986 Collision of a Particles with Light Atoms.
Discussion of results.

From the results so far obtained it is difficult to avoid the
conclusion that the long-range atoms arising from collision of
« particles with nitrogen are not nitrogen atoms but probably
atoms of hydrogen, or atoms of mass 2. Tf this be the case,
we must conclude that the nitrogen atom is disintegrated
under the intense forces developed in a close collision with. a
swift « particle, and that the hydrogen atom which is liberated
formed a constituent part of the nitrogen nucleus. We have
drawn attention in paper IIT. to the rather surprising obser-
vation that the range of the nitrogen atoms in air is about
the same as the oxygen atoms, although we should expect a
difference of about 19 per cent. Ifin collisions which glve rise
to switt nitrogen atoms, the hydrogen is at the same time

disrupted, such a difference might be accounted for, for the

energy 1s then shared between two systems.

It is of interest to note, that while the majority of the
light atoms, as is well known, have atomic weights repre-
sented by 4n or 4n+3 where n is a whole number, nitrogen
is the only atomswhich is expressed by 4n+2. We should
anticipate from radioactive data that the nitrogen nucleus
- consists of three helium nuclei each of atomic mass 4 and

elther two hydrogen nuclei or one of mass 2. If the H nuclei .

were outriders of the main system of mass 12, the number of
close collisions with the bound H nuclei would be less than if
the latter were free, for the « particle in a collision comes
under the combined field of the H nucleus and of the central
mass. Under such conditions, it is to be expected that the
« particle would only occasionally approach close enough to
the H nucleus to give it the maximum velocity, although in
many cases 1t may give it sufficient energy to break its bond
with the central mass. Such a point of view would explain
why the number of swift H atoms from nitrogen is less than

the corresponding number in free hydrogen and less also than

the number of switt nitrogen atoms. The general results

indicate that the H nuclei, which are released, are distant .

about twice the diameter of the electron (7x10-Bcm.) from
the centre of the main atom. Without a knowledge of the
laws of force at such small distances, it is difficult to estimate
the energy required to free the H nucleus or to calculate the
maximum velocity that can be given to the escaping H atom.
It is not to be expected, a priors, that the velocity or range
of the H atom released from the nitrogen atom should be
1dentical with that due to a collision in free hydrogen.
Taking into account the great energy of motion of the
a particle expelled from radium C, the close collision of such
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an « particle with a light atom seems to be the most hkely

agency to promote the disruption of the latter ; for the forces
on the nuclei arising from such collisions appear to be greater
than can be produced by any other agency at present avail-
able.  Considering the enormous intensity of the forces
brought into play, it is not so much a matter of surprise
that the nitrogen atom should suffer disintegration as that
the « particle jtself escapes disruption into its constituents.
The results as a whole suggest that, if « particles—or similar
projectiles—of still greater energy were available for experi-
ment, we might expect to break down the nucleus structure
of many of the lighter atoms.

I desire to express my thanks to Mr. William Kay for his
invaluable assistance in countin o scintillations.

University of Manchester,
April 1919, -
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LV. The Rotational Oscillation of a Cylinder in a
-~ Vaiscous Lagquid. By D. CosTER *,

HIS problem has been dealt with by Stokest for the
purpose ot numerical calculations to determine the
viscosity of the air. Still, T think it interesting to publish
another solution of the problem which glves more oppor-
tunity ot discussing the different cases, thongh it is perhaps
less adapted to precise calculations. _
The method to be followed will be in the main the same as
that used by Prof. Verschaffelt in the analogous case of the
sphere I. We consider the rotational swings about its axis
of an infinitely long cylinder which executes a forced vibra-
tion.  Our object will be to ascertain the motion in the liquid
which will establish itself after an infinite: time (In practice

after a relatively short time§) in order to compute the

frictional moment of forces exerted on the cylinder by the
liquid.  The calculations will be referred to a height of 1. em.

