indication of the behaviour of Ey, we take as a diagnostic:

E =%+ (9.14)

which is based on the self-energy spectrum Ey(k) given by (9.12).

¢ total helicity:
HE/v-w. (9.15)
14

As discussed in §C of the Interlude, helicity is related to the topology of vortex structures
in a flow (see e.g. [161]). Besides, H is a fundamental motion-invariant of inviscid flows.

For the integral (9.15) to be convergent, it is sufficient that the vorticity field | w(z) [~
™% as ¢ — oo for a fluid of infinite extent, in order to ensure invariance of H [157]. The
vorton vorticity field (8.11) does noy satisfy this requirement.

However, the above condition is not a necessary one and an expression for H can be
derived from our vorton fields without objections. As for total kinetic energy, helicity
has to be split into a self-helicity part and an interaction-helicity part. Inserting the
vorton velocity (8.10) and vorticity (8.11) fields in (9.15), we get for the interaction-
helicity: R
1 ot (Yo X
=y = %ﬁ Ys) | (9.16)

o8

Though not a motion-invariant in the same sense as those listed above, we also have to
regard the diagnostic provided by the circulation I'. In §4.1 Kelvin’s derivation of the circula-
tion concept (4.2) and its most important property, the circulation theorem, were presented.
From this theorem it follows that, as for a vortex ring, the circulation of a vorton ring should
be conserved.

To calculate a value for I for the vorton ring, a closed curve C will be chosen as indicated
in fig.9.1 along which the velocity field (8.10) will be integrated. This will be done by taking
the value of the tangential velocity component at equally spaced grid points along the curve,
multiplying this value by the local distance between the points, and adding all contributions.

Novikov [168] has shown analytically that in the limit of infinite number of vortons, i.e.
N — o0, the circulation of a vorton ring of radius R can be written as:

Y
N

where ~ is the strength of each vorton in the ring and the denominator can be regarded as
the distance between the vortons in the ring. Despite the relatively small values for NV in our
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simulations, expression (9.17) has been used in the numerical simulations to obtain the value
of the vorton strength « for the vortons in a vorton ring of given radius R, circulation I', and
number of vortons V.

9.3.2 Fields
The following fields will be regarded:

e velocity field
The velocity field v is given by expression (8.10).

e vorticity field

The vorticity field used as a diagnostic is the nonlocal gradient part of the divergence-
free vorton vorticity field (8.11). To stress the point that this field is only part of the
divergence-free vorticity field (8.11), it will be indicated by , i.e.:

w(z,0)=3 V(V- ;—“) . (9.18)

The fields are calculated on the points of a rectangular grid which is constantly adapted to
the vorton configuration. Due to computational restrictions the grid is usually limited to 40°
grid points.

Notice that both fields show singular behaviour at the vorton locations. To avoid problems
coincidence of the grid points with vorton locations has been prohibited by either shifting the
grid or nelgecting the contribution of some vortons during the calculation of the fields.

Visualization of the vorticity field, by means of isosurfaces of its magnitude | @ |, has been
done by means of the graphics package AVS. Some figures show the vortons themselves (as
arrows, consisting of a line and a open circle as arrow head). These have been made by means
of the specially-written package Vectrix. In these pictures the vorton strength vectors have
been scaled to the same length.

9.4 Vorton Division

One of the seemingly attractive properties of the vorton method is the possibility of adding and
removing vortons. The addition of vortons, to be called vorton division, has been introduced
by Kuwabara (see e.g. [113]) and also has been applied by Pedrizetti [178] and Winckelmans
[283].

Its principle is illustrated in fig.9.3: if the distance Az = Ax; + Az, of a vorton a to.its
two nearest neighbours has increased beyond a certain value A times the original distance Az,
vorton division will be imposed 1°.

For the authors mentioned above, division meant the removal of vorton « and addition of
two new vortons at locations £(Az/8) 4, /7. In several cases this procedure will lead to an
irregular distribution of vortons in azimuthal direction, e.g. in the case of a radially growing
vorton ring (as we will encounter in §10.3). Therefore, we have adopted another vorton division
procedure: two new vortons will be added in between vorton « and its neighbours, while vorton
« is left untouched; see fig.9.3(b).

Various options could be proposed for assigning vorton strengths to the added vortons
and for optional updating of the strengths of the existing vortons. The simplest choice is to

10Djscussion of the value to be given to A will be postponed to §10.3.2.
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stretching

(b)

Figure 9.3: Tllustration of the vorton division procedure (see text): (a) before (Azo = Az(t = 0) = Az; + Aza)
and (b) after division (Az = AAzo). Added vortons are indicated by open dots.

take for the strength of each added vorton the mean value of its two neighbours in the ring
and to omit updating of the existing vortons. However, in that case no attention has been
given to the influence of vorton division on the conservation of the expressions for the motion-
invariants mentioned in §9.3.1. Our choice of updating the vortons after division is based on
the conservation of circulation ! as defined by (9.17). This means that for every vorton the
quantity
,7
An (9.19)
is to be conserved, where v is its strength and Az is defined in fig.9.3(a). This procedure will
be called ”division with updating”.
Summarizing, our division procedure is as follows:

1. new vortons are added as indicated in fig.9.3 whenever Az becomes larger than AAzo;

11\Winckelmans [283, §3.5.7] has suggested that division procedures can be set up which conserve both linear
momentum as given by expression (9.5) and angular momentum given by (9.8). However, two remarks have to
be made. First, we have indicated in §9.3.2 that these expressions cannot be proper motion-invariants in case of
the vorton method as applied here. Secondly, one could wonder whether conservation of both these invariants
assures the conservation of other motion-invariants.
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. the strengths of the existing vortons are updated such that the value of expression (9.19)

becomes equal to the value it had just before the division started,;

the newly added vortons get strengths which are the average of the strengths of their
two neighbours;

. the former values of Az, are updated according to the new distances between the vortons.



Chapter 10

Numerical Simulations: Results

In this chapter we present the results of our numerical simulations for the six test cases men-
tioned in §9.1. Besides, relevant results from literature are presented for comparison and
evaluation. The description of the results is sometimes accompanied by concluding remarks,
though the main conclusions and general discussion of our results, and the vorton method in
general, are postponed to Chapter 11.

10.1 Single Vorton Ring

In this section we compare the properties and characteristics of a single vorton ring, as illus-
trated in fig.9.1. In §10.1.1 we treat the velocity and vorticity distribution inside the core of
the ring and its velocity of translation. In §10.1.2 the stability of vorton rings is discussed.

10.1.1 General Characteristics of the Vorton Ring

As mentioned in §9.1, the vorton ring is determined by four parameters: radius R, circulation
I, strength v of each vorton, and the number of vortons N. For given R and T', a relation
between v and N can be derived from relation (9.17).

In fig.10.1 a standard vorton ring (N = 12) has been visualized by means of isosurfaces of
the magnitude of diagnostic w given by (9.18). Fig.10.1(a) shows that the vorton ring has a
core. However, the contribution of each vorton remains detectable, which becomes clearer if
the value of | ® | is increased as shown by fig.10.1(b). Obviously, for larger number of vortons,
the isosurfaces will become smoother.

In fig.10.2 the distribution of velocity and vorticity is shown for the core of a standard
vorton ring along the lines indicated in fig.10.2(a). To avoid the singularity in both fields, the
contribution of the vorton on line A has been disregarded. Comparison with the only experi-
mental measurements known, from Maxworthy [149], shows reasonable qualitative agreement.
Curve fitting has shown that the distribution of fig.10.2(b) can be described by a curve of the
form sech?(r) with r the radial distance from the core center which is the curve that has been
proposed by Maxworthy.

The distances between the two peaks (maximum and minimum) in the velocity distribution
as given in fig.10.2(c), can be taken as a measure for the core size a. In fig.10.3 the ratio between
the non-dimensional core radius &, given by:

a

27R/N "’ (10.1)

a=

has been plotted as function of the number of vortons N and for the two lines across the
ring shown in fig.10.2(a). In both cases, & appears to converge towards a constant value. We
conclude that for the standard vorton ring

aoc-]%-asN—)oo. (10.2)

94
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(a)

(b)

Figure 10.1: Single standard vorton ring (N = 12): isosurfaces of | W | {see (9.18)) = (a) 1,000 1/s, (b) 10,000
1/s.
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Figure 10.2: Single standard vorton ring (variable V): distribution of velocity ard vorticity around the center
line. (a) situation sketch (the dots indicate vorton locations on the vorton ring); (b) distribution of | % | (given
by (9.18)) along (i) line A and (ii) line B; (c) distribution of velocity v, along (i) line A and (ii) line B. Number
of vortons N = 12 (—), 36 (- - =), 72 (- - - ). r = distance along lines A and B. The contribution of the

vorton on line A has been neglected. a is core radius.
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Figure 10.3: Single standard vorton ring: non-dimensional core radius @ (given by (10.1)) vs. number of vortons
N. Core size a determined according to velocity distribution (see fig.10.2(c)) along line A (O) and B (o) (see
fig.10.2(a)). The horizontal line & ~ 0.875 indicates the value derived from expression (4.3) for a Kelvin-ring.

However, the factor of proportionality appears to depend on the azimuthal location in the
ring. In fig.10.3 we have also indicated the value of @ which follows for large N from Kelvin’s
expression (4.3) for the Kelvin-ring (see §A.2 of the Interlude); it appears to be ~ 0.875 .

Fig.10.1 and figs. 10.2(b)(i) and (ii) show that the vorton ring has an azimuthally in-
homogeneous distribution of vorticity. A large value for N can render a more homogeneous
distribution in the ring. However, the value IV can not be chosen at random when the circu-
lation T, the radius R, and the velocity V of a ring are prescribed. This can be seen from the
expression for V which can be derived from (10.2) and the general expression for the velocity
of a vortex ring given in §A.2 of the Interlude:

r , 1

The factor A’ depends on the factor of proportionality in (10.2) and on the vorticity distribution
in the core, i.e. on N. Hence, the dependence of A’ on IV is ambiguous and complicated. In
the simulations presented in the next sections, the determination of NV has been done by taking
the (integer) value of N which gives a velocity closest to the prescribed one.

We could wonder whether a change in the number of vortons also means a change in
other properties of the vorton ring besides its core size. One indication may be gained from a
calculation of the energy spectrum. In fig.10.4 the energy spectrum of a vorton ring (R = 1,
I’ = 1) given by (9.11) is shown for two values of N.

1This value has also been found by Pedrizzetti [177].
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Figure 10.4: Single vorton ring (R = 1,T" = 1): energy spectra E(k) according to (9.11) for number of vortons
N =36 and N = 240. k is wavenumber.

We observe that the shape of the spectra is identical for both values of N; they are only
shifted along the vertical axis. Apparently, the number of vortons does not influence the
physical character of the vorton ring. However, with regard to the shape of the spectrum itself
it is hard to make any remarks. According to the analytical result presented in [121] for a
" coreless” vortex ring, the spectrum of a ring consists of two parts: a k? behaviour for small
k is due to the nonzero impulse of the ring; a 1/k behaviour for large k is that of an isolated
smooth vortex tube with ka < 1 where a is the core size. We could conclude from fig.10.4
that our vorton ring is not "coreless”. Unfortunately, we have no information on the exact
definition of this vortex ring and other (experimental) results have not been found.

10.1.2 Stability of the Vorton Ring

In §A.3 of the Interlude, the development of research on the stability of vortex structures
(especially vortex rings), stimulated by Kelvin’s vortex atom theory, has-been reviewed. The
work by Widnall and others on the stability of vortex rings has shown that even in the inviscid
case instability can set in 2.

Numerical investigation of the stability of vortex rings has been performed by Knio &
Ghoniem [108]. They used a vortex method which can be compared to the soft-vorton method
(see Appendix B).

We have simulated the same rings as those used by Knio & Ghoniem, i.e. radius R =1
and circulation I" = 2. The initial disturbance has been a sinusoidal radial disturbance, given
by:

AR sin (nf) ' (10.4)

2The influence of viscous effects on the stability behaviour of vortex rings might be negligible, as is reported
in e.g. [128).
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where AR is the amplitude of the disturbance, n is the wavenumber and & is the azimuthal
coordinate (see fig.c of the Interlude for an illustration). For AR the value 0.02 * R has been
chosen. The value of n has been varied and the value at which the amplitude of the disturbance
increased fastest, is called n*. In fig.10.5 the most unstable wavenumbers n* are plotted against
the non-dimensional velocity of the ring V', given by:

. _47R
VEV%T (10.5)

where V is the ring velocity, calculated directly from the displacement of the vorton ring. The
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Figure 10.5: Single vorton ring (R =1,T = 2): most unstable wave number n* vs. the non-dimensional ring
velocity V = V(4w R/T"). Results for (x) the vorton ring are compared to () numerical results from [108] , and
(o) experimental results from [278] . '

amount of data may seem small. Unfortunately, the range of values of V for which Knio &
Ghoniem provide data is in a region where, for I' = 2, the number of vortons in the vorton ring
is about twice the number of waves n. This means that the representation of the sinusoidal
disturbance is inaccurate with unknown effect on the instability behaviour of the vorton ring.

Nevertheless, we conclude that the stability behaviour of the vorton ring compares rea-
sonably well with the numerical results of Knio & Ghoniem. However, both our and Knio &
Ghoniem’s results do not compare very well with experimental data as given by Widnall &
Sullivan [278], also indicated in fig.10.5.

10.2 Behaviour of a Single Pseudo-Elliptical Vorton Ring

10.2.1 Introduction

The dynamics of a single vortex ring becomes much more interesting (and complicated) when
its shape is changed from circular to elliptical. From accounts of the smoke ring experiments
performed by Kelvin and Tait in the 1860s, it appears that they already recognized the peculiar
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behaviour of elliptical rings (see §3.2). However, only in recent years this behaviour has been
studied more deeply.

The behaviour of an elliptical ring is determined by its inclination to ”oscillate”, i.e. to
constantly interchange its long and short axis. This can be ascribed to the variations in
curvature, which induces unequal velocities along the circumference of the ring. The parts
of largest curvature will move forwards at a higher velocity than the other parts of the ring,
causing a bending of the ring perpendicularly to its plane. The parts staying behind will start
to move outwardly, causing the the change of axes, mentioned above. The oscillating behaviour
is clearly exposed in fig.10.6.

; @ ?
Figure 10.6: Oscillating behaviour of an elliptical vortex ring: (a) perspective view (sketch from [134]); (b)
side-view; (c) top-view. Development in time is from left to right.

Q

It has been shown experimentally that the behaviour of elliptical rings depends on the ratio
of the lengths of the major and minor axis of the ellipse. When this ratio exceeds a certain
value the periodic oscillating behaviour of fig.10.6 is ”disturbed” due to vortex reconnection.

Kiya & Ishii [105] performed numerical simulations applying a soft-vorton method and did
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experiments on the behaviour of a so-called pseudo-elliptical vortex ring whose shape is shown
in fig.10.7. This ring is supposed to show similar behaviour as purely elliptical rings. They
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Figure 10.7: A pseudo-elliptical vorton ring. The dots indicate the vorton locations.

observed at least two different regimes in the behaviour of these rings, depending on the axis
ratio L/2R,:

1. for 2 < L/2R, < 4: oscillation as in fig.10.6 with a continuous interchange of the position
of the long and short axis;

2. for5 < L/2R, < 8: the ring’s axes interchange one time (as in the first half of fig.10.6)(b);
this is followed by splitting up into two rings.

As remarked above, the splitting behaviour may be attributed to the phenomenon of recon-
nection, introduced in the Interlude 3. When the long straight parts of the ring approach
each other under certain conditions, they are cut and reconnected as illustrated in fig.e of the
Interlude.

10.2.2 Vorton Simulations

For our numerical simulations, we have taken the vorton representation of Kiya & Ishii’s
pseudo-elliptical ring (see fig.10.7). For this ring circulation I' = 225 and R, = 1. By changing
the value of L we can change its axis ratio.

3We shall return to this topic in §10.4.
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The behaviour of this ring with N = 32 and L/2R, = 7 is shown in fig.10.8 in case of appli-
cation of all three vorton deformation equations, i.e. the N-, K-, and N+K-equations. In case
of the K-equation the simulation had to be stopped after a short time as the vorton strengths
of some vortons increased dramatically. Time step reduction did not show improvement in this
case. The other two cases (figs. 10.8 (a) and (c)) show qualitatively similar behaviour.

In fig.10.9 the development of the the x-component of linear momentum P according to
(9.5), interaction-energy FE; according to (9.10), and self-energy Ey according to (9.14) are
shown for the three cases of fig.10.8. The results for the K-equation show severe violation
of conservation of P and E,. We observe that qualitatively the N-equation and the N+K-
equation show no large differences, so that no preference for one of these can be expressed
based on these results. However, the results on the conservation of P and E; suggest that the
N+K-equation performs slightly better.

The influence of the number of vortons N on the diagnostics has been investigated in case
of the N+K-equation. In fig.10.10, the development of the same diagnostics as in fig.10.9
are shown for two values of N and an axis ratio of L/2R, = 7. We again observe that
the invariants are reasonably well conserved. For increasing N their deviations from perfect
conservation decreases. Furthermore, we note that the curves of interaction-energy E; and of
self-energy E, show opposite behaviour.