The motion of the cylinder may be represented - by
« = a cos pt where « is the angle of rotation. An obvious

assumption to be made is that the liquid will be set in motion

in coaxtal cylindrical shells each of which will execute its
oscillations as a whole. On this assumption it is not difficult

* Communicated by Prof. G. N. Watson, M.A., D.Sc. First published

in the Amsterdam Proe. May 1918, vol. xxi. p. 198,

T Math. Papers, vol. v. p. 207.
I Cf. Amst. Proc. vol. xviii. p. 840; Comm. Leiden, 148 C.
§ Cf: Comm. Leiden, p. 22, footnote.
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to establish the differential equation of the motion of the
liquid.
Let p be the density,
u the viscosity of the liquid.

@ the angular velocity of a cylindrical shell.
r the radius of the shell.

The frictional force per unit area of one of the shells will

then be F=wp%£: and the frictional couple on a cylindrical

surface of radius » will be 2#?3;1,@-9 :
- or

Taking a shell of thickness dr its equation of motion

will be .
o O f dw
973 dn 0P __ O J 5 3 0O :
2ridrp St = 37 | 2y “S, }d:,
which reduces to |
pow _ow 30w
w ot =3 T o (1)
For an infinitely long time of vibration, i. e. for uniform
rotation, (1) simplifies to

0

d?w 3@2

The solution of (2) is m=;E + ¢5, ¢; and ¢y being constants.
2

of integration. If the solid cylinder (radius R) rotates with

uniform speed {2 in an infinite liquid, the result will be
R*Q}

0= g, giving for the frictional couple, as 1s well known,,

the expression

—4aruR*Q. . . . L (2}

In order to arrive at a possible solution of (1) we have to.
make our assumption regarding the motion of the liquid a

little more definite by assuming that the angular displace-
went of each shell is represented by -

a,=f(r) cos {pt—(r)}. . . . . (3)

We may also consider (3) as the real part of the complex
function ue?’, where u 1s a function of # the modulus of
which gives the amplitude of the oscillation and the argument
the phase-shift ¢(»). Remembering that e = g-; equation (1)

may be reduced to |
d’v  3du ipp-u |
T edr T = B

=W+;JT' e e e e (2}
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~ KEquation (4) is closely related to the differential equation
of the cylindrical functions. Indeed by the substitution
y=2zv, Bessel’s equation of the first order

dy 1d 1°
toa (1" 3)y=0
changes'to
d’v  3dv
12 ~+ E@ +’U—O.

It follows that the general solution of equation (4) is
y = %{AJl(cr) +BNyen)}, « « - - (5)

where ¢= ,\/ PP , A and B being complex constants of

integration. J; is the cylindrical function of the first kind

~and first order, N, that of the second kind and first order *.

As regards ¢ an agreement must be come to. We shall
choose the root with the negative imaginary part, 1.e.,

c=ke %, where k=|¢c|= l\/EE

As a first boundary-condition we have Lim mr-—_-O. As

r—o

this relation must hold for all values of ¢, it follows that
hm ru=0.

The cylindrical functions with complex argument all be-
come infinite at infinity with the exception of the so-called

functions of the third kind, or Hankel’s functions Hg) and

-Hf). Of these Hi}l) disappears at infinity in the positive

imaginary half-plane and on the contrary becomes infinite in
the negative half, whereas the opposite is true for Hf). By
our choice of ¢ in the negative imaginary half we are led to
the function H(f). For the constants of integration 1n

equation (5) this gives the relationt+ B= —iA, so that (5)
becomes

u=%*H§2)(caﬂ). P ()

For the determination of A we have to use the second

* Cf. Gray and Mathews, ‘Bessel Functions,’ Nielsen, Cylinder-
Sfunktionen ; Jahnke und Emde, Funktiontafeln. Instead of N, Gray and
Mathews use the symbol Y.
~ + Between J, N, and H a linear relation holds. Cf. Jahnke u. Emde,
p. 95.
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boundary-condition ap=a cos pt, R being the radius of the

cylinder. We therefore assume that there is no slipping

along the wall.
Hence A aR

- T ——

so that

R A

_ ipt |
p H§-2)(GRI) T . . » . . (7)

The symbol R means that the real part has to be taken of

the function which stands after it.
If we had chosen for ¢ the root with the positive imaginary

part, we should have had to utilize the function H{". Tt is

quite easy to verify that this would not have made any
essential change in the solution (7).