Regarding the two different regimes of behaviour mentioned above, for our pseudo-elliptical
ring (in case of the N+K-equation) we found that regime 1 occurs for L/2R, < 8. Regime 2
does not occur, though in some range of L/2R, the behaviour seems close to reconnection (as
can be observed in fig.10.8(c)). An increase of the numbers of vortons IV showed an inclination
towards regime 2 for the axis ratios found by Kiya & Ishii. However, above a certainvalue
of N the initially straight parts of the pseudo-elliptical rings became unstable and the ring
collapsed.

The disagreement between our numerical results and the results given by Kiya & Ishii
has been confirmed by a comparison of our numerical results with the results from a simple
experiment which we performed with smoke rings in the manner of Tait’s 1867 experiment
discussed in §3.2 *. In fig.10.11 we show both the isosurfaces of the magnitude of diagnostic
given by (9.18) for our pseudo-elliptical vorton ring (N = 8, N+K-equation) and photographs
of the experimentally observed smoke rings. In both cases the axis ratio L/2R, = 7.

One possible explanation for the disagreement between vorton simulation and experiment
is the presence of a slight restriction in the middle of the straight part of the smoke ring
caused by the way of generation. We have tried to simulate this restriction as indicated in
fig.10.12. For a slightly disturbed pseudo-elliptical vorton ring 5, reconnection indeed occurred
for L/2R, = 7. However, shortly after the splitting, the two rings linked to become one ring
again; see fig.10.12. Apparently, the cause for the inability of our vorton simulation to show

4For a full description of our experiment, we refer to [44].
5The exact nature of the restriction appeared to be irrelevant. Fig.10.12 shows a simulation in which a
sinusoidal disturbance on the straight parts of the ring has been imposed (see the sketch).

Figure 10.8: (see inserted sheets) Single pseudo-elliptical vorton ring (N = 32, L/2R. = 7): behaviour in case
of (a) N-equation, (b) K-equation, (c) N+K-equation. Three views of the ring are given at each time ¢.
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Figure 10.10: Single pseudo-elliptical vorton ring (L/2R. = 7) consisting of N = (a) 32, (b) 192 vortons:
(+) x-component of linear momentum P according to (9.5), (¢) interaction-energy E; according to (9.10), ()
self-energy Eo according to (9.14). (The curves have been rescaled such that their maximum equals 1) tis
time.

reconnection has to be found elsewhere. This will be further discussed in Chapter 11.

Though the experiment mentioned above has been relatively simple, we have been able to
compare one quantitative result. For both the vorton rings and the smoke rings of low axis
ratio (L/2R, < 3.5) the product of the period of one oscillation 7 and the average ring velocity
V have been calculated . In fig.10.13 the results are compared. For the vorton simulations
both the N- and N+K-equation have been used. In both cases the number of vortons N has
been chosen such that the numerical results agreed best with the experimental results. This

61t can be shown that this quantity is independent of the circulation I'. This is a fortunate circumstance,
since I' is hard to measure. See [44] for details.
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resulted in N = 10 in case of the N-equation and N = 8 in case of the N+K-equation. We
observe agreement between numerical and experimental results with regard to the trend of the
curves. The N-equation seems to perform somewhat better. However, the fact that vorton
rings can only vontain discrete values of IV strongly restricts the adaptation of the numerical
ring to the experimental ring.

10.3 Head-on Collision of Two Coaxial Vorton Rings

10.3.1 Introduction

As remarked in Chapter 2, in 1858 Helmholtz had already showed that if two coaxial and
identical vortex rings approach each other, their radii increase and their velocities decrease.
He had also remarked that this situation could be compared to a single ring approaching a
flat wall perpendicularly, in which case the ring collides with its own "mirror” image (compare
fig.7.1). The former case will be called ring/ring interaction and the latter ring/wall interaction.

The initial configuration of ring/ring interaction is shown in fig.10.14. Notice that this
configuration can only represent ring/wall interaction if the free-slip condition on the wall is
valid, i.e. if no condition is imposed on the tangential velocity at the (imaginary) wall.

In §A.2 of the Interlude we mentioned Dyson’s impressive analytical results of 1893 on this
configuration. After Dyson’s remarkable paper, it seems to have lasted more than 70 years
before interest in the interaction of vortex structures with planes, or other objects, revived.
Direct incentive for this revival can be found in the concern which arose in the early 1970s
over the hazard presented by trailing vortices as produced by large aircrafts [276], which could
interact with the ground and other aircrafts. One of the phenomena only then discovered
was the rebound effect: at close approach towards a wall the movement of the vortex showed
reversion, i.e. the vortex started to move away from the wall. Though initially the rebound
was explained by inviscid core deformation (see [128]), it soon became clear that the effect was
due to the influence of the boundary layer: when the distance between ring and wall is of the
order of the apparent thickness of the core, the boundary layer is disturbed and a secondary
ring is generated at the wall, which induces an upward motion on the approaching ring and
se.- < it from the wall (see e.g. [274]). After the rebound the first ring may again approach
the wall since the secondary ring becomes weaker, and the rebound may occur again.

More generally, the rebound effect made clear that interaction of vortex structures with
viscous boundaries (no-slip condition) are fundamentally different from inviscid boundary in-
teractions (free-slip condition) represented by mirrored structures.

10.3.2 Recent Results from Literature

While results on ring/ring interaction are scarce, ring/wall interaction has been given more
attention. Chu et al. [40] have done experimental work on rings approaching both a solid sur-
face and a (slightly contaminated) free surface. For the circulation of the ring, they have found
that during the free-travelling stage I' is almost constant, while during the vortex stretching at
close approach of the surface I' strongly decreases. This violation of Kelvin’s Circulation The-

Figure 10.11: (see inserted sheet) Single pseudo-elliptical vorton ring (N = 8, L/2R. = 7): comparison between
numerical simulation (in case of N+K-equation) and experimentally produced smoke ring. The vorton ring is
represented by isosurfaces of | W | given by (9.18). Three views of the ring are given at each time ¢.
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orem indicates that viscosity becomes influential at that stage. Apparently the only numerical
simulation on this configuration has been performed by Kambe and co-workers. Their viscous
vortex model also showed a variation of circulation: first it is constant, then it decreases at
close approach. Energy appeared to decrease from the start [98].

The only recent experiment on head-on colliding vortex rings seems to have been performed
by Lim et al. [128]. They have compared the ring/ring interaction with the ring/wall interac-
tion. During the ring/ring interaction, the radius of each ring continues to increase, in good
agreement with Dyson’s equation (see fig.d of the Interlude). They have found no rebound
effect for the ring/ring interaction and concluded that the generation of secondary vorticity at
the wall is indeed the cause of rebound in the ring/wall case. For the ring/ring case, the ex-
periments also showed that an azimuthal instability can develop along the rings. A remarkable
consequence of this wave formation is the formation of smaller rings around the circumference
of the original rings. Once formed, these move outward radially ”

10.3.3 Vorton Simulations

We have simulated the head-on collision of two standard vorton rings with the number of
vortons per ring N = 36 and the vortons in both rings located opposite each other. Initially,
the rings are separated 4 times the initial radius R, i.e. d = 4R and R = 0.8 cm; see fig.10.14.
Only the N+K-equation has been applied, since all three vorton deformation equations showed
the same simulation results.

In fig.10.15 we compare the development of radius R of the approaching rings as a function
of their distance (i.e. the distance between opposite vortons), given by d. It shows good
qualitative agreement with Dyson’s analytical curve for the Kelvin-ring, given in fig.d of the
Interlude ®. The curve shows no rebound.

From fig.10.16 we derive that distance d between the rings, defined as the distance between
the opposite vortons in both rings, almost stops decreasing as radius R of each ring starts to
increase strongly. This moment will be called ¢* and it is about equal to 0.006. Comparison
with fig.10.15 shows that ¢* is also the moment R starts to increase severely.

Apparently, the rings have a core which hinders their approach beyond a (small) distance.
It should be mentioned that Dyson’s elaboration also predicts a lower limit for the distance d.

To find out what is happening to the core during collision, we show in fig.10.17 and fig.10.18
contour plots of | @ | (given by (9.18)). The first figure shows the deformation of the core in
plane A of fig.10.14, the other the same result in plane B. In both figures, we depict at ¢ =0
the same maximum value of | @ | in order to show the difference in the vorticity distribution
between the two locations. At subsequent times, the values of | @ | on the contour levels has
been adapted to the overall maximum of | # | in each plane.

"This phenomenon resembles the formation of rings in the so-called Crow instability of rectilinear trailing

vortices (see e.g. [276]).
8Quantitative comparison has not been attempted, since in that case one needs to know the core size a. As

we have shown in §10.1.2, a cannot be defined unambiguously.

Figure 10.12: (see inserted sheet) Single pseudo-elliptical vorton ring (N = 96, L/2R. = 7): behaviour in case
of the N+K-equation and a slight restriction (exaggeratedly illustrated by the sketch at bottom right). Tree
views of the ring are given at each time t.
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Figure 10.13: Single pseudo-elliptical vorton ring (I' = 225): comparison of 7V (7 is the duration of one complete
oscillation; V is the average ring velocity) vs. axis ratio L/2R.. Comparison between results from numerical
simulations ((0) N-equation (N = 10) and (+) N+K-equation (N = 8)) and from experiment (o) (error bars
have been provided).

Comparing the time development of the cores in figs. 10.17 and 10.18 with figs. 10.15
and 10.16, we observe that at t*, defined above, the cores become deformed and asymmetrical.
This is also illustrated by fig.10.19(a) in which the development in time of the non-dimensional
core radius @ (defined in 10.1) in plane B (see fig.10.14) has been illustrated. The core is
again derived from the velocity distribution around the centre line of the vorton ring (see
fig.10.19(b)), but as is evident in the figure, the radius at the front of the ring (i.e. where the
rings touch each other) finally becomes smaller, while the radius at the back starts to increase.

In fig.10.20 the development of circulation I' of each ring is presented as calculated from
integration along the two different curves A and B indicated in fig.10.14. Comparing with
figs. 10.15 and 10.16, we conclude that conservation of circulation starts to be violated at
t*. However, the direction of the deviation of I" depends on the curve used in the calculation.
As mentioned in §10.3.2, decrease of I' has also been found in experimental and numerical
experiments in literature, where it can be attributed to viscosity. For our simulation, this
explanation is not workable. Apparently, the calculation of I' by means of the curves A and B
is no longer allowed the moment the distance between the core centers has decreased beyond
a certain value.

As the developments of R, d, and I are now known, we can check Dyson’s results for the
rate of change of R, given in §A.2 of the Interlude. In fig.10.21 the relation between circulation
I" divided by distance d is plotted against the rate of change of radius R. We conclude that for
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a certain period of time the linear relationship, as found by Dyson, exists. After ¢t* the rings
stop behaving as Kelvin-rings.

Regarding the conservation of the motion-invariants mentioned in §9.3.1, one may recognize
that due to the symmetry of the configuration, expression (9.5) for linear momentum, expres-
sion (9.8) for angular momentum, and expression (9.16) for helicity are always zero. This is
indeed confirmed by the simulation results, though some very small scattering around the zero
line is present. In fig.10.22 the development of interaction-energy E;, according to (9.10), and
of self-energy E,, according to (9.14), are shown. We observe that conservation of E; and E,
is almost immediately violated. Furthermore, both curves show opposite trends.

In the second simulation of this section, we have tried to reproduce the phenomenon of
the formation of smaller vortex rings on the circumference of the two initial rings, as observed
by Lim [128] and discussed in §10.3.2. As the simulation presented above did not lead to
sinusoidal disturbances by itself, we decided to introduce a slight axial sinusoidal disturbance
to the rings. The simulation was done with standard rings consisting of N = 72 vortons each.
The wave mode number was chosen n = 12 (compare (10.4)), and initial separation was 2R.
In fig.10.23 the simulation result is shown by means of the vorton locations. Initially, when
the rings are separated at relatively large distances, the imposed wave mode is stable and the
disturbance will be damped. However, when the rings approach each other, their velocities
decrease and the wave mode becomes unstable at the moment when the non-dimensional
velocity V reaches the critical value for this specific mode (compare with fig.10.5). In the next
phase, reconnection takes place and small rings are formed. Note, however, that these rings
seem to be still connected to each other by vortons lying in between them.
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Figure 10.15: Head-on collision of two standard vorton rings (IV = 36), initially separated d = 4R: radius R vs.
distance d.

Finally, we have investigated the effects of vorton division (see §9.4) on this configuration.
At least one reason to apply vorton division in this case can be obtained from the simultation
results presented above. In fig.10.18 we observe that the location of maximum vorticity, which
is supposed to be the location of the core centre, starts to revert at a certain time, even though
the vortons of both rings keep approaching each other as is shown by fig.10.16.

We have applied the vorton division procedure as described in §9.4. For A we have taken the
value given by Pedrizzetti [177] from his analysis of the conservation of ”vortex volume” to a
vorton. In §10.1.1 we found that the core size of a vorton ring (for a circular, undeformed core)
is proportional to the length of the vortex tube (see (10.2)). Supposing that the vortex volume
is proportional to a?Az (Az has been defined in fig.9.3), one can easily derive that A should
be 2%. Notice that this value implies that stretching of a vortex tube will cause a decrease of
its core size, whereas in the absence of division the core size grows during stretching.

We have applied vorton division to the case of two standard rings (N = 36) initially
separated 4 times their radius. In fig.10.24 we show the development of interaction-energy E;
(9.10) for three cases: no vorton division, division without updating of the vorton strengths
in order to conserve circulation, and division with updating (see §9.4). We observe that our
division procedure including updating is able to prevent the continuous decrease of the level
of F; as happens without division. Division without updating is seen to give unsatisfactory
results in this respect.

However, the simulation of this configuration has also made clear an important drawback
of vorton division. As explained in §9.4, the added vortons are positioned at locations which
are linearly interpolated between the locations of the existing vortons (see fig.9.3(b)). In case
of rings this means a (slight) azimuthal disturbance on their shape. From our simulations we
found that after division had occured several times, an azimuthal disturbance started to grow




110 CHAPTER 10. NUMERICAL SIMULATIONS: RESULTS

NN

0 0.005  0.01 0015 002 ¢

Figure 10.16: Head-on collision of two standard vorton rings (N = 36) initially separated d = 4R: distance d
vs. time t.

on the rings and the configuration became unstable. The wave number of this unstable mode
appeared equal to the initial number of vortons, from which we conclude that the instability
was not due to physical effects.

10.4 Oblique Interaction of Two Vorton Rings
10.4.1 Introduction

In §A.1 of the Interlude the experimental observation of the reconnection and subsequent oscil-
lation of two obliquely inclined vortex rings by Wood [285] (1901) and by Northrup [166] (1911)
were presented. The configuration they studied is in essence the one sketched in fig.10.25.

This configuration is not only challenging for experimentalists and for testing numerical
codes, but is also of considerable interest as it is one of the most elementary configurations in
which interaction and reconnection of vortex tubes can be studied in isolation, i.e. without
other disturbing influences °. As already indicated in fig.e of the Interlude, this reconnection
is generally supposed to be a competition between vortex stretching and smoothing by viscous
stresses. The adjacent edges of the rings undergo severe strain and axial flow arises along the
cores. At the same time, severe core deformation takes place.

Obviously, this process is very complicated. Only numerical simulations have enabled fluid
dynamicists to get some more insight into several details of the actual phenomena, but in our
opinion a really complete picture of reconnection, and its understanding, is still lacking.

9 Another useful configuration in this respect may be the (pseudo-)elliptical vortex ring. However, in §10.2
we have seen that pseudo-elliptical vorton rings do not show the expected reconnection behaviour.
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Figure 10.20: Head-on collision of two standard vorton rings (N = 36) initially separated d = 4R: circulation
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10.4.2 Recent Results from Literature

Only more than 60 years after Northrup, experimental work on the oblique interaction of
vortex rings was taken up again, both in water and air. The experiments by Fohl & Turner
and Oshima & Asaka (see [102] for references) have shown that the initial Reynolds number
(Re = I'/v) and the angle @ of the rings with the horizontal (see fig.10.26) determine the
interaction process. The latter authors have shown that three regimes of interaction can be
observed, depending on the value of Re; see fig.10.26. For Re = 230-300, the two rings reconnect
and merge into one elliptically shaped ring; after that this ring remains oscillating (stage A
in fig.10.26). For Re = 300-420, after the reconnection (stage A) the elliptical ring eventually
splits up again into two rings (stage B). For still higher values of Re, the two rings, formed
after splitting, reconnect again (stage C).

Recently, extensive experiments on this vortex ring interaction have been performed by
Schatzle [208] and Izutsu & Oshima [93] (see also [171]).

The experiment by Izutsu & Oshima (IO) will be discussed here in some detail, since their
results will be used to evaluate our vorton simulations. By means of hot wires they were able
to measure the velocity field on a grid containing the two interacting vortex rings in air. From
these measurements they calculated the vorticity field. In this way not only quantitative data
could be obtained, but also the possible errors of interpretation have been avoided which are
involved in the common method of visualizing vortex structures by means of tracer particles.
Namely, the spatial pattern of these passive scalars does not faithfully represent the vorticity
field, since a scalar only undergoes convection and does not undergo deformation. Therefore,
at the locations of high vortex stretching, a depletion of tracer particles will occur.

In the IO experiment, the full formation of both rings took about 7.2 ms after a loudspeaker
was switched on to produce the rings. At that time, the radius of the vortex rings were
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Figure 10.21:" Head-on collision of two standard vorton rings (N = 36) initially separated d = 4R: I'/d vs. rate
of change of ring radius, R. T is calculated along (a) curve A, (b) curve B (see fig.10.14).