For large values of » (real and positive) H{"(z o/ —i)
approaches asymptotically to

e” V2 _ (% _*
— — € v 8/
vV sma 3
therefore for (kR) sufficiently large :
kr |

- T T HP(ER)| Vimkrt (= pts 4
where ¢ = arg H?(cR). |

From (8) 1t appears that damped waves are propagated
from 'the cylinder to infinity, the velocity of propagation
being .

- (8)

P _ /2 =\/?w
kfv/ 2 k 0
and the wave-length

2

2av . 2ma /2 oM |
N N

P PP
The frictional moment on the wall of the vibrating

cylinder is 27 R? [aw:l where w= 2° . First we determine
R

o >
aaﬁ:r ) from (7) : .
a&-r_. — i E 1pt H?)F(CB“) ipt
3y = R T Re tac Hf)(—cR_)ﬁ e :l (9)
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For the reduction of the second part on the right-hand

side of {9) we make use of the well-known recurrence-
formula of the cylindrical functions:

dH.r(lz)(z) 1
—— H(z)& . e
dz T YTz HP(z).-

By its application (9) assumes the form :

[Ba?.] ol 24 e, H®(cR) em] (10)

or - RS TYHPECR)

R
giving for the frictional couple:
. (R
| oo _ 2 _d_ 3 gﬂ- .(c- ) 2t (11
K= 27rpR3[§;]R = — 4muR°0 + R i 2mpRoac H(12) (cR)e ] (

For dn infinite time of swing, i.e., p=0, but with a

rotational velocity differing from O, 1f:l=\/ PL becomes O.

)

In that case the second term on the right of (11) disappears on
Hy(eR)

two grounds : first, because ¢=0, secondly, ];g_l_-]i{l} HO(R) =0 ;

only the first term then remains, which agrees with (2').
Moreover * :

Tim I_{f(}z)_(ij) _

R=o HI(eR) ~

—il

It a,pp.ea,rs from the accompanying graphs T of the modulus
H (cR)
B (R)

and argument ot that this limiting value is practi-

¢ally reached at
' cR|=t.R=10, . . . . . (12)

where |
29 J2

o|=k="— " (cf. &).

* (f. Jahnke u. Emde, 1. c.
T Tables f_'or'H.g1J and H?) will be found Juhnke u, Emde, pp. 139, 140.
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fl;he condition ]cRi;lO means that the radius of the
cylinder must__be about equal to or larger than the wave-
length. If R 1s small compared with A the second part of

!
Q-9
0-8
O-7
Q-6
0.5

the frictional couple is negligible. For [¢k =10 the second
term on the right-hand side of (10) becomes :
. il pt+ = —
— acie® = — ake ’ 4)(Since c=ke )
Hence equation (11) now becomes :
Hr . y d
= — druR°w— 2T pk R o (a COS (pt ""I")) . (13)

_ _ d
Whelﬂ m=a-z(a cos pt).

The frictional couple thus divides into two parts, one of
which does not contain the density of the liquid, and another

in which it occurs and which therefore refers to the emission

of waves. In the transition to the limit of uniform rotation
the first part only remains. |
In the discussion of the second part of the frictional

moment the quantity /c:,\/ LP is an 1mportant factor. If
7

we take a time of oscillation of 27 seconds, so that p=1, we

_ha,VB k:,\/e .
7!

~ This gives the following values for £:

: : k= fr:}(=l.
" e
95
8 ,

Water 16° .......c....... 1 0011

' Ai_:m. air 0° . ........... ... 00013 0000171 A
A!r 001 atm.* ......... . (28
Air 0001 atm.* ...... ... 009
Hydrogen 1 atm.0° ... 0-0000898 0-000085 |

;"; At these pressures u has not become much smaller. Cf. Kundt u.
arburg, Pogg. Ann. 1875, Band clv. '

spheric air with R=05 cm. kR=14 and
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From this table it appears that, except for dilute gases, R

“has to be relatively small in order that the_ second part may
be neglected with respect to the first. For instance, for atmo-

CHP (eR),
HP (cR)

—0-80,

so that the amplitude of; the second term of the frictional
couple is still 56 per cent. of that of the first (see equation (11)),

in which everything 1s calculated for a time of oscillation of
2 seconds. |

There is a further special limiting case of equation (13),
which is of some interest. Let R become infinite, and let a