R = 1.16 Ry where Ry = 0.8 cm is the radius of the orifices. However, from their contour plots
of vorticity, the radius appears to grow up to about 1.25R, after the initial moment. The
initial distance D between the rings’ centres was taken equal to 4Ry. The initial circulation is
given as [y = 813.2 cm?/s and the initial velocity V; of both rings as approximately 183 cm/s.

If we want to compare our numerical results with the experimental results presented by
IO, we have to be sure our initial configuration resembles the initial configuration in the
experiment as closely as possible. This means that we have to start the simulation with the
same positions and characteristics of the rings. One check point for this correspondance is the
angle of inclination @ of the rings during the early stage of the interaction. This angle is based
on the locations of the core centers in the z — y plane. IO mention § = 86.3° at ¢ = 10 ms and
9 =81.3° at t = 14.8 ms *C.

In fig.10.27 isosurfaces of vorticity magnitude are shown as derived by IO from their mea-
surements. We observe that for this configuration, the interaction does not evolve beyond stage
A as shown in fig.10.26. Besides, the arrows indicate the presence of a weak pair of parallel
vortex tubes, which have been called threads .

10T hese times are the times which have elapsed since the switching on of the loudspeaker in the experiment.

1171 this thesis we will not speculate on the mechanism of reconnection which is exposed by these experiments
or our numerical simulations. Comparison of our results with those by IO is only meant to investigate the
applicability of the vorton method to this configuration. Nevertheless, we will mention shortly 10’s conclusions
on the reconnection process, as they have expressed it in [171]. According to IO, the actual cut-and-connect
phenomenon does not take place at one location or moment, but ”the cutting points dissolve gradually”. The
tubes of the approaching rings ” consist of a number of vortex filaments ... Each filament individually cross-links
one by one and moves away quickly in the direction normal to the plane of the filament because of its strong
curvature”. They suggest that an essential part is the bridging process, i.e. the formation of "new vorticity
concentrations” which form the links of the two rings.



116

-

E;

0.5

Figure

CHAPTER 10. NUMERICAL SIMULATIONS: RESULTS

Y (a) 10 + (b) "/—"
' EO -'
[ . 8t .
L ". 6F :
'._. 4t .
N— | .
0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02
t t

10.22: Head-on collision of two standard vorton rings (N = 36) initially separated d = 4R: the devel-

opment (a) interaction-energy E; according to (9.10), (b) self-energy Eo according to (9.14). Both curves have
been scaled with their initial value. ¢ is time.

The configuration treated here has also been used for the investigation and calibration of
several vortex methods and numerical methods. Besides, as remarked, numerical simulation
is still the only way to investigate the reconnection process in more detail. Some examples of
recent numerical research are presented:

Anderson & Greengard in [9] have applied a vortex-filament method (see §7.3.1) and
added a numerical scheme to simulate diffusion of vorticity. They found that the cores

~of the rings deformed but were not uniformly pressed against each other during the

interaction at infinite Reynolds number. This, they suggest, means that the process
depends on Re. They have also remarked that "perhaps the reconnection process is
too subtle to admit representation by a universally valid model” and pointed at the
impossibility of several Eulerian grid methods to represent the small scales that arise in
the region of reconnection.

Winckelmans [283] (also in [32]) applied both the vorton method and the soft-vorton
method (see Appendix B) to a configuration in which the two rings were initially in-
clined at an angle § = 75°. The cores consisted of a symmetrical pattern of vorton rings
centered around a central vorton ring; see fig.10.28. From his numerical results, Winckel-
mans concluded that the K-equation is preferable to the N-equation and N+K-equation.
However, he added that the vorton method is not applicable to this configuration and
cannot represent reconnection. The conservation of motion-invariants (linear momentum
P as given by (9.5) and interaction-energy E; as given by (9.10)) appeared to be severely
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. Figure 10.24: Effect of vorton division on the head-on collision of two standard vorton rings (N = 36) initially
separated d = 4R: interaction-energy E; (scaled with initial value) vs. time ¢ in case of: (+) no vorton division,
(o) vorton division without updating, (x) vorton division with updating.

violated at the moment of reconnection.

With regard to the soft-vorton method, he concluded that this vortex method may be
useful, though no complete reconnection occurred in his simulations. He found none of
the three vorton deformation equations to be preferable. The conservation of the motion-
invariants mentioned was again violated. From the simulation of the same configuration
by means of a soft-vorton method including a viscous diffusion term 12 Winckelmans
concluded that the ”physics of the problem” was well reproduced (he only investigated
the K-equation). Linear momentum was not conserved, though, as he remarked himself,
in unbounded viscous flows it should be. Winckelmans’s simulations also showed threads.

Kida et al. [103] performed extensive numerical studies of the reconnection of two viscous
vortex rings, using several initial values for 8, R, D, and also for viscosity v and core
radius a. The flow was simulated solving the Navier-Stokes equation by means of a
spectral method. The simulations showed the process of formation of so-called bridges
and threads, as introduced earlier by Hussain and co-workers in work on the reconnection
of two anti-parallel vortex tubes with a sinusoidal disturbance (see e.g. Melander &
Hussain in [160]). The reconnection showed three stages (see fig.10.29 and compare with
fig.e of the Interlude):

1. core deformation and stretching during collision of the closest parts of the rings

12This viscous vorton scheme will not be explained in this thesis. For details we refer to Winckelmans's thesis

[283].
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Figure 10.25: Initial configuration of the oblique interaction of two vortex rings.

(figures (a) and (b));

2. annihilation of vorticity due to diffusion and bridging, causing dramatic change
in topology due to cross-linking of vortex-lines; bridging, or cross-linking, is the
formation of connections between the two original rings, while unlinking is the
process of annihilation of the colliding anti-parallel parts of the original vortex rings
(figures (c) and (d));

3. threading, during which a remnant (unreconnected part) of the original vortex pair
is sustained by stretching of the newly formed bridges (figures (d) and (e); see also
the arrows in fig.10.27).

The authors also discussed the twisting of vortex-lines during reconnection. They argued
that reconnection cannot occur in inviscid flows since "both topology and circulation of
vortex lines do not change in time” [103, p.584].

For comparison with some of our numerical results, we show in fig.10.30 the contours
of the vorticity magnitude in one of the symmetry-planes of the configuration, i.e. the
z — y-plane of fig.10.25.

o Aref & Zawadzki (in [160]; see also [15]) used a vortex-in-cell method (see §7.3.2), with
which they could simulate a slightly viscous flow. Their simulations showed weak threads
during reconnection, but, unlike the results found by Kida et al. (see fig.10.30), these
soon disappeared completely.
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Figure 10.26: Three possible, consecutive, stages (A, B, C) in the development of the oblique interaction of
two vortex rings with initial configuration as in fig.10.25 (see text). The arrow indicates time development.
Compare fig.10.27. ~

10.4.3 Vorton Simulations

As mentioned, the numerical simulations presented in this section are compared with the
experiment by Izutsu & Oshima (IO) [93]. For the initial configuration of fig.10.25 we have
taken: R = 1.25R, = 1.0 ¢cm; D = 4Ry = 3.2 cm; ' = 820 cm?/s; and for the number of
vortons N = 15 (based on the initial ring velocity V' = 183 cm/s).

One has to realize that the initial positions of the vortons in the rings may be influential on
the results. Initially, we will study the two configurations shown in fig.10.31. We can indicate
these by the value of the ratio between the angle ¢ as indicated in fig.10.31(b) and 2 /N, the
initial angle between the vortons in the ring. ;

The simulations of both configurations have been performed for the N-, the K-, and the
N+K-equation. Therefore, we have six possible combinations to investigate. In fig.10.32, the
simulation results are shown by means of the vortons in the rings.

Above we mentioned the possibility to check the agreement between our numerical and
10’s experimental initial condition. In all six cases of our simulation, the angle of inclination
6 of 86.3° was reached at t = 18.5 ms (IO: 10 ms) and that of 81.3° at ¢t = 33.5 ms (IO:
14.8 ms). This means that a certain amount of time has to be subtracted from the timesteps
mentioned in fig.10.32 in order to get a proper comparison with the experimental results.
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Figure 10.27: Isosurfaces of the vorticity magnitude for oblique interaction of two vortex rings. ¢ is time. Arrow
indicates threads. Experimental results from Izutsu & Oshima [93].
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Figure 10.28: Initial configuration of a numerical simulation performed by Winckelmans. From [283].

However, we also have to conclude in our simulations the development of the configuration
is slower. One possible explanation can be found in a disagreement between IO’s and our
definition of the inclination angle 8 or of the ring velocity V. This result warns us that a
quantitative comparison will be without meaning. However, below it will become clear that
qualitative comparison makes sense.

From fig.10.32 we observe that the simulations of the configuration according to fig.10.31(a)
show the formation of a ”dipole” consisting of two anti-parallel vortons which eventually move
away in a direction opposite to the movement of the reconnected vorton rings 13, This dipole-
structure does not seem to have occurred in the IO experiment. At this moment, it is unclear
whether it has any relation with the threads mentioned above ™.

Though all simulations for case (i) in fig.10.32 do not agree with the IO experimental
results, we observe that the alignment of the vortons is better conserved in the case of the
N+K-equation than in case of the N-equation.

For the configuration of fig.10.31(b) we observe that the simulation of fig.10.32(b)(ii) (i.e.
the K-equation) blew up after a short time. If we compare the other simulations with the results
presented by IO as shown in fig.10.27, we observe that only the simulation of fig.10.32(c)(ii)

13For this reason, the ”dipoles” disappear out of the pictures in fig.10.32. In passing, we have to remark
that this dipole "blew up” (i.e. the strengths of both vortons grew indefinitely) when the vorton equations were
completely solved for all vortons, while in the simulation of fig.10.32 advantage was taken of the symmetry of the
configuration, i.e. only for one ring the equations were solved after which the new configuration was mirrored.
Apparently, the behaviour of these dipoles depends strongly on the accuracy of the numerical procedure.

14Takaki & Hussain (see [13]) have remarked that two curved vortex tubes or ring before and after reconnection
differ by a vortex ring.
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Figure 10.29: The reconnection process as proposed by Melander & Hussain in [160] (see text). Time develop-
ment is from top to bottom.

(i.e. the N+K-equation) gives good agreement.

Further evidence of the better performance of the N+K-equation as compared to the N-
equation is obtained from comparison of the development of some of the motion-invariants
introduced in §9.3.1; see fig.10.33. Again, we remark that interaction-energy E; and self-energy
Ey (not shown) show opposite time developments.

In the rest of this section, we will only present results related to the simulation presented in
fig.10.32(c)(ii), i.e. configuration with ¢/(27/N) = 0.5 and application of the N+K-equation.
In fig.10.34 isosurfaces of | @ | (given by (9.18)) are shown. Comparing these results with
those from the numerical simulation by Kida et al., shown in fig.10.30, we observe that our
simulations do not show the same core deformation as in their case (in which a ”tail” is formed
behind the core centres). Though fig.10.34(c) suggest the presence of a thread-like object, we
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oy

Figure 10.30: Contours of the vorticity magnitude from the numerical simulations by Kida et al. [103]. Cross-
sections are in the z — y-plane (see fig.10.25). Time development is from left to right and from top to bottom.
The arrow indicates the threads.

could not find a clear indication for this, as Kida et al. (see fig.10.30) and IO (see fig.10.27)
did.

A final comparison of our numerical results and IO’s experimental results (see fig.10.27)
can be made by means of fig.10.35 with regard to the isosurfaces of vorticity magnitude. We
observe that the development in time differs, as we had already expected from the comparison
of the evolution of the inclination angle 4, discussed above. Furthermore, fig.10.35(c) shows
the absence of any thread-like structure in our simulated configuration. Finally, we have
to remark that whereas IO’s experiment seems to have ended in complete dissolution (due
to viscosity) of the last configuration shown in fig.10.27, in our simulation the configuration
shown in fig.10.35(f) continued to oscillate until it finally broke down into two unlinked vorton
rings.
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Figure 10.31: Two possbilities for the initial positions of the vortons in the configuration of fig.10.25 (seen from
the left; for the lower ring only vorton locations are drawn): (a) ¢/(27/N) = 0.0, (b) ¢/(27/N) = 0.5.

Figure 10.32: (see inserted sheets) Oblique interaction of two vorton rings (R = 1.0, T' = 820, N = 15).
Vorton deformation according to (a) N-equation; (b) K-equation; (c) N+K-equation. Configuration as in (i)
fig.10.31(a); (ii) fig.10.31(b). Dots indicate vorton locations, arrows indicate vorton strength vectors; the two
rings are colored by different grades of black. The pictures are shown from two different points of view (compare
fig.10.25): z = along the z-axis, z = along the z-axis. t = time.
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Figure 10.33: Comparison of the simulations shown in (o) fig.10.32(a)(ii) (N-equation) and (-) fig.10.32(c)(ii)
(N+K-equation). (a) z-component of linear momentum, P, according to (9.5) (scaled with initial value); (b)

y-component of angular momentum, J, according to (9.8); (c) interaction-energy E; according to (9.10) (scaled
with initial value). t is time.
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Figure 10.34: Oblique interaction of two vorton rings for the configuration of fig.10.32(c)(ii): contour plots of
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(continued on nezt pages) Oblique interaction of two vorton rings (configuration as in

fig.10.32(c)(ii)): isosurfaces of | W | (given by (9.18)). ¢ is time. Compare fig.10.27.

Figure 10.35:
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(d) t = 0.060.
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(f) t = 0.105.
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We have also investigated the susceptibility of the simulation results to the value of the
angle ¢ as defined in fig.10.31, i.e. to the locations of the vortons. For the N+K-equation the
simulations have been repeated for several values of ¢/(27N) between 0.0 (fig.10.31(a)) and
0.5 (fig.10.31(b)): 0.125, 0.25, and 0.375. In all cases the interaction of the two vorton rings
ended in chaotic vorton motions. However, when the distance between the rings’ centres D
was decreased to 2.5R, instead of 4R,, we found for all three values of ¢ and for the N+K-
equation that the behaviour appeared to be similar to that shown in fig.10.32(c)(ii) and chaotic
behaviour held off. Application of the N- and K-equation to this configuration did lead to the
appearance of chaotic behaviour, showing once again the superiority of the N+K-equation.

Finally, we discuss the consequences of the application of the ”division with updating”
procedure (see §9.4) to the case of fig.10.32(c)(ii). We have found that during the reconnection
of the two rings the condition for vorton division was not met with and consequently no increase
of the number of vortons was observed. However, division took place during the approach of
the straight parts of the connected vorton rings as shown in fig.10.35(e). The division in this
case appeared to have a negative influence on the development of the vorton configuration.
The vortons started to show chaotic behaviour and the simulation had to be terminated.

When the initial number of vortons N in each ring was increased from 15 to 16, the
condition for division was satisfied. However, during the reconnection vortons were added
such that a "tail” of vortons formed behind the forward-moving connected vorton rings. This
tail consisted of vorton "dipoles” as shown in fig.10.32(c)(i). Due to the small distance between
the vortons in these dipoles, the timestep in the simulation was seriously reduced and finally
chaotic behaviour appeared.

In both cases mentioned above, the problem can be attributed to the effect of division as
shown in fig.10.36. The number of vortons starts to increase quickly. Though initially the
vortons remain neatly aligned, at a certain moment instability behaviour sets in. This is most
probably due to the growing misalignment of the vortons caused by the crude interpolation
procedure, explained in §9.4.

10.5 Interaction of Two Knotted Vorton Rings

10.5.1 Introduction

The vortex configurations treated so far show symmetry in one or more planes. As a conse-
quence, several motion-invariants like total angular momentum and total helicity are zero and
remain perfectly conserved apart from slight fluctuations around zero due to numerical errors.
One of the simplest configurations in which asymmetry has essential consequences and which
has non-zero helicity, is that of two knotted vortex rings as shown in fig.10.37. Besides, this
configuration is one of the most elementary in which the alignment of vortex tubes can be
investigated (see §C of the Interlude).

10.5.2 Recent Results from Literature

The configuration of two knotted rings shown in fig.10.37 already appeared in Kelvin’s paper
»On vortex motion” [245] of 1869 (see Kelvin’s letter to Helmholtz in §3.2 and fig.4.1). However,
it got little attention for many decades, presumably due to the obvious lack of experimental
results. Only the advent of numerical methods renewed interest in this problem. Some recent
numerical results are listed below:

e Leonard & Chua [123] studied the configuration of fig.10.37 by means of a soft-vorton
method (see Appendix B), which included a ”core-spreading diffusion equation” for the
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Figure 10.36: Result of vorton division (with updating) on the behaviour of two obliquely interacting vorton
rings. Added vortons are indicated by open dots at the vorton locations. ”Mirrored” vortons are not shown.
The arrow indicates time development.

core size parameter and a viscous diffusion scheme. The cores of their rings consisted of
several vortex lines comparable to the vorton ring shown in fig.10.28. Their simulation
showed the formation of a ”anti-parallel double tube structure”. However, this structure
showed no reconnection or even annihilation of vorticity.

e Aref & Zawadzki [15] applied a vortex-in-cell method (already mentioned in §10.4.2).
They also observed the anti-parallel alignment of parts of the rings and claimed that
these aligned parts would annihilate eahc other due to diffusion, leaving a single ring-like
structure. However, this is not shown by their pictures; see fig.10.38.

e Winckelmans [283] applied a smoothed-vortex-filament method (see §7.3.1) and found the
same results as Leonard & Chua. He also applied a soft-vorton method (K-equation),
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Figure 10.37: Initial configuration of two knotted vortex rings.

with and without inclusion of a vorton division scheme and his ”procedure of relaxation of
vorticity divergence” (see note2 of Chapter 9). Alignment occurred but the subsequent
interaction of the aligned tubes remained unclear and exhibited considerable violation of
conservation of helicity. A simulation in which viscous diffusion had been included (see
§10.4.2) showed no differences, due to the small convective timescale.

An even more elementary configuration to study anti-parallel alignment is the interaction
of two initially orthogonally offset vortex tubes, as shown in fig.f of the Interlude. From direct
numerical simulations, Zabusky et al. [288] suggested that the influence of the ”double-layer”
formed by the tubes is only local and that the topology of vortex lines contributes to limiting
vortex stretching. They found that after alignment, reconnection occurred *5. Pedrizzetti [178]
simulated the interaction of two initially orthogonal vortex filaments by means of the vorton
method (N-equation) and found reconnection.

157abusky and co-workers (e.g. in [288]) have also suggested that their numerical results may explain turbu-
lence phenomena. They found a highly distorted vortex ring as debris after the process for which they suggested
a similarity to the Falco ring, a structure which has been claimed to play a certain role in turbulent boundary
layer flows (to be discussed in §10.6.1). The intense energy-dissipation clusters which have been found in homo-
geneous turbulence might be related to the regions where reconnection occurred. In these regions they observed
"bursting”, i.e. a sudden increase of local vorticity and dissipation.
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Figure 10.38: Numerical results of Aref & Zawadzki for the configuration of two knotted vortex rings as shown
in fig.10.37. Isosurfaces of vorticity magnitude. Time development from top to bottom, two views are shown.
From [15]. '

We have to conclude that the simulations mentioned above have not led to a conclusive
picture of the development of two linked rings. If reconnection really takes place, we could
wonder whether it is of the same kind as that of the obliquely interacting vortex rings discussed
in §10.4. Kida & Takaoka [102] and Boratav et al. [27] have suggested that this is not the
case, though an exact description of the difference appears to be still lacking.

10.5.3 Numerical Results

For our simulation of the configuration shown in fig.10.37, we have used two standard vorton
rings (IV = 36 for each ring) and applied all three vorton equations. For the N+K-equation we
observed anti-parallel alignment as in the simulation of Aref & Zawadzki (see fig.10.38). For the
other two cases, irregular behaviour started almost immediately after t = 0 and alignment did
not occur. However, in case of the N+K-equation, the simulation also ended in a severe increase
of the strength and chaotic behaviour of some vortons. No reconnection-like phenomena could
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flow direction

Figure 10.42: A horseshoe vortex.

First of all, we have to remark that the existence, let alone the role, of HVs is still a point
of discussion. Though already proposed in the 1950s, experimental evidence of the existence of
the HV only began with the flow visualizations of Head & Bandyopadhyay [74] in 1981. They
showed that vertical cross-sections of elongated vortex structures made angles of 45° with the
wall.

Despite ongoing controversies, the existence of HVs in TBL is nowadays generally accepted
(see [68] for references; see also Smith & Lu in [107]). However, there is lack of knowledge
on their formation, growth, destruction, regeneration, and contribution to gross statistics. We
refer to e.g. [195] for further information. A survey of conceptual HV models can be found in
Robinson’s paper in [73].

Few experimens on controlled HVs have been published. Acarlar & Smith [2] studied the
behaviour of HVs shed from a hemisphere in a laminar boundary layer. They concluded that
between the legs of a HV low-momentum fluid is lifted up. Due to the interaction with higher-
speed outer flow, secondary vortices are generated in proximity of the primary HV. These
secondary vortices strongly interact with the original HV, generating chaotic structures which
suddenly eject away from the wall. ” These events appear very similar to the break-up stage of
the burst sequence observed in turbulent boundary layers” (compare fig.10.41).

Smith et al. in (73] found that a viscous-inviscid interaction of a HV with the flow near the
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be observed.

In order to get a better view of the alignment, we show in fig.10.39 the isosurface of | @ |,
given by (9.18). It shows the touching of the vortex tubes, though at this level of | @ | a hole
seems to exist in the middle of the alignment area. We also observe nonuniform thickening
and thinning of the tubes. Unfortunately, shortly after this time instance the simulation had
to be stopped due to exponential growth of vorton strengths.

Figure 10.39: Interaction of two knotted standard vorton rings (N = 36): isosurface of | % |. Time ¢ = 0.0031 s.

In fig.10.40 we have plotted the development of several diagnostics for the case of the N+K-
equations. We observe good conservation of all quantities up to time ¢ ~ 0.0032, the moment
the behaviour of the vortons starts to become chaotic. In this figure, also the influence of
vorton division with updating (see §9.4) is shown. Though application of division appears to
be able to extend the period of conservation of motion-invariants, it does not prevent severe
violation of this conservation. This indicates that in case of division the vorton behaviour
also gets irregular, though this is not immediately clear from the vorton visualizations (not
presented here). Most probably the cause can be attributed to the development illustrated in
fig.10.36.
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Figure 10.40: Interaction of two knotted standard vorton rings (N = 36): development of diagnostics. N+K-
equation. (a) z-component of linear momentum P according to (9.5), (b) interaction-energy E; according
to (9.10), (c) interaction-helicity H; according to (9.16); (all quantities are scaled with their initial values).
Simulations performed (+) without and (x) with vorton division with updating. ¢ is time.
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10.6 Single Vorton Ring in a Shear Flow above a Flat Plate

In this last section we discuss the simulation of the behaviour of a single vortex ring in the
neighbourhood of a flat plate in a shear flow. Since the 1970s, mainly due to publications
by Falco (see below), this configuration is regarded as a possibly useful model of a coherent
structure (CS) in a turbulent boundary layer (TBL) flow. It may provide some insight into
this still poorly understood turbulent phenomenon.

In §10.6.1 we will present two of the several vortical structures which have been proposed
as essential elements of TBL flows, i.e. the horseshoe vortex and the vortex ring. Besides,
attention is given to the possible relation between both structures. In §10.6.2 the results of our
vorton simulation will be discussed. This simulation has been especially set up to investigate
the influence of the so-called outer layer parameters of the shear flow on the development of
this CS model.

10.6.1 Structures in the Turbulent Boundary Layer
In §B of the Interlude, we have seen that vortical structures, generally referred to as coherent
structures, are considered to be essential elements of turbulent flows. In this thesis we will
restrict attention to one of the least understood turbulent flows with regard to its ”structures”,
i.e. the TBL flow 6.

If we limit our attention to coherent (vortical) structures in turbulent boundary layers, we
already encounter a huge amount of questions. From Robinson’s discussion of the objectives
of turbulence-structure research [195], the following problems can be derived:

what is the 3-D spatial character of each of the known structural features of the TBL?

e how are the various structural features related to each other in space and in time?
e what range of vortical structure topologies exists in the flow?
e what is the range of strengths (e.g. circulation) of vortex structures?

e to what extent do vortical structures play a role in determining the average production
and dissipation of turbulent kinetic energy and Reynolds shear stress }7?

e how do vortical structures form, evolve, regenerate, and die?
e what is role of the outer layer in determining details of near-wall turbulence production?

e what is the repeating sequence of events that is responsible for maintenance of turbulence,
including the role of all known structures?

These questions show that research on CS has set itself a difficult task. Several models
have been proposed to describe the mechanisms taking place in a TBL flow. An example is the
picture which has been presented by Hinze [89]; see fig.10.41. This figure especially shows the
"cyclic” process related to the phenomenon of "bursting”. Bursting (see e.g. [62]) is generally
used to refer to outward eruptions of near-wall fluid, resulting in a strong temporary increase
of transport of momentum (or: high values of Reynolds shear stress). However, definition and
usage of the term "bursting” has been confusing (see e.g. {196, Ch.12}). Numerical simulations
have shown that the production of turbulence by ”bursts” in the near-wall region is much more

16Gee e.g. [28], [195], and Robinson in [73] for a review of recent developments in this area.
17The Reynolds shear stress will be defined in §10.6.2.
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intermittent in space than in time. This indicates that regions of bursting move along with
the main (shear) flow.

Fig.10.41 shows how a spanwise vortex line, initially undisturbed, is deformed into a so-
called horseshoe vortex. Due to an instability in the velocity profile of the flow, a burst takes
place 18,

A much discussed aspect of bursting has been the parameters determining its frequency of
occurrence. Does it scale with the inner or outer layer parameters? The controversy is still
going on in literature (see e.g. Hussain [92] and Lumley et al. in [32]). We will return to this
issue in §10.6.2.

Below we will treat two vortex structures which have been introduced in literature and
which have been proposed as essential elements of the TBL: the horseshoe vortex, which we
have already introduced, and the vortex ring, which may be related to the former.

Horseshoe Vortices
The horseshoe vortex (HV) has a shape as shown in fig.10.42 1°.

|
Figure 10.41: A model of the behaviour of vortical structures in a turbulent boundary layer. From [89].

18We refer to Hinze’s description in [89] for fuller details.
19The term hairpin vortex has been introduced for a HV of larger slenderness; here, we will regard both as
having essentially the same structure.
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wall caused an eruption of surface fluid which resulted in secondary vortices, probably similar
to those observed by Acarlar & Smith. This suggests that the no-slip condition at the wall is
of essential importance in this process.

Rogers & Moin {198] found evidence of the existence of HVs in homogeneous turbulent
flows. Their results suggested that these structures do not necessarily require a wall for their
formation, and that they may also develop in the presence of only a mean shear flow. However,
they remarked, the shear must not be too large in order to allow the formation of HV. "The
similarity in vortex structure between the homogeneous shear flow and inhomogeneous channel
flow gives strong justification for the study of homogeneous ‘building-block’ flows as a stepping
stone to understanding more complex flows”.

Vortez Rings

The first to attribute importance to vortex rings in the TBL has been Falco (see [39] for
references). He found that the outline of the TBL has the shape of large-scale bulges. At
the upstream side of the bulges he visually identified coherent vortices, to which he coupled
the name of "typical eddy”. These Eddies, he concluded, contribute most to the production
of Reynolds shear stress in the outer region and their evolution can explain the existence of
streamwise vortices and horseshoe-like vortices in the TBL.

The typical eddies have been identified by Falco as a kind of vortex rings. To study their
influence in boundary layer flows, Chu & Falco [39] did experiments on the interaction of vortex
rings moving towards and away from a so-called Stokes’ layer generated by a moving wall. This
interaction led to many structural features of TBL like low-speed streaks, pockets, and HVs.
The authors concluded that their results show the essential importance of vortex rings in the
TBL.

With regard to the generation of typical eddies, Falco has proposed a ” pinch-off” mechanism
of vortex rings from Q-shaped HV-like vortex structures; see fig.10.43. This formation process

Figure 10.43: Pinch-off of a vortex ring from a Q2-shaped horseshoe vortex. Big arrow indicates time development.
From ([107].
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was investigated by Moin et al. [163] who performed a numerical simulation of parabolically-
shaped vortex filaments in a shear flow, modelling a HV. They applied a vortex-filament
method, and hence didn’t take into account vortex deformation. They indeed found pinch-off
of vortex rings for parabolic shear flow profiles while linear shear profiles appeared to impede
this phenomenon 2°.

Evidence for the existence of vortex rings in the TBL is still lacking. For instance, Robinson
[196] did not observe vortex rings or anything likewise during his diagnosis of numerical data
provided by a DNS-study of a TBL. Elementary experimental studies on vortex rings near
walls are still scarce. Experiments of rings in shear flows seem to be limited to that by Chu &
Falco mentioned above. Walker et al. [274] studied the impact of a vortex ring in quiescent
flow on a no-slip wall. He found the generation of secondary vorticity at the wall 21 which was
ejected after some time to form a secondary vortex ring. This caused wavelike instabilities on
the primary vortex ring and the flow field degenerated into smaller and smaller 3-D motions.
In the end, the authors found that "the end result is an apparently chaotic flow which appears
to be turbulent” and remarked a similarity with bursting in the TBL. However, they also
suggested that vortex configurations in the TBL are more complicated than simple vortex
rings and that the formation of secondary vorticity may be essential to understand TBL flows.

As remarked above, Falco has suggested that typical eddies may be related to horseshoe-
like vortices in the TBL. However, it seems that the issue of a possible relation between typical
eddies and HVs has gained only little attention from others. According to Adrian in [107]
a HV can be decomposed into a vortex ring plus a mean shear plus two streamwise vortices
as illustrated in fig.10.43 . The vortex rings and/or HV dominate in the outer layer and
streamwise vortices dominate the wall layer. The same picture has been sketched by
Klebanoff et al. [108], who did very extensive experiments on the transition to turbulence in
a boundary layer, induced by roughness elements. They regarded the TBL as consisting of
two regions: in the inner region the turbulence is generated by a complex interaction of HVs
and other vortical structures induced by the obstacles; in the outer region the HV generate
turbulent vortex rings. The latter may be responsable for the bulges the authors observed
at the edge of the boundary. However, they found no convincing evidence for the existence
of Q-shaped HVs as suggested by Falco, but they didn’t exclude them either. The authors
concluded that the eddies in the outer region do not (directly) contribute to the transition
to turbulence in the TBL, whereas the HVs are intrinsic to this process and to developing
turbulence.

10.6.2 Vorton Simulations

Though we have to conclude that the existence and the role of vortex rings in the TBL is
still uncertain, we try to make a contribution to the understanding of this role by considering
the elementary configuration sketched in fig.10.44: a single standard vorton ring in a shear
flow above an infinitely extended flat plate. We realize that we will not be able to simulate
phenomena related to the no-slip condition at the wall (e.g. generation of secondary vorticity).
Therefore, it is better to investigate a situation like the one presented here in which these
phenomena are supposed to be absent or of minor importance.

20Morrison et al. [164], however, concluded that the pinching-off as found in simulations by Moin et al. [163]
can only be a relatively rare phenomenon.
21 A similar study by Lim [127] showed the same resuls.
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free-slip wall

Figure 10.44: Initial configuration for the single vorton ring in a shear flow above a flat plate.

The ring is initially at an angle of 45° with the x — 2-plane and its center is located at
y = H. Its velocity is directed away from the plate. The flat plate is simulated by means of
a mirrored vortex ring (compare fig.7.1). In our simulations we will take the z — 2-plane as
(infinitely extended) boundary plane. The parameters of the mirrored vorton o’ of a vorton «

are given by:
(ra’)m = (Tcx)x ) (ra’)y = *(Ta)y ) (ra’)z = (Ta)z (10.6)

and

('7&’):: = —('70)2 s (’Ya’)y = ('701)3/ ’ (701’)2 = _(’Ya)z (107)

where the index z, y, and z indicate the components of the vectors. These relations provide a
free-slip condition, since the tangential velocity at the plate will generally not be zero.

The shear flow is represented by a one-dimensional velocity profile v, = (u(y),0,0). The
results by Moin et al. [163] (see §10.6.1) suggest that a linear shear flow is not consistent with
the formation of vortex rings in shear flows. Therefore, we have chosen the following profile 22:

3
u(y) = U tanh Ty (10.8)
In this profile the quantity d can be interpreted as the height of the boundary layer and U as
the outer layer velocity since, due to the factor 3, the velocity u(d) = 0.995U. ¥kor

§ we take the value 1.

22The profile does not need to have an inflection point, as has been shown by Kim in [53]. The profile used
here has already been proposed by Novikov [170].
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The simplest manner to include a shear flow into the vorton equations is to take into
account only the advection of the vortons by the local shear velocity v,. However, we have to
realize that the shear flow will also cause vortex deformation of the vortex ring and that the
shear flow profile in its turn will be changed due to the velocity field induced by the vortex
ring.

For a consideration of the importance of inclusion of these two phenomena in a simulation,
we refer to an estimation by Aref & Flinchem [12] of the effect of the shear flow on a vortex
filament. Their theoretical consideration led to the conclusion that only taking into account
advection is a valid approximation to order a/A where a is a measure for the core of the
filament and A is a measure of the shear profile height (comparable to our parameter 4 in
(10.8)). However, they remark that the estimation becomes invalid when transverse oscillations
of the filament introduce other length scales. This means that the approximation may become
invalid in time.

To fulfil the condition given by Aref & Flinchem mentioned above, we have to require:

R,
— <1 (10.9)

where R, the core size of the vortex ring. As shown in §10.1.1, for a vorton ring R, may
be taken proportional to the distance between the vortons in the ring. Consequently, the
number of vortons has to be as large as possible in order to be sure that taking into account
only advection is sufficient for reliable simulations. Since we use a relatively small numbers of
vortons in our simulation, we have added the effect of vortex deformation due to the shear flow
(as has been proposed by Novikov [169]). This means that, in the N+K-equation, (¥,), has
been extended with (%,),0u/8y|y=(r.), and (¥,), has been extended with (¥,).0u/dy|,=r.),-
The change of the shear flow profile due to the vortex ring will not be included, i.e. the function
u(y) remains unaltered.