.t the same time disappear, in such a manner that Ra
converges to a finite limit 6. We thus approach the one-

dimensional problem of the oscillation of an unlimited flat
plate in its own plane In an infinitely extended liquid. The
frictional force per unit of area is found from (13) to be

d
_ F=—-pk6—ﬁ(bcos(pt+2)),. .. . (14)

a formula which is well known from hydrodynamics ™. A
term analogous to —4muR’e does not occur in the one-.
dimensional problem, the reason evidently being that with a
niform translation of the plate a condition of equilibrium
does not arise, until the whole Jiquid away to infinity proceeds
with the velocity of the plate. '

Finally it is of importance to ascertain for what frequency
the amplitude of the forced vibration becomes a maximuin,
in other words, to what frequency the system cylinder-liquid
resounds, if the cylinder is urged back to the position of

_equilibrium by a quasi-elastic force. |

The differential equation for the forced oscillation In
complex notation is as follows :

d’a da o ipt -
9d7 +]—JEZ? +Mﬂ;—E€ v o , . (15)

Here in our case L is a complex quantity L=L'+:L",
where

L' =(4muR?+\/2mukR’)
L'=,/2mwukR’.

If we only concern ourselves with the particular solution

* (f. Lamb, ‘ Hydrodynamics,’ 3rd edition, 1905, p. 659.



H94  Rotational Oscillation of Cylinder in a Viscous Liquid.
of (15) which gives the forced oscillation, we can also write
(15) in the form : .
(9+ L”) da + L/ Aa + Ma=E¢# (16)
- -p dtﬂ dt | - — » n »

We see, therefore, that 1n consequence of the motion of

the liquid an apparent increase of the moment of inertia

arises.

Putting 9+ L” _g
p

the particular solution of (16) becomes :

| E o | €i(pf—¢_)
.‘/(M_g"}‘ﬁ)ﬂ + szp:z

in which the phase-angle ¢ is determined by the constants of
the differential equation. -
Resonance occurs for M—80'p?=0

or ' 0p?+L"p—M=0 . . . . « (17)
Now L” is proportional to /% and ]c-..-:\/};f, so that we

may conveniently write L'’ =Np*, N being a constant.
(17) 1s now replaced by

9})“+Np%_—M=O. .. ... (18)

" This equation, which is bi-quadratic in /p, determines the

frequencies to which the system resounds. On closer ex-
amination there appears to be but one resonance-frequency.

Naturally we are onlyv concerned with the real roots p of

equation (18). There are found to be two such roots, one

for which ,/p is positive, and another for which +p 1s

negative. Now it follows from our calculation that we have
assumed 4/p, which occurs in £, to be essentially positive.
For if we substitutle a negative value for +/p 1n our equations,
we obtain a system of waves which moves from intinHy
towards the cylinder. But the amplitude of this system 1s
infinite at infinity, so that our first boundary-condition would
not be satistied. |

Delft (Holland),
March, 1919.
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LVI. 4 proposed Hydraulic Experiment.

To the Editors of the Philosophical Magazine.
(ENTLEMEN,—

N the issue of this Journal for October 1918 (p. 315)
Liord Rayleigh has proposed an experiment on the flow

of a iquid between two cylinders, standing side by side, and on
the influence of a rotation of these cylinders on the form of the
stream-lines. - May I draw your attention to a remark by
Prot. . Prandtl of Gottingen, put forward in a discussion ut
a meeting of November 1911 and published in the Zeitschrift
Jir Flugtechnik und Motorluftschiffahrt, iii. p. 32 (1-912), on
an experiment which is only slightly different from that
proposed by Lord Rayleigh? It is stated there that no
vortices (eddies) arise if care has been taken that everywhere
the parts of the walls go faster than the adjacent fluid. If
two cylinders, standing side by side, very near to each other,

rotate 1n opposite directions, it is possible to make the stream-
lines close perfectly behind the cylinders. The arrangement
differs from that as proposed by lLiord Rayleigh only as
far as the flow is directed along the exterior sides of the
cylinders, and not between them. Photographs seem to have
been taken of the form of the stream-lines; however, they
have not been published.

Delft (Holland), Yours truly,
4 Dec. 1918, - J. M. BURGERSs,