Fig.10.45 shows the development of the configuration of fig.10.44 for a standard vorton ring
in case of the N+K-equation. We observe four stages:

1. the ring moves away from the plate, at the same time deforming into a non-circular
(somewhat elliptical) shape and rotating along its horizontal axis;

2. due to its rotation the ring moves into the direction of the plate;

3. having approached the plate closely, part of the deformed ring is pinched-off as a smaller
ring-like vortex structure, which starts to move away from the plate;

4. the part which has remained near the plate starts behaving chaotically and the simulation
has to be stopped.

Our purpose is to investigate the possible existence of burst-like phenomena in this sim-
ulation and the possible influence of the outer parameter U. To this end, we consider as a

Figure 10.45: (see inserted sheets) Development of the configuration of fig.10.44 for a standard vorton ring
(N = 18). Two views of the same simulation are given: (a) view along the z-axis, (b) view along the z-axis. ¢
is time.
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diagnostic the quantity given by uv, where u and v are the z- and y-component of the velocity
field v, respectively. This velocity field consists of the vorton field given by (8.10) and the shear
flow field v, mentioned above. The quantity uv will be called the Reynolds shear stress 2* and
it indicates transport of momentum. Since bursts are supposed to transport momentum in the
positive y-direction, we only regard the components given by u > 0,v > 0 and u < 0,v > 0.
They have been calculated at the points of a grid of height ¢ and extending sufficiently far into
the z- and z-direction. Of all grid points, the maximum value of the Reynolds shear stress is
calculated 2. In fig.10.46 these values are plotted against time for the case U = 100.
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Figure 10.46: Configuration of fig.10.44 for a standard vorton ring (N = 18): maximum values of Reynolds
shear stress wv (v >0, (—) u > 0 or (- - -) u < 0) vs. time ¢. U = 100 {see (10.8)).

We observe an intense increase of both components of the Reynolds shear stress occurs
at about the same moment, which will be indicated by t'. In table 10.1 we have plotted the
dependence of time t' up to bursting on the characteristic velocity U of the shear flow (see
(10.8)). We conclude that the outer flow parameter U constitutes a characteristic of this model
of the TBL. However, it may be clear that it would be rather premature to conclude that the
burst frequency in a TBL is determined by the outer flow.

231n turbulence, the Reynolds shear stress is usually defined as the correlation between velocity fluctuations,

ie ool
ie. u'v.
24The contributions to the Reynolds shear stress from the vortons near the wall which start to behave irreg-

ularly at the end of the simulation shown in fig.10.45 have not been included.
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U t’
90 | 0.094
95 | 0.090
100 | 0.086
105 | 0.081
110 | 0.071
115 | 0.069

Table 10.1: Configuration of fig.10.44 for a standard vorton ring (N = 18): shear flow velocity U vs. time to
burst ' (see fig.10.46) .



Chapter 11

Discussion of Vorton Results

In this chapter, the results obtained from the numerical simulations presented in Chapter 10
will be discussed against the background of the requirements we have posed in §7.2 on vortex
methods. In §11.2 we separately discuss the simulation of §10.6 (a single vorton ring in a
shear flow over a flat plate) and its relevance for research on coherent structures (CS). Finally,
in §11.3, conclusions are summarized regarding the applicability of the vorton method which
has been used in this thesis. Besides, suggestions are made for possible improvements of the
method.

While reading the discussion presented below, the reader has to bear in mind that we have
concentrated on two main questions:

e Is it possible to obtain an adequate ! representation of vortex structures by means of

vortons (in casu vorton rings representing vortex rings)?

e Can the deformation and interaction of vorton rings be regarded as an adequate repre-
sentation of physical vortex ring phenomena 2?

For convenience, we will refer to our vorton simulations by means of the numbers of the
sections in which they have been treated:

e §10.1 = single vorton ring

e §10.2 = single pseudo-elliptical vorton ring

§10.3 = two head-on colliding vorton rings

§10.4 = two obliquely interacting vorton rings

§10.5 = two knotted vorton rings

11.1 Satisfaction of Vortex Method Requirements

11.1.1 Divergence-free Vorticity Field
As discussed in §9.2, this requirement on vortex methods is fulfilled due to our derivation of
the vorton vorticity field. As a consequence we have been able to remove the inconsistency
between the N- and K-equation, as described in §9.3.

We have compared simulations for which the N-equation and the K-equation have been
applied with those for which the N+K-equation has been applied. From the simulations in
§10.2 (fig.10.8), §10.4 (fig.10.32), and §10.5, we conclude that application of the K-equations

1By "adequate” we mean a representation which at least shows qualitative characteristics similar to those
which have been found by experimental investigation.
2These phenomena have been mentioned in §9.1.

149
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gives unreliable results ®. From the simulations in §10.4 (fig.10.32 and fig.10.33) and the
results mentioned in §10.5, we conclude that the N+K-equation is to be preferred above the
N-equation, i.e. the equation originally proposed by Novikov [168].

11.1.2 Correct Modelling of Continuous Distributions of Vorticity

Regarding the representation of a vortex ring by means of a vorton ring, we observe that a core
can be attributed to the vorton ring, in which the distribution of vorticity agrees qualitatively
with the (scarce) experimental results on this issue (see fig.10.2). At first glance, this result
may seem surprising, since vortons are generally regarded as 3-D point-vortices with zero core
size 4,

The core prevents the vortons from approaching each other to arbitrarily close distances
(see §10.3, fig.10.16). This result weakens one of the arguments against the vorton method,
i.e. its failure when vortons approach to small distances.

The core size, however, depends on the distance between the vortons in a ring (see fig.10.3).
This means that the number of vortons is restricted by the quantitative characteristics (i.e.
its velocity, radius, circulation) of the ring that we want to simulate. In §10.4, we have seen
that this may lead to a rather small number of vortons in a ring and to a clash with the
requirements of numerical accuracy which we would like to impose. However, our simulations
have shown that even for such small numbers (N < 18), agreement with experimental results
remains acceptable (see fig.10.35). The fact that N has to be a specific integer, however, limits
the possibilities of imposing initial conditions. ‘

The fact that the core size of a vorton ring is proportional to the ring’s radius, means that
stretching of a vorton ring, or more generally a vorton tube, is accompanied by an increase
of the core size. Physically, this seems incorrect. This result has been recognized before by
others. A vorton division procedure has been proposed to avoid this phenomenon. However,
our implementation of vorton division has brought to light some serious drawbacks of this
procedure (see the discussion below in §11.1.5).

The discrete representation of continuous vortex configurations, as done in the vorton
method, may be criticized. From fig.10.1(b) and fig.10.2 in §10.1 we have found that the
distribution of vorticity for a vorton ring in azimuthal direction (i.e. along the torus) is not
homogeneous. However, no serious negative consequences seem to be related to this as long as
cores do not "touch” °.

Another important drawback of the discrete representation appears to be the possibility of
vortons losing their alignment once vorton tubes approach closely. In fig.10.32 we have seen
one example of this behaviour: closely approaching vortons tend to form ”dipoles” and leave
the main structure. In this regard, vortex-filament methods have to be preferred.

3We have to add that this result may depend on the time steps used. However, our time step adaption
scheme appeared perfectly reliable in all cases not involving the K-equation.

4Compare, however, a remark by Hou & Lowengrub [90]. They have stated that the ”singular Biot-Savart
kernel in the [3-D vortex-point method] has a natural cut-off”, i.e. if vortex elements have initially been separated
a distance h, they will never come closer than a distance proportional to A.

5The touching of cores can be defined as the situation in which the distance between two vortons becomes
equal to the sum of their core radiuses, defined according to fig.10.2.
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11.1.3 Correct Representation of Deformation and Interaction

Vortex Deformation

All simulations performed with application of the N+K-equation have shown correct represen-
tation of deformation (rotation and stretching) of vorticity as long as the vorton rings do not
approach closer than a certain distance ®. Especially the simulations presented in §10.5 have
shown that for the N- and K-equation correct deformation is not assured.

Core Deformation
We have also observed that the core deforms, which for the elementary case of §10.3 is in
accordance with our expectations, at least qualitatively (see fig.10.17 and fig.10.18).
However, from fig.10.17 and fig.10.18 in §10.3 we have found that the core deformation
in a vorton ring also depends on the azimuthal position in the vorton ring. For locations
between vortons, a rebounding movement of the core has been observed. This behaviour can
be regarded as an azimuthal disturbance of the ring, though our numerical simulations did
not show any signs of instability 7. We regard this behaviour as an undesired artefact of the
vorton representation. No clear indications exist that the vorton representation really fails at
the moment this behaviour sets in.

Stabaility

Regarding the stability of vorton rings (see §10.1.2), we have found rather good agreement with
numerical results by Knio & Ghoniem [108], but poor agreement with experimental results; see
fig.10.5. An explanation for this weak performance of the vorton method may be the lack of
resolution. For the values of the non-dimensional velocity V for which experimental data are
available, the number of vortons in the ring is only little more than twice the unstable wave
mode number.

Besides, our representation of the vortex ring by just a single "layer” of vortons may
be insufficient to adequately represent the internal core dynamics. Knio & Ghoniem have
shown that a multi-layer representation of the vortex ring (similar to that shown in fig.10.28)
leads to a better agreement with experimental results. An objection against a multi-layered
torus is related to the indefiniteness of the positions of the vortons and their initial strengths.
Winckelmans [283] has provided pictures which show the presence of unsteady behaviour within
the core, which may be due to leap-frogging of the circular vortex filaments which make up the
core of the torus. Though Winckelmans’s multi-layered ring seems to be stable, the advantages
of his representation (see fig.10.28) above a single-layer representation are not clear.

Our simulations of initially distorted head-on colliding vorton rings (see fig.10.23) suggest
that a likely explanation for the small-ring formation as found by Lim (see §10.3.2) can be
ascribed to the growth of an unstable wave mode on both rings and an ensuing reconnection
process. However, full quantitative comparison with Lim’s experiment have proved to be
impossible (see notez ). An interesting simulation for this configuration would be one of
randomly disturbed rings.

80ne would be tempted to restate this as: as long as cores do not touch. However, evidence for this statement
is lacking, since we have not found a indisputable definition of the core size of a vorton ring; see fig.10.3.

"For large numbers of vortons (i.e. large than those used in the simulations presented in Chapter 10), we
encountered an apparent instability of the vorton rings. This has been the case in our attempt to simulate Lim's
configuration of two head-on colliding vortex rings as described in §10.3.2.
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Reconnection

The simulation of §10.4, which has been performed with the aim of investigating the reconnec-
tion of two vortex rings as in the experiment by Izutsu & Oshima (IO), may have bewildered
the reader as reconnection is generally supposed to be possible only by viscous annihilation of
vorticity (see §C of the Interlude).

Nevertheless, the simulation presented in fig.10.32(c)(ii) shows rather good qualitative
agreement with the IO experiment. The development in time does not agree exactly, which
may be ascribed to differences in the initial configuration. This is shown, for instance, by the
difference in development of the angle of inclination # of the rings.

However, our simulation results do not show convincing evidence for the presence of threads
(see e.g. fig.10.29) which have been observed in the IO experiment and also in the simulations
by Winckelmans [283] and by Kida et al. [103]. Fig.10.30 suggests that the formation of
threads is related to the ”tails” of vorticity which are formed downstream of the vortex rings.
These tails may be due to the initial Gaussian distribution of vorticity in the rings:
for equilibrated initial conditions, Gaussian distributions seem not appropriate and the tails
may be due to a reorientation of the cores towards an equilibrium shape. This would imply
that they are an artefact of the computational modelling 8,

If a dependency of the reconnection process on the Reynolds number really exists, as Ander-
son & Greengard have suggested (see §10.4.2), then one might wonder whether the interaction
of two vortex rings attains a Re-independent behaviour for large Re and whether our simulation
is a representation of this limit case. We suggest that the behaviour shown in fig.10.35 only
mimics physical vortex reconnection and is just a consequence of the computational model. A
clue to this last statement can be found in the results presented in fig.10.32 and mentioned at
the end of §10.4.2. The interaction of two vortex rings at the moment they ”touch” depends on
the arrangement of the vortons in the rings relative to the point of closest approach 9. A slight
disturbance in the symmetry of the configuration may seriously disturb the ”reconnection”.
Another clue can be found in the simulations discussed in §10.2 (fig.10.8), which have revealed
that vorton reconnection does not always occur when experiments suggest it should (e.g. in
case of axis ratio L/(2R,) = 7).

We see that three important questions arise:

1. Is the reconnection observed in our numerical simulations an adequate representation of
the physical process?

2. How can reconnection occur in an inviscid simulation?

3. Why does reconnection occur in case of two obliquely interacting vorton rings and not
in case of a pseudo-elliptical vorton ring?

Our answer to the first question has already become clear from the remarks above. How-
ever, it can only be answered conscientiously if an extensive comparison is made between the
numerical and the experimental results. Unfortunately, the latter are still scarce. Besides, the

8See the discussion on models in the Epilogue.

9Regarding the position of the vortons, we could wonder whether the ”dipole” seen in figs.10.32(i) is a
numerical artefact only. The ”dipole” does not seem to influence the reconnection of the rings. However, we
have seen that it does influence the subsequent behaviour of the reconnected vortex ring, i.e. the presence or
absence of splitting into two rings.
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vorton method may not be able to allow complete simulation on all relevant scales and reveal
the exact mechanisms of this phenomenon *°.

Regarding the second question, we first of all have to remark that no real evidence exists
for the impossibility of inviscid reconnection '*. The rejection of inviscid reconnection by some
seems to be based 2 on Helmholtz’s First Theorem and its interpretation that vortex lines
cannot end inside any volume. As remarked in note 3 of Chapter 2, this result is only true for
vortex tubes.

Pedrizetti ([177] and [178]) has suggested that the vorton method implicitly introduces a
viscous effect during rapid stretching of the vortons. The ”viscosity” in this case is proportional
to the rate of stretching and the core size. As the vortons involved in reconnection are strongly
stretched, the ”viscosity” tends to large values and reconnection can happen. According to
Pedrizzetti this is "the mechanics which permits to jump over the moment of local intense
stretching as vortex reconnection, which, otherwise, could hardly be followed numerically”
[177].

In our opinion, this explanation is dubious. We think that the reconnection of two inclined
rings can be explained from the ”alignment” behaviour of vortons. To illustrate our inter-
pretation of the apparent reconnection of vorton rings, regard the configuration illustrated in
fig.11.1. The two pairs of vortons can be imagined to be each part of a vorton ring as in the
configuration of §10.4 (the rings are suggested by means of the dotted lines). When the "rings”
approach each other and get deformed, the angle between strength vectors of vortons 1 and
2 (indicated by the arrows) changes and their alignment is weakened. At the same time the
angle between vortons 1 and 3 changes and their alignment improves. At a certain moment
vorton 1 becomes stably aligned with vorton 3 and the "reconnection” has taken place '3.

The above consideration may also settle the question 3 mentioned above. In the case of the
pseudo-elliptical vorton ring, the angle between the vortons 1 and 2 does not reach a critical
value at which realignment of vorton 1 with vorton 3 is possible ™.

i: annihilation of vorticity due to viscosity is really an important ingredient of the recon-
nection process, we must seriously doubt the applicability of the vorton method to simulate
vortex reconnection. A remedy in this case may be the introduction of a viscous term to the
vorton equations as has been proposed by Winckelmans [283)] (see §10.4.2).

Several authors (e.g. Lim [129]) have pointed'at the appearance and importance of helical
vortex lines during vortex reconnection. Since vortex lines have not been visualized in our
simulations, we cannot tell whether helical vortex lines have been present. Possibly, this
twisting of vortex lines can only be simulated correctly if the vortex ring is represented by the
multi-layered torus used by Knio & Ghoniem and by Winckelmans (see above).

101y future numerical investigations of vortex reconnection, one should examine the behaviour of other diag-
nostics: besides the isosurfaces of vorticity, those of the rate of strain and enstrophy production may be used
for comparison with experimental data. The visualization of vortex lines may also be informative on the exact
mechanism of reconnection. However, it can also be misleading, as Robinson has remarked [196].

10ne surprising result in this regard is the suggestion by Melander & Hussain in [160] that reconnection
occurs on a convective timescale.

12g¢e e.g. the quotation from [103] given in §10.4.2.

130pe could call this a bifurcation, due to the resemblance with this mathematical concept.

14 A5 remarked in §10.2.2, another possible explanation may be related to the initial restriction (see fig.10.12),
though even in that case no reconnection has been found. Another explanation may be related to the fact that
in the vorton representation inertia is not included. The inertia of the approaching parts of the ring after the
switch of the axes may be responsible for the close approach which subsequently leads to reconnection.
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Figure 11.1: Elementary vorton configuration to demonstrate the possibility of "reconnection” (see text). The
dotted lines represent parts of vorton rings. Big arrows indicate time development.
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Alignment

The simulations in §10.5 of two knotted rings have made clear that the vorton rings correctly
represent the tendency of alignment. Shortly after the completion of the alignment, however,
the simulation breaks down. Since experimental data on this configuration are lacking, it
is impgssible to make any further remarks or to draw definite conclusions on the physical
correctness of the alignment and on the behaviour following alignment. For instance, we
would like to know whether reconnection may be expected in this case. We have implemented
several initial positions of the vortons in the rings, but in none of these cases reconnection
appeared to be (even dimly) present. Possibly, in real viscous flows the aligned anti-parallel
vortex tubes will annihilate each other. In case this is an essential part of this interaction, we
have to conclude that the application of the vorton method as presented in this thesis is not
warranted.

11.1.4 Conservation of Motion-invariants

In §9.3.1 and Appendix A it is made clear that our expressions used as diagnostics for the
simulations can be criticized. This has been a serious obstacle in drawing any conclusions
with regard to the question: do vorton simulations show conservation of the relevant motion-
invariants?

The simulations in §10.2 (fig.10.9 and fig.10.10) show that the (nonzero) motion-invariants
are rather well conserved as long as no severe vortex (core) deformation takes place. However,
fig.10.40 in §10.5 suggests that conservation is seriously violated the moment the cores ”touch”
and severe stretching and deformation takes place. However, fig.10.33 in §10.4 proofs that
reconnection does not necessarily mean a strong violation of conservation.

The time-development of interaction-energy E; and self-energy E, have opposite trends
(see fig.10.22 and fig.10.33), which suggests that E; + aF, (where o is some constant) may be
a correct representation of the total kinetic energy.

The simulation in §10.5 (fig.10.40(c)) shows that interaction-helicity H; is well conserved
up to the moment the aligned parts of the vorton rings approach each other closely. The
subsequent violation of conservation of H; may be attributed to the failure of the vorton
method to represent annihilation of vorticity, as discussed above.

11.1.5 No Negative Effects of Remeshing (Vorton Division)

As remarked in §11.1.2, vorton division may be essential, since it counteracts the growth of
cores of vorton rings during stretching. Besides, addition of vortons increases the resolution
in areas where this seems essential for correct simulation. However, as explained in §10.3.3, it
may engender undesired effects. Besides, the insertion of vortons leads to an abrupt change in
the core size and structure. This may be of serious consequence to the stability of the vortex
structure. Therefore, inclusion of vorton division should be implemented very carefully '®. At
least, we can conclude from fig.10.24 in §10.3 that division without updating (see §9.4) has to
be rejected. Division with updating improves conservation of interaction-energy.

Some additional remarks have to be made. Division will become troublesome in case of
reconnection, due to the possibility of a sudden exchange of neighbours between the vortons.
The value of factor \ (see §9.4) has been derived under the assumption of a circular core
hence for strong core deformation, this value may have to be adapted. Furthermore, updating

15E g., in the interpolation of the locations of the added vortons (see fig.9.3) use could be made of spline
interpolation. For a radially growing vorton ring, as in §10.3, this will assure a conservation of its circularity.
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with regard to circulation I', as we have done (see §9.4), does not imply conservation of other
invariants.

The inability of our vorton method to represent annihilation (see above) also causes the
final breakdown of the situation illustrated by fig.10.36, i.e. one of the possible effects of vorton
division. If annihilation would take place in this situation, the simulations to which we have
applied vorton division might show correct development of the simulations of §10.4 and §10.5,
instead of breakdown.

11.1.6 Correct Boundary Conditions

As explained in §9.1, we have chosen for vorton configurations for which it is not necessary to
implement explicitly boundary conditions. Only in case of the simulation presented in §10.6
(simulation of a free-slip flat boundary by means of mirrorimaging), this requirement may be
important (see §11.2 below for further discussion).

11.1.7 Convergence .

In literature, the convergence requirement has been formulated for vortex-point methods by
the question !¢: do vortex configurations represented by vortex elements tend to represent
continuous vortex structures better and better for an increasing number of vortex elements?

With regard to the vorton method, this question seems irrelevant to us. In §10.1.1 we have
shown that increasing the number of vortons implies changing the characteristics of a vorton
ring and renders an investigation into convergence, as defined above, impossible 7.

The formulation of the convergence requirement as used in literature and stated above
can be replaced by an alternative one. Actually, for a vortex method like the vorton method,
we would like to have a proof of a property which has been given for the 2-D point-vortex
method. This property is related to the following question: do 2-D vortex points show the
same (qualitative) dynamics as patches of vorticity '® whose behaviour is obtained by directly
solving the Euler (Helmholtz) equation? This has been shown both analytically by Marchioro
& Pulvirenti [141] and numerically by Benzi et al. [23]. For the vorton method, such a proof
does not seem feasible in the same way since 3-D patches cannot exist on their own. Instead,

16Note that we give only an informally expressed version of this question here. An exact mathematical
formulation can be found in literature, e.g. {90].

"Despite this situation with regard to the vorton method, several authors have suggested that their proofs
of convergence apply to this point-vortex method. However, partly because of their mathematical nature, it is
hard to find out whether the results indeed apply to the (soft-)vorton method.

For the soft-vorton method (see Appendix B) convergence seems to have been investigated first by Cottet
[41], who proved that the appropriate error norm for the velocity and vorticity fields goes to zero as the number
of soft vortons increases and the core-size decreases subjected to the constraint that the cores overlap (i.e. the
core sizes have to be larger than the typical distances between the elements). Another proof of convergence for
this case has been given by Beale [21]. Winckelmans [283] has shown convergence for the soft-vorton method
by means of his numerical simulations, though it appeared to be slow.

Cottet [42] has also shown that his vortex method discussed in [41] converges even without smoothing,
thereby apparently providing a proof of convergence for the vorton method. However, the proof required two
mathematical tools whose applicability with regard to the vorton method are unclear. Hou in [10] has remarked
that the result found by Cottet does not mean that the vortex-point method can be applied without smoothing
or desingularization. According to Hou, for any given time T a condition exists for which the method is stable
and convergent. However, the number of particles is finite, so there will be a time beyond which particles are so
close that stability analysis breaks down. Beyond this time, some "regularization” (i.e. remeshing) is needed.

We have to conclude that a proof of convergence for the vorton method still seems to be absent. However,
carefully performed numerical simulations may give valuable clues with regard to this issue.

18Ry patches we mean compact distributions of vorticity.
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a close comparison between the dynamics of a vorton ring and a full numerical simulation of
a vortex ring will be necessary to serve the same purpose.

11.1.8 Computational Effort
In general, we can remark that computational times for our simulations have been satisfactory
(in the order of minutes). However, we must add that these simulations have only been done
for relatively small numbers of vortons. The relation between computational times and the
number of vortons N has been investigated for the simulations discussed in §10.4. We have-
found that times are proportional to about NZ.

Simulations of multi-layered rings like those performed by Winckelmans on the configura-
tion shown in fig.10.28 require a much larger effort '°. Kascic [101] has suggested the use of a
vector processor to simulate the dynamics of large numbers of vortons.

11.2 The Vorton Method and research on Coherent Structures

The results of the simulation on the single vorton ring in a shear flow above a flat plate,
as presented in §10.6, may be too elementary to allow any conclusions with regard to the
applicability of the vorton method to the study of CS in turbulent boundary layers (TBL).

First of all, as indicated in §10.6 experimental evidence for the existence and role of vortex
rings or related vortex structures in the TBL is scarce. Furthermore, we do not know whether
phenomena like vortex reconnection and annihilation of vorticity are (crucially) involved in the
behaviour of any such structures. If this would turn out to be the case, we have to realize that
our vorton simulations have shown the inadequacy of the vorton method on this point.

One may also object that the no-slip boundary condition at the surface of the wall and the
related generation of secondary vorticity may be crucial for the flow phenomena observed in
the wall region of the TBL as some authors have suggested (see §10.6.1).

All the same, our results may illustrate that even elementary and crude configurations can
contribute to an understanding of TBL flows 2°. At least, our simulation have shown that an
outer region parameter (in casu the outer layer velocity U) of the shear flow determines the
behaviour of the vorton ring and (consequently) the Reynolds stress pattern in the flow. This
suggests that outer layer parameters in the TBL (partly) determine its characteristics.

11.3 Final Remarks

We think that the simulations presented here have given some indication of the applicability
of our vorton method (i.e. applying the N+K-equation). We conclude that the vorton method
produces simulation results which agree fairly well with experimental and analytical results, at
least when vortex structures, like vortex rings, do not approach each other closer than a certain
distance. When vorton structures approach more closely (and e.g. viscous effects are likely
to become involved), we have to be very careful in judging the numerical results. Especially
the simulations in §10.3 and §10.5 have shown that vorton behaviour may start to become
chaotical . However, lack of experimental results prevents more decisive conclusions.

The vorton method may be extended to improve its performance. The use of soft-vortons,
of multi-layered vorton rings and the addition of viscous diffusion to the vorton equations
are possibilities. However, the first option shows important disadvantages and has nowhere
been shown to perform better than the ordinary vorton method (see also Appendix B). For

19Winckelmans did not provide details on his computational times; the numbers of vortons he typically used
were of the order  10% — 10%.
20For a discussion of the nature and use of modelling in turbulence, we refer to the Epilogue.
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the second extension, the correct implementation of such rings is still unclear and simulations
require a large computational effort. As for the third option, we only have the results by
Winckelmans [283]; the same kind of objections exist as for the second option. Besides,
a more careful incorporation of vorton division than that applied in our simulations is necessary
to increase the applicability of the vorton method.

The vorton method is a relatively cheap, quick, and simple to handle vortex method, able
to provide a first indication of the behaviour of vortex configurations **. However, for a really
caréful simulation of closely interacting vortex structures, the method may not be reliable
and the application of a viscous vorton method (like that of Winckelmans) may be more
appropriate. Besides, still other numerical (vortex) methods unrelated to the vorton method
may be better suited for certain simulations 2.

21We agree with Chorin’s remark: ”a good guess at the solution of the problem one wants to solve is better

than an unambiguous solution of the wrong problem” [37].
22Qne recent promising method is that by Verzicco and co-workers, who solve the Navier-Stokes equation by

means of a finite-difference scheme (see e.g. [273]).



Epilogue

In this final chapter, I will attempt to bring together the vortex-atom-part and the vorton-part
on a scientific-philosophical level. In the preceding chapters I have shown how both parts are
related on the scientific level, e.g. by showing how the theorems and equations first proposed
by Helmholtz and Kelvin can be applied for the derivation of the vorton
equations, Besides, in the Interlude I have indicated (though only in a superficial manner) how
certain aspects of vorticity theory show a continuous development from the days of the vortex
atom to the present.

On the scientific-philosophical level, the vortex atom and the vorton are not related in
such a direct sense, though at least I will quote some of the 19th century authors who have
been mentioned in the vortex-atom-part 23. The relation I would like to discuss is based on
a common and important concept involved in both the vortex-atom theory and the vorton
theory: the model.

Everyone familiar with any part of science will have some notion when reading this term.
Even restricting the discussion to models in physics, it appears difficult to formulate an unam-
biguous description of this term. I define a model as a representation of a physical concept
that is still unknown in details, but of which one has some image. The model is a simplification
of reality, but tries to catch the essential aspects of the real concept. This description rouses
questions with regard to the meaning of "reality”. Here, I will equate reality to experimental
observations.

Several kinds of models may be discerned *:

e analytical models

These models consist of (sets of) equations which are supposed to describe in mathe-
1atical terms the physical concept which has to be modelled. They do not necessarily
contain any viewpoints on the physical backgrounds of the concept.

Examples are Maxwell’s famous equations describing electrodynamical phenomena (see
$6.3) and Saffman’s model of reconnection (shortly mentioned in §C of the Interlude).
e physical models

A physical model is supposed to be a direct representation of some aspects of the physics
involved in the concept to be modelled.

Example of physical models are the vortex atom model as proposed by Kelvin and the
model of a coherent structure (CS) in a turbulent boundary layer as presented in §10.6.
Both examples will be fully discussed in this Epilogue.

e conceptual models

In the case of conceptual models one does not suppose that the ingredients used in the
model necessarily form a real physical representation of the concept to be modelled (in

23More often than is usual nowadays, these scientists occasionally discussed the philosophical backgrounds of
their own and others’ research.

24By physical concept I mean anything which physicists tend to model: objects, phenomena, processes, etc.

25Here, as everywhere else in this Epilogue, I will use my own terminology. This list is not exhaustive.
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contrast with physical models). The conceptual model and reality have to show similar
properties, but the model does not necessarily represent the physical background of the
concept.

" As an example of this type of models I mention the mechanical (or mechanistic) models
favoured by British scientists (e.g. Kelvin) in the second half of the 19th century (see
the introduction of Chapter 3 and of Chapter 5). They essentially amounted to the
representation of physical concepts by means of a "mechanism” involving springs, wheels,
gyroscopes, etc. The laws of (classical) mechanics determined then the behaviour of these
models 2°.

The aim of a model is to aid in the visualization (and possibly quantification) of physical
phenomena and in the understanding of the physical ” mechanisms” which determine the char-
acter of a physical concept. Some remarks on models can be found in one of the first essays on
the use of models, i.e. Rankine’s discussion [185] of his own conceptual model of matter, the
molecular vortices (see §3.1). According to Rankine a model (or "hypothesis” as he called it)

substitutes a supposed for a real phenomenon, ... the object being to deduce the
laws of the real phenomenon from those of the supposed one. If the supposed
phenomenon were more complex, or less completely known in its laws than the real
one, the hypothesis would be an incumbrance, and worse than useless. ...

A hypothesis is absolutely disproved by any facts that are inconsistent with it. ...
On the other hand, no hypothesis is capable of absolute proof by any amount of
agreement between its results and those of observation; such agreement can give at
best only a high degree of probability to the hypothesis. ...

The agreement should be mathematically exact, to that degree of precision which
the uncertainty of experimental data renders possible, and should be tested in par-
ticular cases by numerical calculation. The highest degree of probability is attained
when a hypothesis leads to the prediction of laws, phenomena, and numerical results
which are afterwards verified by experiment. [185, p.127)

Though Rankine regarded his own hypothesis of molecular vortices as respecting these rules,
he warned that hypotheses like these "never can attain the certainty of observed facts” [185,
p.132].

On the final fate of models we can read in Larmor’s address to the section of Mathematical
and Physical Science at the 1900 meeting of the British Association: ”When a physical model
of concealed dynamical processes has served this kind of purpose ..., when its content has been
explored and estimated, and has become familiar through the introduction of new terms and
ideas, then the ladder by which we have ascended may be kicked away, and the scheme of
relations which the model embodied can stand forth in severely abstract form” [117, p.626].

Naturally, a single phenomenon may be represented by several models or kinds of models.
This has been the situation in British science in the latter half of the 19th century. As Duhem
remarked in [51] (see §5.2), the British proposed one model for one group of laws and another

26 A nother example may be the model of turbulence proposed by Synge & Lin (see §B of the Interlude) in which
the interaction of vortices is supposed to provide characteristics similar to those of turbulent flows. However, it
is not clear whether they meant this as a conceptual or as a physical model.
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completely different model for another group, though both groups contained some common
laws 7.

For Kelvin, around the time of his 1884 Baltimore lecures, the use of models (usually of
conceptual nature) was of fundamental importance: "It seems to me that the test of ‘Do we
or not understand a particular subject in physics?’ is, ‘Can we make a mechanical model of
it?” [99, p.111] and: "I never satisfy myself until I can make a mechanical model of a thing.
If I can make a mechanical model I can understand it. As long as I cannot make a mechanical
model all the way through I cannot understand” [99, p.206]. However, he also stated that his
models by no means reflected reality. They were only imitations of reality and certainly not
unique.

To further explore Kelvin’s use of models and to illustrate the problems related to models,
let me now concentrate on his vortex atom model. It is important to notice that the vortex
atom theory actually involves two kinds of modelling.

Whereas for his mechanical models Kelvin did not claim a reflection of reality, with regard
to the relation between vortex atoms and matter, Kelvin suggested that the physical vortex
ring, as seen in Tait’s experiment, was a physical model of the atom. To confirm this opinion,
I refer to the account of Kelvin’s 1867 lecture "On Vortex Atoms” [243] (see §4.2), where we
read:

After noticing Helmholtz's admirable discovery of the law of vortex motion in a
perfect liquid ... the author [=Kelvin| said that this discovery inevitably suggests
the idea that Helmholtz’s rings are the only true atoms. (243, p.1]

This suggests that initially Kelvin indeed regarded the vortex atom as a physical representation
of the atom. However, I think that many of his contemporaries could only regard it as a
conceptual model, as is expressed by Larmor in the quotation given at the end of §6.3.

‘In order to demonstrate the correctness or usefulness of his (physical) model, Kelvin had
to show that it possessed the properties of "real” atoms. That is to say, the properties which
were known at that time. As he must have realized that this would be difficult to show
experimentally and unconvincing, he went for the analytical elaboration of another type of
model of the vortex ring itself. However, according to the definition given above this model
cannot be called an analytical model and I shall name it a computational model. For
Kelvin, initially the computational model of the vortex ring was the Kelvin-ring (see §A.2 of
the Interlude).

Regarding the story of the vortex atom, I conclude that for Kelvin and his contemporaries,
the vortex atom failed as a physical model, since it appeared to lack some of the fundamental
properties related to real atoms (stability, gravity, spectra; see §5.3). However, regarding the
development of the vortex atom from the present point of view, one can claim that the vortex
atom suffered from another weakness. Today, we know that the Kelvin-ring is only a crude
computational model of a vortex ring (see §A.2 of the Interlude). At that time, however, this

2"Dyhem stressed that it is better to have one unique theory since this provided the ”classification naturelles
des lois” and showed the order in nature. On the other hand, he argued that such a situation as in British
physics had to be allowed: ”Si 'on astreint a n’invoquer que des raisons de logique pure, on ne peut empécher
un physicien de représenter par plusieurs théories inconciliables soit des ensembles divers de lois, soit méme un
groupe unique de lois; on ne peut condamner l'incohérence dans le développement de la theorie physique” [51,
p.366].
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circumstance did not contribute to the fall of the vortex atom since this computational model
was generally regarded sufficient. If, for example, Kelvin would have applied the analytical
techniques of Widnall and co-workers (see §A.3 of the Interlude), he could have demonstrated
the inherent instability of the Kelvin-ring and would have been forced to revise his compu-
tational model. Kelvin’s eventual recognition of this weakness can be deduced from his 1889
remark on Hicks’s hollow vortex (see §6.3). However, by then the vortex atom had already
appeared unviable as a physical model.

The story of the vortex atom shows us other factors which may influence the viability of
any model :

e In general, one can say that in the case of the vortex atom there has been no rational
line of defense. The elaboration of the model (both with regard to its role as physical
and as computational model) lacked a real research program. Besides, no attempts were
made to refute fundamental criticism, such as that by Reynolds (see §5.1).

e The promoters of the vortex atom theory did not provide quantitative data, which meant
that comparison with experimental data was impossible. If more fundamental experi-
ments would have been done on the properties of vortex rings (e.g. on their velocity,
distribution of vorticity in the core), the computational part of the model would have
been discredited. If quantitative comparison with properties of matter (e.g. spectral
lines; see Julius’s contribution discussed in §5.3.4) would have been performed seriously,
the physical part of the model would have been discredited.

e Relatedly, the model was not predictive (see Rankine’s remarks quoted above). Therefore,
the model must have appeared useless and irrelevant and could not show any advantage
above other models.

e The nature of the model was purely hydrodynamical, while experiments eventually
showed that other aspects (e.g. electrical) were essential for an atom model. Therefore,
it is not surprising that the vortex atom did not survive the discovery of the electron and
of radioactivity 2°. Attempts to adapt the vortex atom model (e.g. by introducing hollow
cores; see §5.1), or to extend it (e.g. with electric charge; see §6.2) could not prevent its
fall. ‘

e The computational model was hard to elaborate due to lack of sufficient mathematical
techniques. Though this was fully recognized by the promoters of the theory and though
they introduced several new techniques, progress was slow and several important issues
could not be tackled properly.

However, the vortex atom model did not only fail as a result of internal inconsistencies.
It also suffered from the shift in the use of models which occurred at the end of the 19th
century in British physics (see §6.3). When the vortex atom had started to decline, Kelvin
complained that Maxwell’s use of analytical models had superseded his own use of physical
and conceptual models. Maxwell’s initial emphasis on analogy and heuristic models (e.g. his
molecular vortices; see §5.1) had changed towards an approach according to which physical
phenomena were framed into mathematical equations, i.e. the use of analytical models. To

28The order of these factors does not indicate their relative importance.
291 ikewise the vortex ether did not survive relativity.
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Kelvin Maxwell’s equations were examplary for the wrong approach. They were ” metaphysical”
and had been worked out in the mind without contemplation of physical reality. Today, we
can conclude that Maxwell’s analytical model has been much more successful than Kelvin’s
physical and conceptual models.

Taking into account the factors mentioned above, it may seem remarkable that the vortex
atom model could survive for almost 30 years. However, this can be attributed to several
favourable circumstances. First, competing theories of matter lacked the same or other fun-
damental and practical problems. Secondly, lack of experimental data on the properties of
matter prevented a definite judgement. Thirdly, the crucial role of electric charge in matter
became only fully realized after J.J. Thomson’s 1897 discovery of the electron. And last, but
not least, Kelvin’s fame must have played some role here.

In conclusion, one can say that many factors are involved in the development of a model.
Some are evident, others are not. Some can be analyzed rationally, for others this seems
impossible. I think that all factors mentioned above, both favourable and unfavourable to the
viability of models, can still be found today. Some evidence for this statement can be found
in the next and last part of this Epilogue.

In this last part, I will treat two analogies I have found between the vortex-atom-part and
the vorton-part with regard to the use of models:

e computational modelling:

Kelvin ring <> vortex ring ~  vorton ring <> vortex ring

e physical modelling:

vortex atom theory > matter ~—~  vortex models of a CS « turbulence

As mentioned above, one of the obstructing factors in the development of the vortex atom
model has been the lack of proper mathematical techniques. In modern fluid dynamics research
the use of numerical techniques has proven to be an important and fruitful new tool to elaborate
models. Vortex methods (see Chapter 7) form one part in this field of so-called computational
fluid dynamics. Despite the progress in computational capabilities provided by these methods,
one still needs a computational model of vortex structures, e.g. vortex rings, on which to
apply the numerical tools. In our investigation of the vorton method, the computational
model of the vortex ring has been the vorton ring as illustrated in fig.9.1. In Chapter 10 I
have investigated the correctness of this model by means of numerical simulations. From the
discussion in Chapter 11 the reader may have deduced that the usefulness of the vorton ring
as a computational model can be questioned *°. Moreover, as has been the case for the vortex
atom, a good comparison of numerical with experimental results may be impossible, not only
due to the scarcity of experiments but also due to the fact that viscosity may have an essential
influence on experimental rings.

The second analogy, related to physical modelling, can be found in the vorton simulation
treated in §10.6. There, I discussed the present trend in fluid mechanics to regard the role of
coherent structures in turbulent flows, in casu turbulent boundary layer flows. As discussed
in §10.6.1, some have suggested that these structures can be modelled as vortex rings. Notice
that this physical modelling is different from that in case of the vortex atom. The vortex

30For large numbers of vortons in the vorton ring, it even approaches the Kelvin-ring and we may expect the
same problems of modelling as in case of the vortex atom.
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ring, Kelvin supposed, could be completely identified with the atom. Today, the vortex ring is
regarded as an essential part of turbulent flows and is not identified with anything else; it is
just a vortex ring.

Turbulence modelling has a history showing important shifts in approach (see also §B of
the Interlude). After Kelvin’s and FitzGerald’s 1887 vortex ring model, at the beginning of
this century modelling of turbulence had become largely analytical. In the 1930s the statistical
approach began to dominate research in turbulence, which lacked the use of models. Only in the
1950s one realized again the importance of modelling and the concept of ” coherent structures”
was introduced. Nowadays, research on CS shows a large variety of (vortical) structures which
are proposed as explanation for physical phenomena in turbulent flows.

Besides these typically physical models, it should be mentioned that today several other
types of modelling are used in turbulence research. This can only be encouraged, as Duhem
already realized (see above). Lumley in {135] commented on the ability of turbulence models
(including statistical methods) to increase our understanding of turbulence: ”"However, I believe
it is foolhardy to expect them to. These models are simply embodyment of experience; they
are something constructed to behave like turbulence, in situations where it has been observed,
to be used as a design tool. A model cannot, except by accident, contain more than is put into
it.” .

Naturally, this last remark is relevant to any kind of model. Because electric charge had not
been put into the vortex atom model, it was unable to model the atom. In our present models
of turbulent flows, we should strive for models which can surpass, so to speak, limits. The
main problem will be how to set up such models and how to interpretate their results. Some
models may suggest "too much” but this is not important; the point lies in suggestion, not
demonstration 3!. Nevertheless, one has to be alert that models may become more important
than the phenomena themselves.

We can only hope that the models of CS will improve our understanding of turbulence as
a physical phenomenon. The central question in this respect has been formulated by Kline
& Robinson in [73] as: "how do we capture the essence of such a model in a simple enough
way so that it becomes useful in creating predictive models?” We must realize that even
negative results can help us and that the road towards complete understanding, if ever achieved,
certainly isn’t straight.

As in the case of the vortex atom, the most important problem here is the relatively small
amount of knowledge on the characteristics of CS and their role in the TBL from experiments.
We even have a lack of definition and problem formulation (as already remarked in §B of the
Interlude). As long as this situation lasts, models cannot be judged correctly.

Though of enormous help in advancing our knowledge on fluid flows, the present trend of
computational fluid mechanics brings along its own problems. For the specific case of vortex
methods, the computational modelling of vortices (as discussed above for the vorton method)
should be performed very carefully. In addition to this, other problems arise due to the large
amount of data provided by numerical simulations. The problem of selecting those data which
are useful for the purpose of understanding will only become more urgent. And, relatedly, we
have to face the problem also formulated by Kline & Robinson in [73]: "how do we combine the
results from numerical simulation data bases with experimental results to approach consensus
on a complete model of structure [in turbulence]?” Another problem related to computational
methods are the possible influences of numerical artefacts (e.g. numerical viscosity). These

31Compare the suggestion of the vortex atom to J.J. Thomson in his discovery of the electron (see §6.3).
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may disturb our view on the real physical value of models.

One may think differently about the fate of models, but surely the energy put into their
elaboration will not be lost, even if the picture they provide does not correspond to reality
or only slightly. Models can give impulses towards new developments and the mathematical
topics which they induce may well be worth treatment themselves. Though the vortex atom
model itself failed, it left behind a heritage: it meant an important stimulus to the research on
vortex motion and led to Tait’s contribution and foundation of the theory of knots (see §C of
the Interlude).

To conclude, I remark that a model must be used as a first step in investigating the physics
of a phenomenon. Afterwards, experimental and analytical results have to be invoked to lay
down a theory. At that time, Larmor’s "ladder” may be kicked away. Kelvin already realized
the relative value of models and eventually left the vortex atom for new models in which he
inserted new concepts arising in physics. Perhaps, one day, we have to recognize that our
present approach to the modelling of turbulence is unfruitful or should be improved. Then, we
must dare to shift towards new approaches.




Appendix A

Vector Potentials and Motion-Invariants

From an elaboration of an divergence-free vector potential field, conclusions can be drawn
regarding its highest order term and its relation with the conservation of motion-invariants 1

It is assumed that the vorticity field w(x) decays fast enough:

wlL L.y T

— ~[=2 = 1

i [ac] as 7 =00 (A.1)
where w = | w |, L is a typical length scale, and U is a typical velocity scale. This condition

is certainly fulfilled if vorticity decays exponentially 2.
For a divergence-free A we have the Poisson equation:

VA= -w.
For the far field condition for the velocity field v

v—=0as x>0

we have the solution

Alz) = 1/ w(z')

Tar fy |-

where V' is the vorticity-containing volume. By expanding this integral in powers of rl(r =
| 2 |), we get:
A=Y A" +o0(r )
n=0

where

A 1L / w(z)[(r')" P, (& - &)

4rrnti

where & = z/r and P, are Legendre functions.
The first three terms of this sum are given by:

AQ = —l—l/ w
4 r v/
1 0 ,-1
w - = “ - )
AT = 47raxi(r)_/‘/: i
1 8 1
A(2) = - - / L4 .
8w axixj(r) ' TiT;t0

!This disucssion is based on [264]; see also [205, §3.2].
2Compare this condition with that given in (9.4).
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The (far field) description of the vector potential A to the order 7~™~" is defined by the
nth moments of vorticity for n < m. These moments of vorticity are defined by:

3 3
/ w][z¥ with j; >0 and 3 ji=n. (A.2)
1

=1 i=1

All nth moments exist for any n < N — 3, where N is the order of the far vorticity field defined
in (A.1).

Using this condition (A.1), it can be shown that an nth coaxial moment of a divergence-free
vorticity field w along an axis parallel to any vector b should vanish [264, §1.2], i.e.:

1™ (2,b) ;/ (@ b)"w-b=0
v

fort >0,n=0,1,2,....

From this result, we can derive consistency conditions, which are linear combinations of
the nth moments of vorticity:

e For n = 0, we have the consistency condition:

QE/ w=0.
1%

This result expresses conservation of the total vorticity. It also shows that the highest
order term of the vector potential A disappears, i.e.

A9 =0

which means that the highest order term of A is r=2. Apparently, total vorticity is always
zero for a bounded flow on whose surface w - n = 0.

e For n = 1, we have the consistency condition:
/ x,-wj—f—/ z;w; =0 (4,7 =1,2,3:5 <1).
4 1%

From the required far-field behaviour of the fields » and w, it follows that the first
moment of vorticity (see (A.2)) is time invariant, i.e.

0
'&'/VZL'JD—O.

Using the above consistency condition, we then derive:
PE/mxszo (A.3)
14

where P, is the constant vector specified by the initial data. This result expresses
conservation of the total linear momentum.
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e For n = 2, we can derive from the consistency conditions:
J E/ 2w =J, (A4)
v

where J is the constant vector specified by the initial data. This result expresses con-
servation of the total angular momentum.

Combining this relation with the consistency conditions related to P, we find another
expression for motion-invariant J:

J=1/zx(mxw). (A.5)
3Jv
o No additional invariants for n > 3 have been found [264, §1.2].

Now we regard the vorton fields, presented in §8.2. The vector potential field (8.8) chosen
in §8.2 is of order r~! and thus violates the condition derived above. However, since this field is
not divergence-free, the above discussion isn’t necessarily applicable here. On the other hand,
for our vorton vector potential (8.8):

-1 Ra Yo

VA= —~ TR}

Hence, A may be divergence-free at an infinite number of points. At these points, the above
discussion is relevant and defence of the choice of our vorton vector potential (8.8) seems
untenable.

The condition on the order of a divergence-free vector potential s fulfilled for the Chefranov
vortex-dipoles (see e.g. [36]; see for a discussion [206]). The vortex dipoles can be regarded as
(infinitesimal) vortex rings. Chefranov has claimed that the equations for their dynamics have
a Hamiltonian structure and that his method satisfies conservation of linear motion-invariants.
However, no numerical simulations seem to have been performed applying this dipole method.

However, these dipoles may not be suitable for numerical simulations as done in Chapter
10, due to their self-velocity ®. Synge & Lin [225] (see §B of the Interlude) have investigated
the interaction of dipoles in their search for a model of turbulence, but concluded it had
"undesirable features” and did not lead to correct correlation functions.

3Possibly this self-velocity can be eliminated by the addition of swirl, as has been proposed by Moffatt in
[162] in the context of his alternative ”vorton” model (see e.g. [158]). According to Moffatt, the original vorton
is not a useful concept, as it is no solution of the Euler equation (private communication). The vorton should
be a "structure of compact support” that propagates with self-induced velocity and without change of structure
and can be regarded as a generalization of the vortex ring. Turbulence, he suggested in [135], could perhaps be
regarded as a “sea of interacting vortons”. Unfortunately, this theory has not been elaborated yet.



Appendix B
The Soft-Vorton Method

One of the aspects of the vorton method which has been criticized is the singular behaviour
of its velocity and vorticity fields. Therefore, Kuwabara [114] has proposed to replace the
delta-functions in the original vorton vorticity field (8.5) by smooth functions *:

W, (2,1) = ) Valt) G (@ —1ra(t) (B.1)

where a choice has to be made for the so-called smoothing function ¢, for which we require:
C(x) > d(x) as 0 = 0. (B.2)

This function contains a parameter o, which can be regarded as a ”core radius” of the smoothed
vortons.

As remarked in §7.3.3, Kuwabara's soft-vorton method is an example of the Smoothed
Vortex-Point Methods. A more general treatment of its theory has been provided by Winckel-
mans {283}, who applied this vortex method in several numerical simulations. The simulations
by Winckelmans [283] for the configuration of §10.4, have showed similar results for the original
vorton method and the soft-vorton method, both with regard to conservation of diagnostics
and to reconnection behaviour.

We shortly repeat two drawbacks of the soft-vorton method, which have already been
mentioned in the introduction of Chapter 8. First, the field (B.1) is not divergence-free, like
the original vorton vorticity field (8.5). Secondly, several smoothing functions ¢, can be applied
under the imposed requirements, presumably leading to different simulation results.

The first drawback can easily be suppressed as in the case of the vorton method by deriving
a divergence-free vorticity field from an appropriate vector potential A, 2.
We start from (compare with (8.8)):

A (z,8) =) ¢.(Rat) Yalt) -

This time, the function ¢, remains undetermined and is a function of ¢. In the manner shown
in §8.2, we derive a velocity field:

va(m7 t) = ZV¢U X 7(!

= D (V(Ra) X Ya)90 (Ra) (B.3)

[»3
1 v, X R,
o > —RS__QU(RG) C.

! A similar vortex method has been proposed by Mosher [165].
*The o will indicate a soft-vorton function or field.
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where ¢ is the function defined by (8.9). And from this velocity field we derive the vorticity
field:

wo(@1) = 3 (Yalo(Ra) + V(¥a - Vo)) (B-4)
= Eg{vagm&)—v{“—é—f%(&n} (B.5)

- L _ (Ya Rs)R, Yo Ra
- AT ;{[‘Ya R2 ]CU'( Ot) [ R3 g (RG)}'

In these derivations, use has been made of the following relations between the functions é.(p) =
0¢s (), 3o (p) = 9o (), and (o (p) = 0°Co () (Where p = 2/0):

"'Vz(z’cr(p) = Ea(p)
B (p) = —P*¢.(p).

If we impose the condition that the function C satisfies the following normalization (conver-
gence) condition:

M/ {(p)pds =1,
0 é
we find:
glp) =1 as p—o0. (B.6)
Consequently the field (B.3) converges towards the vorton velocity field (8.10) for o — 0.

From the soft-vorton fields derived above, the soft-vorton displacement and deformation

equations can be derived.
The displacement equation is easily obtained from the velocity field (B.3):

ro = V(T t) (B.7)
= - Z (v¢a(Raﬁ) X 7a)ga(Raﬂ) (BS)

; Ra
- Ly xR, ®9)

For the derivation of the deformation equation of a soft vorton o we can make use of the
splitting of fields mentioned in §8.3 (see also Appendix C): v, = v% + &, and w, = w3 + 1.

We then have to elaborate (in case of the ordinary representation of the Helmholtz equation):
D(w® +w? o - a
DOWe £ 90) — ((wg +82)) 0 (w5 +65) (B.10)

atez=7r,.
We will not show this elaboration here and refer to [283] for further details.



Appendix C

Derivation of the Vorton Equations

From the soft-vorton displacement equation (B.9) presented in Appendix B, we can easily
derive the vorton displacement equation by taking ¢ — 0 and applying (B.6). The terms § = «
disappear in a natural manner since for these g, = 0. This means that ”self-displacement” of
a vorton is omitted 1. The full equation is given by (8.15) in §8.3.

In first instance, one would be inclined to derive the vorton deformation equation in the
same manner as we did for the vorton displacement equation, i.e. from the soft-vorton defor-
mation equation. However, we will take a more direct route and apply the vorton fields directly
to the Helmholtz equation. However, because of the delta-functions involved, we have to resort
to a technique (mentioned in §8.3) by which the Helmholtz equation will be integrated about
the sphere B, of radius € and centre =,. It is assumed that ¢ is so small that no other vortons
are inside the sphere. We call this a weak formulation 2.

For convenience, we split the fields into two parts as described in §8.3. Thus, we have to

calculate: D(w® + ")
[P [ ) o ). (©1)

@

The lefthand side of (C.1) can be rewritten as:

/ D(w“+ﬁ:")_/ Dw“—i/ w®
B. Dt “Js. Dt dtl)s,

The last integral is not equal to 4,, as one might expect. Since w* =V x v, we get:

w® = / V x (VO(R.) X ¥a)
5 .

Ba
= ! / nXx(nxvy,)
- 4me? 8Ba Yo
1
= g [, {n-v)n—(n-niy.)
1 1
= - V(R, - 4meé?
471'63 /Ba ( 7a)+ 47[‘62 TE ‘YQ
= é‘/r Sy +
yror-Ublie Claae £

1The exclusion of the term 3 = « can be compared to the so-called cut-off of the kernel of the rule of
Biot-Savart (2.3) (see §7.1). A cut-off corresponds, physically, to a finite core size. This suggests that the
shortest distance between vortons can be regarded as a core size, a result which has become evident in §10.1
and especially in §10.3.

?In our derivation, it is implicitly assumed that the sphere B, only contains vorton «. Consequently, we
require Rapg > € for all B # . On the other hand, the value of € is assumed « 1. This means that in case of
very close approach of vortons the equations will not be reliable. Fortunately, the simulation presented in §10.3
suggests that close approach will not occur.
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where n = R, /R, and 9B, is the surface of sphere B,. Note that this result is independent

of €.
Comparing this result with expression (8.11), we derive the equality 3:

#'(R))oa = —%a (C.2)

Ba

for any a # a(x). Apparently, the second (nonlocal) part of the vorton vorticity field reduces
the total amount of vorticity inside sphere B, with a factor of one third.

Next, we will investigate the four parts of the righthand side of (C.1) separately. Use will
be made of the following relation: ‘

(@ x Vo(x))) ob=a x (¢"(z) o b) (C.3)
for any @ # a(z) and b # b(zx).

1. [ ((v*)") o w™ represents the "self-deformation” of vorton «.

Like self-displacement, this part is omitted. This could be justified, as we did in the
derivation of the vorton displacement equation above, by the fact that the all components
of matrix ((v2)’) equal zero for & = r,.

2. [ ((8%)") ow* represents the deformation of the vorticity field w* generated by vorton a
itself, due to the velocity field #* generated by all other vortons at the location of vorton

a.
Rewriting this integral as
(™) [ we,
we get, by applying (C.3):
~ 3 9o % (¢ (Rug) 0 27a)

B#a
3. [ ((#°)")otd" represents the deformation of the vorticity field " generated by all vortons

except o, due to the velocity field v* generated by vorton « at the location of vorton a.

Applying both (C.2) and (C.3), and rewriting this integral as
()e [ &°

we get:
=Y 7ax[(¢"(Rug) o (~375)] -

B#a

3Here ¢ is the function defined in (8.9) and definitions (8.12) and (8.13) have been applied.
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4. [ ((™)') o @™ represents the deformation of the vorticity field w® due to the velocity
field * at the location of vorton a.

Both fields #° and w® are continuous at location r,. Therefore, by the mean value
theorem, integration leads to an expression of order €3, where ¢ is the radius of sphere
B.. Hence, it can be disregarded since ek 1.

Taking together all the contributing parts, we get the vorton deformation equation:
" 1 1
= Z {_’Yﬁ X (¢ (Raﬁ) O‘Ya) + 57& X (¢ (Raﬂ) O‘Yﬁ)}
B#Fa

or, in full:

1 Y X‘Yoe Ra Xy Yo Roz 1 (’YO(XRQ Y5 ch
Z{ ﬁ ( s g)s( 5) ‘ ;)5( 8 ﬁ)}. (C.4)
a3 af

Ct

In the same way, starting from the transposed Helmholtz equation (8.3) and making use of
a rule similar to (C.3), i.e

(@ x Vo(=))) ob=¢"(z)o(bxa),

we derive:

= S (Rap) © (9 X ¥a) = 5% X (6" (Rag) 0 ¥p)) (C3)
B#a

or, in full:

1 Y3 XYa Rﬂﬁ [‘Raﬂ ) (75 X‘ra)]

1 ('ra XRaﬁ)(7ﬁ ) Raﬁ)
e Z =3 R, R, 2 R, b (©9)
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vortex ring core radius (fig.2.3)
non-dimensionalized vortex ring core radius (10.1)
vector potential (8.8)

volume of radius e around vorton location r, (8.16)
total kinetic energy (9.9)

energy spectrum (9.11)

interaction energy (9.10)

interaction energy spectrum (9.13)
self-energy (9.14)

self-energy spectrum (9.12)

total helicity (9.15)

interaction helicity (9.16)

total angular momentum (9.6)
wave-number

outward normal unit vector

number of vortons in a vorton ring
total linear momentum (9.2)
location vector of a vorton labelled o
vortex ring radius (fig.2.3)

z—-r,

Ty — T3

Reynolds number (§A.3 of Interlude)
time

shear flow velocity profile (10.8)
outer shear flow velocity (10.8)
velocity

vortex ring velocity (fig.2.3)
non-dimensionalized vortex ring velocity (10.5)
vorticity (1.1)

diagnostic vorticity (9.18)

spatial location

components of &

material location

components of X

labels of vortons

strength vector of a vorton labelled a
circulation (4.2)

shear flow height (10.8)

1/(4rz) (8.9)

)

angular velocity (2.1
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SYMBOLS 175

v = gpatial nabla operator (1.1)
% = spatial derivative
D /Dt = material derivative (1.3)
6(...) = Dirac delta function

= scalar product
X = vector product
(v') : deformation matrix (8.2)
(v')* : transposed of matrix (v')
Iy : volume integral
Loy : surface integral

$o : contour integral
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Samenvatting van Over Wervelatomen en Vortonen

Dit proefschrift bestaat uit twee delen. In het eerste wordt de ontwikkeling van een 19e-
eeuws atoommodel, het wervelatoom (vorter atom), behandeld. In het tweede deel wordt
de recent geintroduceerde vortonmethode besproken en de numerieke simulaties die hiermee
zijn uitgevoerd om haar te testen. In een zgn. Interlude worden enige ontwikkelingen in de
stromingsleer geschetst uit de tussenliggende tijd die belangrijk zijn voor het begrijpen van
onderdelen van het tweede deel.

De ontwikkeling van het wervelatoom kan alleen begrepen worden als men enig zicht heeft
op de ontwikkelingen op het gebied van materietheorieén en van het begrip vorticiteit binnen de
stromingsleer. Op het moment dat het wervelatoom in 1867 door Kelvin werd geintroduceerd
bestond vorticiteit en de bijbehorende theorie nog pas enkele decennia. Hoewel geleerden als
Cauchy en Stokes rond 1845 al enige bijdragen hadden geleverd, legde pas in 1858 Helmholtz
de basis van de vorticiteitstheorie. Aan hem danken we enige belangrijke definities, theo-
rema’s, vergelijkingen en fysische inzichten. Op het gebied van materietheorieén moeten we
het klassieke atoom van Democritus noemen. Het atoom als hard, onveranderlijk bolletje was
ook in de 19e eeuw nog populair, met name dankzij de opkomst van de kinetische-gastheorie.

De ontwikkeling van Kelvins ideeén op het gebied van de zgn. ether, de hydrodynamica en
het electro-magnetisme, samen met de invioed van Faraday, Rankine (het molecular vortez)
en Stokes, zijn belangrijk voor een goed begrip van de introductie van het wervelatoom door
Kelvin. Daarnaast moet als directe aanleiding Taits experiment met rookringen genoemd wor-
den. De elastische wervelringen, zo meende Kelvin, konden veel beter de diverse eigenschappen
van materie beschrijven dan het Luctrius atoom: onverwoestbaarheid, zwaartekracht en inertie,
spectra.

Kelvins model werd echter over het algemeen koel ontvangen, zeker op het Continent, waar
men vooral filosofische bezwaren tegen Kelvins manier van modelvorming had. In Groot-
Britannié probeerden enkele aanhangers langs analytische weg aan te tonen dat het werve-
latoom inderdaad belangijke voordelen bood, maar slaagden hierin nauwelijks. Daarbij wer-
den zij vooral gehinderd door gebrek aan wiskundige technieken. Intussen groeide het aantal
pogingen aan te tonen dat het model niet bruikbaar was en dat de beweringen van aanhangers
obscuur waren. Ook aanpassingen van Kelvins oorspronkelijke atoom leverden niets op.

Pogingen om het wervelatoommodel toe te passen in ethermodellen liepen ook op niets uit
en Kelvin verloor het geloof in zijn eigen schepping. Zo kwam hij onder andere tot het inzicht
dat wervelringen niet altijd stabiel hoefden te zijn. De ontdekking van het electron en het
inzicht dat electrische lading fundamenteel voor een atoommodel was, gaf Kelvins model de
genadeslag. Daarnaast was Kelvins manier van modelvorming uit de mode geraakt.

De wervelatoomtheorie, hoe onvruchtbaar verder ook voor de atoomtheorie, heeft een be-
langrijke stimulans betekend voor het onderzoek naar vorticiteit en wervelstructuren. Zo zijn
inmiddels vele, meer geraffineerde, wervelringexperimenten uitgevoerd, de analytische uitwerk-
ing is verder ontwikkeld en met name m.b.t. de stabiliteit van wervelringen werden opmerkelijke
resultaten gevonden (Kelvins model van de wervelring bleek niet stabiel). Ook werd vorticiteit
een vertrouwd begrip in het onderzoek naar turbulente stromingen, waar een van de belan-
grijkste ontwikkelingen de ontdekking van coherente (wervel)structuren is. Daarnaast hebben
in de moderne stromingsleer begrippen als heliciteit en wervelreconnectie zich een belangrijke
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plaats verworven i de zgn. topological fluid mechanics.

Een andere belangrijke moderne ontwikkeling is de opkomst van het gebruik van de com-
puter: ”computational fluid mechanics”. Daarbinnen valt de opkomst van de zgn. wervel-
methoden (vortez methods): het numeriek simuleren van wervelstructuren d.m.v. modellering
met ”wervelelementen” (bijv. vortez-filaments en vortez-points). We moeten echter wel enige
eisen opleggen aan deze methoden: een divergentievrij vorticiteitsveld, correcte modellering
van de vorticiteitsdistributie, correcte modellering van de deformatie en interactie van wervel-
structuren, behoud van bewegingsinvarianten, geen negatieve gevolgen van remeshing, correcte
oplegging van randvoorwaarden, convergentie, en aanvaardbare rekeninspanningen. Eén van
de recente wervelmethoden is de vortonmethode, het onderwerp van het tweede deel van dit
proefschrift.

Het wervelelement toegepast in de vortonmethode, is de vorton Dit kunnen we opvatten als
een driedimensionale puntwervel. De deformatie van deze vortons volgt uit de zgn. Helmholtz
vergelijking. De deformatie- en de verplaatsingsvergelijking voor de vortonen worden ver-
volgens numeriek opgelost. Er is echter over de afleiding van de deformatievergelijking dis-
cussie ontstaan in de literatuur. Uitgaande van twee in principe gelijkwaardige vormen van de
Helmholtzvergelijking kwamen Novikov en Kuwabara tot twee niet-gelijkwaardige vortonde-
formatievergelijkingen. In dit proefschrift stellen wij een nieuwe afleiding van de vergelijking
voor, die deze inconsistentie opheft en aantoont dat Novikovs noch Kuwabara’s vergelijking
aantrekkelijk is. Eén van de doelen van onze numerieke simulaties is geweest om de superior-
iteit van onze vergelijking aan te tonen; wij menen dat dit is gelukt; Kuwabara’s vergehjkmg
blijkt in elk geval onbruikbaar. Een ander doel van de simulaties is geweest het vergelij-
ken van het gedrag van diverse wervelstructuren met dat van hun vorton-equivalenten. Wij
hebben ons beperkt tot onderzoek naar het gedrag en de interactie van vortonringen, het
vorton-equivalent van de wervelring. We waren uiteraard afhankelijk van de beschikbaarheid
van experimentele, numerieke en analytische resultaten van anderen en van de mogelijkheden
m.b.t. randvoorwaarden (alleen een free-slip-voorwaarde is mogelijk). Verder hebben we de
volgende wervelfenomenen willen simuleren: werveldeformatie, wervelkerndeformatie, wervel-
reconnectie, en alignment van wervelbuizen. De configuraties die we hebben gesimuleerd zijn:
een enkele vortonring (onderzoek naar kern en stabiliteit); een enkele pseudo-elliptische vorton-
ring (deformatie en reconnectie): de botsing van twee coaxiale vortonringen (kerndeformatie en
stabiliteit); de interactie van twee aanvankelijk parallel bewegende vortonringen (reconnectie);
de interactie van twee ”geknoopte” vortonringen (alignment); en een enkele vortonring in een
afschuifstroming boven een vlakke plaat (een mogelijk eenvoudig model voor het gedrag van
coherente structuren in een turbulente grenslaag).

Ook is de zgn. vorton-division-techniek onderzocht: het toevoegen van vortonen op plaatsen
waar de afstand tussen naburige vortonen groter wordt dan een bepaalde waarde. De simulaties
hebben laten zien dat in elk geval toevoegen zonder updating van de vortonen niet aanvaardbaar
is. Met updating kan enige verbetering optreden, maar division met lineaire interpolatie blijkt
geen remedie tegen ontsporende simulaties.

De simulaties hebben in elk geval laten zien dat aan de vortonring een kern(diameter)
kan worden toegekend. De verdeling van de vorticiteit is echter niet homogeen verdeeld over
de ring. Het aantal vortonen in de ring bepaalt de kerndiameter (en snelheid), zodat nu-
merieke nauwkeurigheid niet met het aantal vortonen verbeterd kan worden (dit zou wellicht
wel kunnen door een adnere modellering van de wervelring). Het feit dat de kerndiameter
groeit bij wervelstrekking lijkt fysisch gezien onacceptabel. De discrete representatie van con-
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tinue wervelstructuren is enerzijds de oorzaak van de mogelijkheid reconnectie te simuleren (bij
dichte nadering van vortonen treedt een ”bifurcatie” op naar een nieuwe stabiele situatie; de
vraag is hoe "fysisch” dit is), aan de andere kant leidt het tot chaotisch gedrag van de vortonen
bij dichte nadering. Alignment wordt goed gerepresenteerd, maar ook hier lopen de simulaties
mis bij dichte nadering van de vortonen; in experimenten treedt waarschijnlijk annihilatie van
vorticiteit op.

De toepassing van de vortonmethode bij het onderzoek naar coherente structuren in een
grenslaag wordt gehinderd door de mogelijk belangrijke invlioed van de no-slip-conditie aan de
wand. Toch laat onze eenvoudige simulatie interessant gedrag van de vortonring zien en een
grote piek in een grootheid die verband houd met de Reynolds shear stress. Dit duidt op het
optreden van een zgn. burst; het optreden daarvan wordt in elk geval bepaald door de grootte
van de snelheid buiten de grenslaag.

We kunnen concluderen dat de vortonmethode relatief eenvoudig is, weinig rekeninspanning
vergt, en in bepaalde situaties goede simulatieresultaten oplevert. Wij moeten echter niet tveel
van de methode verwachten, enerzijds vanwege de discrete representatie, anderzijds vanwege
het ontbreken van visceus gedrag.

In de Epilogue worden tenslotte beide delen van het proefschrift weer bij elkaar gebracht
opeen wetenschapsfilosofisch niveau. Zowel Kelvin bij de ontwikkeling van zijn wervelatoomthe-
orie als huidige onderzoekers die simulaties uitvoeren met vortez methods als ue vortonmethode,
stuiten op de beperkingen of onvolkomenheden van hun zgn. computational model. Samen met
andere factoren was dit de oorzaak van de beperkte bloei van Kelvins atoomtheorie. Wat be-
treft onze simulatie van de vortonring in een shear flow boven een plaat: hierbij hebben we
niet alleen te maken met een wellicht inadequaat computational model, maar we moeten ons
ook afvragen of deze modellering van turbulente grenslaagstromingen zinvol en niet misleidend
is.
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